第16章色谱分析法PPT课件

合集下载

《液相色谱分析法》课件

《液相色谱分析法》课件
液相色谱分析法
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 液 相 色 谱 分 析 法 的
技术原理
05 液 相 色 谱 分 析 法 的 优缺点
02 液 相 色 谱 分 析 法 的 概述
04 液 相 色 谱 分 析 法 的 应用实例
06
液相色谱分析法的 发展趋势和未来展

Part One
单击添加章节标题
数据处理:对检测到的信号 进行处理,得到样品的色谱 图和定量结果
结果分析:根据色谱图和定 量结果,对样品进行分析和 鉴定
Part Four
液相色谱分析法的 应用实例
在药物分析中的应用
药物稳定性研究:研究药物 在储存过程中的稳定性
药物成分分析:分析药物中 的有效成分、杂质等
药物质量控制:控制药物的 质量,确保药物的安全性和
液相色谱分析法的研究热点和前沿技术
超高效液相色谱技术:提高分离效率,降 低检测限
生物样品分析:应用于生物医药、食品安 全等领域
质谱联用技术:提高检测灵敏度和准确性
环境样品分析:应用于环境监测、污染治 理等领域
微流控芯片技术:实现样品的微型化和快 速分析
智能化、自动化技术:提高分析效率,降 低人工操作误差
添加标题
核磁共振检测器:利用核磁共振原理,检测样品中的核磁共振信号,用于结构分析和定量分析
液相色谱分析法的操作流程
样品制备:将样品进行适当 的处理,如稀释、过滤等
样品注入:将样品注入到色 谱柱中
色谱分离:样品在色谱柱 中分离,根据不同组分的 性质和亲和力进行分离
检测器检测:样品经过检 测器时,检测器对样品进 行检测,得到相应的信号பைடு நூலகம்

[暨南大学课件][分析化学][教案PPT][精品课程]第十六章-第一节-色谱法概述-2

[暨南大学课件][分析化学][教案PPT][精品课程]第十六章-第一节-色谱法概述-2
2020/6/17
空间排阻色谱法
▪ 根据空间排阻(steric exclusion)理论,孔 内外同等大小的溶质分子处于扩散平衡状态:
Xm
Xs
▪ 渗透系数: Kp =Xs/Xm (0<Kp<1 ) 由溶质分子的线团尺寸和凝胶孔隙的大小
所决定。在一定分子线团尺寸范围内,Kp与 分子量相关,即组分按分子量的大小分离。
2020/6/17
吸附色谱法
➢ 流动相 有机溶剂(硅胶为吸附剂) ➢ 洗脱能力:主要由其极性决定。 ➢ 强极性流动相占据吸附中心的能力强,洗
脱能力强,使k值小,保留时间短。
➢ Snyder溶剂强度o:吸附自由能,表示洗 脱能力。o值越大,固定相对溶剂的吸附
能力越强,即洗脱能力越强。
2020/6/17
2020/6/17
分配色谱法
▪ 洗脱顺序 由组分在固定相或流动相中溶解度的 相对大小而决定。 正相液液分配色谱:极性强的组分后被洗脱。 (库仑力和氢键力)
反相液液分配色谱:极性强的组分先出柱。
2020/6/17
二、吸附色谱法 (P346)
▪ 分离原理 利用被分离组分对固定相表面吸 附中心吸附能力的差别而实现分离。
▪ 吸附过程是试样中组分的分子(X)与流动相 分子(Y)争夺吸附剂表面活性中心的过程, 即为竞争吸附过程。
▪ 吸附色谱法包括气固吸附色谱法和液固吸附 色谱法
2020/6/17
X m + nYa
Ka
=
[X a ][Ym ]n [X m ][Ya ]n
Ka
[Xa ] [Xm ]
Xa / Sa X m /Vm
(2) 灵敏度高:
可以检测出μg.g-1(10-6)级甚至ng.g-1(10-9)级的物质量.

色谱法概论PPT课件

色谱法概论PPT课件

能。
色谱法与其他技术的联用
色谱-质谱联用(GC-MS, LC-MS)
通过将色谱的分离能力与质谱的高灵敏度检测相结合,可实现对复杂样品中目标化合物 的定性和定量分析,广泛应用于药物代谢、环境监测等领域。
色谱-光谱联用(GC-IR, LC-UV/Vis)
色谱与光谱技术的联用可以提供更丰富的化合物结构和组成信息,有助于深入了解化合 物的性质和行为。
实验材料
确保色谱柱、试剂、溶 剂等材料的质量和纯度,
以满足实验要求。
实验设备
检查色谱仪、检测器、 注射器等设备的运行状 况,确保实验过程中设
备正常工作。
实验设计
根据实验目的和要求, 设计合理的色谱条件和
实验方案。
实验安全
注意实验过程中的安全 问题,如使用有毒有害
试剂时的防护措施。
实验操作步骤
色谱柱安装与条件设置
数据整理
整理实验过程中记录的数据,包括 色谱图、峰面积等。
结果分析
对实验结果进行深入分析,探究可 能的原因和影响因素。
03
02
结果判断
根据实验目的和要求,判断实验结 果是否符合预期。
结论总结
总结实验结果,得出结论,并提出 进一步改进和完善的建议。
04
04 色谱法在分析化学中的应 用
在食品分析中的应用
食品成分分析
色谱法用于分离和检测食品中的营养 成分,如脂肪、蛋白质、碳水化合物、 维生素和矿物质等,以确保食品质量 和安全。
食品添加剂分析
食品污染物分析
色谱法用于检测食品中的有害物质, 如农药残留、重金属、霉菌毒素等, 以防止食品污染和保障食品安全。
色谱法用于检测食品中添加的防腐剂、 色素、香料等成分,以控制食品添加 剂的使用量,保障消费者健康。

药物分析课件第16章药品质量控制中的现代分析方法与技术ppt

药物分析课件第16章药品质量控制中的现代分析方法与技术ppt
示例三、克仑特罗对映体的拆分(手性固定相拆分法) 色谱条件: 色谱柱 Chirex 3005手性色谱柱
[(R)-1-萘基甘氨酸和3,5-二硝基 苯甲酸以共价键结合]
流动相 正己烷-二氯乙烷-甲醇 该法的拆分机理为“三பைடு நூலகம்手性识别模式”。
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
对热不稳定、稀的和宽沸程样品较 理想;能给出定量结果
非挥发物在柱的中积累导致柱变性 和柱效损失
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
直接进样:样品无须事先浓缩,进样器温度可较 低,载气消耗量小,分析所需样量小 适用于浓度范围要比不分流进样宽一个 数量级以上的样品,有利于对热不稳定 的样品;当样品中含有挥发性低的组分 时,难于定量分析
液膜厚度 5~60m 0.1~1.0μm
1μm或5μm
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
2.毛细管柱的选择 常用的固定液有:SE-31、OV-1、SE-54、SE52、OV-1701、Carbowax 20M。 柱的选择:根据样品组分的沸点,一般地,相差 2℃或2℃以上的组分,采用非极性毛细管柱分离; 若沸点相差在2℃以内的组分,则需在极性较大 的毛细管柱上分离。
流动相中L-苯丙氨酸为配基交换型手性添加剂,硫酸 铜为二价金属螯离子,L-苯丙氨酸与铜离子螯合,分布 于流动相中,遇到色氨酸对映体,共同形成配位络合物 对,然后在反相柱上拆分。

色谱法基本理论PPT课件

色谱法基本理论PPT课件
阐述本ppt课件的目的,即帮助学习者 系统了解和掌握色谱法的基本原理、 技术和应用,提高分析问题和解决问 题的能力。
02 色谱法的基本原理
分离原理
分离原理
色谱法的基本原理是利用不同物质在固定相和流动相之间的分配平衡来实现分离。当流动 相经过固定相时,与固定相发生相互作用,使得不同物质在固定相和流动相之间的分配平 衡不同,从而实现分离。
开发新型色谱技术
研究和发展新型色谱技术,如微流控芯片色谱、超临界流体色谱等, 以适应不同类型和规模的样品分析。
联用技术结合
将色谱法与其他分析技术(如质谱、光谱等)联用,可以实现更复杂 样品的高效分离和鉴定。
自动化和智能化发展
通过自动化和智能化技术的引入,实现色谱分析的远程控制、实时监 测和数据分析,提高分析效率和准确性。
感谢您的观看
分配平衡
色谱法中的分配平衡是指物质在固定相和流动相之间的分布情况。物质在两相之间的分配 平衡受到多种因素的影响,如物质的性质、温度、压力等。
相互作用
物质在固定相和流动相之间的相互作用是影响分配平衡的重要因素。不同的物质与固定相 和流动相之间的相互作用力不同,因此表现出不同的分配平衡,从而实现分离。
固定相和流动相
保留机制
01
保留机制
保留机制是指物质在色谱法中通过固定相的保留作用而滞留在固定相中
的过程。物质的保留机制主要取决于物质与固定相之间的相互作用力和
性质差异。
02
竞争吸附
在色谱法中,多种物质会竞争吸附到固定相上,形成竞争吸附现象。竞
争吸附会影响物质的保留时间和分离效果,因此在选择固定相和流动相
时需要考虑竞争吸附的影响。
色谱法可用于研究化学反应动力学,通过分析反应中间产物和产物, 揭示反应机理和速率常数。

《色谱分析基础 》课件

《色谱分析基础 》课件
缺点
分离效果相对较差,灵敏度较低。
04 色谱分析实验技术
实验设计
实验目的
明确实验的目标和意义,确保实验具有 实际应用价值。
实验步骤
详细列出实验操作步骤,包括样品处 理、色谱柱选择、进样、洗脱等,确
保实验过程规范、准确。
实验原理
阐述色谱分析的基本原理和实验操作 流程,确保实验的合理性和科学性。
实验安全
数据处理与分析
数据采集
记录实验过程中的各项数据,包 括色谱图、峰高、峰面积等,确 保数据的完整性和准确性。
数据处理
采用适当的数学方法对原始数据 进行处理,如平滑、基线校正、 归一化等,以提高数据的可靠性 和可比性。
结果分析
根据处理后的数据,进行结果分 析和解释,得出实验结论,为实 际应用提供科学依据。
优点
分离效果好、分析速度快、灵 敏度高。
缺点
对于高分子量和热稳定性差的 化合物不太适用。
液相色谱法
原理
利用液体作为流动相,将样品中的各 组分在固定相和流动相之间进行分离 ,再通过检测器进行检测。
应用范围
主要用于分析高分子量、热稳定性差 、不易挥发的有机化合物,如蛋白质 、核酸等生物大分子。
优点
分离效果好、分析速度快、灵敏度高 ,适用于复杂样品的分析。
色谱分析具有高效、高分辨率和高灵敏度等特点,广泛应用于化学、生物、医学 和环境等领域。
色谱分析的原理
分离原理
色谱分析基于不同组分在两相之间的吸附或溶解性能差异进行分离。在流动相 的带动下,各组分在固定相和流动相之间反复分配,最终达到分离。
检测原理
通过检测器对分离后的组分进行检测,将组分的浓度或质量转化为电信号,以 便进行定量和定性分析。常见的检测器有紫外-可见吸收光谱、荧光光谱、质谱 等。

第十六章色谱法分离原理介绍

第十六章色谱法分离原理介绍

色谱分析的目的是将样品中各组分彼此分离,组分 要达到完全分离,两峰间的距离必须足够远,两峰间 的距离是由组分在两相间的分配系数决定的,即与色 谱过程的热力学性质有关。 但是两峰间虽有一定距离,如果每个峰都很宽,以 致彼此重叠,还是不能分开。这些峰的宽或窄是由组 分在色谱柱中传质和扩散行为决定的,即与色谱过程 的动力学性质有关。因此,要从热力学和动力学两方 面来研究色谱行为。
us tm Rs u tr
Rs若用质量分数表示,即
nm Rs nm n s
1 1 ns 1 k 1 nm
对组分和流动相通过长度为 L 的色谱柱, 其所需时间分别为
tr
L us
tm
L u
整理得
t r t m (1 k )
tr tm tr Vr k tm t m Vm
= C s / Cm
分配系数是由组分和固定相的热力
学性质决定的,它是每一个溶质的特征
值,它仅与两个变量有关:固定相和温
度。与两相体积、柱管的特性以及所使
用的仪器无关。
2.分配比 k 分配比又称容量因子,它是指在一定温 度和压力下,组分在两相间分配达平衡时, 分配在固定相和流动相中的物质的量比。 即 k = 组分在固定相中的物质的量 / 组分在流动相中的物质的量
简单地认为:在每一块塔板上,溶质在 两相间很快达到分配平衡,然后随着流动相按 一个一个塔板的方式向前移动。对于一根长为 L的色谱柱,溶质平衡的次数应为:
n=L/H
n称为理论塔板数。与精馏塔一样,色谱 柱的柱效随理论塔板数n的增加而增加,随板 高H的增大而减小。
根据上述假定,在色谱分离过程中,该组 分的分布可计算如下: 开始时,若有单位质量,即m=1(例 1mg或1μ g)的该组分加到第0号塔板上,分 配平衡后,由于k=1,即ns=nm故nm=ns=0.5。 当一个板体积(lΔ V)的载气以脉动形式进 入0号板时,就将气相中含有nm部分组分的 载气顶到1号板上,此时0号板液相(或固相) 中ns部分组分及1号板气相中的nm部分组分, 将各自在两相间重新分配。故0号板上所含 组分总量为0.5,其中气液(或气固)两相

《分析化学》课件——10 色谱分析法

《分析化学》课件——10 色谱分析法
选择:
“相似相溶”原则选择适当固定液。
常用固定液
相对极性:
麦氏常数: 5个值代表 各种作用力。
固定液 名称
1、 角鲨烷 (异三十烷)
2、阿皮松 L
商品牌号 SQ
使用温度 (最高)

150
溶剂 乙醚
APL
300

3、硅油
OV-101 350
丙酮
4、 苯基 10%
OV-3
350
甲基聚硅氧烷
5、 苯基(20%)
载气流速的选择
作图求最佳流速。 实际流速稍大于最佳流速,缩短时间。
三、气相色谱检测器
浓度型检测器:热导池检测器
电子俘获检测器
测量的是载气中通过检测器组分浓度瞬间 变化,检测信号值与组分的浓度成正比。
质量型检测器:氢火焰离子化检测器
火焰光度检测器
测量的是载气中某组分进入检测器的速度 变化,即检测信号值与单位时间内进入检 测器组分的质量成正比。
检测器性能评价指标
在一定范围内,信号E与进入检测器的 物质质量m成正比:
保留时间 tR(retention time)
时间 死时间 t0 (dead time)
tR'= tR - t0
调整保留时间 tR'(adjusted retention time)
保留体积VR(retention volume) 体积 死体积 V0 (dead volume) VR'= VR - V0
Sample
D A
C
B
Sample
HEWLETT PACKARD
5890
Gas Chromatograph (GC)
B A CD

第16章 色谱分析法概论(共82张PPT)

第16章 色谱分析法概论(共82张PPT)

KAVs Vm
)
tR B
t0
(1
KBVs Vm
)
tR
tR A
tR B
t0(KA
KB
)
Vs Vm
t0(kA kB)
色谱别离的前提
——组分在两相间分配系数 K 不同或分配
第三节 色谱别离机制
一、吸附色谱法 二、分配色谱法
三、 离子交换色谱法 四、空间排阻色谱法
一、吸附色谱法
✓ 别离机制: ✓ 利用吸附剂对不同组分吸附能力差异实现别离
诺贝尔化学奖: 1948年,瑞典Tiselins,电泳和吸附分析 1952年,英国Martin和Synge,分配色谱。
展望:
新型固定相和检测器 联用仪器:GC-MS,HPLC-MS 智能化开展
第一节 概 述
一、定义
色谱法(chromatography): 对于液相色谱,因Dm 较小,B 项可勿略。
三、色谱法的特点
✓ 缺点:
对未知物分析的定性专属性差
需要与其他分析方法联用(GC-MS,LC-MS)
第二节 色谱法的根本原理
实现色谱分析的根本条件
相对运动的两相——流动相、固定相
各组分与固定相的作用存在差异
一、色谱过程
色谱过程是物质分子在相对运动的两相分配 “平衡〞的过程。
两个组分被流动相携带移动的速度不同
物质对别离的两种情况
C
C
t
t
提高别离度R
增加tR
பைடு நூலகம்
减小w
第四节 色谱理论根底
组分保存时间:色谱过程的热力学因素控制; 〔组分和固定液的结构和性质〕
色谱峰变宽:色谱过程的动力学因素控制;
〔两相中的运动阻力,扩散〕

色谱分析方法

色谱分析方法

4、 保留体积(VR)Retention Volume
•组分从进样到出现峰最大值所需的载气体积。 VR= tR.FC (ml/min)。 FC-载气流速
5、 柱效能Colume efficiency
色谱柱在色谱分离过程中主要由动力学因素(操作参数)所决定的分离效能。 通常用理论板高或有效板数表示。 ①、理论板数(n)Number of theoretical plate •表示柱效能的物理量,可由下式计算 •n=5.54(tR/W)2=16()2 ②、理论板高(H)Height equivalent to a theoretical plate •单位理论板的长度。H=L/n ③ 有效板数(neff)Number of effective plate

峰与峰底之间的面积(见图3中的CHEJDC)。




标准偏差(ɑ)Standard error
0.607倍峰高处所对应峰宽之一半。

•基线Baseline
在正常操作条件下,仅有载气通过检测器系统时所产生的响应信号的曲线。
•基线漂移Baseline drift
基线随时间定向的缓慢变化。
•基线噪声(N)Baseline noise
Ei――标准样中组分i的含量;
AE――标准样中组分i的峰面积。 该方法的优点是操作简单和计算方便。缺点是仪器和操作条件对分析结果影响很大, 不像归一化和内标法定量操作中可以互相抵消。因此,标准曲线使用一段时间后应 当校正。
3、 内标法
当分析样品不能全部出峰,不能用归一法定量时,可考虑用内标法定量。 方法:准确称取样品,选择适宜的组分作为预测组分的参比物,也称内标物。加入 一定量的内标物,根据被测物和内标物的质量及在色谱图上相应的峰面积比按下式 求组分的含量; xi(%)=×100 式中 xi---试样中组分I的百分含量; ms---加入内标物的质量; As---内标物的峰面积; m---试样的质量 Ai---组分I的峰面积;fsi=fi/fs。

色谱分析课件

色谱分析课件
用GF254板 -------显色剂显色,破坏性检出方法
通用显色剂
定性分析
1. 与标准对照品在三种不同的展开剂中展开 (加熔点);
2. 制备TLC,将待定性化合物分离后,刮下、 洗脱,再波谱分析;
3. TLC与其它技术联用
定量分析
1. 间接定量(洗脱测定法); 2. 直接定量(薄层扫描法)
薄层扫描法:以一定波长的光照射展开后 的薄层色谱板上被分离组分的斑点,测定 斑点对光的吸收强度或所发出的荧光强度, 进行定量分析的方法。 薄层吸收扫描法 薄层荧光扫描法
色谱法的特点
(1)分离效率高 复杂混合物,有机同系物、异构体。手性异构体。
(2) 灵敏度高 可以检测出μg.g-1(10-6)级甚至ng.g-1(10-9)级的物质量。
(3) 分析速度快 一般在几分钟或几十分钟内可以完成一个试样的分析。
(4) 应用范围广 气相色谱:沸点低于400℃的各种有机或无机试样的分析。 液相色谱:高沸点、热不稳定、生物试样的分离分析。
GC的特点
1. 分离效率高(填充柱上千块塔板;开管柱 106块塔板)
2. 分析速度快 3. 样品用量少(检测限低,高灵敏检测器) 4. 缺点:(约20%样品适用) A. 样品须能气化(350度下有一定的挥发性) B. 热稳定性要好 C. 定性困难
第二节 气相色谱术语、理论
1. 气相色谱流出曲线 2. 分配系数与容量因子 3. 塔板理论 4. 速率理论 5. 分离度 6. 基本分离方程
• 添加剂
荧光指示剂
硝酸银溶液
制板、活化
点样
1.溶剂对样品的溶解度适中; 2.溶剂沸点适中; 3.样品浓度适中; 4.原点位置应在展开剂液面上; 5.定性分析:内径0.5mm管口平整的毛细管
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 机制: 利用被分离组分对固定相表面吸附中心吸附能
力的差别实现分离(GS 、LS) 。分离过程就是组分分子
与流动相分子争夺吸附剂表面活性中心的过程——竞争吸附

Xm+nYa
Xa+nYm
吸附系数 Ka=
[Xa] [Ym]n [Xm] [Ya]n
[Xa] Ka ≈ [Xm]
tR=t0(1+KSa/Vm)
第二节 色谱过 程的基本原理
一.色谱过程:
组分分子在流动相和固 定相间多次分配的过程.
由于各组分的结构和性质不 同,与固定相作用的类型和 强度不同,在固定相上滞留 的时间不同,随流动相移动 的速度有差异——差速迁移 ,从而达到分离的目的。
2021/1/11
返回
.
1
图16-2
2021/1/11
.
2
三. 分配系数与色谱分离
3 分配系数与容量因子的关系
k = Cs Vs /Cm Vm = K Vs/Vm
2021/1/11
.
4
(二 )K和k与tR的关系
u:流动相的速度; v :组分移动速度 R’= v /u (保留比) ∵ v =L/tR u=L/t0 ∴ R’= t0/ tR
t0≈tm tR= tm+ ts R’= tm/( tm+ ts)=Nm/(Nm+Ns) = CmVm/(CmVm+ CsVs)=1/(1+k)
2021/1/11
.
10
2 固定相和流动相: s :吸附剂,多孔微粒。表面有吸附中心。 eg:硅胶表面的硅醇基为吸附中心。
m:极性大,洗脱能力强 。
ε0表示溶剂强度:溶剂分子在单位吸附剂
表面上的吸附自由能。
ε0大,吸附能力强,洗脱能力强。
3 流出顺序 ① 组分分子的竞争力 ② 组分分子与吸附剂的作用力 ③ 组分在流动相中的溶解度
2021/1/11
.
15
② 流动相的组成和pH值:
交换能力强的离子组成的流动相有较强的洗脱能 力强,保留值降低。 强离子交换树脂的交换能力在很宽的范围内不随 流动相的pH变化,调节pH值的作用主要体现在 对弱电解质离解的控制,溶质的离解受到抑制则 保留时间变短。 弱离子交换树脂的交换能力在某一pH有极大值.
2021/1/11
.
11
三.离子交换
1 原理:利用被分离组分离子交换能力的差
别实现分离。
阳离子交换色谱分离机制.(H+)。 H+
当流动相携带组分的正离子如 Na+出
Na+ SO3-
树 脂
现时,与H+发生交换反应.当树脂上
H+
骨 架
所有可交换的H+均被交换后,树脂失
去恬性,此时,若用稀酸溶液对树脂 进行处理,Na+就被高浓度的H +置
在一定温度下,组分在流动相和固定相之间所达到的 平衡叫分配平衡,组分在两相中的分配行为常采用分配
系数ห้องสมุดไป่ตู้和容量因子k来表示。
(一) 分配系数和容量因子
1、分配系数 K(浓度分配系数)
组分在固定相中的浓度
K=
=Cs/Cm
组分在流动相中的浓度
K随T变化,与固定相、流动相的体积无关。
2021/1/11
.
3
2 容量因子:
流动相: 气体(GL) :H2、N2 液体(LL) :甲醇、乙腈、己烷等
正相色谱:固定相极性大于流动相极性
反相色谱:固定相极性小于流动相极性 3 流出顺序:气相色谱--与组分沸点、组分和固定相的极性有关
液相分配色谱--正相色谱:弱极性组分先流出
2021/1/11
.
反相色谱:强极性组分9 先流出
二. 吸附色谱
2021/1/11
.
17
根据空间排阻理论, 孔内外同等大小的溶质分子 处于扩散平衡状态;
渗透系数 Kp=[Xs]/[X]m 0<K<1 渗透系数的大小只由溶质分子的线团尺寸和凝 胶空隙的大小所决定。
在高分子溶液中,相同成分的分子的线团尺寸 与其分子量成正比。K与分子量相关,即组分 按分子量的大小分离。
2021/1/11
.
13
2 流动相、固定相
固定相:离子交换剂(离子交换树脂) 化学键合离子交换剂
流动相:一定pH和离子强度的缓冲液。 有机溶剂可提高选择性。
2021/1/11
.
14
3 影响保留行为的因素
受被分离离子、离子交换剂、流功动相的
性质等的影响,
① 组分性质:溶质离子的电荷、水合离子半径
价态高,选择系数大; 同价态阳离子,水合离子半径大, 选择系数小。
2021/1/11
.
16
四.空间排阻:
1 原理:根据被分离组分分子的线团尺寸进行分离 凝胶色谱法:按流动相的不同分为两类 以有机溶剂为流动相者称为凝胶渗透色谱法; 以水溶液为流动相者称为凝胶过滤色谱法。
凝胶色谱法的分离机制与前三种色谱法完全
不同,它只取决于凝胶的孔径大小与被分离组
分线团尺寸之间的关系,与流动相的性质无关 。
2021/1/11
.
18
2 固定相:多孔凝胶 流动相:溶解试样;润湿凝胶
一. 分配色谱法 二. 吸附色谱 三. 离子交换 四. 空间排阻 五. 其它
2021/1/11
.
8
一.分配色谱法
1 原理: 利用被分离组分在固定相或者流动相中的 溶解度差别实现分离。(GL, LL)
K=Cs/Cm=(ms/Vs)×(Vm/ mm) 2 固定相: 惰性载体上的薄层液体——固定液;化学键合相
△tR= tRA -tRB=t0(KA-KB )Vs/ Vm
= t0(kA-kB ) 分离前提: kA≠kB
2021/1/11
.
6
主要内容
第一节 色谱法分类 第二节 色谱过程的基本原理 第三节 色谱法的基本类型及分离机制 第四节 色谱法基本理论
2021/1/11
.
7
第三节 色谱法的基本类型及分离机制
tR= t0/ R’= t0(1+k)= t0(1+K Vs/ Vm) 色谱过程方程
K大的组分保留时间长。
k= tR/t0 - 1= ( tR- t0)/ t0= tR’/ t0 k大,保留时间长。
2021/1/11
.
5
(三)色谱分离的前提
tR= t0(1+K Vs/ Vm) 两组分A和B经色谱柱分离
正离子(为可 交换离子)
换(洗脱)下来,树脂的交换能力又被
恢复.这一过程称为树脂的再生。 交换——洗脱——再交换——再洗脱
树脂表面的负离子 (为不可交换离子)
2021/1/11
.
12
交换与再生过程可用下式表示
No Image
选择性系数KA/B 是衡量离子对树脂亲和能力相对大小的度量 ,KA/B越大,说明A的交换能力大.越易保留。常选择某种 离子(如H或CI-)作参考.测定一系列离子的选择性参数。
相关文档
最新文档