九年级数学因式分解法2

合集下载

用因式分解法求解一元二次方程 课件 数学九年级上册

用因式分解法求解一元二次方程 课件 数学九年级上册

小颖、小明、小亮都设这个数为x,根据题意,可得方程
x2=3x.但他们的解法各不相同.
由方程x2=3x,得
x2-3x=0.
因此x= 3 9 , x1=0,x2=23. 所以这个数是0或3.
方程x2=3x两边 同时约去x,得 x=3. 所以这个数是3.
新课导入
由方程x2=3x,得 x2-3x=0, 即x(x-3)=0. 于是x=0,或x-3=0. 因此x1=0,x2=3. 所以这个数是0或3.
第二章 一元二次方程
2.4 用因式分解法求解一元二次方 程
学习目标
1.理解用因式分解法解方程的依据. 2.会用因式分解法解一些特殊的一元二次方程. (重点) 3.会根据方程的特点选用恰当的方法解一元二次方 程.(难点)
新课导入
一个数的平方与这个数的3倍有可能相等吗?如果相等,
这个数是几?你是怎样求出来的?
那么x2+px+q就可以用如上的方法进行因式分解.
讲授新课
解方程:x2+5x-6=0.
x2 5x 6 (x 6)(x 1)
x
6 步骤:
解:因式分解得 (x+7)(x-1)=0.
∴x+7=0,或x-1=0. ∴x1=-7,x2=1.
x
①竖分二次项与常数项
1
x 6x 5x ②交叉相乘,积相加
解:化简,得
4x2+12x+9-25=0
x2+2x=4
x2+3x-4=0
x2+2x+1=5
分解因式,得
(x+1)2=5
(x-1)(x+4)=0
x1 5
x1=1, x2=-4
x1 1 5, x2 1 5

【初中数学】因式分解的九种方法

【初中数学】因式分解的九种方法

【初中数学】因式分解的九种方法一、运用公式法我们知道整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式分解因式。

于是有:a -b =(a+b)(a-b)a +2ab+b =(a+b)a -2ab+b =(a-b)如果把乘法公式反过来,就可以用来把某些多项式分解因式。

这种分解因式的方法叫做运用公式法。

二、平方差公式1、式子:a -b =(a+b)(a-b)2、语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

这个公式就是平方差公式。

三、因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

四、完全平方公式1、把乘法公式(a+b) =a +2ab+b 和(a-b) =a -2ab+b 反过来,就可以得到: a +2ab+b =(a+b) 和a -2ab+b =(a-b) ,这两个公式叫完全平方公式。

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a +2ab+b 和a -2ab+b 这样的式子叫完全平方式。

2、完全平方式的形式和特点:①项数:三项;②有两项是两个数的的平方和,这两项的符号相同;③有一项是这两个数的积的两倍。

3、当多项式中有公因式时,应该先提出公因式,再用公式分解。

4、完全平方公式中的a、b可表示单项式,也可以表示多项式。

这里只要将多项式看成一个整体就可以了。

5、分解因式,必须分解到每一个多项式因式都不能再分解为止。

五、分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。

如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式。

原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义。

人教版初中数学课标版九年级上册第二十一章 21.2 解一元二次方程因式分解法(共17张PPT)

人教版初中数学课标版九年级上册第二十一章 21.2 解一元二次方程因式分解法(共17张PPT)


10x - 4.9x 2 = 0


降 配方法


次 公式法
简 便

的 方
x1=
0
,x2 =
100 49
2.04
法 吗 ?
探究新知
观察方程 10x - 4.9x2 = 0,它有什么特点?你能根据 它的特点找到更简便的方法吗?
10x - 4.9x2 = 0
左边因式分解
x(10 - 4.9x)= 0
用降次法中的因式分解法解一元二次方程.
复习引入
1、解一元二次方程的基本思路是什么? 把二次方程转化为一次方程即降次
2、我们学过了用降次法中的哪几种方法来 解一元二次方程?
配方法和公式法
复习引入
3、什么叫因式分解?因式分解有哪几种方 法?
把一个多项式化成几个整式的积的形式叫做因式 分解或分解因式;
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。21.8.2421.8.2422:38:5422:38:54August 24, 2021

14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年8月24日星期二下午10时38分54秒22:38:5421.8.24
应用新知
1、用因式分解法解下列方程
(1)3x2+6x=0
(2)y(y-1)=2y-2
解 (1)3x(x+2)=0

∴3x=0或x+2=0
∴x1=0,x2=-2
(2)y(y-1)-2(y-1)=0 (y-1)(y-2)=0
∴y-1=0或y-2=0

初中数学因式分解2十字相乘法、分组分解法

初中数学因式分解2十字相乘法、分组分解法

【知识要点】1.十字相乘法(1)二次项系数为1的二次三项式q px x ++2中,如果能把常数项q 分解成两个因式b a ,的积,并且b a +等于一次项系数中p ,那么它就可以分解成()()()b x a x ab x b a x q px x ++=+++=++22 (2)二次项系数不为1的二次三项式c bx ax ++2中,如果能把二次项系数a 分解成两个因数21,a a 的积,把常数项c 分解成两个因数21,c c 的积,并且1221c a c a +等于一次项系数b ,那么它就可以分解成:()=+++=++2112212212c c x c a c a x a a c bx ax ()()221c x a a x a ++。

2.分组分解法(1)定义:分组分解法,适用于四项以上的多项式,例如22a b a b -+-没有公因式,又不能直接利用分式法分解,但是如果将前两项和后两项分别结合,把原多项式分成两组。

再提公因式,即可达到分解因式的目的。

例如:22a b a b -+-=22()()()()()()(1)a b a b a b a b a b a b a b -+-=-++-=-++,这种利用分组来分解因式的方法叫分组分解法。

(2)原则:分组后可直接提取公因式或可直接运用公式,但必须使各组之间能继续分解。

(3)有些多项式在用分组分解法时,分解方法并不唯一,无论怎样分组,只要能将多项式正确分解即可。

【典型例题】例1 把下列各式分解因式(1)2914x x ++= (2)212x x --=(3)2812x x ++= (4)2710x x -+=(5)228x x --= (6)2922x x --=(7)2295x x +-= (8)2376x x --=(9)28103x x ++= (10)210275x x ++=例2 把下列各式分解因式(1)bc ac ab a -+-2(2)bx by ay ax -+-5102(3)n mn m m 552+-- (4)bx ay by ax 3443+++(5)22144a ab b --- (6)223443ax ay bx cy cx by +-++-例3 把下列各式分解因式(1)22421x xy y --; (2)()()267a b a b +-+-;(3)()()22524x x -+-+ (4)()()()()22310a b a b a b a b -+-+-+;(5)()()2224221x y x y y y +-+- (6)222()14()24x x x x +-++例4 把下列各式分解因式(1)()()z y y z x x +-+ (2)()()b a x ab x 34322-+-(3)()()cd b adc ab 2222--- (4)()()y a bx by b y ax 2233+++思考题(5)()()()()2222d b d c c a b a +-+-+++【练 习】给下列各式分解因式1.221x x +-= 2.2352x x ++=3.232x x +-= 4.221315x x ++=5.2122512x x -+= 6.2310x x +-=7.ax +ay -bx -by = 8.x 2-xy -ax +ay =9.x 2+6y -xy -6x = 10.a 2-b 2-a +b =11.4x 2-y 2+2x +y = 12.a 2-2ab +b 2-c 2=13.1-x 2-2xy -y 2= 14.x 2-9a 2+12a -4=15.x 2y +3xy 2-x -3y= 16.na 2-2ba 2+mn -2bm=17.x 3+3x 2+3x +9= 18.20ax 2+5xy -8axy -2y 2=19.bx +ax +by +bz +ay +az=20.2ax -3bx +x -2a +3b -1=一、分解因式1.2249y x -3、2a 4-324、a 2(3a +1)-b 2(3a +1)5、x 2-8x +166、a 2b 2-10ab +257、-x 4+2x 2y 2-y 48、(2x 2+1)2+2(2x 2+1)+1二、分解因式1、9222+--a b ab 2.x 3+3x 2-4x -123.x 2-b x -a 2+a b 4.m -m 3-mn 2+2m 2n5.9ax 2+9bx 2-a -b 6.a 2-2a +4b -4b2C 组三、分解因式1、(a2+b2)2-4a2b22、a4(x-y)+b4(y-x)3、(a2+1)2-4a(a2+1)+4a2 4.a2+2ab+b2-ac-bc5.m2+2mn+n2-p2-2pq-q26.(x2-3)2-4x27. (x2-3)2+(x2-3)-28.(x2-2x)2-4(x2-2x)-59.a4-2a2b2-8b4 10.x4-6x3+9x2-16。

最新初中数学因式分解图文解析(2)

最新初中数学因式分解图文解析(2)

最新初中数学因式分解图文解析(2)一、选择题1.多项式22ab bc a c -+-分解因式的结果是( )A .()()a c a b c -++B .()()a c a b c -+-C .()()a c a b c ++-D .()()a c a b c +-+【答案】A【解析】【分析】根据提取公因式和平方差公式进行因式分解即可解答.【详解】解:22))))))=((((((+)+(ab bc a c b a c a c a c a c b a c a c a b c -+--++-=-+=-+; 故选:A.【点睛】本题考查了利用提取公因式和平方差公式进行因式分解,熟练掌握是解题的关键.2.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .x 2﹣1=(x+1)(x ﹣1)C .x 2﹣x+2=x (x ﹣1)+2D .x 2+2x ﹣1=(x ﹣1)2【答案】B【解析】试题分析:根据提公因式法分解因式,公式法分解因式对各选项分析判断利用排除法求解.解:A 、x 3﹣x=x (x 2﹣1)=x (x+1)(x ﹣1),故本选项错误;B 、x 2﹣1=(x+1)(x ﹣1),故本选项正确;C 、x 2﹣x+2=x (x ﹣1)+2右边不是整式积的形式,故本选项错误;D 、应为x 2﹣2x+1=(x ﹣1)2,故本选项错误.故选B .考点:提公因式法与公式法的综合运用.3.若三角形的三边长分别为a 、b 、c ,满足22230a b a c b c b -+-=,则这个三角形是( )A .直角三角形B .等边三角形C .锐角三角形D .等腰三角形 【答案】D【解析】【分析】首先将原式变形为()()()0b c a b a b --+=,可以得到0b c -=或0a b -=或0a b +=,进而得到b c =或a b =.从而得出△ABC 的形状.∵22230a b a c b c b -+-=,∴()()220a b c b c b -+-=,∴()()220b c a b --=,即()()()0b c a b a b --+=,∴0b c -=或0a b -=或0a b +=(舍去),∴b c =或a b =,∴△ABC 是等腰三角形.故选:D .【点睛】本题考查了因式分解-提公因式法、平方差公式法在实际问题中的运用,注意掌握因式分解的步骤,分解要彻底.4.如图,矩形的长、宽分别为a 、b ,周长为10,面积为6,则a 2b +ab 2的值为( )A .60B .30C .15D .16 【答案】B【解析】【分析】直接利用矩形周长和面积公式得出a+b ,ab ,进而利用提取公因式法分解因式得出答案.【详解】∵边长分别为a 、b 的长方形的周长为10,面积6,∴2(a+b )=10,ab=6,则a+b=5,故ab 2+a 2b=ab (b+a )=6×5=30.故选:B .【点睛】此题主要考查了提取公因式法以及矩形的性质应用,正确分解因式是解题关键.5.把多项式分解因式,正确的结果是( )A .4a 2+4a+1=(2a+1)2B .a 2﹣4b 2=(a ﹣4b )(a+b )C .a 2﹣2a ﹣1=(a ﹣1)2D .(a ﹣b )(a+b )=a 2+b 2【答案】A【解析】本题考查的是因式分解中的平方差公式和完全平方公式【详解】解:A. 4a 2+4a+1=(2a+1)2,正确;B. a 2﹣4b 2=(a ﹣2b )(a+2b ),故此选项错误;C. a 2﹣2a+1=(a ﹣1)2,故此选项错误;D. (a ﹣b )(a+b )=a 2﹣b 2,故此选项错误;故选A6.下列多项式不能使用平方差公式的分解因式是( )A .22m n --B .2216x y -+C .22b a -D .22449a n -【答案】A【解析】【分析】原式各项利用平方差公式的结构特征即可做出判断.【详解】下列多项式不能运用平方差公式分解因式的是22m n --.故选A .【点睛】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.7.多项式225a -与25a a -的公因式是( )A .5a +B .5a -C .25a +D .25a -【答案】B【解析】【分析】直接将原式分别分解因式,进而得出公因式即可.【详解】解:∵a 2-25=(a+5)(a-5),a 2-5a=a (a-5),∴多项式a 2-25与a 2-5a 的公因式是a-5.故选:B .【点睛】此题主要考查了公因式,正确将原式分解因式是解题的关键.8.下列各式能用平方差公式分解因式的是( )A .21a +B .20.040.09y --C .22x y +D .22x y -【答案】D【解析】判断各个选项是否满足平方差的形式,即:22a b -的形式【详解】A 、C 都是22a b +的形式,不符;B 中,变形为:-(20.04+0.09y ),括号内也是22a b +的形式,不符;D 中,满足22a b -的形式,符合故选:D【点睛】本题考查平方差公式,注意在利用乘法公式时,一定要先将式子变形成符合乘法公式的形式,我们才可利用乘法公式简化计算.9.若实数a 、b 满足a+b=5,a 2b+ab 2=-10,则ab 的值是( )A .-2B .2C .-50D .50【答案】A【解析】试题分析:先提取公因式ab ,整理后再把a+b 的值代入计算即可.当a+b=5时,a 2b+ab 2=ab (a+b )=5ab=-10,解得:ab=-2.考点:因式分解的应用.10.下列各式中不能用平方差公式分解的是( )A .22a b -+B .22249x y m -C .22x y --D .421625m n -【答案】C【解析】A 选项-a 2+b 2=b 2-a 2=(b+a )(b-a );B 选项49x 2y 2-m 2=(7xy+m )(7xy-m );C 选项-x 2-y 2是两数的平方和,不能进行分解因式;D 选项16m 4-25n 2=(4m)2-(5n)2=(4m+5n )(4m-5n ),故选C .【点睛】本题考查了利用平方差公式进行因式分解,解题的关键是要熟记平方差公式的特征.11.若实数x 满足2210x x --=,则322742017x x x -+-的值为( )A .2019B .2019-C .2020D .2020-【答案】D【解析】【分析】根据2210x x --=推出x 2-2x=1,然后把-7x 2分解成-4x 2-3x 2,然后把所求代数式整理成用x 2-2x 表示的形式,然后代入数据计算求解即可.【详解】解:∵x 2-2x-1=0,∴x 2-2x=1,2x 3-7x 2+4x-2017=2x 3-4x 2-3x 2+4x-2017,=2x (x 2-2x )-3x 2+4x-2017,=6x-3x 2-2017,=-3(x 2-2x )-2017=-3-2017=-2020故选D.【点睛】本题考查了提公因式法分解因式,利用因式分解整理出已知条件的形式是解题的关键,整体代入思想的利用比较重要.12.不论x ,y 为任何实数,22428x y x y +--+ 的值总是( )A .正数B .负数C .非负数D .非正数【答案】A【解析】x²+y²-4x-2y+8=(x²-4x+4)+(y²-2y+1)+3=(x-2)2+(y-1)2+3≥3,不论x,y 为任何实数,x²+y²-4x-2y+8的值总是大于等于3,故选A.【点睛】本题考查了因式分解的应用,解题的关键是要明确要判断一个算式是正数时总是将其整理成一个完全平方公式加正数的形式.13.一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是( )A .x 3﹣x=x (x 2﹣1)B .x 2﹣2xy+y 2=(x ﹣y )2C .x 2y ﹣xy 2=xy (x ﹣y )D .x 2﹣y 2=(x ﹣y )(x+y )【答案】A【解析】A. 提公因式法后还可以运用平方差公式继续分解,应为:原式=x(x+1)(x−1),错误;B. 是完全平方公式,已经彻底,正确;C. 是提公因式法,已经彻底,正确;D. 是平方差公式,已经彻底,正确.故选A.14.下列因式分解结果正确的是( ).A .10a 3+5a 2=5a(2a 2+a)B .4x 2-9=(4x+3)(4x-3)C .a 2-2a-1=(a-1)2D .x 2-5x-6=(x-6)(x+1)【答案】D【解析】【分析】A 可以利用提公因式法分解因式(必须分解到不能再分解为止),可对A 作出判断;而B 符合平方差公式的结构特点,因此可对B 作出判断;C 不符合完全平方公式的结构特点,因此不能分解,而D 可以利用十字相乘法分解因式,综上所述,即可得出答案.【详解】A 、原式=5a 2(2a+1),故A 不符合题意;B 、原式=(2x+3)(2x-3),故B 不符合题意;C 、a 2-2a-1不能利用完全平方公式分解因式,故C 不符合题意;D 、原式=(x-6)(x+1),故D 符合题意;故答案为D【点睛】此题主要考查了提取公因式法以及公式法和十字相乘法分解因式,正确掌握公式法分解因式是解题关键.15.下列各式由左到右的变形中,属于分解因式的是( )A .x 2﹣16+6x =(x +4)(x ﹣4)+6xB .10x 2﹣5x =5x (2x ﹣1)C .a 2﹣b 2﹣c 2=(a ﹣b )(a +b )﹣c 2D .a (m +n )=am +an【答案】B【解析】【分析】根据因式分解的定义逐个进行判断即可.【详解】解:A 、变形的结果不是几个整式的积,不是因式分解;B 、把多项式10x 2﹣5x 变形为5x 与2x ﹣1的积,是因式分解;C 、变形的结果不是几个整式的积,不是因式分解;D 、变形的结果不是几个整式的积,不是因式分解;故选:B .【点睛】本题主要考察了因式分解的定义,理解因式分解的定义是解题的关键.16.已知a 、b 、c 是ABC V 的三条边,且满足22a bc b ac +=+,则ABC V 是( ) A .锐角三角形B .钝角三角形C .等腰三角形D .等边三角形【解析】【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b ,即可确定出三角形形状.【详解】已知等式变形得:(a+b )(a-b )-c (a-b )=0,即(a-b )(a+b-c )=0,∵a+b-c ≠0,∴a-b=0,即a=b ,则△ABC 为等腰三角形.故选C .【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.17.已知a ﹣b =2,则a 2﹣b 2﹣4b 的值为( )A .2B .4C .6D .8【答案】B【解析】【分析】原式变形后,把已知等式代入计算即可求出值.【详解】∵a ﹣b =2,∴原式=(a +b )(a ﹣b )﹣4b =2(a +b )﹣4b =2a +2b ﹣4b =2(a ﹣b )=4.故选:B .【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.18.把多项式3(x -y)-2(y -x)2分解因式结果正确的是( )A .()()322x y x y ---B .()()322x y x y --+C .()()322x y x y -+-D .()()322y x x y -+-【答案】B【解析】【分析】提取公因式x y -,即可进行因式分解.【详解】 ()()232x y y x --- ()()322x y x y =--+故答案为:B .本题考查了因式分解的问题,掌握因式分解的方法是解题的关键.19.若n()是关于x的方程的根,则m+n的值为()A.1 B.2 C.-1 D.-2【答案】D【解析】【分析】将n代入方程,提公因式化简即可.【详解】解:∵是关于x的方程的根,∴,即n(n+m+2)=0,∵∴n+m+2=0,即m+n=-2,故选D.【点睛】本题考查了一元二次方程的求解,属于简单题,提公因式求出m+n是解题关键.20.计算(-2)2015+(-2)2016的结果是 ( )A.-2 B.2 C.22015D.-22015【答案】C【解析】【分析】【详解】(-2) 2015+(-2)2016=(-2) 2015×(-2)+(-2) 2015=(-2) 2015×(1-2)=22015.故选C.点睛:本题属于因式分解的应用,关键是找出各数字之间的关系.。

初中数学因式分解的常用方法

初中数学因式分解的常用方法

初中数学因式分解的常用方法因式分解是将一个数按照乘法拆分成几个因式相乘的形式,可以简化计算和解方程的过程。

在初中数学中,常见的因式分解方法有以下几种:1.提公因式法:提公因式法是最常见的一种因式分解方法,适用于多项式的各项有公因式的情况。

具体步骤如下:(1)找出多项式的各项的最大公因式;(2)将多项式中各项除以最大公因式得到的商作为新的因式;(3)将最大公因式与新的因式相乘,得到因式分解的结果。

2.公式法:公式法是指通过运用一些特定的公式,将数或多项式进行因式分解。

常见的公式有二次差、平方差、立方差等,具体使用公式的方法可参考相关的理论知识。

3.分组分解法:分组分解法是指将多项式进行分组后,再进行因式分解。

主要适用于多项式的各项无公因子时的情况。

具体步骤如下:(1)将多项式中的各项进行重新分组;(2)在每个组内找出公共因子;(3)将每个组内的公共因子提取出来,得到因式分解的结果。

4.平方差公式:平方差公式是指任意两个数的平方之差可以进行因式分解的公式。

常见的平方差公式有以下几个:(1)平方差公式1:a²-b²=(a+b)(a-b)(2)平方差公式2:a² + 2ab + b² = (a+b)²(3)平方差公式3:a² - 2ab + b² = (a-b)²5.立方差公式:立方差公式是指任意两个数的立方之差可以进行因式分解的公式。

常见的立方差公式有以下几个:(1)立方差公式1:a³ - b³ = (a-b)(a²+ab+b²)(2)立方差公式2:a³ + b³ = (a+b)(a²-ab+b²)6.积因式之和法:积因式之和法是指将一个数a分解成两个因式的乘积之和。

常见的积因式之和公式有以下几个:(1)a² + ab = a(a+b)(2)a² - ab = a(a-b)(3)a² + 2ab + b² = (a+b)²(4)a² - 2ab + b² = (a-b)²以上是初中数学中常用的因式分解方法。

初中数学教学课件:21.2.3 因式分解法(人教版九年级上)

初中数学教学课件:21.2.3  因式分解法(人教版九年级上)

2.解下列方程: (1)(x+2)(x-4)=0 【解析】(1) (2)4x(2x+1)-3(2x+1)=0
x 2 0或x 4 0
x1 2,x 2 4.
24x2x 1 32x 1 0,
2x 14x - 3 0,
2x 1 0或4x 3 0.
即ax2+bx+c=a(x-x1)(x-x2)
4.(惠安·中考)解方程:x2-25=0 【解析】(x+5)(x-5)=0 ∴x+5=0或x-5=0
∴x1= -5,x2=5.
通过本课时的学习,需要我们掌握: 1.因式分解法解一元二次方程的步骤是:
(1)化方程为一般形式;
(2)将方程左边因式分解; (3)根据“至少有一个因式为零”,得到两个一元一次方程;
2. 关键是熟练掌握因式分解的知识;
3.理论依旧是“如果两个因式的积等于零,那么至少 有一个因式等于零.”
例 题
【例1】用分解因式法解方程:
(1)5x2=4x;(2)x-2=x(x-2). 【解析】
解 : 1 5x 2 4x 0,
x5x 4 0.
2 x 2 x x 2 0, x 21 x 0.
1.x1 5; x2 2.
x 2 (5 2 ) x 5 2 0
2. x 2 ( 3 5 ) x 15 0 2.x1 5; x2 3.
3. x 2 (3 2)x 18 0
4. (4 x 2) x(2 x 1)
2
3.x1 3; x2
b b 2 4ac (a 0, b 2 4ac 0) 公式法 x 2a

初中数学竞赛专题培训(2):因式分解(2)

初中数学竞赛专题培训(2):因式分解(2)

初中数学竞赛专题培训第二讲:因式分解(二)1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即:-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以,原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解(1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例4 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.例5 分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3; (2)x2-xy+2x+y-3;=(x-5y+3)(x-3y-1) =(x-1)(x-y+3) (3)3x2-11xy+6y2-xz-4yz-2z2.=(3x-2y+2z)(x-3y-z)2.用求根法分解因式:(1)x3+x2-10x-6; (2)x4+3x3-3x2-12x-4;=(x-3)(x^2+4x+2) =(x+2)(x-2)(x^2+3x+1)(3)4x4+4x3-9x2-x+2.=(x-1)(2x+1)(2x-1)(x+2)3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20; (2)x4+5x3+15x-9.= (2x-3y+4)(x+3y+5) =(x^2+3)(x^2+5x-3)。

21.2.3 因式分解分解法 课件 2022-2023学年人教版数学九年级上册

21.2.3 因式分解分解法 课件 2022-2023学年人教版数学九年级上册

x 50 50
2a
2 4.9
49 49
x1
100, 49
x2
0
x1
100 49

x2
0
探究
10x 4.9x2 0
如果a ·b = 0,
因式分解
那么 a = 0或 b = 0。
x 10 4.9x 0
两个因式乘积为 0,说明什么 降次,化为两个一次方程
x 0 或 10 4.9x 0
1.将方程右边等于0;
2. 将方程左边因式分解为A×B;
3. 根据“ab=0,则a=0或b=0”,转化为两个一元一次方程.
4. 分别解这两个一元一次方程,它们的根就是原方程 的根.
解下列方程:
1 x x 2 x 2 0;
2 5x2 2x 1 x2 2x 3 .
4
4
解:(1)因式分解,得
九年级-上册-第21章
21.2 解一元二次方程
因式分解分解法解一元二次方程(1)
1
教学目标
一、知识技能 1、了解因式分解法的概念. 2、会用提公因式法和运用乘法公式将整理成一般形式的方
程左边因式分解,根据两个因式的积等于0,必有因式为0,从 而降次解方程. 二、过程方法
1、经历探索因式分解法解一元二次方程的过程,发展学生合 情合理的推理能力.
10x-4.9x2 =0 ①
10x-4.9x2 =0 ①
因式分解
x(10-4.9x) =0 ②
如果a ·b = 0, 那么 a = 0或 b = 0.
两个因式乘积为 0,说明什么?
x =0 或 10-4.9x=0
降次,化为两个一次方程
x1 0,
x2
100 49

人教九年级数学上册《因式分解法》课件

人教九年级数学上册《因式分解法》课件

5.用因式分解法解下列方程: (1)x2-4=0;
解:x1=2,x2=-2 (2)x2-2 3x=0;
解:x1=0,x2=2 3
(3)(3-x)2-9=0;
解:x1=0,x2=6 (4)x2-4x+4=(3-2x)2. 解:x1=1,x2=53
知识点2:用适当的方法解一元二次方程
6.解方程(x+1)2-5(x+1)+6=0时,我们可以将x+1看成一个整
8.方程x(x-1)=-x+1的解为( D )
A.x=1
B.x=-1
C.x1=0,x2=-1
D.x1=1,x2=-1
9.用因式分解法解方程,下列方法中正确的是( A )
A.(2x+2)(3x+4)=0化为2x+2=0或3x+4=0
B.(x-3)(x+1)=1化为x-3=1或x+1=1
C.(x-2)(x-3)=2×3化为x-2=2或x-3=3
2.解一元二次方程,首先看能否用___直__接__开__平__方__法______;再看 能否用____因__式__分__解__法______;否则就用____公__式__法_____;若二次项 系数为1,一次项系数为偶数可先用__配__方__法_____.
知识点1:用因式分解法解一元二次方程
1.方程(x+2)(x-3)=0的解是( C )
解:x1=x2=2
(2)(x-3)2=3(x-3).
解:x1=3,x2=6
15.用适当的方法解下列方程:
(1)4(x-1)2=2;
解:x1=
22+2,x2=-
2+2 2
(2)x2-6x+4=0;
解:x1=3+ 5,x2=3- 5
(3)x2-4=3x-6;
解:x1=1,x2=2 (4)(x+5)2+x2=25.

九年级数学:用因式分解法解一元二次方程

九年级数学:用因式分解法解一元二次方程
x 3. 这个数是3.
小明做得对吗?
一个数的平方与这个数的3倍有可能相等吗 ?如果相等,这个数是几?你是怎样求出来 x2 3x.
的小?颖,小明,小亮都设这个数为x,根据题意得
小亮是这样想的: 030,15 00,
000. 反过 ,如 来 a 果 b 0 ,
那么a 0或b 0 或a b 0. 即,如果两个因式的积等于 0, 那么这两个数至少有一 个为0.
复习回顾:
1、用配方法解一元二次方程的关键是将方 程转化为_(_x_+_m_)_2=_n_(__n_≥__0_)__的形式。
2、用公式法解一元二次方程应先将方程化为 _____一_般__形_式_________
3、选择合适的方法解下列方程 (1)x2-6x=7 (2)3x2+8x-3=0
相信你行:
:
2.3y2y1.4
解:1.一元二次方程 解:2.一元二次方程
x2 70
3y2 y 14 0
的两个根 x1是 7,x2 7. x27(x7)x (7).
的3两y2个y根1 是y1 4 3 (2y, y22) y 73( . 7)
.
3
小结 拓展
回味无穷
当一元二次方程的一边是0,而另一边易于分解成两个一次因式的 乘积时,我们就可以用分解因式的方法求解.这种用分解因式解一
x5x 4 0.
x 0,或5x 4 0. 4
x1 0; x2 5 .
1.化方程为一般形式;
2. 将方程左边因式分解;
3. 根据“至少有一个因式为零”,转 化为两个一元一次方程.
2 .x 2 x x 2 0 , 4. 分别解两个一元一次方程,
x 21 x 0.
它们的根就是原方程的根.

九年级上册数学因式分解法

九年级上册数学因式分解法

因式分解法是一种常用的数学方法,用于将一个多项式分解为几个因式的乘积。

在九年级上册数学中,因式分解法通常用于解决一元二次方程和分式方程等问题。

因式分解法的步骤如下:
1.观察多项式,尝试将其分解为几个因式的乘积。

2.通过提取公因式、利用平方差公式或完全平方公式等方法进行因式分解。

3.反复进行因式分解,直到无法再分解为止。

4.检查因式分解的结果是否正确,可以通过代入法或比较系数法等方法进行
验证。

例如,对于多项式x^2 - 4,我们可以将其分解为(x + 2)(x - 2)。

这是一个典型的平方差公式,其中a = x, b = 2。

在九年级上册数学中,因式分解法通常用于解决以下问题:
1.一元二次方程:通过因式分解法将一元二次方程化为两个一次方程,从而
求解。

例如,对于方程x^2 - 5x + 6 = 0,我们可以将其因式分解为(x - 2)(x - 3) = 0,从而得到x = 2 或x = 3。

2.分式方程:通过因式分解法将分式方程化为整式方程,从而求解。

例如,
对于方程x/(x - 1) = 2x/(3x - 3) + 1,我们可以将其化为整式方程(3x -
3)/(x - 1) = 2x/(x - 1) + 1,从而得到x = 2。

总之,因式分解法是一种非常重要的数学方法,在九年级上册数学中有着广泛的应用。

通过掌握因式分解法,可以更好地解决各种数学问题。

人教版数学九年级上册第21章解一元二次方程21.2.3因式分解法教学设计课件

人教版数学九年级上册第21章解一元二次方程21.2.3因式分解法教学设计课件

21.2.3因式分解法1.认识因式分解法的观点.2.会用因式分解法解一元二次方程.3.能依据一元二次方程的特色,选择合适的解一元二次方程的方法.1.经历研究用因式分解法解一元二次方程的过程,发展合情推理的能力,领会“降次”化归的思想方法.2.经过灵巧选择解方程的方法,领会解决问题的灵巧性和多样性.1.经过研究因式分解法解一元二次方程,学会与别人合作,能与别人沟通思想的过程和结果的能力.2.经历研究知识的形成过程,培育学生主动研究的精神与踊跃参加的意识.【要点】用因式分解法解一元二次方程.【难点】依据一元二次方程的特色,选择合适的解一元二次方程的方法.【教师准备】预料学生解一元二次方程中选择灵巧方法的困难.多媒体课件1和课件2.【学生准备】复习总结学过的解一元二次方程的方法.导入一:复习发问:1.因式分解的方法有几种?【师生活动】教师发问,学生回答,教师评论.2.将以下各式分解因式.(1)5x2-4x;2-4x+4;(2)x(3)4x(x-1)-2+2x;(4)x2-4;2-x2.(5)(2x-1)【师生活动】学生独立达成,小组内沟通答案,对出现的错误组长帮忙解决,老师评论易错点.导入二:(教材问题2)依据物理学规律,假如把一个物体从地面以10m/s的速度竖直上抛,那么物体经过x s离地2面的高度(单位:m)为10x-4.9x,依据上述规律,物体经过多少秒落回地面(结果保存小数点后两位)?学生口答所列方程为10x-4.9x2=0,思虑怎样解这个方程.(配方法、公式法)[设计企图]经过复习有关知识,有益于学生娴熟正确地将多项式进行因式分解,进而降低本节课的难度,为学习新知识打下基础;以与物理学有关的实质问题导入新课,让学生领会各学科知识之间的联系,感觉数学与生活之间的联系,激发学生学习的兴趣.[过渡语]除配方法和公式法之外,可否找到更简单的方法解这个方程?一、共同研究2=0?思虑:还有什么方法解问题中的一元二次方程10x-4.9x思路一教师指引学生思虑回答以下问题.(1)上边方程中有没有常数项?(2)等式左侧的各项有没有同样因式?能不可以分解因式?(3)假如AB=0,那么;假如(x+1)(x-1)=0,那么x+1=0或,即x=-1或. (4)试试将方程左侧分解因式,看能不可以达到降次的目的.【师生活动】学生在教师的指引下逐个思虑回答以下问题,教师实时增补,而后让学生勇敢试试解方程,对出现的问题教师有针对性地解决.思路二复习发问:假如AB=0,那么.方程能不可以化成这类形式?小组合作沟通,勇敢试试,教师对解决问题有困难的学生实时赐予帮助,并将小组沟通结果展现,对学生展示结果教师提出怀疑,并指引学生解决.解:将方程左侧分解因式,得x(10-4.9x)=0,∴x=0或10-4.9x=0,∴x1=0,x2=≈2.04.∴物体经过2.04秒落回地面.[设计企图]经过小组议论或教师指引,察看方程的特色,而后找到解决的门路,让学生亲身经历知识的形成过程,培育学生察看问题、剖析问题的能力和研究精神.二、思虑(1)上述解方程的方法第一步是怎样变形的?(2)上述解法是怎样达到降次的目的的?(3)什么样的方程适适用这类方法求解?【师生活动】小组议论沟通,教师实时指引,师生共同得出结论.第1页我们能够发现,上述方程的解法不是用开平方降次,而是先因式分解,使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,进而实现降次,这类解一元二次方程的方法叫做因式分解法.[过渡语]依据方才解方程的思路和因式分解法解方程的观点,你能不可以总结因式分解法解方程的步骤是什么?【师生活动】学生思虑回答,教师增补,归纳后以课件展现.【课件1】因式分解法解一元二次方程的步骤:(1)将方程的右侧化为0;(2)将方程的左侧进行因式分解;(3)令每一个因式为0,转变为两个一元一次方程;(4)解一元一次方程,得原方程的解.[设计企图]以问题的形式指引学生思虑,降低了新知识的难度,小组的议论沟通,让学生体验知识的形成过程,在讲堂上发挥主体作用,体验成功的快乐,使本节课要点进一步获取加强,同时研究过程培育了学生疏析问题的能力和归纳总结的能力.三、例题解说【课件2】(教材例3)解以下方程.(1)x(x-2)+x-2=0;2-2x-=x2-2x+.(2)5x【师生活动】学生独立达成后小组沟通答案,教师课件展现,规范做题格式.解:(1)因式分解,得(x-2)(x+1)=0,即x-2=0或x+1=0,∴x1=2,x2=-1.2-1=0,(2)移项、归并同类项,得4x因式分解,得(2x+1)(2x-1)=0,即2x+1=0或2x-1=0,∴x1=-,x2=.[知识拓展]1.当方程的左侧能分解因式,方程的右侧为0时,经常用因式分解法解一元二次方程,因式分解法是解一元二次方程的一种简易方法,要会灵巧运用.2.解一元二次方程时,四种解法的使用次序是:直接开平方法、因式分解法、公式法、配方法,一般先考2=b(b≥0),用直接开平方法,最一般方法是公式法,配方法在题目没有特虑用因式分解法,假如是特别形式(x+a)殊要求时一般不用.因式分解法解一元二次方程的步骤:(1)将方程的右侧化为0;(2)将方程的左侧进行因式分解;(3)令每一个因式为0,转变为两个一元一次方程;(4)解一元一次方程,得原方程的解.1.方程x(x+2)=0的根是()A.x=2B.x=0C.x1=0,x2=-2D.x1=0,x2=2分析:由题意可得x=0或x+2=0,解得x1=0,x2=-2.应选C.2.方程(x-5)(x-6)=(x-5)的解是()A.x=5B.x=5或x=6C.x=7D.x=5或x=71=5,x2=7.分析:移项,得(x-5)(x-6)-(x-5)=0,方程左侧提公因式得(x-5)(x-6-1)=0,即x-5=0或x-7=0,解得x 应选D.3.用因式分解法解方程5(x+3)-2x(x+3)=0,可把其化为两个一元一次方程,求解.分析:方程左侧提公因式得(x+3)(5-2x)=0,因此x+3=0或5-2x=0.答案:x+3=05-2x=02-16=0的解是.4.方程x分析:方程左侧用平方差公式分解因式得(x+4)(x-4)=0,因此x+4=0或x-4=0,解得x1=4,x2=-4.故填x1=4,x2=-4.5.用因式分解法解以下方程.2+x=0;(1)x2-2x=0;(2)x2-6x=-3;(3)3x(4)4x2-121=0;(5)3x(2x+1)=4x+2;第2页2=(5-2x)2.(6)(x+4)解:(1)将方程左侧分解因式,得x(x+1)=0,∴x=0或x+1=0.∴x1=0,x2=-1.(2)将方程左侧分解因式,得x(x-2)=0,∴x=0或x-2=0.∴x1=0,x2=2. 2-6x+3=0,将方程左侧分解因式,得3(x-1)2=0∴x(3)移项,得3x1=x2=1.(4)将方程左侧分解因式,得(2x+11)(2x-11)=0,∴2x+11=0或2x-11=0.∴x1=-,x2=.(5)移项,得3x(2x+1)-(4x+2)=0,将方程左侧分解因式,得(2x+1)(3x-2)=0,∴2x+1=0或3x-2=0.∴x1=-,x2=.2-(5-2x)2=0,(6)移项,得(x+4)将方程左侧分解因式,得(x+4+5-2x)(x+4-5+2x)=0,∴-x+9=0或3x-1=0.∴x1=9,x2=.21.2.3因式分解法一、共同研究二、思虑因式分解法解一元二次方程的步骤三、例题解说一、教材作业【必做题】教材第14页练习的1题.【选做题】教材第14页练习的2题.二、课后作业【基础稳固】2-2x=0的解是()1.一元二次方程5xA.x1=0,x2=B.x1=0,x2=-C.x1=0,x2=D.x1=0,x2=-2.方程3x(x+1)=3x+3的解为()A.x=1B.x=-1C.x1=0,x2=-1D.x1=1,x2=-13.若对于x的一元二次方程的根分别为-5,7,则该方程能够为()A.(x+5)(x-7)=0B.(x-5)(x+7)=0C.(x+5)(x+7)=0D.(x-5)(x-7)=04.方程(x+4)(x-5)=1的根为()A.x=-4B.x=5C.x1=-4,x2=5D.以上结论都不对5.方程x(x-1)=x的解是.6.将二次三项式x2+20x-96分解因式的结果为;假如令x2+20x-96=0,那么它的两个根是. 7.方程(x-1)(x+2)=2(x+2)的根是.第3页8.若(m+n)(m+n+5)=0,则m+n=. 9.若(2x+3y)2+4(2x+3y)+4=0,则2x+3y的值为. 10.用因式分解法解以下方程.(1)(x-1)(x-2)=0;2-3x=0;(2)x2-4x+4=0;(3)x2-5x+4=0.(4)x【能力提高】的长方形养鸡场. 为了节俭资料 ,养鸡场的一边靠着原有的一面墙 ,墙211. 某养鸡专业户建一个面积为 150 m长a m,另三边用篱笆笆围成,假如篱笆的长为35 m,那么养鸡场的长与宽各为多少?(此中a≥20)2-(a+b)x+ab=(x-a)(x-b),那么x2-(a+b)x+ab=0便可转变为(x-a)(x-b)=0,请你用上边的方法解下12.我们知道x列方程.(1)x2-3x-4=0;2-7x+6=0;(2)x2+4x-5=0.(3)x【拓展研究】2-1)2-5(x2-1)+4=0,我们能够将x2-1视为一个整体,而后设x2-1=y,则y2=(x2-1)213.为解方程(x,原方程化为22222y-5y+4=0,解此方程,得y1=1,y2=4.当y=1时,x-1=1,x=2,∴x=±.当y=4时,x-1=4,x=5,∴x=±.∴原方程的解为x1=-,x2=,x3=-,x4=.以上方法就叫换元法,达到了降次的目的,表现了转变的思想.4-3x2-4=0;(1)运用上述方法解方程x2-1看作一个整体,你能直接运用因式分解法解(1)中的方程吗?(2)既然能够将x【答案与分析】1.A(分析:将方程左侧分解因式,得x(5x-2)=0,∴方程的解为x1=0,x2=.应选A.)2.D(分析:由已知得3x(x+1)-3(x+1)=0,∴3(x+1)(x-1)=0,∴x+1=0或x-1=0,∴x1=1,x2=-1.应选D.)3.A(分析:∵(x+5)(x-7)=0,∴x+5=0或x-7=0,∴x1=-5,x2=7.应选A.)2-x=21,∴=,∴x=.应选D.)4.D(分析:∵(x+4)(x-5)=1,∴x5.x1=0,x2=2(分析:∵x(x-1)=x,∴x(x-1)-x=0,∴x(x-1-1)=0,即x=0或x-2=0,∴x1=0,x2=2.)6.(x+24)(x-4)-24,4(分析:x2+20x-96=(x+24)(x-4).∵x2+20x-96=0,∴(x+24)·(x-4)=0,∴x+24=0或x-4=0,∴x1=-24,x2=4.)7.x1=3,x2=-2(分析:移项,得(x-1)(x+2)-2(x+2)=0,∴(x+2)(x-1-2)=0,∴x1=3,x2=-2.故填x1=3,x2=-2.)8.0或-5(分析:由题意得m+n=0或m+n+5=0,∴m+n=0或m+n=-5.故填0或-5.)2=0,因此2x+3y+2=0,即2x+3y=-2.故填-2.)9.-2(分析:把2x+3y当作一个整体,有(2x+3y+2)2=0,∴x10.解:(1)x-1=0或x-2=0,∴x1=1,x2=2.(2)x(x-3)=0,∴x=0或x-3=0.∴x1=0,x2=3.(3)(x-2)1=x2=2.(4)(x-1)(x-4)=0,∴x-1=0或x-4=0.∴x1=1,x2=4.11.解:设养鸡场垂直于墙的一边长为x m,则与墙相对的边的长为(35-2x)m,依题意,得x(35-2x)=150,即2-35x+150=0,因此(2x-15)·(x-10)=0,因此x=7.5或x=10,当x=7.5时,35-2x=20,当x=10时,35-2x=15,由于a≥ 2x20,因此两根都知足条件.答:养鸡场的长与宽分别为20 m,7.5 m或15 m,10 m.212.解:(1)∵x-3x-4=(x-4)(x+1),∴(x-4)·(x+1)=0,∴x-4=0或x+1=0,∴x1=4,x2=-1.2-7x+6=(x-6)(x-1),∴(x-6)(x-1)=0,∴x-6=0或x-1=0,∴x(2)∵x1=6,x2=1.2+4x-5=(x+5)(x-1),∴(x+5)(x-1)=0,∴x+5=0或x-1=0,∴x(3)∵x1=-5,x2=1.4-3x2-4=0.设x2=y,则y2=x42-3y-4=0,解此方程,得y2=4,∴x=±2.13.解:(1)x,原方程化为y1=-1,y2=4.当y=4时,x2=-1,无实数解.∴原方程的解为x2+1)(x2-4)=0,∴x2+1=0或当y=-1时,x1=-2,x2=2.(2)因式分解,得(xx1=2,x2=-2.2-4=0,x2+1=0无解,∴原方程的解为x在本节课的教课过程中,先对因式分解进行复习,而后由实质问题引出新方程,解决这个实质问题需要学习新知识,激发了学生的学习动机,而新知识与旧知识一元一次方程有内在联系,指引学生用比较、归纳的方法获取新知识.整节课都是以问题形式层层深入,在老师的指引下,学生自主研究结论,因此学生在讲堂上发挥了主体作用,老师在讲堂上不过指挥家、引领者的身份,这样有益于培育学生剖析问题、解决问题的能力和创新精神.后边的例题稳固提高了本节课的要点,例题的解决不是老师解说达成的,而是学生在独立思虑的基础上由小组合作、共同沟通达成,提高了学生解决问题的灵巧性,建立了学习的信心.在讲堂中有时办理问题过于焦躁,过分关注学生的学习结果,而忽视了过程,办理有些知识点时,给学生留有思虑的时间太少,造成练习解方程时,部分学生出现计算错误许多.并且对于学生出现的问题不过实时的加以加强,没有再出近似的问题让学生解决,不可以更有效地表现讲堂教课的实效性.不可以关注到每一位学生,在讲堂上比较活跃的仍是部分学生,应当让人人学到有价值的数学.第4页数学教课的真理是数学思想过程的教课,因此教课方案要着重培育学生正确运用所学新知识来剖析问题、解决问题,用新方法解方程时,给学生足够思虑时间,同时重视指引学生思虑怎样对所学新知识加以复习、稳固,进一步认识这部分知识在解决问题时所起的作用.教课自己就是一个动向生成的过程,在解题过程中, 尽量让有典型问题的学生进行展现,这样正好是教师的第一手资料,以使教课更能有效进行.练习(教材第14页)1.解:(1)x1=0,x2=-1.2+x=0,x(x+1)=0,∴x2- 2 x=0,x(x- 2 )=0,∴x 2- 6x=-3,x2- 2x+1=0,(x- 1) (2)x 1=0,x2=2 . (3)3x 2=0,∴x1=x2=1.1=x2=1.2-121=0,(2x-11)·(2x+11)=0,∴x(4)4x1=,x2=-.(5)3x·(2x+1)=4x+2,3x(2x+1)-2(2x+1)=0,(2x+1)(3x-2)=0,∴x1=-,x2=.2=(5- 2x)2 (6)(x- 4) ,(x- 4) 2- (5- 2x)2=0,(x- 4+5- 2x)·(x- 4- 5+2x)=0,(1-x )( 3x- 9)=0,∴x 1=1,x2 =3.1=1,x2=3.2.解:设小圆形场所的半径为R m,则大圆形场所的半径为(R+5)m,依题意得2=π(R+5)2 2=(R+5)2 2πR ,2R ,( R) 2- (R+5)2 =0,( R+R+5)( R-R-5)=0,∴R 1=5- 5 (舍),R2=5+5 . 答:小圆形场所的1=5- 5 (舍),R2=5+5 . 答:小圆形场所的半径为(5+5)m.1.本节课主要学习了用因式分解法解一元二次方程,解法的基本思路是将一元二次方程转变为一元一次方程,而达到这一目的,我们主要利用了因式分解“降次”,经过本节课的学习,要指引学生逐渐深入、领悟、掌握“转变”这一数学思想方法.2.在教课过程中,对配方法和公式法进行复习,再由实质问题引入新方程,要解决这个实质问题需要学习新知识,激发了学生的学习动机,把本节课的要点内容设计成问题串的形式,指引学生自主研究、合作沟通,自然地掌握了本节课的要点,同时培育了学生剖析问题、解决问题的能力及合作和研究精神.3.因式分解法对解某些一元二次方程是最简单的方法,在解一元二次方程时,应依据方程的构造特色,选择合适的方法去解,这是本节课的难点,并且直接开平方法与因式分解法中都包含着由二次方程向一次方程转变的思想方法.一般状况下,独自使用这类方法,学生运用的比较娴熟,但假如综合在一同,学生运用的就不太娴熟,因此在练习中,给学生足够的时间沟通,共同研究方程知足什么特色能够用什么方法,达到顺利打破难点的目的.用因式分解法解方程x(x-1)=2.有学生给出以下解法:∵x(x-1)=2=1×2=(-1)×(-2),∴或或或解上边第一、四个方程组,无解;解第二、三个方程组,得x=2或x=-1.∴x=2或x=-1.请问:这个解法对吗?试说明你的原因.假如你感觉这个解法不对,请你求出方程的解.解:解法不对.原因:用因式分解法解一元二次方程,方程左侧一定为两个一次因式的乘积,而方程右侧一定为0,明显这位同学的做法不切合这样的要求,故解法错误.正确解法以下:2-x-2=0,原方程可化为x即(x-2)(x+1)=0,则x-2=0或x+1=0,1=2,x2=-1.解得x第5页。

用因式分解法求解一元二次方程课件19张北师大版九年级上册数学

用因式分解法求解一元二次方程课件19张北师大版九年级上册数学
等式两边加4,得x2+4x+4=6,
由完全平方公式得(x+2)2=6,
∴x+2= 或x+2=- ,
所以原方程的解为x1=-2+ ,x2=-2- .
合作探究
(2)移项,得(x-2)2-3(x-2)=0,
提取公因式,得(x-2)(x-5)=0,
则x-2=0或x-5=0,
解得x1=2,x2=5.
把解一元二次方程变为解两个 一
元 一
次方程的情势,
从而求得方程的解.我们把这种解一元二次方程的方法称为
解因式法 .

预习导学
2.分解因式法解一元二次方程的一般步骤:
(1)移项:把方程的右边变为
(2)化积:把方程的左边分解为
0


个一次因式的积;
(3)转化:令两个一次因式分别为0,把方程转化为两个

方法归纳交流 因式分解法是把一元二次方程转化为两个
一元一次方程,再求解即可.逆向思维,我们可以构造两个一元
一次方程,把两个一元一次方程相乘,得到一元二次方程.
合作探究
2.三角形两边长分别为3和6,第三边是方程x2-6x+8=0的
解,则这个三角形的周长是( B )
A.11
B.13
C.11或13
D.不能确定
合作探究
1.方程3x(x+1)=3x+3的解为( D )
A.x=1
B.x=-1
C.x1=0,x2=-1
D.x1=1,x2=-1
2.用指定方法解下列方程:
(1)x2+4x-2=0(配方法);
(2)(x-2)2=3(x-2)(因式分解法);
(3)2x2-4x-1=0(公式法).
合作探究
解:(1)原方程可化为x2+4x=2,

初中数学因式分解方法汇总(共12种,中考必背,全掌握计算题不再怕)

初中数学因式分解方法汇总(共12种,中考必背,全掌握计算题不再怕)

初中数学因式分解方法汇总1提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.例1、分解因式x -2x -xx -2x -x=x(x -2x-1)2 应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式.例2、分解因式a +4ab+4ba +4ab+4b =(a+2b)3分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5mm +5n-mn-5m= m -5m -mn+5n= (m -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4 十字相乘法对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x -19x-6分析:1 -37 22-21=-197x -19x-6=(7x+2)(x-3)5配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解.例5、分解因式x +3x-40解x +3x-40=x +3x+( ) -( ) -40=(x+ ) -( )=(x+ + )(x+ - )=(x+8)(x-5)6拆、添项法可以把多项式拆成若干部分,再用进行因式分解.例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)7换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来.例7、分解因式2x -x -6x -x+22x -x -6x -x+2=2(x +1)-x(x +1)-6x=x [2(x + )-(x+ )-6令y=x+ ,x [2(x + )-(x+ )-6= x [2(y -2)-y-6]= x (2y -y-10)=x (y+2)(2y-5)=x (x+ +2)(2x+ -5)= (x +2x+1) (2x -5x+2)=(x+1) (2x-1)(x-2)8求根法令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )例8、分解因式2x +7x -2x -13x+6令f(x)=2x +7x -2x -13x+6=0通过综合除法可知,f(x)=0根为 ,-3,-2,1则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)9图象法令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )例9、因式分解x +2x -5x-6令y= x +2x -5x-6作出其图象,见右图,与x轴交点为-3,-1,2则x +2x -5x-6=(x+1)(x+3)(x-2)10 主元法先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解.例10、分解因式a (b-c)+b (c-a)+c (a-b)分析:此题可选定a为主元,将其按次数从高到低排列a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b)=(b-c) [a -a(b+c)+bc]=(b-c)(a-b)(a-c)11利用特殊值法将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式.例11、分解因式x +9x +23x+15令x=2,则x +9x +23x+15=8+36+46+15=105将105分解成3个质因数的积,即105=3×5×7注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值则x +9x +23x+15=(x+1)(x+3)(x+5)12待定系数法首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解.例12、分解因式x -x -5x -6x-4分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式.设x -x -5x -6x-4=(x +ax+b)(x +cx+d)= x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd所以解得则x -x -5x -6x-4 =(x +x+1)(x -2x-4)。

初中九年级数学教案因式分解法

初中九年级数学教案因式分解法


为学习本节
新知识作铺
学生观察式子特 垫
点,进行因式分解,
为下面地学习作
铺垫
学生根据 ab=0
得到 a=0 或 b=0, 对比探究,结
为下面学习作铺 合已有知识,

尝试解题,培
养学生发现
学生直接利用 2 问题地能力
地结论完成 3 中
教学教案
教学教案
4. 试求下列方程地根
○1 4x2-11x =0; x(x-2)+ (x-2)=0; (x-2)2 -(2x-4)=0
○2 25y2-16=0; (3x+1)2 -(2x-1)2 =0; (2x-1)2 =(2-x)2
○3 x2+10x+25=0; 9x2-24x+16=0;
○4 5x2-2x- 1 = x2-2x+ 3 ; 2x2+12x+18=0;
4
4
解方程
分析:观察○1 ○2 ○3 三组方程地结构特点,在方程右边为 0
4
确定性.
分析:四个方程最适合地解法依次是:利用完全平方公式,
求根公式法,提公因式法,直接开平方法或利用平方差公
式. 归纳:配方法要先配方,再降次;公式法直接利用求根公
式;因式分解法要先使方程一边为两个一次因式相乘,另
一边为 0,再分别使各一次因式等于 0.配方法,公式法适 先观察,尝试选用
用于所有一元二次方程,因式分解法用于某些一元二次 合适方法解方程,
步理解降次 思想解方程
让学生在巩 固过程中掌 握所学知识, 培养应用意 识与能力
本节课应掌握: 1.用因式分解法解一元二次方程 2.归纳一元二次方程三种解法,比较它们地异同,能根据 方程特点选择合适地方法解方程 五,作业设 计

人教版数学九年级(上)因式分解法(17张)-公开课

人教版数学九年级(上)因式分解法(17张)-公开课
提公因式法,公式法,十字相乘法 用因式分解法解一元二次方程的依据是:
如果ab=0,则a=0或b=0.
【名师示范课】人教版数学九年级上 册 21.2.3 因式分解法(共17张PPT)-公开课课 件(推 荐)
【名师示范课】人教版数学九年级上 册 21.2.3 因式分解法(共17张PPT)-公开课课 件(推 荐)
【名师示范课】人教版数学九年级上 册 21.2.3 因式分解法(共17张PPT)-公开课课 件(推 荐)
【名师示范课】人教版数学九年级上 册 21.2.3 因式分解法(共17张PPT)-公开课课 件(推 荐) 【名师示范课】人教版数学九年级上 册 21.2.3 因式分解法(共17张PPT)-公开课课 件(推 荐)
11 4
【名师示范课】人教版数学九年级上 册 21.2.3 因式分解法(共17张PPT)-公开课课 件(推 荐)
你能归纳出用因式分解法解方一元二次程的一般步骤吗? 第一步,把方程变形为x2+px+q=0的形式; 第二步,把方程变形为(x-x1)(x-x2)=0的形式; 第三步,把方程降次为两个一次方程x-x1=0或x-x2=0的形式; 第四步,解两个一次方程,求出方程的根.
(x-1)(x+4)=0
x1 5
x1=1, x2=-4
x1 1 5, x2 1 5
【名师示范课】人教版数学九年级上 册 21.2.3 因式分解法(共17张PPT)-公开课课 件(推 荐)
【名师示范课】人教版数学九年级上 册 21.2.3 因式分解法(共17张PPT)-公开课课 件(推 荐)
【名师示范课】人教版数学九年级上 册 21.2.3 因式分解法(共17张PPT)-公开课课 件(推 荐)
5. 用适当方法解下列方程:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
pk10赛车直播pk10赛车直播
[多选]气管切开术后护理应特别注意()A.保持气管套管通畅B.每4~6小时清洗消毒内套管一次C.严格无菌操作,吸痰导管一用一消毒D.痰液粘稠时可给予气道雾化吸人E.贮液瓶内应先放入250毫升消毒液 [名词解释]乡村家庭的发展趋势 [单选]当灰分()时,先调风水,再调浮标密度,后调给料。A.高B.低C.适中D.偏低 [单选]认为组织和组织成员的行为是复杂的、不断变化的,是一种固有的性质的观点所属的学派是()。A.系统理论管理B.行为科学管理C.权变理论管理D.管理科学E.管理质量 [单选]某建设项目从美国进口的设备重100吨,装运港船上交货价为1000万美元,海运费为300美元/吨,海运保险费为2万美元,美元兑人民币汇率按l:7计算。该设备的到岸价格为人民币()万元。A.7000B.7014C.7021D.7035 [单选]酒店的四种人:“勤牛”、“快马”、“懒猪”和“坏狗”中下面的描述的是那种人?“头脑灵活、聪明、能干,但往往吃不了苦、自以为是,优越感比较强”()A、勤牛型B、快马型C、懒猪型D、坏狗型 [单选]关于现行增值税一般纳税人进项税额抵扣的说法,正确的是()A:某公司进口货物,取得国外的运输发票计算的增值税进项税额准用于增值税应税项目(不含免征增值税项目),自制固定资产的进项税额不作进项税额转出 [单选,A1型题]β射线要用原子序数小的材料,如塑料等进行防护,这是因为()A.β射线在原子序数小的材料中射程短B.β射线对原子序数小的物质电离作用小C.β射线在原子序数小的材料中韧致辐射作用弱D.原子序数小的材料对β射线吸收作用强E.β射线在原子序数小的材料中能量损失大 [单选]下列哪一项是胎儿食道闭锁诊断要点?A.胃泡不显示合并羊水过多B.肠管扩张C.肠管内可见无回声区D.胃泡增大E.食道呈管状无回声区 [单选]小儿维生素D的RNI为()A.100IU/dB.300IU/dC.500IU/dD.200IU/dE.600IU/d [填空题]()认为,人与动物的根本区别在于(),并认为人类的进化过程中,经过了三个依次递进的阶段,即攀树的猿群,正在形成中的人和完全形成的人. [单选]()构成了确认收入和费用的基础,也进一步构成了资产和负债的确认基础。A.会计凭证B.会计确认C.权责发生制D.会计计量 [填空题]按照信息的性质,可以把信息分成()、()和()。 [单选]《女职工劳动保护特别规定》自公布之日起施行。()国务院发布的《女职工劳动保护规定》同时废止。A、1997年7月1日B、1988年7月1日C、1988年7月21日D、1991年7月1日 [单选,A2型题,A1/A2型题]检查肌张力时,患者必须()。A.意识清醒B.无肌肉瘫痪C.无肌肉萎缩D.无肌束震颤E.肌肉放松 [单选]胰岛β细胞分泌的激素是()A.胰高糖素B.胰岛素C.促胃液素D.胰多肽E.生长抑素 [单选,A1型题]下列属于《母婴保健法》规定可以申请医学技术鉴定的是()A.对孕妇、产妇保健服务有异议的B.对婚前医学检查结果有异议的C.对医学指导意见有异议的D.对孕产期保健服务有异议的E.对婚前卫生咨询有异议的 [单选]装置1.0Mpa和0.3MPa蒸汽同时中断的处理方法,下列哪项是正确的()。A、降量维持操作B、装置紧急停工C、停进出物料,装置改全回流操作D、正常操作没有影响 [单选]下列各项中,属于事业单位资产的是()。A.财政补助结余B.非财政补助结转C.应缴财政专户款D.财政应返还额度 [单选]保安押运的业务范围不包括()。A.为国内外银行及非银行单位提供运钞,运送有价证券及票据等安全服务B.为国内外客户提供黄金、珠宝、钻石等贵重物品的安全押运服务C.为银行等单位提供守护金库,为法人与自然人保管贵重物品的安全服务D.为国内外客户提供保镖服务 [单选]避免放射性肺炎发生的重要措施是()A.大剂量博来霉素B.一般不用抗生素C.大剂量联合化疗D.防止癌细胞扩散,不用激素E.大面积照射时,放射剂量应控制在40GY以下 [问答题,简答题]试说明异戊巴比妥的化学命名。 [单选]下列各项中,适合建立标准成本中心的单位或部门有()。A、行政管理部门B、医院放射科C、企业研究开发部门D、企业广告宣传部门 [单选]下列有关食管心房调搏的描述,不正确的是().A.对常见室上性心动过速发生机制的判断可提供帮助B.诱发和终止房室结折返性心动过速C.有助于鉴别室上性心动过速伴室内差异性传导与室性心动过速D.有助于对自主神经功能的检测E.有助于确定病态窦房结综合征的诊断 [单选]有关骨盆,下列陈述错误的是()。A.骨盆入口平面即真假骨盆分界面B.骨盆入口平面呈横椭圆形C.中骨盆平面为骨盆最小平面D.中骨盆横径大于前后径E.骨盆由两块髋骨(一块尾骨,一块骶骨)组成 [单选]下列不符合化妆品定义的产品是()。A.含抑制螨虫剂的洗头水B.香皂C.含抑汗剂的爽身粉D.防蛀漱口水E.脱毛霜 [单选]在路基工程中,用于排除地下水的设施是()。A.拦水带B.急流槽C.截水沟D.渗井 [单选,A1型题]煎煮药液时应注意的是()A.时时搅动B.敞开锅盖C.放凉后再过滤D.煎干后可加水再煎E.加热水泡药以提高效率 [填空题]()是波音公司在20世纪50年代研制的四发喷气式民航客机,是世界上第一型在商业上取得成功的喷气式民航客机。 [单选]护理人员排班应遵循的首要原则是()。A.降低人力成本B.满足患者需要C.合理组合人力D.公平原则E.提高工作效率 [单选]()什么分析法是对具有复杂联系的社会经济现象进行数量分析的一种科学方法。A.多指标综合分析法B.信息化综合指示法C.投入产出D.综合产业力度法 [单选,A1型题]维生素D缺乏性佝偻病最可靠的早期诊断指标是()A.日光照射不足及维生素D摄入不足的病史B.烦躁不安、夜惊、多汗等神经精神症状C.血钙、磷、碱性磷酸酶水平异常D.长骨X线检查异常及骨骼畸形E.血25-(OH)-VD3与1,25-(OH)2-VD3水平下降 [多选]()是引起无意注意的主观原因A.对事物的需要和兴趣B.当归的情绪状态C.活动的目标D.意志品质 [名词解释]同位素成分 [单选,A2型题,A1/A2型题]术后发生深静脉血栓,其处理措施不正确的是()A.患肢抬高B.禁忌经患肢静脉输液C.勤按摩D.溶栓治疗E.抗凝治疗 [单选]典型肺炎链球菌肺炎体征描述,不正确的是()A.患侧呼吸运动减弱B.患侧语颤减弱C.患侧叩诊呈浊音D.患侧听诊有支气管呼吸音、湿性啰音E.累及胸膜时,可闻及胸膜摩擦音 [单选]施工图以外的零量项目或工作应列入()。A.暂列金额B.暂估价C.总承包服务费D.计日工 [单选,A1型题]《希波克拉底誓言》的内容不涵盖以下哪一点()A.为病家保密B.强调医生的品德修养C.尊重同道D.要有好的仪表和作用E.为病家谋利益 [单选]作为荧光标记物的荧光素必须具备的条件是()A.须具有化学的活性基团,能与蛋白质稳定结合B.荧光素标记后改变抗体的活性C.荧光与背景组织色泽相同D.易淬灭E.有较宽的激发光谱 [单选]航空运输市场需求是()A.消费者需要的航空运输服务量B.消费者愿意购买的航空运输服务量C.航空运输周转量D.消费者愿意并能够购买的航空运输服务量
相关文档
最新文档