第十六章 色谱分析法概论 - 章节小结
[暨南大学课件][分析化学][教案PPT][精品课程]第十六章-第一节-色谱法概述-2
空间排阻色谱法
▪ 根据空间排阻(steric exclusion)理论,孔 内外同等大小的溶质分子处于扩散平衡状态:
Xm
Xs
▪ 渗透系数: Kp =Xs/Xm (0<Kp<1 ) 由溶质分子的线团尺寸和凝胶孔隙的大小
所决定。在一定分子线团尺寸范围内,Kp与 分子量相关,即组分按分子量的大小分离。
2020/6/17
吸附色谱法
➢ 流动相 有机溶剂(硅胶为吸附剂) ➢ 洗脱能力:主要由其极性决定。 ➢ 强极性流动相占据吸附中心的能力强,洗
脱能力强,使k值小,保留时间短。
➢ Snyder溶剂强度o:吸附自由能,表示洗 脱能力。o值越大,固定相对溶剂的吸附
能力越强,即洗脱能力越强。
2020/6/17
2020/6/17
分配色谱法
▪ 洗脱顺序 由组分在固定相或流动相中溶解度的 相对大小而决定。 正相液液分配色谱:极性强的组分后被洗脱。 (库仑力和氢键力)
反相液液分配色谱:极性强的组分先出柱。
2020/6/17
二、吸附色谱法 (P346)
▪ 分离原理 利用被分离组分对固定相表面吸 附中心吸附能力的差别而实现分离。
▪ 吸附过程是试样中组分的分子(X)与流动相 分子(Y)争夺吸附剂表面活性中心的过程, 即为竞争吸附过程。
▪ 吸附色谱法包括气固吸附色谱法和液固吸附 色谱法
2020/6/17
X m + nYa
Ka
=
[X a ][Ym ]n [X m ][Ya ]n
Ka
[Xa ] [Xm ]
Xa / Sa X m /Vm
(2) 灵敏度高:
可以检测出μg.g-1(10-6)级甚至ng.g-1(10-9)级的物质量.
16 色谱分析概论
3. 传质阻抗项 Cu
(三)流动相线速度对柱效的影响
H=A+B/u+Cu
u opt
B /C
练习
下列说法中那一种是错误的?
A色谱图上两峰间的距离越大,则两组份在固定相上热 力学性质相差越大 B色谱图上两峰间的距离越大,则在气相色谱中,两组 份的分配系数相差越大
C色谱图上两峰间的距离越大,则色谱柱的柱效越高
色谱过程
吸附-解吸-吸附- 解吸- … 差速迁移
第一节 色谱法的分类
1、按流动相与固定相的分子聚集状态分类:
GC/LC
GSC/GLC,LSC/LLC
2、按固定相的形式: 柱色谱法,平面色谱法,毛细管电泳法 3、按分离过程原理:
吸附、分配、离子交换、空间排阻色谱法
二、色谱流出曲线和有关概念
基线
(1)在一定色谱条件下, 仅有流动相通过检测器系统 时所产生的信号的曲线。 (2)实验条件稳定时,基 线应是一条平行于横轴的线 (3)基线反映仪器的噪声 随时间的变化
固定相:
多孔性凝胶 凝胶色谱法
分离只取决于凝胶的孔径大小与被分 离组分线团尺寸之间的关系,与流动 相的性质无关
练习
1 在气-固色谱中,样品中各组分的分离是基于:
A 组分分子量大小的不同
C 组分的挥发性的不同
B 组分溶解度的不同
D 组分在吸附剂上吸附、解附能力的不同
练习
2 在气-液色谱中,首先流出色谱柱的是: A吸附能力小的组分 B解附能力大的组分
D色谱图上两峰间的距离越大,则色谱柱的选择性越好
练习
下列说法中那一种是正确的? A色谱峰的宽或窄,反映了色谱柱效的高或低
B色谱峰的宽或窄,反映了组分通过色谱柱时的运动路
16章色谱分析法概论
k =(ms/mm) =csVs/cmVm
3、分配系数和保留因子的关系
k=K(Vs/ Vm )
(二)分配系数和保留因子与保留时间的关系
R =υ /u = t0/tR
, ,
R = tm /(tR +tn) = Nm/(Nm+Nn) = cmVm/(cmVm+csVs)
R = 1/(1+k) 1/R = 1+k tR =t0(1+k) k = (tR-t0)/t0=t R/t0 tR=t0(1+KVs/Vm)
第二节 基本类型色谱方法及其分离机制
一、色谱法有分类 1、按流动相与固定相的分子聚集状态分类: 2、按操作形式分类: 3、按色谱过程的分离机制分类:
二、分配色谱法
1、分离机制 利用被分离组分在固定相或流动相中的溶解度差别, 即在两相的分配系数的差别而实现分离。 K=cs/cm=(Xs/Vs)/(Xm/Vm) 2、固定相与流动相 Xm Xs 3、洗脱顺序:由溶解大小决定
(二)流出曲线方程
以组分A在柱出口处的质量分数对N作图,得如图的流出 曲线。当板数很大时,流出曲线趋于正态分布曲线。
由正态分布方程式可以得到组分流出色谱柱的浓度变化
色谱流出曲线方程 t=tR时c有极大值cmax(即流出曲线的峰高h):
流出曲线方程式常用形式: t≠tR时,c恒小于cmax,c 随时间t向峰两侧对称下降, 下降速度取决于σ ,σ 越小, 峰越锐。
, , ,
(三)色谱分离的前提
色谱分离的前提若使两组分达到分离,则它们的 迁移速度必须不同,即保留时间不等.
tRA=t0(1+KAVs/Vm)
tRB=t0(1+KBVs/Vm) Δ tR=tRA-tRB=t0 (KA-KB) VS/Vm Δ tR=t0 (kA-kB) ≠0
色谱
cs —固定相中组分的浓度 cm —流动相中组分的浓度 K — 分配系数仅与组分、固定相和流动相的 性质有关。在一定条件(固定相、流动相、 温度)下,是组分的特征常数。
2. 保留因子(质量分配系数或分配比)
在一定温度和压力下,达到分配平衡时,
组分在流动相与固定相中的质量之比。
ms k mm
(四) 色谱峰区域宽度 1.标准偏差(σ) σ是正态分布曲线上两拐点间距离之半。 柱效参数
2. 半峰宽(W1/2 或Y1/2)
峰高一半处的峰宽。
W1/2 = 2.355σ
柱效参数
3.峰宽 (基线宽度) W(Y) 通过色谱峰两侧拐点作切线在基线上 的截距称为峰宽。
W = 4σ
W = 1.699W1/2
柱效参数
(五)分离度 (R)
R t R2 t R1 (W1 W2 ) / 2 2(t R2 t R1 ) W1 W2
tR1, tR2 -------成分1,2的保留时间 W1, W2 ---------成分1,2的峰宽 R=1,两峰略有重叠 R=1.5,两峰完全分离(基线分离) 定量时,要求R≥1.5
16.2 色谱法的基本原理 一.色谱过程 吸附→解吸→再吸附→再解吸 两种组分的理化性质原本存在着微小的差 异,经过反复多次地吸附→解吸→再吸附→再 解吸的过程使微小差异累积起来,结果使吸附 能力弱的组分先流出色谱柱,吸附能力强的组 分后流出色谱柱,从而使各个组分得到了分离。
色谱过程
二、色谱流出曲线和有关概念
二.色谱法的分类
1.按固定相与流动相的分子聚集状态分类
气-固色谱法 (GSC)
气相色谱法
气-液色谱法(GLC)
液-固色谱法(LSC)
第十六章 色谱分析法概论
1、色谱柱作为分析方法的最大特点是什么?色谱法以高超的分离能力为特点,具有高灵敏度、高选择性、高效能、分析速度快及应用范围广等优点。
2、一个组分的色谱峰可用哪些参数描述?这些参数各有何意义?一个组分的色谱峰可用三项参数即峰高或峰面积(用于定量)、峰位(用保留值表示,用于定性)、峰宽(用于衡量柱效)来说明。
峰高:组分在柱后出现浓度极大时的检测信号,即色谱峰顶至基线的距离。
峰面积:某色谱峰曲线与基线间包围的面积。
保留时间:是从进样到某组分在柱后出现浓度极大时的时间间隔,即从进样开始到某个组分的色谱峰顶点的时间间隔。
死时间:是分配系数为零的组分,即不被固定相吸附或溶解的组分的保留时间。
调整保留时间:是某组分由于溶解(或被吸附)于固定相,比不溶解(或不被吸附)的组分在柱中多停留的时间。
峰宽:是通过色谱峰两侧拐点做切线在基线上所截得的距离。
标准差:是正态色谱流出曲线上两拐点间距离之半,或0.607倍峰高处的峰宽之半。
半峰宽:是峰高一半处的峰宽。
W 1/2=2.355σ W=4σ W=1.699 W1/23、说明保留因子的物理含义及与分配系数的关系。
为什么保留因子(或分配系数)不等是分离的前提?保留因子k是在一定温度和压力下,达到分配平衡时,组分在固定相和流动相中的质量之比,故又称为质量分配系数。
而分配系数K是组分在固定相和流动相中的浓度之比。
二者的关系是k=KVs/Vm,可见保留因子除与固定相、流动相、组分三者的性质有关外,还与固定相和流动相的体积比有关。
保留因子越大的组分在色谱柱中的保留越强,tR =t(1+k),由于在一定色谱条件下t为定值,如果两组分的k相等,则它们的tR 也相等,即不能分离。
要使两组分分离,即tR不等,则他们的k(K)必须不等,即保留因子(或分配系数)不等是分离的前提。
4、各类基本类型色谱的分离原理有何不同?分配色谱法:利用被分离组分在固定相或流动相中的溶解度差别,即在两相间的分配系数的差别而实现分离的。
化验员读本第十六章重点
第十六章气相色谱法色谱分析法是利用物质的物理及物理化学性质的差异,将多组分混合物进行分离和测定的方法。
第一节色谱分析法的原理及分类色谱分析法是一种物理的分离方法,其分离原理是将被分离的组分在两相间进行分布,其中一相是具有大表面积的固定相,另一相是推动被分离的组分流过固定相的惰性流体,叫流动相。
当流动相载带被分离的组分经过固定相时,利用固定相与被分离的各组分产生的吸附或分配作用的差别,被分离的各组分在固定相中的滞留时间不同,使不同的组分按一定的先后顺序从固定相中被流动相洗脱出来,从而实现不同组分的分离。
实现色谱分离的先决条件是必须具备(固定相)和(流动相)。
固定相可以是一种固体吸附剂或为涂渍于惰性载体表面上的液态薄膜,此液膜可称作固定液。
流动相可以是具有惰性的气体、液体或超临界流体,其应与固定相和被分离的组分无特殊的相互作用。
第二节气相色谱法简介气相色谱法主要用于低分子量、易挥发有机化合物的分析。
一、方法特点及应用范围气相色谱法的主要特点:是选择性高、分离效率高、灵敏度高、分析速度快。
二、气相色谱流出曲线的特征被分析的样品经气相色谱分离、鉴定后,由记录仪绘出样品中各个组分的流出曲线,即色谱图。
色谱图是以组分的流出时间(t)为横坐标,以检测器对各组分的电讯号响应值(mV)为纵坐标。
色谱图上可得到一组色谱峰,每个峰代表样品中的一个组分。
(一)色谱峰的位置从进样开始至每个组分流出曲线达极大值所需的时间,可作为色谱峰位置的标志,此时间称为保留时间,用tR表示。
气相色谱流出曲线图中与横坐标保持平行的直线,叫做基线,它表示在实验条件下,纯载气流经检测器时(无组分流出时)的流出曲线。
基线反映了检测器的电噪声随时间的变化。
从进样开始到惰性组分(指不被固定相吸附或溶解的空气或甲烷)从柱中流出呈现浓度极大值的时间,称为死时间。
它反映了色谱柱中未被固定相填充的柱内死体积和检测器死体积的大小,与被测组分的性质无关。
从保留时间中扣除死时间后的剩余时间,称为调整保留时间,反映了被分析的组分因与色谱柱中固定相发生相互作用,而在色谱柱中滞留的时间,其由被测组分和固定相的热力学性质所决定,因此调整保留时间从本质上更准确的表达了被分析组分的保留特性,它已成为气相色谱定性分析的基本参数,比保留时间更为重要。
16-色谱分析法概论
第十六章色谱分析法概论1.在分配色谱中,被分离组分分子与固定液分子的性质越相近,则他们之间的作用力(越大),该组份在柱中停留的时间越(长),越(后)流出色谱柱。
2.气液色谱法的流动相是(气体),固定相在操作温度下是(液体),组分与固定相间的作用机制是(分配或溶解)。
3.液固吸附色谱法的流动相是(液体),固定相是(固体吸附剂),组分与固定相的作用机制是(吸附)。
4.分配系数K是固定相和流动相中的溶质浓度之比。
待分离组分的K值越大,则保留值(越大),各组分的K值相差越大,则他们(越容易)分离。
5.色谱定性的依据是(保留值),定量的依据是(峰高或峰面积)。
6.某色谱峰的标准偏差是1.49mm,则该色谱峰的峰宽为(5.96mm),半峰宽为(3.51mm)。
7.气相色谱由如下五个系统组成:8.在GC中,分配系数越大的组分,分配在在其中的浓度越(低),保留时间(越长)。
9.如被测混合物中既有非极性组分,又有极性组分,则通常选择(极性)固定液。
10.载体钝化的方法有(),(),(),目的是(减弱载体表面的吸附活性)11.对内标物的要求是:内标物应当是被测样品中不存在的组分、保留时间与被测组分接近但完全分离、纯物质、加入量与被测组分量接近。
12.在正相健合色谱法中,极性强的组分的保留因子(大),极性强的流动相使组分的保留因子(小)。
13.根据疏溶剂理论,反相色谱中,组分的极性越弱,其疏水性越(强),受溶剂分子的排斥力越(强)。
14.分析性质相差较大的复杂试样时须采用(梯度)洗脱。
15.判断两组分能否用平面色谱法分离的依据是(比移值),其值相差愈(大),分离效果愈好。
16.展开剂的极性(小),固定相的极性(大),称为正相薄层色谱;展开剂的极性(大),固定相的极性(小),称为反相薄层色谱,17.在吸附薄层色谱中,常以(硅胶)为固定相,(有机溶剂)为流动相,极性小的组分在板上移行的速度较(快),比移值较(大)。
18.薄层色谱板的活化作用是(去除水分)、(增加吸附力)。
第16章 色谱分析法概论(共82张PPT)
KAVs Vm
)
tR B
t0
(1
KBVs Vm
)
tR
tR A
tR B
t0(KA
KB
)
Vs Vm
t0(kA kB)
色谱别离的前提
——组分在两相间分配系数 K 不同或分配
第三节 色谱别离机制
一、吸附色谱法 二、分配色谱法
三、 离子交换色谱法 四、空间排阻色谱法
一、吸附色谱法
✓ 别离机制: ✓ 利用吸附剂对不同组分吸附能力差异实现别离
诺贝尔化学奖: 1948年,瑞典Tiselins,电泳和吸附分析 1952年,英国Martin和Synge,分配色谱。
展望:
新型固定相和检测器 联用仪器:GC-MS,HPLC-MS 智能化开展
第一节 概 述
一、定义
色谱法(chromatography): 对于液相色谱,因Dm 较小,B 项可勿略。
三、色谱法的特点
✓ 缺点:
对未知物分析的定性专属性差
需要与其他分析方法联用(GC-MS,LC-MS)
第二节 色谱法的根本原理
实现色谱分析的根本条件
相对运动的两相——流动相、固定相
各组分与固定相的作用存在差异
一、色谱过程
色谱过程是物质分子在相对运动的两相分配 “平衡〞的过程。
两个组分被流动相携带移动的速度不同
物质对别离的两种情况
C
C
t
t
提高别离度R
增加tR
பைடு நூலகம்
减小w
第四节 色谱理论根底
组分保存时间:色谱过程的热力学因素控制; 〔组分和固定液的结构和性质〕
色谱峰变宽:色谱过程的动力学因素控制;
〔两相中的运动阻力,扩散〕
第十六章 色谱分析法概论
25
流动相: 气液分配色谱法:气体,常为氢气或氮气。 液液分配色谱法:与固定相不相溶的液体。 正相液液分配色谱:流动相的极性弱于固 定相的极性。 反相液液分配色谱:流动相的极性强于固 定相的极性。
26
3.洗脱顺序:由组分在固定相或流动相中溶 解度的相对大小而决定。
ms CsVs Vs k K mm C mVm Vm
18
(三)色谱分离的前提 KA≠KB 或kA≠kB 是色谱分离的前提
19
第二节 基本类型色谱方法及其分离机制
一、色谱法的分类
1.按流动相的分子聚集状态分类:
气相色谱法(GC) 、液相色谱法(LC) LC、 超临界流体色谱法(SFC) 等 2.按固定相的分子聚集状态分类: 气固色谱法(GSC)、气液色谱法(GLC)、
Cs K= Cm
分配系数仅与组分、固定相和流动相的性 质及温度(和压力)有关。是组分的特征 常数。
17
2.保留因子(capacity factor;k):在一定温度 和压力下,达到分配平衡时,组分在固定相 和流动相中的质量(m)之比。 又称为质量分配系数或分配比。 与固定相和流动相的体积有关。
保留因子与分配系数的关系
6
二、色谱流出曲线和有关概念 (一)色谱流出曲线和色谱峰 1.色谱流出曲线 是由检测器输出的电信号强
度对时间作图所绘制的曲线,又称为色谱图。
2.基线 是在操作条件下,没有组分流出时的 流出曲线。基线反映仪器 (主要是检测器) 的噪 音随时间的变化。 3.色谱峰 是流出曲线上的突起部分。 正常色谱峰、拖尾峰和前延峰
由保留体积扣除死体积后的体积
V VR V0 t Fc
分析化学PPT课件:第十六章-色谱分析法概论-第二节-色谱理论基础-2
(3)峰底宽(Wb):
Wb=4
区域宽度常用半峰宽和 峰宽描述
2020/8/25
总分离效能指标
分离度(resolution;R):又称分辨率。是相
邻两色谱峰保留时间之差与两色谱峰峰宽均 值之比。
R= tR2 tR1 = 2(tR2 tR1 ) (W1 W2 ) / 2 W1 W2
2020/8/25
2020/8/25
1. 塔板理论 (P351)
➢ 塔板理论把色谱柱比作一个分馏塔,设想其中 有许多塔板。认为在每个塔板的间隔内,试样组分 在两相间达到分配平衡,经过多次的分配平衡后, 分配系数小的组分先流出色谱柱。
➢ 塔板理论中还引入塔板数和塔板高度作为痕量
柱效的指标。
各组分的保留时间(t)不同, 能达到分配平衡
2020/8/25
2. 速率理论 (P353)
➢ 速率理论充分考虑组分在两相间的扩散和传质
过程,以动力学理论研究了使色谱峰展宽从而影响
塔板高度的因素。
➢ 色谱峰的峰展宽是由于组分分子在色谱柱内无规
则运动的结果,这种随机过程导致组分分子在色谱
柱内呈正态分布。
➢ 速率理论充分考虑了组分在两相间的扩散和传
峰面积(peak area;A):色谱曲线与基线间 包围的面积。
2020/8/25
定性参数1
1.保留值 (1)时间表示的保留值
保留时间(tR):组分从进样到柱后出现浓度极 大值时所需的时间
死时间(tM):不与固定相作用的气体(如空气 )的保留时间。
调整保留时间(tR ):tR'= tR-tM
图16-2 (P340)
色谱柱长:L, 虚拟的塔板间距离:H, 色谱柱的理论塔板数:n, 则三者的关系为:
2012第十六章-色谱分析法概论解析
以 k 0 .5 的 组 分 分 离 为 例
N 1时, m s 0 .333 m m 0 .667 N 2 时 ,( m s m m ) 2 0 .111 0 .444 0 .444 ......
N N 时 ,( m s m m ) N 展 开 式
N
mr
r!
16
三、分配系数与色谱分离
(一)分配系数和容量因子 分配系数 K 组分在固定相中的=浓Cs度
组分在流动相中的浓 Cm度
K大的组分,滞留在固定相中的时间长,在 柱内移动的速度慢,后流出柱子。
温度升高,K变小。 K为常数时,是线性色谱。
17
容量因子(分配比)
k 组 组分 分在 在流 固动 定相 相中 中的 的质 质mm量 量 ms
( N max V V R )
组分离开色谱柱时, r 1 n ,当 r很大时
C
m n
V R 2
e C e
n 2
V
R
V
R
V
2
n 2
V
R
V
R
V
2
max
此为塔板理论方程式,
即色谱流出曲线方程式
,呈正态分布。
rn
43
(三)理论塔板数和理论塔板高度
n ( tR )2
n 5 . 54 ( t R ) 2 16 ( t R ) 2
tRA
t0 ( 1
K
A
Vs Vm
)
tRB t0 ( 1
tRtRA
KtRBBVVms t)0(KAKB)V Vm s
tRt0(kAkB)
20
例:在1m长的填充色谱柱上,某镇静药物A及其异构体B 的保留时间分别为5.80min和6.60min;峰底宽度分别为 0.78min及0.82min,空气通过色谱柱需1.10min。
第十六章 色谱分析法概论 - 章节小结
一、主要内容1.基本概念保留时间t R:从进样到某组分在柱后出现浓度极大时的时间间隔。
死时间t0:分配系数为零的组分即不被固定相吸附或溶解的组分的保留时间。
调整保留时间t R':某组分由于溶解(或被吸附)于固定相,比不溶解(或不被吸附)的组分在柱中多停留的时间。
相对保留值r2,1:两组分的调整保留值之比。
分配系数K:在一定温度和压力下,达到分配平衡时,组分在固定相与流动相中的浓度之比。
保留因子k:在一定温度和压力下,达到分配平衡时,组分在固定相和流动相中的质量之比。
分离度R:相邻两组分色谱峰保留时间之差与两色谱峰峰宽均值之比。
分配色谱法:利用被分离组分在固定相或流动相中的溶解度差别或分配系数的差别而实现分离的色谱法。
吸附色谱法:利用被分离组分对固定相表面吸附中心吸附能力的差别或吸附系数的差别而实现分离的色谱法。
离子交换色谱法:利用被分离组分离子交换能力的差别或选择性系数的差别而实现分离的色谱法。
分子排阻色谱法:根据被分离组分分子的线团尺寸或渗透系数的差别而进行分离的色谱法。
涡流扩散:在填充色谱柱中,由于填料粒径大小不等,填充不均匀,使同一个组分的分子经过多个不同长度的途径流出色谱柱,使色谱峰展宽的现象。
纵向扩散:由于浓度梯度的存在,组分将向区带前、后扩散,造成区带展宽的现象。
传质阻抗:组分在溶解、扩散、转移的传质过程中所受到的阻力称为传质阻抗。
保留指数I:在气相色谱法中,常把组分的保留行为换算成相当于正构烷烃的保留行为,也就是以正构烷烃系列为组分相对保留值的标准,即用两个保留时间紧邻待测组分的基准物质来标定组分的保留,这个相对值称为保留指数,又称Kovats指数。
保留体积V R:是从进样开始到某组分在柱后出现浓度极大时,所需通过色谱柱的流动相体积。
调整保留体积V R':是由保留体积扣除死体积后的体积。
保留比R':设流动相的线速度为u,组分的移行速度为v,将二者之比称为保留比。
《无机与分析化学基础》第十六章:仪器分析法概论
19:46
3 .吸收池 分光光度计中用来盛放溶液的容器称为吸收池。吸收池主 要有石英池和玻璃池两种。在紫外区须采用石英池, 要有石英池和玻璃池两种。在紫外区须采用石英池,可见 紫外区须采用石英池 区一般用玻璃池 区一般用玻璃池。 玻璃池。 4. 检测器 • 利用光电效应将透过吸收池的 • 光信号变成可测的电信号,常用 • 的有光电池、光电管或光电倍增管。 的有光电池、光电管或光电倍增管。 5.信号处理及显示器 它的作用是放大信号并以适当的方式指示或记录。 有直流检流计、电位调零装置、数字显示及自动记录装置等
ρ ( HAc) =
c( NaOH )V ( NaOH ) M ( HAc) V样 × (25.00 100.0)
19:46
(二)721型分光光度计 1.构造
19:46
2.使用方法
(1)首先接通电源,打开电源开关6,打开比色皿暗箱盖7,预热20分 首先接通电源,打开电源开关6 打开比色皿暗箱盖7 预热20分 钟。 (2)波长选择旋钮2,选择所需的单色光波长,用灵敏度旋钮1选择所需 波长选择旋钮2 选择所需的单色光波长,用灵敏度旋钮1 的灵敏档,用调“ 电位器3调整电表为T=0%。 的灵敏档,用调“0”电位器3调整电表为T=0%。 (3)放入比色皿(溶液装入4/5高度,置第一格)置于光路上,将比色 放入比色皿(溶液装入4 高度,置第一格)置于光路上, 皿暗箱盖合上,推进比色皿拉杆5 使参比比色皿处于空白校正位置, 皿暗箱盖合上,推进比色皿拉杆5,使参比比色皿处于空白校正位置, 使光电管见光,旋转透光率调节旋钮4 使微安表8 使光电管见光,旋转透光率调节旋钮4,使微安表8指针准确处于 100%。 100%。 (4)盖上样品室盖,推动试样架拉手,使样品溶液池置于光路上,读出 盖上样品室盖,推动试样架拉手,使样品溶液池置于光路上, 吸光度值。读数后应立即打开样品室盖。 吸光度值。读数后应立即打开样品室盖。 (5)测量完毕,取出比色皿,洗净后倒置于滤纸上晾干。各旋钮置于原 测量完毕,取出比色皿,洗净后倒置于滤纸上晾干。 来位置,电源开关置于“ 拔下电源插头。 来位置,电源开关置于“关”,拔下电源插头。
色谱概论
5.相平衡参数
分配系数K : K CS Cm
容量因子k(容量比,分配比):指在一定温度和压 力下,组分在色谱柱中达分配平衡时,在固定相 与流动相中的质量比——更易测定。
k Ws CsVs K Vs t'R V 'R
Wm CmVm
Vm t0 V0
6. tR与K和k的关系
设R'为单位时间内一个分子 在流动相中出现的几率 设1 R'为单位时间内一个分子 在固定相中出现的几率
1 R' CSVS K VS
R' CmVm
Vm
(R' 1)
1 1 K VS
R'
Vm
R'
组分在色谱柱中迁移速度 流动相的迁移速度
v u
二、等温线:指一定温度下,某组分在两相中分
配达平衡时,在两相中1.的线浓度性关等系温曲线线(理。想)
对称峰 斜率=K
固定相表面活性吸附中心未达饱 和,K一定,与溶质浓度无关。
Sa Vm
[ X a ]为溶质分子在吸附剂表面的浓度 Sa为吸附剂表面面积 [ X m ]为溶质分子在流动相中的浓度 Vm为流动相的体积
注:Ka与组分的性质、吸附剂的活性、流动相的性质 及温度有关 next
吸附色谱分离示意图
分离机制: 各组分与流动相分子争夺吸附剂表面活性中心; 利用吸附剂对不同组分的吸附能力差异而实现分离。 吸附→解吸→再吸附→再解吸→无数次洗脱→分开。 back
高灵敏度:10-11~10-13g,适于痕量分析; 分析速度快:几~几十分钟完成分离一次可以测多种样品; 应用范围广:气体、液体、固体物质以及化学衍生化再色
色谱分析法概论(讲义)
=
Xa / Sa X m / Vm
吸附系数与吸附剂的 活性、组分的性质和 流动相的性质有关。
X a + nYm
32
2、固定相 多为吸附剂,如硅胶、氧化铝。 硅胶表面硅醇基为吸附中心。
• 经典液相柱色谱和薄层色谱:一般硅胶 • 高效液相色谱:球型或无定型全多孔硅
胶和堆积硅珠。 • 气相色谱:高分子多孔微球等
tR=t0(1+K
Vs Vm
)
k
=
t R
−t 0
=
t' R
tt
0
0
色谱过程方程
23
(三)色谱分离的前提
• KA≠KB 或kA≠kB 是色谱分离的前提。
推导过程:
tV
=
RA
t0(1+KA
s
Vm
)
t R B=
t0(1+KB
Vs ) Vm
ΔtR=
t0
(KA-KB)
Vs Vm
ΔtR≠0
KA≠KB kA≠kB
18
(四)色谱峰区域宽度(柱效参数)
1、标准差(standard deviation;σ):是正态色谱流出 曲线上两拐点间距离之半,即0.607倍峰高处的峰
宽之半。σ的大小表示组分被洗脱出色谱柱的分散 程度。σ越大,组分越分散;反之越集中。
2、半峰宽 (W1/2):峰高一半处的峰宽。
W1/2=2.355σ
30
三、吸附色谱法
1、分离原理 利用被分离组分对固定相表面吸附中 心吸附能力的差别而实现分离。 吸附过程是试样中组分的分子(X)与流动相分子(Y) 争夺吸附剂表面活性中心的过程,即为竞争吸附过 程。
31
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、主要内容
1.基本概念
保留时间t R:从进样到某组分在柱后出现浓度极大时的时间间隔。
死时间t0:分配系数为零的组分即不被固定相吸附或溶解的组分的保留时间。
调整保留时间t R':某组分由于溶解(或被吸附)于固定相,比不溶解(或不被吸附)的组分在柱中多停留的时间。
相对保留值r2,1:两组分的调整保留值之比。
分配系数K:在一定温度和压力下,达到分配平衡时,组分在固定相与流动相中的浓度之比。
保留因子k:在一定温度和压力下,达到分配平衡时,组分在固定相和流动相中的质量之比。
分离度R:相邻两组分色谱峰保留时间之差与两色谱峰峰宽均值之比。
分配色谱法:利用被分离组分在固定相或流动相中的溶解度差别或分配系数的差别而实现分离的色谱法。
吸附色谱法:利用被分离组分对固定相表面吸附中心吸附能力的差别或吸附系数的差别而实现分离的色谱法。
离子交换色谱法:利用被分离组分离子交换能力的差别或选择性系数的差别而实现分离的色谱法。
分子排阻色谱法:根据被分离组分分子的线团尺寸或渗透系数的差别而进行分离的色谱法。
涡流扩散:在填充色谱柱中,由于填料粒径大小不等,填充不均匀,使同一个组分的分子经过多个不同长度的途径流出色谱柱,使色谱峰展宽的现象。
纵向扩散:由于浓度梯度的存在,组分将向区带前、后扩散,造成区带展宽的现象。
传质阻抗:组分在溶解、扩散、转移的传质过程中所受到的阻力称为传质阻抗。
保留指数I:在气相色谱法中,常把组分的保留行为换算成相当于正构烷烃的保留行为,也就是以正构烷烃系列为组分相对保留值的标准,即用两个保留时间紧邻待测组分的基准物质来标定组分的保留,这个相对值称为保留指数,又称Kovats指数。
保留体积V R:是从进样开始到某组分在柱后出现浓度极大时,所需通过色谱柱的流动相体积。
调整保留体积V R':是由保留体积扣除死体积后的体积。
保留比R':设流动相的线速度为u,组分的移行速度为v,将二者之比称为保留比。
2.基本理论
(1)色谱分离的原理:组分在固定相和流动相间进行反复多次
的“分配”,由于分配系数K(或容量因子k)的不同而实现分离。
各种色谱
法的分离机制不同。
(2)塔板理论:塔板理论描述组分在色谱柱中的分配和转移行为,由塔板理论导出的流出曲线方程为:
塔板理论有如下基本假设:①在色谱柱内一小段长度即一个塔板高度H内,组分可以在两相中瞬间达到分配平衡。
②分配系数在各塔板上是常数。
③试样和新鲜流动相都加在第0号塔板上。
④流动相不是连续地而是间歇式地进入色谱柱,且每次只进入一个塔板体积。
⑤试样在柱内的纵向扩散可以忽略。
塔板理论在解释流出曲线的形状和位置、组分的分离及评价柱效等方面是成功的。
(3)速率理论:速率理论解释了影响塔板高度或使色谱峰展宽的各种因素,包括涡流扩散、纵向扩散、传质阻抗和流动相线速度。
其表达式为:H=A+B/u+Cu
A为涡流扩散系数:A=2ldp
B为纵向扩散系数:B=2gDm
C为传质阻抗:包括固定相传质阻抗Cs和流动相传质阻抗Cm 3.基本计算
(1)保留值:t R'=t R-t0,V R'=V R-V0,r2,1=t R1'/t R2'=V R1'/V R2'
(2)分配系数和保留因子:
,
,t R=t0(1+KVs/Vm) =t0(1+ k),k=t R'/t0
(3)峰宽度:W1/2=2.355σ,W=4σ=1.699W1/2
(4)柱效:
(5)分离度:
二、重点和难点
本章主要学习色谱过程和分离原理、各类色谱的分离机制。
尤其是色谱法的有关概念和色谱基本理论,是学习其后各章色谱分析方法的基础。
1.色谱过程
色谱过程是组分的分子在流动相和固定相间多次分配的过程。
若两组分的分配系数存在微小的差异,经过反复多次的分配平衡,使微小的差异积累起来,其结果就使分配系数小的组分被先洗脱,从而使两组分得到分离。
色谱分离的前提是分配系数或保留因子不等。
2.有关概念及计算公式
这是本章的重点,一定要深入理解,牢固掌握。
3.基本类型色谱方法及其分离机制
(1)分配色谱法:利用被分离组分在固定相或(和)流动相中的溶解度差别,即分配系数的差别而实现分离。
包括气液分配色谱法和液液分配色谱法。
(2)吸附色谱法:利用被分离组分对固定相表面吸附中心吸附能力的差别,即吸附系数的差别而实现分离。
包括气固吸附色谱法和液固吸附色谱法。
在硅胶液固吸附色谱中,极性强的组分吸附力强。
常见化合物的吸附能力有下列顺序:烷烃<烯烃<卤代烃<醚<硝基化合物<叔胺<酯<酮<醛<酰胺<醇<酚<伯胺<羧酸。
(3)离子交换色谱法:利用被分离组分离子交换能力的差别即选择性系数的差别而实现分离。
按可交换离子的电荷符号又可分为阳离子交换色谱法和阴离子交换色谱法。
(4)分子排阻色谱法:根据被分离组分分子的线团尺寸,即渗透系数的差别而进行分离。
分配色谱法是基础,而且在GC和HPLC中都还会有讨论。
在TLC一章重点讨论吸附色谱法。
后两种方法只存在于液相色谱法中,但在后续章中都没有专门讨论,故在本章加以介绍。
值得注意的是在实际色谱过程中各种分离机制极少单独发生,常常是几种机制同时发生,只是某种机制起主导作用而已。
4.塔板理论
塔板理论沿用分馏塔中塔板的概念来描述组分在两相间的分配行为。
认为在每个塔板的间隔内,试样组分在两相中达到分配平衡,经过多次的分配平衡后,分配系数小的组分先流出色谱柱。
同时还引入塔板数作为衡量柱效的指标。
而理论塔板数n可理解为在色谱柱内溶质平衡的次数(n=L/H),平衡的次数越多,柱效越高,组分间分离的可能性越大。
塔
板理论实际上是把组分在两相间的连续转移过程,分解为间歇的在单个塔板中的分配平衡过程。
重点是要搞清溶质在色谱柱内的质量分配和转移。
在色谱柱各塔板内组分的质量分布符合二项式(m s+m m)N的展开式。
需要注意的是,在讨论二项式分布时,用二项式展开式或通式求得的Nmr是组分在色谱柱中各塔板内的溶质质量分数。
当转移次数
N=n(塔板数)时,柱出口开始能检测到溶质。
流出曲线的纵坐标是柱出口处的质量分数,该曲线也符合二项式分布曲线。
当塔板数很大时流出曲线趋于正态分布曲线。
5.速率理论
Van Deemter方程式为:H=A+B/u+Cu
速率理论的塔板高度H与塔板理论中的塔板高度有所不同,是色谱峰展宽的指标,但两者均是柱效的的度量。
B及C分别代表涡流扩散系数、纵向扩散系数和传质阻抗系数,其单位分别为cm、cm2/s及s。
三者均与色谱动力学因素有关。
重点是要理解这些影响柱效的因素的物理含义。
涡流扩散:也称为多径扩散,与填充不规则因子l和填料(固定相)颗粒的平均直径dp有关:A=2ldp
纵向扩散:纵向扩散系数B与弯曲因子g和组分在流动相中的扩散系数Dm有关:B=2gDm
传质阻抗:影响组分溶解、扩散、转移的阻力,包括固定相传质阻抗Csu和流动相传质阻抗Cmu。
流动相线速度对塔板高度的影响:在较低线速度时,纵向扩散项起主要作用,线速度升高,塔板高度降低,柱效升高;在较高线速度时,传质阻抗起主要作用,线速度升高,塔板高度增高,柱效降低。
速率理论研究影响柱效(或峰展宽即组分离散)的各种动力学因素,用于指导色谱实验条件的选择。
Van Deemter方程在GC、HPLC和CE中的具体形式和应用将在相应章节讨论。
根据此方程还可以求出流动相的最佳流速uop。
以H=A+B/u+Cu对u微分,得H'=-Bu-2+C,当其等于0时,H有极值,于是-Bu-2+C=0,因此
,此时塔板高度为。