微积分 第二版 闫站立编 第二章习题选讲
微积分第二版课后习题答案
![微积分第二版课后习题答案](https://img.taocdn.com/s3/m/51f56f753a3567ec102de2bd960590c69ec3d8b8.png)
微积分第二版课后习题答案微积分第二版课后习题答案【篇一:微积分(上册)习题参考答案】0.11.(a)是(b)否(c)是(d)否2.(a)否(b)否(c)否(d)是(e)否(f)否(g)是(h)否(i)是1,2,3},{1,2,4},{1,3,4}, 3.f,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{{2,3,4},{1,2,3,4}.4. a?b5. a?b6~15. 略。
16. 证明:先证a-(b-c)?(ab)惹(ac).若x?a(b-c),则x蜗a,x①如果x?c,则x蜗a,②如果x?c,则x?b,所以x?aa-(b-c)?(ab)惹(ac).再证a-(b-c)惹(ac)?a(b-c).若x¢?(ab)惹(ac),则,x¢?ab或x¢吻ac.①如果x¢吻ac,有x¢?c,所以,x¢?bc,又x¢?a,于是x¢?a(b-c) ②如果x¢锨ac,x¢?ab,则有x¢?a,x¢?c,x¢?b,所以,x¢?bc,于是x¢?a(b-c). 因此有(a-b)惹(ac)?a(b-c).综上所述,a-(b-c)=(a-b)惹(ac),证毕. 17~19. 略。
20. cda.21. a?b{(1,u),(1,v),(2,u),(2,v),(3,u),(3,v)};禳1镲xx?r,睚2镲铪参考答案禳禳11镲镲,,a?d-1,-,0,1,2,3,?a-c=睚0,-1,-睚镲镲44铪铪禳1镲a=睚-1,-,0,1,2,7.镲4铪xx危r,1x 2}x3,a?b={,a-b={xx?r,2x3}.b-cb-c;(ac),因此有b,也有x?(ab)惹a2={(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)};b2={(u,v),(u,v),(v,u),(v,v)}22. a={(x,y,z)}x,y,z危?.0323~25. 略。
高等数学训练教程第二版课后练习题含答案
![高等数学训练教程第二版课后练习题含答案](https://img.taocdn.com/s3/m/c551ca91f424ccbff121dd36a32d7375a417c6d0.png)
高等数学训练教程第二版课后练习题含答案简介“高等数学训练教程”是为大学高等数学教学补充而设计的辅导材料。
本教程第二版的课后习题数量更加丰富,难度也更加适合大学生群体。
同时,本教程还提供习题答案及解析,方便同学们自我检验和提高。
内容本教程分为10章,分别是:1.第一章:数列与级数2.第二章:函数极限与连续3.第三章:一元函数微分学4.第四章:一元函数积分学5.第五章:微积分基本公式与常微分方程6.第六章:重积分与曲线积分7.第七章:空间解析几何8.第八章:多元函数微分学9.第九章:矢量分析10.第十章:多元函数积分学每一章都包含了基本概念和定理的介绍,以及对应的例题和习题。
其中的习题涵盖了各个难度级别,并包含详细的解答,方便同学们查看。
使用方法本教程适合大学数学专业的学生和其他使用高等数学作为必修课的学生使用。
同学们可以按照自己所学的章节进行选择,这样对于课后习题的巩固与练习会很有帮助。
同学们可以使用Markdown文本格式打开本教程,方便自己查看。
由于本教程包含了大量的数学符号和公式,建议使用支持LaTeX语法的软件进行查看和编辑。
另外,同学们在查看习题答案和解析的时候,可以先自行完成习题,再对着答案进行比对和核对。
对比过程中可以思考和讨论题目的解法,从而提高数学的理解和应用能力。
其他说明本教程的课后习题涵盖了大量的高等数学知识点。
同学们可以根据自己的需求进行选择和使用,帮助自己更好地掌握这门学科。
同时,也欢迎同学们提出宝贵的意见和建议,我们会根据大家的反馈继续优化和完善本教程。
最后,希望同学们在使用本教程的过程中能够收获到实实在在的成效,为自己的学业和未来的发展打下坚实的数学基础。
微积分及其应用第二章习题解答
![微积分及其应用第二章习题解答](https://img.taocdn.com/s3/m/4a45f0918bd63186bcebbcd0.png)
(4)已知函数 连续,求参数a,b.
解(1)要使 在 处连续,则
又由于
从而
(2)由于 是个分段函数,要使 连续,只需证明 在 处连续,即
又由于
故
(3)由于 是个分段函数,要使 连续,只需证明 在 处连续,即
又由于
故
(4)由于 是个分段函数,要使 连续,只需证明 在 处连续,即
又由于
故
2寻找下列函数的可去间断点,并修改或补充间断点处函数值使其连续.
证明,令 易见 在区间 上连续,且
则由根值存在定理可知存在 使得 即证方程 有非零根
5证明方程 至少有一个正根.
证明令 易见 在区间 上连续,且
则由根值存在定理可知存在 使得 即证方程 至少有一个正根.
复习题二
1已知 ,证明 .
证明:由于 ,即对任给的 当 时,有
则对上面给定的 当 时,有
即证 .
2设 ,在极限过程 下,当a,b为何值时 为无穷小?a,b为何值时 为无穷大?
(3)由于 ,函数仅在 处没有定义,且
故只需令 即可使函数在 处连续.
(4)由于 ,函数仅在 处没有定义,且
故只需令 即可使函数在 处连续.
3计算下列极限:
(1) ;(2) ;
(3) ;(4) ;
(5) ;(6) ;
(7) ;
解(1)
(2)令 则 则
(3)
(4)
(5)
(6)
(7)
4证明方程 有非零根.
(3)
解:(1)易见 故 或 时,函数为无穷小.
故 时,函数为无穷大.
(2)易见 故 , 时函数为无穷小.
(3) 故 时函数为无穷小.
经济管理类微积分龚德恩第二版参考答案 第二章极限与连续
![经济管理类微积分龚德恩第二版参考答案 第二章极限与连续](https://img.taocdn.com/s3/m/dfbd9a6a561252d380eb6e51.png)
第二章 极限与连续习 题 二(A)1.观察判别下列数列的敛散性;若收敛,求其极限值:(1)u n=5n-3n; (2)u n=1ncosnπ;(3)u n=2+-12n;(4)u n=1+(-2)n;(5)u n=n2-1n;(6)u n=a n(a为常数).解 (1)将该数列具体写出来为2,72,4,174,225,…,5-3n,…观察可知u n→5(n→∞).因此,该数列收敛,其极限为5.(2)因为u n=1ncosnπ=1n(-1)n=1n→0(n→∞)所以,该数列收敛,其极限为0.(3)因为u n-2=-12n=12n→0(n→∞)所以,该数列收敛,其极限为2.(4)该数列的前五项分别为:-1,5,-7,17,-31,…观察可知u n→∞(n→∞).因此,该数列发散.(5)该数列的前五项分别为0,32,83,154,245,…观察可知u n→∞(n→∞).所以,该数列发散.(6)当a<1时,u n=a n→0(n→∞);当a>1时,u n=a n→∞(n→∞);当a=1时,u n=1→1(n→∞);当a=-1时,u n=(-1)n,发散因此,a<1时,数列收敛,其极限为0;a=1时,数列收敛,其极限为1;a ≤-1或a>1时,数列发散.2.利用数列极限的定义证明下列极限:(1)limn→∞-13n=0; (2)limn→∞n2+1n2-1=1;(3)limn→∞1n+1=0;(4)limn→∞n2+a2=1(a为常数).证 (1)对任意给定的ε>0(不妨设0<ε<1),要使u n-0=13n<ε只需n>log31ε (∵0<ε<1,∴log31ε>0)取正整数N=1+log31ε>log31ε,则当n>N时,恒有-13n-0<ε因此limn→∞-13n=0.(2)对任意给定的ε>0,要使u n-1=n2+1n2-1-1=2n2-1=2n+1·1n-1≤1n-1<ε只需n>1+1ε.取正整数N=1+1ε,则当n>N时,恒有n2+1n2-1-1<ε由此可知limn →∞n 2+1n 2-1=1.(3)对任意给定的ε>0,要使u n -0=1n +1-0=1n +1<1n<ε只需n >1ε2.取正整数N =1ε2+1,则当n >N >1ε2时,恒有1n +1-0<ε.由此可知limn→∞1n +1=0.(4)对任意给定的ε>0,要使u n -1=n 2+a2n -1=a2n (n 2+a 2+n )<a22n2<ε只需n >a2ε.取正整数N =a 2ε+1,则当n >N >a2ε时,恒有n 2+a2n-1<ε因此limn →∞n 2+a2=1.3.求下列数列的极限:(1)limn →∞3n +5n 2+n +4; (2)limn →∞(n +3-n );(3)limn →∞(1+2n+3n+4n)1/n;(4)limn →∞(-1)n+2n(-1)n +1+2n +1;(5)limn →∞1+12+122+…+12n ;(6)limn →∞1+12+122+…+12n1+14+142+…+14n.解 (1)因为3n +5n 2+n +4=3+5n1+1n +4n 2→3(n →∞)所以limn→∞3n +5n 2+n +4=3.(2)因为n +3-n =3n +3+n →0(n →∞)所以limn →∞(n +3-n )=0.(3)因为(1+2n+3n+4n)1/n=414n+24n+34n+11/n→4(n →∞)所以limn→∞(1+2n+3n+4n)1/n=4.(4)因为(-1)n+2n(-1)n +1+2n +1=12·-12n+1-12n +1+1→12(n →∞)所以limn →∞(-1)n+2n(-1)n +1+2n +1=12.(5)因为 1+12+122+…+12n =1-12n +11-12=21-12n +1→2(n →∞)所以limn →∞1+12+122+…+12n =2.(6)因为1+12+122+…+12n =21-12n +1,1+14+142+…+14n =1-14n -11-14=431-14n +1于是1+12+122+…+12n 1+14+142+…+14n =32·1-12n +11-14n +1→32(n →∞)所以limn →∞1+12+122+…+12n1+14+142+…+14n=32.4.利用函数极限的定义,证明下列极限:(1)limx →3(2x -1)=5; (2)limx →2+x -2=0;(3)limx →2x 2-4x -2=4;(4)limx →1-(1-1-x )=1.证 (1)对任意给定的ε>0,要使(2x -1)-5=2x -3<ε只需取δ=ε2>0,则当0<x -3<δ时,恒有(2x -1)-5=2x -3<2δ=ε因此limx →3(2x -1)=5.(2)对任意给定的ε>0,要使x -2-0=x -2<ε只零取δ=ε2>0,则当0<x -2<δ时,恒有x -2-0=x -2<δ=ε所以limx →2+x -2=0.(3)对任意给定的ε>0,要使(x ≠2)x 2-4x -2-4=(x +2)-4=x -2<ε只需取δ=ε>0,则当0<x -2<δ时,恒有x 2-4x -2-4=x -2<δ=ε因此limx →2x 2-4x -2=4.(4)对任意给定的ε>0,要使(1-1-x )-1=1-x <ε只需0<1-x <ε2取δ=ε2>0,则当0<1-x <δ时,恒有(1-1-x )-1=1-x <δ=ε因此limx →1-(1-1-x )=1.5.讨论下列函数在给定点处的极限是否存在?若存在,求其极限值:(1)f (x )=1-1-x ,x <1,在x =1处;x -1,x >0(2)f (x )=2x +1,x ≤1,x 2-x +3,1<x ≤2,x 3-1,2<x ,在x =1与x =2处.解 (1)因为f (1-0)=limx →1-f (x )=limx →1-(1-1-x )=1f (1+0)=limx →1+f (x )=limx →1+(x -1)=0这表明f (1-0)≠f (1+0).因此,limx →1f (x )不存在.(2)在x =1处,有f (1-0)=limx →1-(2x +1)=3.f (1+0)=limx →1+(x 2-x +3)=3.因f (1-0)=f (1+0)=3,所以,limx →1f (x )=3(存在);在x =2处,有f (2-0)=limx →2-(x 2-x +3)=5f (2+0)=limx →2+(x 3-1)=7因f(2-0)≠f(2+0),所以limx→2f(x)不存在.6.观察判定下列变量当x→?时,为无穷小:(1)f(x)=x-2x2+2; (2)f(x)=ln(1+x);(3)f(x)=e1-x;(4)f(x)=1ln(4-x).解 (1)因为当x→2或x→∞时,x-2x2+2→0因此,x→2或x→∞时,x-2x2+2为无穷小.(2)因为当x→0时,ln(1+x)→0因此,x→0时,ln(1+x)为无穷小.(3)因为当x→+∞时,e1-x=eex→0,因此,x→+∞时,e1-x为无穷小.(4)因为当x→4-或x→-∞时,1ln(4-x)→0因此,x→4-或x→-∞时,1ln(4-x)为无穷小.7.观察判定下列变量当x→?时,为无穷大:(1)f(x)=x2+1x2-4; (2)f(x)=ln1-x;(3)f(x)=e-1/x;(4)f(x)=1x-5.解 (1)因为当x→±2时,x2-4x2+1→0因此当x→±2时,x2+1x2-4→∞所以,x→±2时,x2+1x2-4为无穷大.(2)因为当x→1时,1-x→0+当x→∞时,-x→+∞因此当x→1时,ln1-x→-∞当x→∞时,ln1-x→+∞所以,x→1或x→∞时,ln1-x为无穷大.(3)因为limn→0--1x=+∞所以limx→0-e-1/x=+∞由此可知,x→0-时,e-1/x为无穷大.(4)因为limx→5+x-5=0所以limx→5+1x-5=+∞由此可知,x→5+时,1x-5为无穷大.8.求下列函数的极限:(1)limx→3(3x3-2x2-x+2); (2)limx→05+42-x;(3)limx→16x-5x+4x-16;(4)limx→0(x+a)2-a2x(a为常数);(5)limx→0x2+a2-ax2+b2-b(a,b为正的常数);(6)limx→1x+x2+…+x n-nx-1(提示:x+x2+…+x n-n=(x-1)+(x2-1)+…+(x n-1))解 (1)由极限的线性性质,得原式=3limx→3x3-2limx→3x2-limx→3x+2=3x33-2×32-3+2=62(2)因为limx→0(2-x)=2≠0,所以原式=5+limx →042-x =5+4limx →0(2-x )=5+42=7.(3)因为x -5x +4=(x -4)(x -1),x -16=(x -4)(x +4).所以原式=limx →16(x -4)(x -1)(x -4)(x +4)=limx →16x -1x +4=38.(4)因为(x +a )2-a 2=x (x +2a ),所以原式=limx →0x (x +2a )x=limx →0(x +2a )=2a .(5)原式=limx →0(x 2+a 2-a )(x 2+a 2+a )(x 2+a 2+b )(x 2+b 2-b )(x 2+b 2+b )(x 2+a 2+a )=limx →0x 2(x 2+b 2+b )x 2(x 2+a 2+a )=limx →0x 2+b 2+bx 2+a 2+a=b a(6)因为 x +x 2+…+x n-n =(x -1)+(x 2-1)+…+(x n-1)=(x -1)[1+(x +1)+…+(xn -1+xn -2+…+1)]所以原式=limx →1(x -1)[1+(x +1)+…+(xn -1+xn -2+…+1)]x -1=limx →1[1+(x +1)+…+(x n -1+xn -2+…+1)]=1+2+…+n =12n (n +1).9.求下列函数的极限:(1)limx →∞[x 2+1-x 2-1]; (2)limx →∞(x -1)10(3x -1)10(x +1)20;(3)limx →+∞5x 3+3x 2+4x 6+1;(4)limx →∞(x +31-x 3);(5)limx →+∞x (3x -9x 2-6);(6)limx →+∞(a x+9)-a x+4(a >0).解 (1)原式=limx →∞2x 2+1+x 2-1=0.(2)原式=limx→∞1-1x103-1x 101+1x20=310(3)原式=limx →+∞5+(3/x )+(4/x 3)1+(1/x 3)=5.(4)因为(x +31-x 3)[x 2-x31-x 3+(31-x 3)2]=x 3-(31-x 3)3=1所以原式=limx→∞1x 2-x 31-x 3+(31-x 3)2=0.(5)因为x (3x -9x 2-6)=x (3x -9x 2-6)(3x +9x 2-6)3x +9x 2-6=x [9x 2-(9x 2-6)]3x +9x 2-6=6x3x +9x 2-6所以原式=limx →+∞6x3x +9x 2-6=limx →+∞63+9-(6/x 2)=1(6)原式=limx →+∞5a x+9+a x+4=1,0<a <110-5,a =10,a >1.10.求下列各题中的常数a 和b :(1)已知limx →3x -3x 2+ax +b=1;(2)已知limx →+∞(x 2+x +1-ax -b )=k (已知常数).解 (1)由于分子的极限limx →3(x -3)=0,所以分母的极限也应为0(否则原式=0≠1),即有limx →3(x 2+ax +b )=9+3a +b =0另一方面,因分子=x -3,故分母x 2+ax +b =(x -3)(x -c ),于是原式=limx →3x -3(x -3)(x -c )=limx →31x -c =13-c=1由此得c =2.于是得x 2+ax +b =(x -3)(x -2)=x 2-5x +6由此得a =-5,b =6(2)原式可变形为原式=limx →+∞[x 2+x +1-(ax +b )][x 2+x +1+(ax +b )]x 2+x +1+ax +b=limx →+∞(1-a 2)x 2+(1-2ab )x +(1-b 2)x 2+x +1+ax +b显然应有1-a 2=0,即有a =±1.于是原式=limx →+∞(1-2ab )x +(1-b 2)x 2+x +1+ax +b=limx →+∞1-2ab +(1-b 2)/x1+(1/x )+(1/x 2)+a +(b /x )=1-2ab1+a=k (a ≠-1)由上式可知,a ≠-1,于是a =1,从而有1-2b2=k 痴b =12-k .11.已知f (x )=2+x1+x(1-x )/(1-x )(1)limx →0f (x ); (2)limx →1f (x ); (3)limx →∞f (x ).解 令g (x )=2+x 1+x ,h (x )=1-x1-x.(1)因为limx →0g (x )=2,limx →0h (x )=1所以limx →0f (x )=limx →0g (x )h (x )=21=2.(2)因为 limx →1g (x )=32>0limx →1h (x )=limx →1(1-x )(1+x )(1-x )(1+x )=limx →111+x =12所以limx →1f (x )=limx →1g (x )h (x )=3212(3)因为limx →∞g (x )=limx →∞1+(2/x )1+(1/x )=1>0limx →∞h (x )=limx→∞(1/x )-(1-x )(1/x )-1=0所以limx →∞f (x )=limx→∞g (x )h (x )=10=1.12.求下列极限:(1)limx →0sin3x sin2x ; (2)limx →0tan5xsin2x ;(3)limx →0arctan4x arcsin2x;(4)limx →∞x sin1x;(5)limx →0sin2(2x )x2;(6)limx →0tan3x -sin2xx;(7)limx →01-cosxx sinx;(8)limx →0ax -sinbxtankx(a ,b ,k >0).解 (1)原式=limx →0sin3x3x·2x sin2x ·32=32.(2)原式=limx →0tan5x 5x ·2x sin2x ·52=52.(3)原式=limx →0arctan4x 4x ·2x arcsin2x ·42=2.(4)令u =1x,则x →∞时u →0.于是原式=limu →0sinu u=1.(5)原式=limx →0sin2(2x )(2x )2·4=4limx →0sin2x 2x 2=4.(6)原式=3limx →0tan3x 3x -2limx →0sin2x2x =3-2=1(7)因为1-cosx ~12x 2(x →0),所以原式=12limx →0x 2x sinx =12limx →0x sinx =12(8)原式=limx →0a k ·kx tankx -b k ·sinbx bx ·kxtankx=a k -b k =a -bk.13.求下列极限:(1)limx →∞1-1xx; (2)limx →∞1+5xx;(3)limx →0(1-sinx )1/x;(4)limx →0(1+3x )1/x;(5)limx →01-x22/x;(6)limx →∞x -2x +2x.解(1)原式=limx→∞1+1-x-x-1=1e.(2)原式=limx→∞1+1x /5x /55=e5.(3)令u =sinx ,则x →0时,u →0.于是原式=limu →0(1+u )1/u u /arcsin(-u )=e-1.(4)原式=limx →0[(1+3x )1/(3x )]3=e3(5)原式=limx →01-x 2-2/x-1=e-1(6)原式=limx →∞1-4x +2x=limx→∞1-4x +2-(x +2)/4-4x /(x +2)=e-4另解,令u =-x +24,则x =-4u -2,且u →∞(x →∞时),于是原式=limu →∞1+1u-4u -2=limu →∞1+1uu -4·limu →∞1+1u-2=e-4.14.求下列极限:(1)limx →0(cosx )1/(1-cosx ); (2)limx →0(sec2x )cot2x;(3)limx →π/2(1+cosx )5secx;(4)limx →0sinx -tanxsinx3;(5)limx →0(sinx 3)tanx1-cosx 2;(6)limx →π/61-2sinxsin(x -π/6);(7)limx →π/4(tan2x )tanπ4-x .解(1)令u =1-cosx ,则cosx =1-u ,且u →0(x →0时),因此原式=limu →0(1-u )1/u=e-1.(2)令u =cot2x ,则sec2x =1+1cot2x=1+1u ,且x →0时,u →+∞.因此原式=limu →+∞1+1uu=e(3)令u =cosx ,则secx =1u ,且x →π2时,u →0.因此原式=limu →0(1+u )5/u=limu →0(1+u )1/u 5=e5.(4)因为x →0时,sinx ~x ,sinx 3~x 3,cosx -1~-x22所以 原式=limx →0sinx (cosx -1)cosx ·sinx3=limx →0x ·(-x 2/2)x 3cosx=-12limx →01cosx =-12.(5)因为x →0时,sinx 3~x 3,tanx ~x ,1-cosx 2~12(x 2)2,所以原式=limx →0x 3·xx 4/2=2(6)令u =x -π6,则x →π6时,u →0,且有sinx =sinu +π6=12(3sinu +cosu )于是有 原式=limu →01-(3sinu +cosu )sinu=limu →01-cosu sinu -3=limu →0u 2/2sinu-3=-3.(7)因为tan2x =sin2x cos2x =sin2xcos2x -sin2xtanπ4-x =sinπ4-x cosπ4-x =cosx -sinx cosx +sinx所以tan2x tanπ4-x =sin2x cos2x -sin2x ·cosx -sinx cosx +sinx =sin2x (cosx +sinx )2从而原式=limx →π/4sin2x (cosx +sinx )2=122+222=12.15.讨论下列函数的连续性:(1)f (x )=x1-1-x ,x <0,x +2,x ≥0;(2)f (x )=e1/x,x <0,0,x =0,1xln(1+x 2),x >0.解 (1)由题设知f (0)=2,且f (0-0)=limx →0-x 1-1-x=limx →0-x (1+1-x )x =2f (0+0)=limx →0+(x +2)=2可见limx →0f (x )=2=f (0).所以,该函数在x =0处连续.另一方面,x1-1-x 在(-∞,0)内为初等函数,连续;x +2在(0,+∞)内为线性函数,连续.综上所述,该函数在(-∞,+∞)内连续.(2)因f (0)=0,且 f (0-0)=limx →0-e1/x=0, f (0+0)=limx →0+1xln(1+x 2)=limx →0+x ln(1+x 2)1/x 2=0·1=0所以 limx →0f (x )=0=f (0).因此,该函数在x =0处连续.另一方面,e1/x在(-∞,0)内连续,1xln(1+x 2)在(0,+∞)内连续.综上所述,该函数在(-∞,+∞)内连续.16.指出下列函数的间断点及其类型;如为可去间断点,将相应函数修改为连续函数;作出(1)、(2)、(3)的图形:(1)f (x )=1-x21+x ,x ≠-1,0,x =-1;(2)f (x )=x 2,x ≤0,lnx ,x >0;(3)f (x )=x x ; (4)f (x )=x sin1x.解 (1)由题设知f (-1)=0,而limx →-1f (x )=limx →-11-x 21+x =limx →-1(1-x )=2≠f (0)所以,x =-1为该函数的可去间断点.令f (-1)=2,则f ~(x )=1-x 21+x ,x ≠-12,x =-1=1-x在(-∞,+∞)内连续.f (x )的图形如图2.1所示.图2.1图2.2(2)由题设有f (0)=0,而f (0-0)=limx →0-x 2=0,f (0+0)=limx →0+lnx =-∞所以,x =0为该函数的无穷间断点.f (x )的图形如图2.2所示.(3)该函数在x =0处无定义,而f (0-0)=limx →0-xx =limx →0-x-x =-1,f (0+0)=limx →0+x x=limx →0+x x=1.图2.3因为左、右极限均存在但不相等,所以,x =0为该函数的跳跃间断点.f (x )的图形如图2.3所示.(4)该函数在x =0处无定义.因limx →0f (x )=limx →0x sin1x=0,故x =0为该函数的可去间断点.若令f (0)=0,则函数f ~(x )=x sin1x,x ≠00,x =0在(-∞,+∞)内连续.17.确定下列函数的定义域,并求常数a ,b ,使函数在定义域内连续:(1)f (x )=1x sinx ,x <0,a ,x =0,x sin1x+b ,x >0;(2)f (x )=ax +1,x ≤1,x 2+x +b ,x>1;(3)f (x )=1-x 2,-45<x <35,a +bx ,其他.解 (1)D f =(-∞,+∞).因f (x )在D f 的子区间(-∞,0)与(0,+∞)内均为初等函数.因此,f (x )在(-∞,0)∪(0,+∞)内连续.现讨论f (x )在分界点x =0处的连续性.已知f (0)=a ,而且f (0-0)=limx →0-sinxx =1,f (0+0)=limx →0+x sin1x+b =b 当f (0-0)=f (0+0)=f (0)时,即当a =b =1时,f (x )在x =0处连续.综上所述,当a =b =1时,该函数在其定义域(-∞,+∞)内连续.(2)D f =(-∞,+∞).因为f (-1)=1-a ,且f (-1-0)=limx →(-1)-(x 2+x +b )=bf (-1+0)=limx →(-1)+(ax +1)=1-a 所以,当a +b =1时,f (x )在x =-1处连续.又因f (1)=1+a ,且f (1-0)=limx →1-(ax +1)=a +1f (1+0)=limx →1+(x 2+x +b )=2+b所以,当a +1=2+b ,即a -b =1时,f (x )在x =1处连续.综上所述,当a +b =1且a -b =1,即a =1,b =0时,f (x )在x =-1和x =1处连续,从而f (x )在其定义域(-∞,+∞)内连续.(3)D f =(-∞,+∞).因f -45=a -45b ,且f -45-0=limx →-45-(ax +b )=a -45b f -45+0=limx →-45+1-x 2=35所以,当a -45b =35,即5a -4b =3时,f (x )在点x =-45处连续.又因f35=a +35b ,且f35-0=limx →35-1-x 2=45f35+0=limx →35+(a +bx )=a +35b 所以,当a +35b =45,即5a +3b =4时,f (x )在点x =35处连续.综上所述,当5a -4b =3且5a +3b =4,即a =57,b =17时,f(x)在x=-45与x=35处连续,从而f(x)在其定义域(-∞,+∞)内连续.(B)1.填空题:(1)limn→∞1n2+1(n+1)2+…+1(2n)2= ;(2)limx→0ln(x+a)-lnax(a>0)= ;(3)limx→a+x-a+x-ax2-a2(a>0)= ;(4)若limx→+∞xx n+1-(x-1)n+1=k≠0,n为正整数,则n= ,k= ;(5)x→0时,1+x-1-x是x的 无穷小;(6)设f(x)=sinx·sin1x,则x=0是f(x)的 间断点;(7)设f(x)=x x,则x=0是f(x)的 间断点;(8)函数f(x)=1x2-5x+6的连续区间是 .答 (1)0; (2)1a; (3)12a;(4)2008,12008; (5)等价;(6)可去; (7)跳跃; (8)(-∞,2)∪(3,+∞).解 (1)因为14n≤1n2+1(n+1)2+…+1(2n)2≤1n且limn→∞14n=0,limn→∞1n=0.所以,由夹逼定理可知,原式=0.(2)原式=limx→0ln1+x a1/x=1alimx→0ln1+x a a/x=1alnlimx→01+x a a/x=1alne=1a.(3)因为x-a+x-ax2-a2=x-ax+a(x+a)+1x+a且limx→a+x-ax+a(x+a)=0,limx→a+1x+a=12a所以,原式=12a.(4)因为x n+1-(x-1)n+1=[x-(x-1)][x n+x n-1(x-1)+…+x(x-1)n-1+(x-1)n]=x n1+1-1x+…+1-1x n-1+1-1x n所以,由题设有原式=limx→+∞x2008-n1+1-1x+…+1-1x n-1+1-1x n=k≠0显然,要上式成立,应有2008-n=0,即n=2008.从而原式=limx→+∞11+1-1x+…+1-1x n-11-1x n=1n=k所以,k=1n=12008.(5)因为limx→01+x-1-xx=limx→021+x+1-x=1所以,x→0时,1+x-1-x是x的等价无穷小.(6)因为limx→0sinx·sin1x=limx→0sinx x·limx→0xsin1x=1×0=0.所以,x=0是f(x)的可去间断点(令f(0)=0,即可).(7)因为f (0-0)=limx →0--x x =-1,f (0+0)=limx →0+xx=1左、右极限存在,但不相等,故x =0为跳跃间断点.(8)该函数有定义的条件是x 2-5x +6=(x -2)(x -3)>0由此得x <2或x >3.因此,该函数的连续区间为(-∞,2)或(3,+∞).2.单项选择题:(1)函数f (x )在点x 0处有定义,是极限limx →x 0f (x )存在的 .(A)必要条件; (B)充分条件;(C)充分必要条件;(D)无关条件.(2)下列“结论”中,正确的是 .(A)无界变量一定是无穷大;(B)无界变量与无穷大的乘积是无穷大;(C)两个无穷大的和仍是无穷大;(D)两个无穷大的乘积仍是无穷大.(3)设函数f (x )=1,x ≠1,0,x =1,则limx →1f (x )= .(A)0; (B)1; (C)不存在; (D)∞.(4)若limx →2x 2+ax +bx 2-3x +2=-1,则 .(A)a =-5,b =6; (B)a =-5,b =-6;(C)a =5,b =6;(D)a =5,b =-6.(5)设f (x )=1-x 1+x,g (x )=1-3x ,则当x →1时, .(A)f (x )与g (x )为等价无穷小;(B)f (x )是比g (x )高阶的无穷小;(C)f (x )是比g (x )低阶的无穷小;(D)f (x )与g (x )为同阶但不等价的无穷小.(6)下列函数中,在定义域内连续的是 .(A)f (x )=cosx ,x ≤0,sinx ,x >0; (B)f (x )=1x,x >0,x ,x ≤0;(C)f (x )=x +1,x ≤0,x -1,x >0;(D)f (x )=1-e-1/x 2,x ≠0,1,x =0.(7)下列函数在区间(-∞,1)∪[3,+∞]内连续的是 .(A)f (x )=x 2+2x -3; (B)f (x )=x 2-2x -3;(C)f (x )=x 2-4x +3;(D)f (x )=x 2+4x +3.(8)若f (x )在区间 上连续,则f (x )在该区间上一定取得最大、最小值.(A)(a ,b ); (B)[a ,b ]; (C)[a ,b ); (D)(a ,b ].答 (1)D; (2)D; (3)B;(4)A;(5)D; (6)D; (7)C; (8)B.解 (1)limx →x 0f (x )是否存在与f (x )在点x 0是否有定义无关,故应选(D).(2)(A)、(B)、(C)都不正确.例如n →∞时n sinn 是无界变量,而不是无穷大;n →∞时,n sinn 是无界变量,n 是无穷大,而n ·n sinn =n 2sinn 是无界变量,不是无穷大;n →∞时,n 与-n 都是无穷大,但n +(-n )=0是一常量,不是无穷大.(D)正确.例如,设limu →∞u 0=∞, limu →∞v n =∞则对任意给定的M >0,存在正整数N 1,N 2,使当n =N 1,n >N 2时,恒有u n>M ,v n >M取N =max{N 1,N 2},则当n >N 时,恒有u n v n=u n ·v n>M ·M =M2这表明limn →∞u n v n =∞.(3)易知f (1-0)=f (1+0)=1,从而limx →1f (x )=1,故应选(B).(4)因为limx →2(x 2-3x +2)=limx →2(x -2)(x -1)=0,因此,分子的极限也应为0,即应有x 2+ax +b =(x -2)(x -c )=x 2-(2+c )x +2c由此得a =-(2+c ),b =2c于是,由题设有limx →2x 2+ax +b x 2-3x +2=limx →2(x -2)(x -c )(x -2)(x -1)=limx →2x -cx -1=2-c =-1由此得c =3,从而得a =-5,b =6.故应选(A).(5)因为limx →1f (x )g (x )=limx →11-x 1+x ·11-3x=limx →1(1-3x )(1+3x +3x 2)(1+x )(1-3x )=limx →11+3x +3x21+x =32≠1所以,应选(D).(6)(A)、(B)、(C)均在x =0处不连续.因为(A)f (0-0)=1≠f (0+0)=0;(B)f (0-0)=0,f (0+0)=+∞;(C)f (0-0)=1≠f (0+0)=-1;因为limx →0(1-e-1/x 2)=limx →01-1e1/x 2=1-0=1=f (0)故(D)中f (x )在x =0处连续;在x ≠0处为初等函数,连续.因此,在定义域(-∞,+∞)内连续.故应选(D).(7)(A)、(B)、(D)均不符合要求.因为(A)应有x 2+2x -3=(x -1)(x +3)≥0痴x ≤-3或x ≥1;(B)应有x 2-2x -3=(x +1)(x -3)≥0痴x ≤-1或x ≥3;(C)应有x 2-4x +3=(x -1)(x -3)≥0痴x ≤1或x ≥3;(D)应有x 2+4x +3=(x +1)(x +3)≥0痴x ≤-3或x ≥-1.由此可知,应选(C).(8)选(B).3.证明:若limx →x 0f (x )=a ,则limx →x0f (x )=a ;举例说明,反之不一定成立.证 因limx →x0f (x )=a ,所以对任意给定的ε>0,存在δ>0,使当0<x -x 0<δ时,恒有f (x )-a<ε于是有||f (x )|-|a ||≤|f (x )-a |<ε因此有limx →x 0|f (x )|=|a |反之不一定成立.例如,设f (x )=-1,x <01x >0则limx →0|f (x )|=limx →01=1而limx →0-f (x )=-1,limx →0+f (x )=1,左、右极限存在,但不相等,故limx →0f (x )不存在.4畅求下列极限:(1)limn →∞312·22+522·32+…+2n +1n 2(n +1)2;(2)limn →∞1n 2+n +1+2n 2·n +2+…+nn 2+n +n;(3)limn →∞(1+2n )1/n ; (4)limn →∞3n sinx3n .解 (1)因为2n +1n 2(n +1)2=1n 2-1(n +1)2,n =1,2,3,…所以原式=limn→∞112-122+122-132+…+1n 2-1(n +1)2=limn →∞1-1(n +1)2=1(2)因为1n 2+n +n +2n 2+n +n +…+n n 2+n +n =1+2+…+n n 2+2n=n +12(n +2)<1n 2+n 1+1+2n 2+n +2+…+nn 2+n +n<1n 2+n +1+2n 2+n +1+…+n n 2+n +1=1+2+…+n n 2+n +1=n (n +1)2(n 2+n +1)而limn→∞n +12(n +2)=12, limn →∞n +12(n 2+n +1)=12所以,由夹逼定理得 原式=12(3)原式=limn →∞2n1+12n 1/n=2limn →∞1+12n 1/n =2×10=2(4)原式=limn →∞1x 3n ·sinx 3n ·x =x .5畅设x 1=1,x n =1+x n -11+x n -1(n =2,3,…).求limn →∞x n .解 显然,0<x n <2(n =1,2,…),即x n 有界.另一方面,显然有x 1<x 2,设x n -1<x n ,则x n +1-x n =1+x n 1+x n -1+x n -11+x n -1=x n -x n -1(1+x n )(1+x n -1)>0即x n <x n +1.因此,x n 单调增加.由于x n 单调有界,故极限存在.设limn →∞x n =a则由x n =1+x n -11+x n -1两边同时取极限,得a =1-a1+a由此解得limn →∞x n =a =12(1+5) (舍去负值).6畅求下列极限:(1)limx →01xln1+8x ;(2)limx →x 0a x-a x0x -x 0(0<a ≠1);(3)limx →∞9x 2+x -8-1x 2+sinx;(4)limx →0ln(cos2x +1-x 2)ex +sinx+(1+x )2/x ;(5)limx →π/21sinx -1sinx +sin2+…+sinn x -n ;(6)limx →∞1-5xx;(7)limx →∞1+3x +2x2x;(8)limx →∞sin1x +cos1x x;(9)limx →+∞1xln(1+x )-lnx ;(10)limx →+∞x a 1/x-b1/x (a >0,b >0)解(1)原式=4limx →018xln(1+8x )=4limx →0ln(1+8x )1/8x=4×1=4.(2)令u =x -x 0,则x →x 0时,u →0,于是原式=limu →0au +x 0-a x0u =a x 0limu →0a u-1u由式(2畅24)知,a u-1~u lna .从而有原式=a x0limu →0u lna u=a x 0lna .(3)原式=limx→∞|x |q +1x -8x2-1|x |1+(sinx )/x2=limx →∞q +1x -1x 2-1|x |1+(sinx )/x2=31=3(4)因为limx →0ln(cos2x +1-x 2)=lnlimx →0(cos2x +1-x 2)=ln2,limx →0(ex+sinx )=elimx →0x+limx →0sinx =1≠0,limx →0(1+x )2/x=limx →0(1+x )1/x2=e2.所以原式=limx →0ln(cos2x +1-x 2)limx →0(ex+sinx )+limx →0(1+x )2/x=ln21+e2=ln2+e2(5)因为 sinx +sin2x +…+sinnx -n =(sinx -1)+(sin2x -1)+…+(sinnx -1)=(sinx -1)[1+(sinx +1)++(sinn -1x +…+sinx +1)]所以原式=limx →π/2[1+(sinx +1)+…+(sinn -1x +…+sinx +1)]=1+2+…+n =12n (n +1)(6)原式=limx →∞1+-5x(-5/x )-5=e-5(7)原式=limx →∞1+3x +2x2x=limx →∞1+3x +2x2x 2/(3x +2)(3x +2)/x=e3(8)令u =1x,则x →∞时,u →0.于是原式=limu →0(sinu +cosu )1/u =limu →0(sinu +cosu )21/2u=limu →0(1+sin2u )1/2u=limu →0[(1+sin2u )1/sin2u]sin2u /2u=e1=e.(9)原式=limx →+∞ln1+1x1/x=lnlimx →+∞1+1x1/x=ln1=0(10)令u =1x,则x →+∞时,u →0+.于是原式=limu →0+a u-b uu =limu →0+(a u-1)-(b u-1)u=limu →0+u lna -u lnb u =lna -lnb =lna b7畅设f (x )=limu →+∞1uln(eu +x u ),(x >0):(1)求f (x );(2)讨论f (x )的连续性.解(1)x =e时,f (e)=limu →+∞1uln(2eu )=limu →+∞1u (ln2+u )=1;0<x <e时,f (x )=limu →+∞1u lneu 1+x eu=1+limu →+∞1u ln1+x eu=1x >e时,f (x )=limu →+∞1u lnx u 1+exu=limu →+∞lnx +1u ln1+ex u=lnx所以f (x )=1,0<x ≤elnx ,x >e(2)因为f (e-0)=1,f (e+0)=limx >e+lnx =1,f (e)=1可见f (x )在x =e处连续.又因在(0,e)内f (x )≡1,连续;在(e,+∞)内f (x )=lnx ,连续.综上所述,f (x )在(0,+∞)内连续.8畅证明下列方程在给定区间内至少存在的一个根:(1)x ·3x=1,x ∈[0,1];(2)x 3+px +q =0(p >0),x ∈(-∞,+∞);(3)x =a sinx +b (a >0,b >0),x ∈[0,a +b ].证 (1)令f (x )=x ·3x-1则f (x )为初等函数,在[0,1]上连续,且f (0)=-1<0,f (1)=2>0所以,由零值定理可知,方程f (x )=x ·3x-1=0在(0,1)内至少有一实根,即存在ξ∈(0,1),使得f (ξ)=0,即ξ·3ξ=1(2)令f (x )=x 3+px +8因为limx →-∞f (x )=-∞,所以,存在x 1∈(-∞,0),使得f (x 1)<0类似地,因为limx →+∞f (x )=+∞,故存x 2∈(0,+∞),使得f (x 2)>0因f (x )为多项式函数,在闭区间[x 1,x 2]上连续,故由零值定理可知,f (x )=x 3+px +q =0在(x 1,x 2)炒(-∞,+∞)内至少有一个实根.(3)令f (x )=a sinx +b -x则f (x )在[0,a +b ]上连续,且有f (0)=b >0,f (a +b )=a sin(a +b )+b -(a +b )=a [sin(a +b )-1]若sin(a +b )=1,则f (a +b )=0,x =a +b 为所求,若sin(a +b )<1,则f (a +b )<0,f (x )=0在(0,a +b )内至少有一实根.。
《微积分(二)》同步练习册(最终使用版)
![《微积分(二)》同步练习册(最终使用版)](https://img.taocdn.com/s3/m/d1b8a0be561252d381eb6e20.png)
1 / 63第五章 不定积分 §5.3 凑微分法和分部积分法(第5.1~5.2节的内容,请参见本练习册末尾、第五章“自测题”前的附加材料)1. 求下列不定积分:(1) ⎰-dx e x 2; (2)⎰dx x x ln 1;(3)⎰+x x dx 2; (4) ⎰-dx x x 21;(5)dx x x x ⎰-+-2211; (6)()⎰-dx x 21sin 2;)21(2112122x x d xx -+-+=⎰(7)⎰xdx x 32cos sin ; (8) ⎰dx x4sin 1; cctgx x ctg dctgx x ctg xdctgx+--=+-=-=⎰⎰32231)1(csc(9)⎰+dx xx 231; (10)2sin cos 23cos x x dx x-⎰;)1()111(21112222223x d xx xdx x x dx x x ++-+=+=+⎰⎰⎰c x xd x x d xdx xx x +-=--=--=-⎰⎰⎰222222cos 3231)cos 32(cos 32161cos cos 32121cos 32cos sin (11)⎰dx x x x cos sin 1; (12*)⎰+dx e x11;(13*)()⎰+dx x x x ln 1; (14*)()⎰+2cos 2sin x x dx.()ce x dx e dx x e x x x x x x +==+=⎰⎰ln ln ln ln ln 1()()ctgx tgx tgx d tgx dx x ++-=++=+=⎰⎰212)2(2cos 12222 / 633. 求下列不定积分: (1)[]⎰++dx x x )1ln(arcsin ; (2)⎰-dx e x x22;(3)⎰xdx e x2sin ; (4) ()dx e x x x 221⎰+;(5) ⎰xdx ln sin ; (6)⎰+dx x 21.c x x x x c tgt t ttgt dtgt t tdtdtgt t ttgt dt t t tg ttgt ttgtd ttgt tdtgt dx x +++++=+++=+-=-=-==+⎰⎰⎰⎰⎰⎰⎰]1ln 1[21]sec ln [sec 21sec sec sec sec sec sec sec sec sec 122224. 求下列有理函数的不定积分:(1) ⎰+dx x x )1(17; (2)⎰++dx x x x21. c x x dx x x dx x x ++=+-=+=⎰⎰777777771ln 71)111(71)1(171 c arctg x dx x x +-++=++-+=⎰33233])21(43ln[21)21(4321)21(225. 求下列不定积分: (1) 已知)(x f 是2x e-的一个原函数,求⎰'dx x f x )(;c e xde dx xe dx xf x e x f x x x x +-=--=='='----⎰⎰⎰22222121)(,)(2(2) 已知2x e-是)(x f 的一个原函数,求⎰'dx x f x )(.ce e x ce ex dxx f x xf x xdf dx x f x x x x x +--=+-'=-=='----⎰⎰⎰222222)()()()()(3 / 63§5.4 换元积分法1. 求下列不定积分: (1)⎰+dx x 1; (2)⎰+-dx x 3211;(3)231x dx x +⎰; (4)⎰-dx x x 211; ⎰⎰⎰⎰⎰-====+-=-+==tdctgttdt tdtttg ttgtx dt t dt tt t tx csc csc sec sec 21)1(11113232223原式)法原式)法cxx x c ctgt t tdt tdttt t x +---=+--====⎰⎰211ln csc ln csc cos cos sin 1sin 原式 (5)⎰dx x x cos ;(6)⎰-dx ex; (7)()⎰-dx x x 21012981()⎰⎰⎰==-tdtgt tg tdt tt dx x x 98101982101298cos cos sin 1(7) ⎰++dx xx)11ln(. ]11)1ln(11)1ln([2111)1ln(2))1(21141141()1)(1(1)1(21141141)1)(1(1)1)(1(11)1ln(11)1ln(11,1222222222++--+=-+=+-++-+-=+-+-++-+-=+-+---+=-+=-=+=⎰⎰⎰⎰⎰⎰⎰t d t t d t t d t dt t t t dt t t t t t t t dt t t t t t d t t x x x t )原式法原式4 / 632*. 求不定积分⎰-+dx x x xx cos sin cos sin 2.dtt t t t t dt t t t t dx x x x x x d x x dx x x x dx x x x x ⎰⎰⎰⎰⎰⎰+---++=+-+=---+-=-+]11121[)1)(12(4cos sin sin )cos (sin cos sin 1cos sin sin cos sin cos sin 222223*. 试求不定积分2ln 1(ln )x dx x -⎰.c te dt e t t e dt e t t d e dt e t dt e tdt e t dt e t t x t t t t t t t tt t +=-+=+=-=-==⎰⎰⎰⎰⎰⎰⎰11111111ln 22原式4*. 已知ln(1)(ln )x f x x +=,求()f x dx ⎰. ce x e e dx ee e de e dx e e dx xf e e t f e e x x t f x f e x x t x x x xx x xx x xtt tt t ++-++-=+++-=+-=+=+=+=+===---⎰⎰⎰⎰)1ln()1ln(11)1ln()1ln()1ln()()1ln()()1ln()1ln()()(ln ,ln5 / 63第六章 定积分 §6.1 定积分的概念与性质1. 利用定积分的几何意义,计算下列定积分: (1)⎰-201dx x ; (2)⎰-11sin xdx ;(3)⎰--22121dx x .2. 不计算积分,比较下列各积分值的大小(指出明确的“=<>,,”关系,并给出必要的理由). (1)⎰102dx x 与 ⎰10xdx ; (2)⎰212dx x 与 ⎰21xdx ;(3)⎰20sin πxdx 与 ⎰20πxdx ; (4)⎰40tan πxdx 与 ⎰40πxdx .3. 利用定积分的性质,估计⎰-=20dx xe I x 的大小.上的最大值和最小值。
微积分课后题答案第二章习题详解
![微积分课后题答案第二章习题详解](https://img.taocdn.com/s3/m/56fa1e205627a5e9856a561252d380eb62942384.png)
第二章习题2-11. 试利用本节定义5后面的注3证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有取1N N k =-,有0ε∀>,N ∃,设n N >时此时1n k N +>有 由数列极限的定义得 lim n k x x a +→∞=.2. 试利用不等式A B A B -≤-说明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =-1n ,说明上述结论反之不成立.证:而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立;3. 利用夹逼定理证明:1 lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭=0; 2 lim n →∞2!n n =0.证:1因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+ 而且 21lim0n n →∞=,2lim 0n n→∞=,所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. 2因为22222240!1231n n n n n<=<-,而且4lim 0n n →∞=,所以,由夹逼定理得4. 利用单调有界数列收敛准则证明下列数列的极限存在. 1 x n =11n e +,n =1,2,…;2 x 1,x n +1n =1,2,…. 证:1略;2因为12x =<,不妨设2k x <,则故有对于任意正整数n ,有2n x <,即数列{}n x 有上界,又 1n n x x +-=,而0n x >,2n x <,所以 10n n x x +-> 即 1n n x x +>, 即数列是单调递增数列;综上所述,数列{}n x 是单调递增有上界的数列,故其极限存在;习题2-21※. 证明:0lim x x →fx =a 的充要条件是fx 在x 0处的左、右极限均存在且都等于a .证:先证充分性:即证若0lim ()lim ()x x x x f x f x a -+→→==,则0lim ()x x f x a →=. 由0lim ()x x f x a -→=及0lim ()x x f x a +→=知: 10,0εδ∀>∃>,当010x x δ<-<时,有()f x a ε-<,20δ∃>当020x x δ<-<时,有()f x a ε-<;取{}12min ,δδδ=,则当00x x δ<-<或00x x δ<-<时,有()f x a ε-<, 而00x x δ<-<或00x x δ<-<就是00x x δ<-<, 于是0,0εδ∀>∃>,当00x x δ<-<时,有()f x a ε-<, 所以 0lim ()x x f x a →=.再证必要性:即若0lim ()x x f x a →=,则0lim ()lim ()x x x x f x f x a -+→→==, 由0lim ()x x f x a →=知,0,0εδ∀>∃>,当00x x δ<-<时,有()f x a ε-<,由00x x δ<-<就是 00x x δ<-<或00x x δ<-<,于是0,0εδ∀>∃>,当00x x δ<-<或00x x δ<-<时,有()f x a ε-<.所以 0lim ()lim ()x x x x f x f x a -+→→== 综上所述,0lim x x →fx =a 的充要条件是fx 在x 0处的左、右极限均存在且都等于a .2. 1 利用极限的几何意义确定0lim x → x 2+a ,和0lim x -→1e x; 2 设fx = 12e ,0,,0,xx x a x ⎧⎪<⎨⎪+≥⎩,问常数a 为何值时,0lim x →fx 存在.解:1因为x 无限接近于0时,2x a +的值无限接近于a ,故2lim()x x a a →+=.当x 从小于0的方向无限接近于0时,1e x 的值无限接近于0,故10lim e 0xx -→=. 2若0lim ()x f x →存在,则00lim ()lim ()x x f x f x +-→→=, 由1知 22lim ()lim()lim()x x x f x x a x a a +--→→→=+=+=, 所以,当0a =时,0lim ()x f x →存在;3. 利用极限的几何意义说明lim x →+∞sin x 不存在.解:因为当x →+∞时,sin x 的值在-1与1之间来回振摆动,即sin x 不无限接近某一定直线y A =,亦即()y f x =不以直线y A =为渐近线,所以lim sin x x →+∞不存在;习题2-31. 举例说明:在某极限过程中,两个无穷小量之商、两个无穷大量之商、无穷小量与无穷大量之积都不一定是无穷小量,也不一定是无穷大量.解:例1:当0x →时,tan ,sin x x 都是无穷小量,但由sin cos tan xx x=当0x →时,cos 1x →不是无穷大量,也不是无穷小量;例2:当x →∞时,2x 与x 都是无穷大量,但22xx=不是无穷大量,也不是无穷小量; 例3:当0x +→时,tan x 是无穷小量,而cot x 是无穷大量,但tan cot 1x x =不是无穷大量,也不是无穷小量;2. 判断下列命题是否正确:1 无穷小量与无穷小量的商一定是无穷小量;2 有界函数与无穷小量之积为无穷小量;3 有界函数与无穷大量之积为无穷大量;4 有限个无穷小量之和为无穷小量;5 有限个无穷大量之和为无穷大量;6 y =x sin x 在-∞,+∞内无界,但lim x →∞x sin x ≠∞;7 无穷大量的倒数都是无穷小量;8 无穷小量的倒数都是无穷大量. 解:1错误,如第1题例1; 2正确,见教材§定理3;3错误,例当0x →时,cot x 为无穷大量,sin x 是有界函数,cot sin cos x x x =不是无穷大量; 4正确,见教材§定理2;5错误,例如当0x →时,1x 与1x -都是无穷大量,但它们之和11()0x x+-=不是无穷大量; 6正确,因为0M ∀>,∃正整数k ,使π2π+2k M >,从而ππππ(2π+)(2π+)sin(2π+)2π+2222f k k k k M ==>,即sin y x x =在(,)-∞+∞内无界,又0M ∀>,无论X 多么大,总存在正整数k ,使π>k X ,使(2π)πsin(π)0f k k k M ==<,即x →+∞时,sin x x 不无限增大,即lim sin x x x →+∞≠∞;7正确,见教材§定理5;8错误,只有非零的无穷小量的倒数才是无穷大量;零是无穷小量,但其倒数无意义; 3. 指出下列函数哪些是该极限过程中的无穷小量,哪些是该极限过程中的无穷大量. 1 fx =234x -,x →2; 2 fx =ln x ,x →0+,x →1,x →+∞; 3 fx = 1e x,x →0+,x →0-; 4 fx =2π-arctan x ,x →+∞;5 fx =1x sin x ,x →∞; 6 fx = 21xx →∞. 解:122lim(4)0x x →-=因为,即2x →时,24x -是无穷小量,所以214x -是无穷小量,因而234x -也是无穷大量;2从()ln f x x =的图像可以看出,1lim ln ,limln 0,lim ln x x x x x x +→→+∞→=-∞==+∞,所以,当0x +→时,x →+∞时,()ln f x x =是无穷大量;当1x →时,()ln f x x =是无穷小量;3从1()e x f x =的图可以看出,110lim e ,lim e 0x xx x +-→→=+∞=, 所以,当0x +→时,1()e xf x =是无穷大量; 当0x -→时,1()e xf x =是无穷小量; 4πlim (arctan )02x x →+∞-=, ∴当x →+∞时,π()arctan 2f x x =-是无穷小量;5当x →∞时,1x是无穷小量,sin x 是有界函数, ∴1sin x x是无穷小量; 6当x →∞时,21x 是无穷小量,∴是无穷小量; 习题2-41.若0lim x x →fx 存在,0lim x x →gx 不存在,问0lim x x →fx ±gx , 0lim x x →fx ·gx 是否存在,为什么解:若0lim x x →fx 存在,0lim x x →gx 不存在,则10lim x x →fx ±gx 不存在;因为若0lim x x →fx ±gx 存在,则由()()[()()]g x f x f x g x =--或()[()()]()g x f x g x f x =+-以及极限的运算法则可得0lim x x →gx ,与题设矛盾;20lim x x →fx ·gx 可能存在,也可能不存在,如:()sin f x x =,1()g x x=,则0limsin 0x x →=,01lim x x →不存在,但0lim x x →fx ·gx =01limsin 0x x x→=存在; 又如:()sin f x x =,1()cos g x x =,则π2limsin 1x x →=,π21limcos x x→不存在,而lim x x →fx ·gx π2lim tan x x →=不存在; 2. 若0lim x x →fx 和0lim x x →gx 均存在,且fx ≥gx ,证明0lim x x →fx ≥0lim x x →gx .证:设0lim x x →fx =A,0lim x x →gx =B ,则0ε∀>,分别存在10δ>,20δ>,使得当010x x δ<-<时,有()A f x ε-<,当020x x δ<-<时,有()g x B ε<+令{}12min ,δδδ=,则当00x x δ<-<时,有 从而2A B ε<+,由ε的任意性推出A B ≤即lim ()lim ()x x x x f x g x →→≤.3. 利用夹逼定理证明:若a 1,a 2,…,a m 为m 个正常数,则limn →∞nm a ++=A ,其中A =max{a 1,a2,…,a m }.n nn m a m A ≤++≤,即而lim n A A →∞=,1lim nn mA A →∞=,由夹逼定理得nm n a A ++=.4※. 利用单调有界数列必存在极限这一收敛准则证明:若x 1=,x 2x n +1=1,2,…,则limn →∞x n 存在,并求该极限.证:因为12x x ==有21x x >今设1k k xx ->,则1k k x x -=>=,由数学归纳法知,对于任意正整数n 有1n n x x +>,即数列{}n x 单调递增;又因为12x =<,今设2k x <,则12k x -=<=,由数学归纳法知,对于任意的正整数 n 有2n x <,即数列{}n x 有上界,由极限收敛准则知lim n n x →∞存在;设limn n x b →∞=,对等式1n x+两边取极限得b =,即22b b =+,解得2b =,1b =-由极限的保号性,舍去,所以lim 2n n x →∞=.5. 求下列极限:1 lim n →∞33232451n n n n n +++-+;2 lim n →∞1cos n ⎡⎤⎛-⎢⎥ ⎝⎣⎦;3 lim n →∞4 limn →∞11(2)3(2)3n nn n ++-+-+; 5 lim n →∞1112211133n n ++++++. 解:1原式=23232433lim 11155n n n nn n→∞++=+-+;2因为lim(10n →∞-=,即当n →∞时,1是无穷小量,而cos n 是有界变量,由无穷小量与有界变量的乘积是无穷小量得:lim (10n n →∞⎡⎤=⎢⎥⎣⎦;322lim(n n n →∞=而0n n→∞→∞==,2n n→∞∴==∞;41111121(1)()(2)31333lim lim2(2)33(1)()13n nn nn nn n n n++→∞→∞++-+-+==-+-+;5111111()21111114[1()]42222lim lim lim11113 11()3[1()]3333113nnnn n nn nn++→∞→∞→∞++-+++--===+++---.6. 求下列极限:13limx→239xx--; 21limx→22354xx x--+;3 limx→∞3426423xx x++;42limxπ→sin coscos2x xx-;5limh→33()x h xh+-; 63limx→;71limx→21nx x x nx+++--; 8limx→∞sinsinx xx x+-;9 limx→+∞101limx→313()11x x---;11limx→21(sin)xx.解:23333311(1)lim lim lim9(3)(3)36x x xx xx x x x→→→--===--++2211lim(54)0,lim(23)1x xx x x→→-+=-=-3344226464lim lim03232x xx x xx xx→∞→∞++==++;4π2ππsincos sin cos 22lim1cos 2cos πx x xx →--==-; 5[]223300()()()()lim limh h x h x x h x h x x x h x h h→→⎡⎤+-+++++-⎣⎦= 222lim ()()3h x h x h x x x →⎡⎤=++++=⎣⎦;633(23)92)x x x →→+-=3343x x →→===;72211(1)(1)(1)limlim 11n n x x x x x n x x x x x →→+++--+-++-=--1123(1)2n n n =++++=+; 8sin lim0x x x →∞=无穷小量1x与有界函数sin x之积为无穷小量sin 1sin lim lim 1sin sin 1xx x x x x xx x x→∞→∞++∴==--; 922limlimx x→+∞=limlim1x x ===;101lim x →313()11x x---231(1)3lim 1x x x x →++-=- 11当0x →时,2x 是无穷小量,1sinx是有界函数, ∴它们之积21sinx x 是无穷小量,即201lim sin 0x x x →⎛⎫= ⎪⎝⎭;习题2-5求下列极限其中a >0,a ≠1为常数: 1. 0limx →sin 53x x; 2. 0lim x →tan 2sin 5xx ; 3. 0lim x →x cot x ;4. 0lim x→; 5. 0lim x →2cos5cos 2x x x -; 6. lim x →∞1xx x ⎛⎫⎪+⎝⎭; 7. 0lim x →()cot 13sin xx +; 8. 0lim x →1x a x-; 9. 0lim x →x x a a x --;10. lim x →+∞ln(1)ln x x x +-; 11. lim x →∞3222xx x -⎛⎫ ⎪-⎝⎭; 12.lim x →∞211xx ⎛⎫+ ⎪⎝⎭; 13. 0limx →arcsin x x ; 14. 0lim x →arctan xx; .解:1. 000sin 55sin 55sin 55lim lim lim 335353x x x x x x x x x →→→===;2. 000tan 2sin 221sin 25lim lim lim sin 5cos 2sin 55cos 22sin 5x x x x x x x x x x x x x→→→== 0205021sin 252lim lim lim 5cos 22sin 55x x x x x x x x →→→==; 3. 0000lim cot limcos lim limcos 1cos01sin sin x x x xx xx x x x x x →→→→=⋅==⨯=;4. 000sin2lim lim 22xx x x x x x →→→→=== 0sin22122x xx →===; 5. 2200073732sin sin sin sin cos5cos 2732222lim lim lim (2)732222x x x x x x x x x x x x x →→→⎡⎤-⎢⎥-==-⋅⋅⋅⋅⎢⎥⎢⎥⎣⎦0073sin sin 212122limlim 732222x x x x x x →→=-⋅=-; 6. 111lim lim lim 111e (1)xxx x x x x x x x x →∞→∞→∞⎛⎫ ⎪⎛⎫=== ⎪ ⎪++⎝⎭ ⎪+⎝⎭; 7. 3cos cos 1cot sin 3sin 0lim(13sin )lim(13sin )lim (13sin )xx xxx x x x x x x →→→⎡⎤+=+=+⎢⎥⎣⎦8.令1xu a =-,则log (1)a x u =+,当0x →时,0u →,1011ln log elimlog (1)a ua u a u →===+. 9. 000(1)(1)11lim lim lim x x x x x x x x x a a a a a a x x xx ---→→→⎛⎫------==+ ⎪-⎝⎭ 利用了第8题结论01limln x x a a x→-=; 10. ln(1)ln 11limlim lnx x x x xx x x→+∞→+∞+-+=⋅ 1111lim ln(1)lim lim ln(1)0x x x x x x x→+∞→+∞→+∞=+=+=; 11. 22223211lim lim 1lim 1222222x xxxxx x x x x x x --→∞→∞→∞⎡⎤-⎛⎫⎛⎫⎛⎫=+=+⎢⎥ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦1232lim e 22xx x x -→∞-⎛⎫∴= ⎪-⎝⎭; 12. 1221222111ln (1)lim ln(1)2211lim(1)lim (1)lim ee x x xxx xx x x xx x x x x →∞⎡⎤++⎢⎥⎣⎦→∞→∞→∞⎡⎤+=+==⎢⎥⎣⎦2121lim lim ln(1)0lne 0e e e 1xx x x x→∞→∞+⋅====;13.令arcsin x u =,则sin x u =,当0x →,0u →,000arcsin 1limlim 1sin sin limx u u x u u x u u→→→===;14.令arctan x u =,则tan x u =,当0x →,0u →,00000arctan 1lim lim lim cos lim limcos 1sin tan sin x u u u u x u u u u u x u uu→→→→→====. 习题2-61. 证明: 若当x →x 0时,αx →0,βx →0,且αx ≠0,则当x →x 0时,αx ~βx 的充要条件是limx x →()()()x x x αβα-=0.证:先证充分性. 若0limx x →()()()x x x αβα-=0,则0lim x x →()(1)()x x βα-=0,即0()1lim 0()x x x x βα→-=,即0()lim 1()x x x x βα→=. 也即0()lim 1()x x x x αβ→=,所以当0x x →时,()()x x αβ. 再证必要性:若当0x x →时,()()x x αβ,则0()lim 1()x x x x αβ→=, 所以0lim x x →()()()x x x αβα-=0lim x x →()(1)()x x βα-=0()1lim ()x x x x βα→-=011110()lim ()x x x x αβ→-=-=. 综上所述,当x →x 0时,αx ~βx 的充要条件是0lim x x →()()()x x x αβα-=0. 2. 若βx ≠0,0lim x x →βx =0且0lim x x →()()x x αβ存在,证明0lim x x →αx =0. 证:0000()()lim ()lim ()lim lim ()()()x x x x x x x x x x x x x x x αααββββ→→→→==0()lim 00()x x x x αβ→== 即 0lim ()0x x x α→=. 3. 证明: 若当x →0时,fx =ox a ,gx =ox b ,则fx ·gx =o a b x+,其中a ,b 都大于0,并由此判断当x →0时,tan x-sin x 是x 的几阶无穷小量.证: ∵当x →0时, fx =ox a ,gx =ox b ∴00()()lim(0),lim (0)a bx x f x g x A A B B x x →→=≠=≠ 于是: 0000()()()()()()lim lim lim lim 0a b a b a b x x x x f x g x f x g x f x g x AB x x x x x +→→→→⋅=⋅=⋅=≠ ∴当x →0时, ()()()a b f x g x O x +⋅=,∵tan sin tan (1cos )x x x x -=-而当x →0时, 2tan (),1cos ()x O x x O x =-=,由前面所证的结论知, 3tan (1cos )()x x O x -=,所以,当x →0时,tan sin x x -是x 的3阶无穷小量.4. 利用等价无穷小量求下列极限:1 0lim x →sin tan ax bx b ≠0;2 0lim x →21cos kx x-; 3 0lim x→; 4 0lim x→5 0lim x →arctan arcsin x x ;6 0lim x →sin sin e e ax bx ax bx-- a ≠b ; 7 0lim x →ln cos 2ln cos3x x ; 8 设0lim x →2()3f x x -=100,求0lim x →fx . 解 00sin (1)lim lim .tan x x axaxabx bx b →→==8由20()3lim 100x f x x →-=,及20lim 0x x →=知必有0lim[()3]0x f x →-=,即 00lim[()3]lim ()30x x f x f x →→-=-=,所以 0lim ()3x f x →=.习题2-71.研究下列函数的连续性,并画出函数的图形:1 fx = 31,01,3,12;x x x x ⎧+≤<⎨-≤≤⎩2 fx =,111,1 1.x x x x -≤<⎧⎨<-≥⎩,或解: 1300lim ()lim(1)1(0)x x f x x f ++→→=+==∴ fx 在x =0处右连续,又11lim ()lim(3)2x x f x x ++→→=-=∴ fx 在x =1处连续.又22lim ()lim(3)1(2)x x f x x f --→→=-==∴ fx 在x =2处连续.又fx 在0,1,1,2显然连续,综上所述, fx 在0,2上连续.图形如下:图2-12 11lim ()lim 1x x f x x --→→==∴ fx 在x =1处连续.又11lim ()lim 11x x f x -+→-→-==故11lim ()lim ()x x f x f x -+→-→-≠∴ fx 在x =-1处间断, x =-1是跳跃间断点.又fx 在(,1),(1,1),(1,)-∞--+∞显然连续.综上所述函数fx 在x =-1处间断,在(,1),(1,)-∞--+∞上连续.图形如下:图2-22. 说明函数fx 在点x 0处有定义、有极限、连续这三个概念有什么不同又有什么联系 略.3.函数在其第二类间断点处的左、右极限是否一定均不存在试举例说明.解:函数在其第二类间断点处的左、右极限不一定均不存在. 例如0(),010x x f x x x x ≤⎧⎪==⎨>⎪⎩是其的一个第二类间断点,但00lim()lim 0x x f x x --→→==即在0x =处左极限存在,而001lim ()lim x x f x x ++→→==+∞,即在0x =处右极限不存在.4.求下列函数的间断点,并说明间断点的类型:1 fx = 22132x x x -++;2 fx =sin sin x xx +;3 fx = ()11x x +; 4 fx = 224x x +-;5 fx = 1sin x x .解: 1由2320x x ++=得x =-1, x =-2∴ x =-1是可去间断点,x =-2是无穷间断点.2由sin x =0得πx k =,k 为整数.∴ x =0是跳跃间断点.4由x 2-4=0得x =2,x =-2.∴ x =2是无穷间断点,x =-2是可去间断点. 5 001lim ()lim sin 0,()x x f x x f x x →→==在x =0无定义故x =0是fx 的可去间断点.5.适当选择a 值,使函数fx = ,0,,0x e x a x x ⎧<⎨+≥⎩在点x =0处连续.解: ∵f 0=a ,要fx 在x =0处连续,必须00lim ()lim ()(0)x x f x f x f +-→→==.即a =1.6※.设fx = lim x →+∞x xx x a a a a ---+,讨论fx 的连续性.解: 22101()lim lim sgn()10100x x xx x x a a x a aa f x x x a a a x --→+∞→+∞-<⎧--⎪====>⎨++⎪=⎩ 所以, fx 在(,0)(0,)-∞+∞上连续,x =0为跳跃间断点. 7. 求下列极限:1 2lim x →222x x x +-; 2 0lim x→; 3 2lim x →ln x -1; 4 12lim x →5 lim x e→ln x x . 解: 222222(1)lim 1;2222x x x x →⨯==+-+- 习题2-81. 证明方程x 5-x 4-x 2-3x =1至少有一个介于1和2之间的根.证: 令542()31f x x x x x =----,则()f x 在1,2上连续,且 (1)50f =-<, (2)50f =>由零点存在定理知至少存在一点0(1,2),x ∈使得0()0f x =.即 542000031x x x x ---=, 即方程54231x x x x ---=至少有一个介于1和2之间的根.2. 证明方程ln 1+e x -2x =0至少有一个小于1的正根.证: 令()ln(1)2e x f x x =+-,则()f x 在(,)-∞+∞上连续,因而在0,1上连续,且 0(0)ln(1)20ln 20e f =+-⨯=>由零点存在定理知至少存在一点0(0,1)x ∈使得0()0f x =.即方程ln(1)20e xx +-=至少有一个小于1的正根.3※. 设fx ∈C -∞,+∞,且lim x →-∞fx =A , lim x →+∞fx =B , A ·B <0,试由极限及零点存在定理的几何意义说明至少存在一点x 0∈-∞,+∞,使得fx 0=0.证: 由A ·B <0知A 与B 异号,不防设A >0,B <0由lim ()0,lim ()0x x f x A f x B →-∞→+∞=>=<,及函数极限的保号性知,10X ∃>,使当1x X <-,有()0,f x >20X ∃<,使当2x X >时,有()0f x <.现取1x a X =<-,则()0f a >,2x b X =>,则()0f b <,且a b <,由题设知()f x 在[,]a b 上连续,由零点存在定理,至少存在一点0(,)x a b ∈使0()0f x =, 即至少存在一点0(,)x ∈-∞+∞使0()0f x =.4.设多项式P n x =x n +a 11n x-+…+a n .,利用第3题证明: 当n 为奇数时,方程P n x =0至少有一实根. 证: 122()1n n n n a a a P x x x x x ⎛⎫=++++ ⎪⎝⎭()lim 10n nx P x x →∞∴=>,由极限的保号性知. 0X ∃>,使当X x >时有()0nn P x x>,此时()n P x 与n x 同号,因为n 为奇数,所以2X n 与-2X n 异号,于是(2)n P X -与(2)n P X 异号,以()n P x 在[2,2]X X -上连续,由零点存在定理,至少存在一点0(2,2)X X X ∈-,使0()0n P x =,即()0n P x =至少有一实根.。
微积分第二章习题参考答案
![微积分第二章习题参考答案](https://img.taocdn.com/s3/m/3dca9e3167ec102de2bd899e.png)
f ( x ) f ( x ), f ( x ) f ( x ),
即f ( x )为奇函数;
§2.3隐函数的导数(23-24)
一.1. ey sec 2 ( r ) ; 2. csc 2 ( r ) ; 2 2 y 1 sec ( r )
x 0
1 2 x
1.
二.解1.(1).
y ln( x 1 x 2 ) ln x ,
1 x
1 y (1 ) x x 1 x2 1 x2 1 . x 2 1 x 2 x(1 x 2 )
(2) 1 y 3sec (ln x ) sec(ln x )tan(ln x ) x 3 sec 3 (ln x )tan(ln x ). x
x 1 dy k 2e ,当 0时, , dx 0 y0
切线方程为 y 2e( x 1), 1 法线方程为 y ( x 1). 2e
四.
解 : s ( t ) x ( t ) 9,
2 2
ds dx s( t ) x ( t ) 0, dt dt ds 已知 160, s 5, x 4, dt dx 200, v 200 120 80. dt
(sin 2 x ) f (cos 2 x )]sin 2 x . [f 1 (3) y f ( x ); 2 1 f ( x)
(4) y f (sin x )cos x cos[ f ( x )] f ( x ).
4.解.(一) lim f ( x ) lim
1 1 2( 1)2 2( 1)2 y , y 2 2 , 3 3 ( t 2) ( t 1) ( t 2) ( t 1)
微积分曹定华课后题答案第二章习题详解
![微积分曹定华课后题答案第二章习题详解](https://img.taocdn.com/s3/m/db36e2826c175f0e7dd1374b.png)
第二章习题2-11、 试利用本节定义5后面的注(3)证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a 、证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有n x a ε-<取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有n k x a ε+-<由数列极限的定义得 lim n k x x a +→∞=、2、 试利用不等式A B A B -≤-说明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|、考察数列x n =(-1)n ,说明上述结论反之不成立、证:lim 0,,.使当时,有n x n x aN n N x a εε→∞=∴∀>∃>-<Q而 n n x a x a -≤- 于就是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。
3、 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭L =0; (2) lim n →∞2!n n =0、 证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+L 而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭L 、 (2)因为22222240!1231n n n n n<=<-g g g L g g ,而且4lim 0n n →∞=, 所以,由夹逼定理得2lim 0!nn n →∞= 4、 利用单调有界数列收敛准则证明下列数列的极限存在、 (1) x n =11ne +,n =1,2,…;(2) x 1,x n +1n =1,2,…、 证:(1)略。
经济数学基础 微积分 第二章习题解答
![经济数学基础 微积分 第二章习题解答](https://img.taocdn.com/s3/m/20eaf68fec3a87c24028c4f7.png)
1 ex x0 15.设有函数f ( x) a x x 0
解: e 0 lim
x 0 1 x x 0
问常数a为何值时, f ( x)存在? lim
x0
lim (a x) a
当a 0时, f ( x)存在. lim
x0
16.求下列极限: tan 2 x 2 arctan 5 x 3x sin 3 x (2) lim (3) lim 5 (1) lim lim 6 x 0 sin 5 x x 0 arcsin x x 0 x 0 x x 5 sin 2 2 1 x2 sin x2 (5) lim 1 lim 4 x 1 x 0 (4) lim x sin lim 2 x x 0 x 2 sin ( ) x ( ) x x 1 2 2 x tan 2 x sin x tan 2 x sin x 2 1 1 (6) lim lim lim x 0 x 0 x 0 x x x
e 4
x x x 1 2 3 lim (17 ) lim ln(1 x x x ) x 0 x 0 x x
2
3
1
1
1 n 2 n 3 n n n n n n (18) lim(1 2 3 4 ) lim 4 [1 ( ) ( ) ( ) ] 4 x x 4 4 4 17.求下列极限:
x 1 x 1
1 或 lim 2 0 n x
y
解:lim f ( x) lim f ( x) 2 f (1)
x 2是第一类可去间断点
0
x
若f (1) 2, 则为连续 .
(2) x 0第二类无穷间断点 (3) x 0第一类跳跃间断点 (4) x 0第一类可去间断点 x 1第二类无穷间断点 (5) x 0第一类跳跃间断点 (6) x 0第一类可去间断点
微积分(曹定华)(修订版)课后题答案第二章习题详解
![微积分(曹定华)(修订版)课后题答案第二章习题详解](https://img.taocdn.com/s3/m/bf14eae569dc5022abea0046.png)
第二章习题2-11. 试利用本节定义5后面的注(3)证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有n x a ε-<取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有n k x a ε+-<由数列极限的定义得 lim n k x x a +→∞=.2. 试利用不等式A B A B -≤-说明:若li m n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立.证:lim 0,,.使当时,有n x n x aN n N x a εε→∞=∴∀>∃>-<而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。
3. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭=0; (2) lim n →∞2!nn =0.证:(1)因为222222111112(1)(2)n n nn n n n n nn++≤+++≤≤=+而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. (2)因为22222240!1231n n n n n<=<-,而且4lim 0n n →∞=,所以,由夹逼定理得2lim 0!nn n →∞= 4. 利用单调有界数列收敛准则证明下列数列的极限存在. (1) x n =11ne +,n =1,2,…;(2) x 1,x n +1n =1,2,…. 证:(1)略。
经济数学微积分 第二版第二章第一节 数列的极限ppt课件
![经济数学微积分 第二版第二章第一节 数列的极限ppt课件](https://img.taocdn.com/s3/m/2eb9074ba45177232f60a2b1.png)
n 1 ( 1 ) 当 n 无限增大时 ,x 1 无限接近 1 . n n
问题: “无限接近”意味着什么?如何用数学语言 刻画它.
x 1 (1 ) n
n1
1 1 n n
1 1 1 1 由 , x 1 , 只要 n 100 时 ,有 给定 , n n 100 100 100
1. 定义 : 以正整数集 N 为定义域的函数 f ( n) 按
f (1) , f ( 2) , , f ( n) ,排列的一列数称为数列,
通常用 x1 , x2 ,, xn ,表示,其中 xn f ( n),
x n 称为通项
例如
2 , 4 , 8 , , 2, ; {2 n }
4. 子数列 (subsequence)
定义:将数列 x 在保持原有顺序情 ,任 n
列,简称子列.
, x , , x , x , 例如, x 1 2 i n
取其中无穷多项构成的 新数列称为 x 的子数 n
x , x , , x , n n n 1 2 k
注意:在子数列 x 中,一般项 x 是第 k 项, n n k k
2. 截丈问题: “一尺之棰,日截其半,万世不竭” 1 第一天截下的杖长为 X 1 ; 2 1 1 第二天截下的杖长总和 为 X 2 2; 2 2
1 1 1 第 n 天截下的杖长总和为 X n; n 2 2 2 2 1 Xn 1 n 1 2
二、数列(sequence)的有关概念
注意: 1.数列对应着数轴上一个点列.可看作一 , x , , x , . 动点在数轴上依次取 x 1 2 n
x3
x1
x2 x4
xn
微积分第二版总复习题答案
![微积分第二版总复习题答案](https://img.taocdn.com/s3/m/d602c21376232f60ddccda38376baf1ffc4fe3ff.png)
微积分第二版总复习题答案微积分是一门重要的数学学科,它研究的是函数的变化规律和相关的数学概念。
对于学习微积分的学生来说,复习题是一个非常重要的辅助工具,可以帮助他们巩固所学的知识,并提高解题能力。
在这篇文章中,我将为大家提供微积分第二版总复习题的答案,希望对大家的学习有所帮助。
1. 求函数f(x) = 3x^2 - 2x + 1的导数。
答案:f'(x) = 6x - 2。
2. 求函数f(x) = sin(x) + cos(x)的导数。
答案:f'(x) = cos(x) - sin(x)。
3. 求函数f(x) = ln(x^2)的导数。
答案:f'(x) = 2/x。
4. 求函数f(x) = e^x的导数。
答案:f'(x) = e^x。
5. 求函数f(x) = x^3的不定积分。
答案:F(x) = (1/4)x^4 + C,其中C为常数。
6. 求函数f(x) = 1/x的不定积分。
答案:F(x) = ln|x| + C,其中C为常数。
7. 求函数f(x) = 2x的定积分,区间为[0, 1]。
答案:∫[0,1] 2x dx = [x^2] from 0 to 1 = 1。
8. 求函数f(x) = sin(x)的定积分,区间为[0, π]。
答案:∫[0,π] sin(x) dx = [-cos(x)] from 0 to π = 2。
9. 求函数f(x) = e^x的定积分,区间为[-1, 1]。
答案:∫[-1,1] e^x dx = [e^x] from -1 to 1 = e - 1/e。
10. 求函数f(x) = x^2的定积分,区间为[-2, 2]。
答案:∫[-2,2] x^2 dx = (1/3)x^3 from -2 to 2 = 16/3。
以上是微积分第二版总复习题的答案。
通过对这些问题的解答,我们可以巩固对微积分的基本概念和计算方法的理解。
同时,这些问题也涉及到了微积分的一些重要应用,如函数的导数和不定积分、定积分的计算等。
微积分II真题含答案
![微积分II真题含答案](https://img.taocdn.com/s3/m/dda73febf9c75fbfc77da26925c52cc58bd69090.png)
微积分II真题含答案微积分II真题含答案一、填空题(每题3分,共30分)1、函数的定义域是____________.2、设,则________________.3、广义积分的敛散性为_____________.4、____________.5、若.6、微分方程的通解是____.7、级数的敛散性为.8、已知边际收益R/(某)=3某2+1000,R(0)=0,则总收益函数R(某)=____________.9、交换的积分次序=.10、微分方程的阶数为_____阶.二、单选题(每题3分,共15分)1、下列级数收敛的是()A,B,C,D,2、,微分方程的通解为()A,B,C,D,3、设D为:,二重积分=()A,B,C,D,04、若A,B,C,D,5、=()A,0B,1C,2D,三、计算下列各题(本题共4小题,每小题8分,共32分)1.已知2.求,其中D是由,某=1和某轴围成的区域。
3.已知z=f(某,y)由方程确定,求4.判定级数的敛散性.四、应用题(本题共2小题,每小题9分,共18分): 1.求由和某轴围成的图形的面积及该图形绕某轴旋转所得旋转体的体积。
2.已知某表示劳动力,y表示资本,某生产商的生产函数为,劳动力的单位成本为200元,,每单位资本的成本为400元,总预算为100000元,问生产商应如何确定某和y,使产量达到最大?。
五、证明题(5分)一、填空题(每小题3分,共30分)1,2,3,发散4,05,6,y=c某7,收敛8,R(某)=某3+1000某9,10,2二、单选题(每小题3分,共15分)1,B2,B3,C4,C5,D三、计算题(每小题8分,共32分)1、解:令2、3、整理方程得:4、先用比值判别法判别的敛散性,(2分)收敛,所以绝对收敛。
(交错法不行就用比较法)(8分)四、应用题(每小题9分,共18分)1、解:2、解:约束条件为200某+400y-100000=0(2分)构造拉格朗日函数,(4分),求一阶偏导数,(6分)得唯一解为:,(8分)根据实际意义,唯一的驻点就是最大值点,该厂获得最大产量时的某为40,y为230.(9分)五、证明题(5分)证明:设对等式两边积分,得:(2分)(4分)解得:题设结论得证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 证:1) 若c ∈ (a , b )使g ( c ) = 0
则g ( a ) = g ( c ) = g ( b )
∴ ξ 1 ∈ (a , c ),ξ 2 ∈ (c , b )使g ′(ξ 1 ) = g ′(ξ 2 ) = 0 ∴ 定理, 又g ′( x )在[ξ 1,ξ 2 ]上满足 R定理, ξ ∈ (a , b)使g′′(ξ ) = 0(矛盾) ∴ g( x ) ≠ 0.
f ( x) 由方程 x d2 y . dx2
y = x ( x > 0, y > 0)
y
1 1 解 两边取对数 ln y = ln x , 即y ln y = x ln x , x y ln x + 1 ′= y , ∴ (1 + ln y ) y ′ = ln x + 1, 1 + ln y 1 1 (ln y + 1) (ln x + 1) y ′ x y y ′′ = (1 + ln y ) 2
f ( x ) f (1) 2 /(1 + x 2 ) 1 (1 x 2 ) /(1 + x 2 ) ∵ lim = lim = lim = 1 x 1 x 1 x 1 x →1 x →1 x →1 f ( x ) f (1) ax + b (a + b ) lim = lim =a + + x 1 x 1 x →1 x →1 ∴ a = 1 ;
y(ln y + 1) 2 x (ln x + 1) 2 = xy(ln y + 1) 3
5
x = ln 1 + t 2 例5 设 , 求有参数方程所确定函 数的 y = arctan t dy d 2 y 导数 , . 2 dx dx
解
dy (arctan t )′ 1+ t2 = 1 = = t dx (ln 1 + t 2 )′ t 1+ t2
(1 + x )1 / x 1 / x ] , x>0 [ e f ( x) = e 1 / 2 , x ≤ 0 . 1 1 ln(1 + x ) x 解 : x < 0时 , ln f ( x ) = [ ln(1 + x ) 1] = x x x2
1/(1 + x) 1 ∵ lim = lim 2 x→0+ x→0+ 2x x 1 x = lim = x→0+ 2x(1 + x) 2
n n
∴y
( n)
3 1 1 n ]. = ( 1) n![ n+1 n +1 2 ( x 1) ( x + 1)
8
2 ,当x ≤ 1; 2 例8、 f ( x) = 1 + x 、 设 ax + b,当x > 1.
=1处可导 已知 f(x) 在 x=1处可导,试确定 b 的值. =1处可导,试确定a, 的值.
x2 x3 x3 3 3 + + o( x ) x + o( x ) x (1 + x ) 1 + x + 2! 3! 3! lim x →∞ x3
x3 x3 + o( x 3 ) 1 = = lim 2! 3! 3 x →∞ x 6
14
例12
讨论函数在点x=0处的连续性。 讨论函数在点x=0处的连续性。 x=0处的连续性
解:y′ = f ′( x 2 + y 2 ) ( 2 x + 2 yy′ ) + f ′( x + y ) (1 + y′ )
y′( 0) = f ′(4)[0 + 4 y′(0)] + f ′( 2)[1 + y′(0)]
1 y ′( 0 ) = 7
10
例10 令 x = e t , 将方程 x
例 设f (x), g(x)在 a, b]上存在二阶导数,且g′′(x) ≠ 0, 14 [ f (a) = f (b) = g(a) = g(b) = 0, 证明()在(a, b)内g(x) ≠ 0; 1 f (ξ ) f ′′(ξ ) (2)存在ξ ∈( a, b) 使 = . g(ξ ) g′′(ξ )
1 cos x ( sin x ln sin x + ) x sin x
2
7
例7
4x2 1 ( n) ,求 y . 设y = 2 x 1
4x2 1 4x2 4 + 3 3 1 1 解 y= 2 = ) = 4+ ( 2 x 1 x 1 2 x 1 x + 1
1 (n) ( 1) n! 1 (n) ( 1) n! ∵( ) = , ( ) = , n+1 n+1 x 1 x+1 ( x 1) ( x + 1)
11
例 求极限(1) lim( arctan x) . 11 x→+∞ 2
解( 2)原式 =
π ln( arctan x ) 2 lim ln x e x → +∞
π
1 ln x
1
=
π 1+ x 2 ( arctan x ) lim 2 1/ x e x → +∞
1
x → +∞
lim
=e
( arctan x ) 2
1
1 ( )′ 2 d y d 1 1+ t2 t ( )= = = 2 2 dx t dx t (ln 1 + t 2 )′
6
例6 解
设y = x(sin x)cos x ,求 y′.
y′ = y(ln y )′
= y(ln x + cos x ln sin x )′
= x(sin x )
cos x
1
导数与微分
例1 设 f ( x) = x( x 1)( x 2)( x 100),
求 f ′(0).
解
f ( x) f (0) f ′(0) = lim x→0 x 0 = lim( x 1)( x 2)( x 100) = 100!
x→0
或:设f(x)=xg(x),g(x)=(x-1)(x-2)…(x-100), , … , 则 f ′(x)=g(x)+xg′(x),f ′(0)=g(0)+0=100!。 ′ , !。
17
例15
证 设 x0 ∈ [0,1], 在 x0 处把 f ( x ) 展成一阶泰勒公式 , 有 1 ′( x0 )( x x0 ) + f ′′(ξ )( x x0 )2 f ( x ) = f ( x0 ) + f
1 2 2 (1) f (0) = f ( x0 ) f ′( x0 ) x0 + f ′′(ξ1 ) x0 2 1 f (1) = f ( x0 ) + f ′( x0 )(1 x0 ) + f ′′(ξ 2 )(1 x0 )2 (2) 2
(2) F ( x ) = f ( x ) g ′( x ) f ′( x ) g ( x ) 设
∵ F (a ) = F (b ) = 0
定理, ∴ F ( x )在[a , b]上满足 R定理,
∴ ξ ∈ (a , b )使F ′(ξ ) = 0
∴ F ′(ξ ) = [ f ( x ) g ′′( x ) f ′′( x ) g ( x )] x = ξ = 0
2
x , u′ = ( 1 + x )′ = x 2 1+ x 1 ′ = . ∴ yx 3 2 (2x + x ) 1 + x
3
x2x , x > 0 例3 设 f (x) = ,求 数 极 . 函 的 值 x + 2 , x ≤ 0
解
∵x = 0不连续∴x = 0不可导点 .
因x=1 所以不是极值 点
∴ lim f ( x ) = e 1 / 2 = lim f ( x ) ∴函数在点x=0连续。 函数在点x=0连续。 x=0连续
x →0+ x →0
15
Hale Waihona Puke ln(1 + x) x
例 设 (x)具 二 连 导 且 (0) = 0, 求 13 f 有 阶 续 数 f 证 f (x)/ x, x ≠ 0 (x) = 有 阶 续 数 一 连 导 . f ′(0), x = 0 f ( x) f ′( 0 ) ′(0) f ( x ) xf ′ ( 0 ) 证:φ x = lim = lim x x→0 x →0 x2 f ′( x ) f ′( 0 ) f ′′( x ) f ′′(0) = lim = lim = . 2x x →0 x →0 2 2 xf ′ ( x ) f ( x ) , x≠0 2 x ∴ φ ′( x ) = f ′′(0) , x=0 2 xf ′ ( x ) f ( x ) ∴ lim φ ′( x ) = lim xf ′′( x ) + f ′( x ) f ′( x ) 2 = lim x →0 x →0 x 2x x→0 f ′′( x ) f ′′(0) = lim = = φ ′(0). 有一阶连续导数。 φ ( x )有一阶连续导数。 2 x→0 2 16
π
x 1+ x 2
=
2 (1 + x 2) lim 1 x → +∞ 1+ x 2 e
1 x 2
=e
x → +∞ 1 + x 2) (
lim
1 x 2
1 = . e
12
1 + 2 + n (2) lim( ) x →0 n
x x x
1 x
解 原式 = e
1 1x ++ n x lim ln( ) x→0 x n