(文理全)2020全国大联考高三4月联考数学试题
全国大联考2020届高三4月联考理科数学试卷20·LK4·QG(PDF版)
21.(12 分)已知函数 f ( x ) = x2 − 8x + a ln x ( a R )
(1)当 x = 1 时, f ( x ) 取得极值,求 a 的值并判断 x = 1?是极大值点还是极小值点
(2)当函数 f ( x ) 有两个极值点 x1 , x2 ( x1 x2 ) ,且 x1 1 时,总有
3
4
A. a b c
B. a c b
C. c a b
D. c b a
10. 函数 y=f(x)的定义域为 R,且 φ(x)-f(x)-f(x+a),对任意 a<0,φ(x)在 R 上是增函数,则函
数 y=f(x)的图象可以是
A
11. 双曲线 E :
B
C
D
x2 y2
2. 复数 z=1+2i 的共轭复数是,则 z·=
A. √3
B. 3
C. 5
D. √5
3. 已知随机变量 X ~ N (2, 2 ) ,若 P(1 X 3) = 0.36 ,则 P(X 3) =
A.0.64
B.0.32
C.0.36
D.0.72
4. 设 m,n 是两条不同的直线,α,β 是两个不同的平面,由下列四个命题,其中正确的是
5 4 20
X 的分布列为:
X
90
45
30
-15
P
3
5
3
20
1
5
1
20
∴ E ( X ) = 90
3
3
1
1
+ 45 + 30 − 15
= 66
5
吉林省扶余市第一中学2024年高三4月大联考数学试题理试题
吉林省扶余市第一中学2024年高三4月大联考数学试题理试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线()222:10y C x b b-=>的一条渐近线方程为y =,1F ,2F 分别是双曲线C 的左、右焦点,点P在双曲线C 上,且13PF =,则2PF =( ) A .9B .5C .2或9D .1或52.已知平面向量,a b 满足||||a b =,且)b b -⊥,则,a b 所夹的锐角为( )A .6πB .4π C .3π D .03.若θ是第二象限角且sin θ =1213,则tan()4πθ+= A .177- B .717- C .177 D .7174.在区间[]3,3-上随机取一个数x ,使得301xx -≥-成立的概率为等差数列{}n a 的公差,且264a a +=-,若0n a >,则n 的最小值为( )A .8B .9C .10D .115.已知函数()f x 的定义域为()0,∞+,且()()2224m f m f f n n ⎛⎫⎪⎝⎭⋅=,当01x <<时,()0f x <.若()42f =,则函数()f x 在[]1,16上的最大值为( ) A .4B .6C .3D .86.半径为2的球O 内有一个内接正三棱柱,则正三棱柱的侧面积的最大值为( )A .B .C .D .7.记n 个两两无交集的区间的并集为n 阶区间如(][],12,3-∞为2阶区间,设函数()ln xf x x=,则不等式()30f f x ⎡⎤+⎦≤⎣的解集为( ) A .2阶区间B .3阶区间C .4阶区间D .5阶区间8.已知平面向量a ,b 满足()1,2a =-,()3,b t =-,且()a ab ⊥+,则b =( ) A .3B .10C .23D .59.设0.380.3log 0.2,log 4,4a b c ===,则( )A .c b a <<B .a b c <<C .a c b <<D .b a c <<10.某空间几何体的三视图如图所示(图中小正方形的边长为1),则这个几何体的体积是( )A .323B .643C .16D .3211.从抛物线24y x =上一点P (P 点在x 轴上方)引抛物线准线的垂线,垂足为M ,且||5PM =,设抛物线的焦点为F ,则直线MF 的斜率为( ) A .2-B .2C .43-D .4312.设()11i a bi +=+,其中a ,b 是实数,则2a bi +=( ) A .1B .2C .3D .5二、填空题:本题共4小题,每小题5分,共20分。
2023高三文科数学上学期一轮复习联考全国卷4pdf
2023届高三一轮复习联考(四)全国卷8.已知函数J(x)=屈s in(2x+0)—cos(2x+0),0 E(气],且f(O)=l,则0=re_6.A产4.B亢_3.c产2.D文科数学试题注意事项:l.答卷前,考生务必将自己的姓名、考场号、座位号、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交 回。
考试时间为120分钟,满分150分一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x lx2<l},B = {x I O<x<2},则AnB=A.(—1, 2)2.(2+i)(2—3i)=A.l—i3.下列命题中的假命题是迈A.3 x E R, s in x=— 2A.—2B.25.函数f(x)=cos x+sin 2x的图象可能是yB.(—1,0)B.7—IyC.(O, 1)C.l—4iB.3 xER,ln x=—lC.'efxER,x2>0D.'efxER,3气>04.已知数列{a n}是各项均为正数的等差数列,a s=10,且a4• a6=96,则公差为C.—2或2D.4y yAXB c D16.已知a=lg—,b=cos l,c=z-2,则a,b,c的大小关系为2A.a<b<cB.a<c<bC.b<a<cxD.Cl,2)D.7—4iD.b<c<a.,7.如图,正方形ABCD中,E、F分别为AB、A D的中点,且BF=入B E+AXDµBD,则入十µ的值是1 EA.1B.—23D.2C.—2 B CX 2 y 2 ',9直线l:y=瓦x与椭圆C:勹+—=1交于P,Q两点,F是椭圆C的右焦点,且PP·QF=a z, b20,则椭圆的离心率为A.4—2祁B.2点—3C.点—l10.已知正数a,b满足矿+2矿=1,则a矿的最大值是A. 屈屈B. C.— D.—11如图所示,在正方体ABCD—A1B1C卫中,O,F分别为BD,AA]的中D,点,设二面角F—D10—B的平面角为a直线O F与平面B B丸D所成A,'\ \B角为p,则::;:三:高三三三三:三<言昙三三:个立体,被任一平行千这两个平面的平面所截,如果两个截面的面积相等,则这两个几何体的体积相等.上述原理在中国被称为祖睢原理,国外则一般称之为卡瓦列利原理.已知y将双曲线C:三——=1与直线y=土2围成的图形绕y轴8 2旋转一周得到一个旋转体E,则旋转体E的体积是昼2D二、填空题:本题共4小题,每小题5分,共20分。
天津市一中2024年全国高三大联考数学试题
天津市一中2024年全国高三大联考数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知x 与y 之间的一组数据:x1 2 3 4 ym3.24.87.5若y 关于x 的线性回归方程为 2.10.25y x =-,则m 的值为( ) A .1.5B .2.5C .3.5D .4.52.执行如图所示的程序框图,则输出的S 的值是( )A .8B .32C .64D .1283.过抛物线()220y px p =>的焦点F 的直线与抛物线交于A 、B 两点,且2AF FB =,抛物线的准线l 与x 轴交于C ,ACF ∆的面积为82AB =( )A .6B .9C .92D .624.已知复数z 满足11i z=+,则z 的值为( ) A .12B 2C .22D .25.若2nx x ⎛⎝的二项式展开式中二项式系数的和为32,则正整数n 的值为( )A .7B .6C .5D .46.已知m ,n 是两条不重合的直线,α,β是两个不重合的平面,则下列命题中错误的是( ) A .若m //α,α//β,则m //β或m β⊂B .若m //n ,m //α,n α⊄,则n //αC .若m n ⊥,m α⊥,n β⊥,则αβ⊥D .若m n ⊥,m α⊥,则n //α 7.已知函数()1f x +是偶函数,当()1,x ∈+∞时,函数()f x 单调递减,设12a f ⎛⎫=- ⎪⎝⎭,()3b f =,()0c f =,则a b c 、、的大小关系为() A .b a c << B .c b d <<C .b c a <<D .a b c <<8.已知复数(2)1ai iz i+=-是纯虚数,其中a 是实数,则z 等于( )A .2iB .2i -C .iD .i -9.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( )A .2对B .3对C .4对D .5对10.在各项均为正数的等比数列{}n a 中,若563a a =,则3132310log log log a a a +++=( )A .31log 5+B .6C .4D .511.关于函数()sin 6f x x π⎛⎫=-- ⎪⎝⎭在区间,2ππ⎛⎫⎪⎝⎭的单调性,下列叙述正确的是( )A .单调递增B .单调递减C .先递减后递增D .先递增后递减12.在101()2x x-的展开式中,4x 的系数为( ) A .-120B .120C .-15D .15二、填空题:本题共4小题,每小题5分,共20分。
2023年高三4月学科网大联考(全国乙卷)文科数学参考答案
2023年高三4月大联考(全国乙卷) 文科数学·全解全析及评分标准一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.B 【解析】由题意,得2=1i i i 11z ,则||z ,故选B . 2.C 【解析】由题意,知2{|0e }A x x ,{|31}B x x ,则{|01}A B x x ,故选C . 3.D 【解析】由题意,知1(,0)2F ,所以3||3||2PF OF .设00(,)P x y ,因为点P 在第一象限,所以00,x00y ,则013||22PF x,所以01x ,所以0y ,故点P 的坐标为.故选D . 4.C 【解析】由表中数据,得 4.5x ,而样本点的中心(x y ,在回归直线ˆ20.8yx 上,则9.8y ,所以5 6.6910.4159.8658.8m ,解得12.8m ,故选C .5.C 【解析】设切点为300(,2)x x ,∵32y x ,∴26y'x ,∴切线的斜率320002 =61x k x x ,化简,得200(2x x3)0 ,∴00302xx或,∴可作2条切线,故选C . 6.B 【解析】如图,设H 为底面正方形ABCD 的中心,G 为BC 的中点,连接,,PH HG PG ,则,PH HG ,PG BC 所以PG 13.16 ,则14422PBC ABCDBCPGS PG SAB BC AB△正方形26.321.3719.2,故选B .7.A 【解析】23,32m n m n ,3223=3+2733m mn n,当且仅当323=3m n时取等号,故选A . 8.B 【解析】由11n T ,,得332,12a T ;由112n ,得232212232a T ,; 由213n ,得132********a T ,; 由314n ,得0321021222264a T ,. 若选A ,D ,则输出T =8,所以A ,D 错误;若选C ,则输出32T ,所以C 错误;对于B ,在4n 时,021a ,输出64T ,故选B.9.A 【解析】∵cos 2sin ①,sin 2cos 1 ②,∴22 ①②,得54cos sin 4sin cos 3 ,∴1sin()2,∴os()c tan() A. 10.C 【解析】由题意,得变换后的函数解析式为cos()y x ,该函数图象与y 轴交于点1(0)2,,即1cos =2.因为22,所以π=3.因为0x 在函数cos()y x 的单调递增区间上, 所以0[2ππ2π]k k ,,k Z ,即[2ππ,2π]k k ,k Z ,且ππ22,令=0k ,则π3, 所以πcos()3y x .当5π9x 时,0y ,则5ππcos()093 .因为5π9x 是函数cos()y x 在单调递减区间上的一个零点,所以5πππ2π932k ,k Z ,所以318=25k ,k Z .设函数cos()y x 的最小正周期为T ,则π5π>29T ,所以905 ,所以3=2.故选C . 11.D 【解析】设()M x y ,,由22||+||10MA MB ,得2222(1)(1)10x y x y ,化简得224x y ,即点M 的轨迹是以0(0)O ,为圆心,2为半径的圆.因为||2CN ,所以N 点的轨迹是以8(6)C ,为圆心,2为半径的圆, 所以||MN 的最大值为||414OC .故选D.12.D 【解析】∵3751252=128 ,∴3272(5)(2) ,即6277524 ,∴6ln 57ln 4 ,∴ln 57ln 46 ,∴47log 56,∴z x . 令2(1)()ln 1x f x x x ,则22214(1)()0(1)(1)x f x x x x x ,∴()f x 在(0,+) 上单调递增,∴19()(1)05f f ,即192(1)191975ln ln 01955615,∴y z , ∴y z x ,故选D.二、填空题:本题共4小题,每小题5分,共20分。
2020年4月全国大联考2020届高三毕业班联考质量检测数学(文)试题(解析版)
绝密★启用前全国大联考2020届高三毕业班下学期4月联合质量检测数学(文)试题 (解析版)2020年4月一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中只有一项是符合题目要求的 1.不等式110x->成立的充分不必要条件是( ) A. 1x >B. 1x >-C. 1x <-或01x <<D. 10x -≤≤或1x > 【答案】A 【解析】 【分析】求解不等式110x ->的解集,其充分不必要条件即该解集的真子集即可. 【详解】解110x->,()10,10x x x x ->->, 得()(),01,x ∈-∞+∞,其充分不必要条件即该解集的真子集,结合四个选项A 符合题意. 故选:A【点睛】此题考查充分不必要条件的辨析,关键在于准确求解分式不等式,根据充分条件和必要条件的集合关系判定.2.复数 12z i =+的共轭复数是z ,则z z ⋅=( )B. 3C. 5【答案】C 【解析】【分析】根据 12z i =+,写出其共轭复数 12z i =-,即可求解. 【详解】由题 12z i =+,其共轭复数 12z i =-, ()()21212145z z i i i ⋅=+-=-=. 故选:C【点睛】此题考查共轭复数的概念和复数的基本运算,关键在于熟练掌握复数的乘法运算.3.甲乙两名同学6次考试的成绩统计如图,甲乙两组数据的平均数分别为x 甲、x 乙标准差分别为σ甲、σ乙,则( )A. x x <甲乙,σσ<甲乙B. x x <甲乙,σσ>甲乙C. x x >甲乙,σσ<甲乙D. x x >甲乙,σσ>甲乙【答案】C 【解析】 【分析】通过读图可知甲同学除第二次考试成绩略低与乙同学,其他次考试都远高于乙同学,可知x x >甲乙,图中数据显示甲同学的成绩比乙同学稳定,故σσ<甲乙. 【详解】由图可知,甲同学除第二次考试成绩略低与乙同学,其他次考试都远高于乙同学,可知x x >甲乙,图中数据显示甲同学的成绩比乙同学稳定,故σσ<甲乙.故选.。
2024-2025学年高三一轮复习联考(三)_全国卷文数(含答案)
2024届高三一轮复习联考(三)全国卷文科数学试题注意事项:1.答卷前,考生务必将自己的姓名、考场号、座位号、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回,考试时间为120分钟,满分150分一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}212,1A xx B x x =<<=∣∣,则A B ⋃=()A.[)1,2-B.(),2∞-C.[)1,3- D.[]1,2-2.命题2:,220p x R x x ∀∈+-<的否定p ⌝为()A.2000,220x R x x ∃∈+->B.2,220x R x x ∀∈+-C.2,220x R x x ∀∈+->D.2000,220x R x x ∃∈+-3.3.已知复数2(1i)z =+(i 为虚数单位),则复数z 的虚部为()A.2B.2- C.2iD.2i-4.若函数()222,0,log ,0,x x x f x x x ⎧-=⎨>⎩则()2f f ⎡⎤-=⎣⎦()A.2- B.2 C.3- D.35.已知1sin 62πα⎛⎫-= ⎪⎝⎭,则2cos 23πα⎛⎫+= ⎪⎝⎭()A.14-B.14C.12-D.126.函数()21x xe ef x x --=+在[]3,3-上的大致图象为()A.B.C. D.7.函数2sin cos21y x x=-+的最小值是()A.3-B.1-C.32- D.12-8.已知数列{}n a的前n项和22nS n n m=-++,且对任意*1,0n nn N a a+∈-<,则实数m 的取值范为是()A.()2,∞-+ B.(),2∞--C.()2,∞+ D.(),2∞-9.已知等比数列()*a满足4221,m nq a a a≠=,(其中,*m n N∈),则91m n+的最小值为()A.6 B.16 C.32 D.210.已知函数()cos3f x xπ⎛⎫=+⎪⎝⎭,若()f x在[]0,a上的值域为11,2⎡⎤-⎢⎥⎣⎦,则实数a的取值范为()A.40,3π⎛⎤⎥⎝⎦B.24,33ππ⎡⎤⎢⎥⎣⎦C.2,3π∞⎡⎫+⎪⎢⎣⎭ D.25,33ππ⎡⎤⎢⎥⎣⎦11.设4sin1,3sin2,2sin3a b c===,则()A.a b c<< B.c b a<<C.c a b<< D.a c b<<12.已矨,,A B C均在球O的球面上运动,且满足3AOBπ∠=,若三棱锥O ABC-体积的最大值为6,则球O的体积为()A.12πB.48πC.D.二、填空题:本题共4小题,每小题5分,共20分.13.已知()(1,,a k b==,若a b⊥,则k=__________.14.已知{}n a是各项不全为零的等差数列,前n项和是n S,且2024S S=,若()2626nS S m=≠,则正整数m=__________.15.设,m n为不重合的直线,,,αβγ为不重合的平面,下列是αβ∥成立的充分条件的有()(只填序号).①,m a m β⊂∥②,,m n n m αβ⊂⊥⊥③,αγβγ⊥⊥④,m m αβ⊥⊥16.已知函数()14sin ,01,2,1,x x x f x x x π-<⎧=⎨+>⎩若关于x 的方程()()()2[]210f x m f x m --+-=恰有5个不同的实数解,则实数m 的取值集合为__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:60分.17.(12分)已知数列{}n a 满足12122,log log 1n n a a a +==+,(1)求数列{}n a 的通项公式;(2)求(){}32nn a -的前n 项和nS.18.(12分)已知ABC 中,三个内角,,A B C 的对边分别为,,,,cos cos 2cos 4a b c C a A c C b B π=+=.(1)求tan A ;(2)若c =,求ABC 的面积.19.(12分)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,O 是BC 的中点,PB PC ==,22PD BC AB ===.(1)求证:平而PBC ⊥平面ABCD ;(2)求点A 到平面PCD 的距离.20.(12分)已知数列()n a 满足()21112122222326n n n n n a a a a n -+-++++=-⋅+ .(1)求{}n a 的通项公式;(2)若2n an n b a =+,求数列n b 的前n 项和T .21.(12分)已知函数()ln x af x ex x -=-+.(1)当1a =时,求曲线()f x 在点()()1,1f 处的切线方程,(2)当0a 时,证明,()2f x x >+.(二)选考题:共10分.请考生在第22,23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在平面直角坐标系,xOy 中,直线l的参数方程为2,21,2x a y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为22413sin ρθ=+.(1)求直线l 和曲线C 的直角坐标方程;(2)若曲线C 经过伸缩变换,2,x x y y ⎧=⎪⎨⎪='⎩'得到曲线C ',若直线l 与曲线C '有公共点,试求a 的取值范围.23.[选修4-5:不等式选讲](10分)已知函数()22(0)f x x x t t =++->,若函数()f x 的最小值为5.(1)求t 的值;(2)若,,a b c 均为正实数,且2a b c t ++=,求1412a b c++的最小值.2024届高三一轮复习联考(三)全国卷文科数学参考答案及评分意见1.A【解析】由21x ,即()()110x x -+,解得11x -,所以{}11B xx =-∣,所以{12}A B xx ⋃=-<∣.故选A .2.D 【解析】2,220x x x ∀∈+-<R 的否定为:2000,220x x x ∃∈+-R ,故选D.3.A 【解析】2(1i)2i z =+=,即复数z 的虚部为2,故选A .4.D【解析】()()()222(2)228,8log 83f f -=--⨯-===,故选D.5.C 【解析】因为1sin 62πα⎛⎫-= ⎪⎝⎭,所以2211cos 2cos 2cos 22sin 11366622ππππααπαα⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=-+=--=--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故选C.6.A 【解析】()()2e e 1x xf x f x x ---==-+,所以函数()y f x =是奇函数,排除B 选项,又()22e e 215f --=>,排除C ,D 选项,故选A.7.D 【解析】由题意,函数22sin cos212sin 2sin y x x x x =-+=+,令[]sin 1,1t x =∈-,可得221122222y t t t ⎛⎫=+=+- ⎪⎝⎭,当12t =-,即1sin 2x =-时,函数取得最小值,最小值为12-.故选D.8.A【解析】因为10n n a a +-<,所以数列{}n a 为递减数列,当2n 时,()2212(1)2123n n n a S S n n m n n m n -⎡⎤=-=-++---+-+=-+⎣⎦,故可知当2n 时,{}n a 单调递减,故{}n a 为递减数列,只需满足21a a <,即112m m-+⇒-.故选A .9.D【解析】由等比数列的性质,可得()911911918,10102888m n m n m n m n m n n m ⎛⎛⎫⎛⎫+=+=++=+++= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当6,2m n ==时,等号成立,因此,91m n +的最小值为2.故选D.10.B 【解析】()cos 3f x x π⎛⎫=+⎪⎝⎭,结合图象,()f x 的值域是11,,0,2333x a x a πππ⎡⎤-++⎢⎣⎦,于是533a πππ+,解得2433aππ,所以实数a 的取值范围为24,33ππ⎡⎤⎢⎥⎣⎦.故选B.11.B 【解析】设()()2sin cos sin ,x x x xf x f x x x -==',令()()cos sin ,sing x x x x g x x x =-'=-,当()0,x π∈时,()0g x '<,故()g x 在()0,π上递减,()()()00,0g x g f x <=∴<',故()sin xf x x=在()0,π上递减,023π<<< .()()sin3sin232,,2sin33sin232f f ∴<<<,故c b <,()()()sin 2012,sin1,sin22sin1,3sin232sin14sin12ππππππ-<<-<<<-<-<-,故b a <,故c b a <<,故选B.12.C 【解析】如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时231133632212O ABC C AOB V V R R --==⨯⨯⨯==,故3R =O 的体积为343R V π==,故选C.13.3-【解析】0a b a b ⊥⇔⋅=,所以()(1,10,3k k ⋅=+==-.14.18【解析】设等差数列{}n a 的首项和公差分别为1,a d ,则2122n d d S n a n ⎛⎫=+- ⎪⎝⎭,所以n S 可看成关于n 的二次函数,由二次函数的对称性及202426,m S S S S ==,可得20242622m++=,解得18m =.15.④【解析】根据线面的位置关系易知,①②③中面α和面β可能相交也可能平行,④:若m α⊥且m β⊥,根据面面平行的判定可知垂直于同一直线的两平面互相平行,故④正确.16.()3,1--【解析】作出函数()f x 的大致图象,如图所示,令()t f x =,则()()()2[]210f x m f x m --+-=可化为()()()221110t m t m t m t --+-=-+-=,则11t =或21t m =-,则关于x 的方程()()()2[]210f x m f x m --+-=恰有5个不同的实数解等价于()t f x =的图象与直线12,t t t t ==的交点个数之和为5个,由图可得函数()t f x =的图象与直线1t t =的交点个数为2,所以()t f x =的图象与直线2t t =的交点个数为3个,即此时214m <-<,解得31m -<<-.17.【解析】(1)在数列{}n a 中,已知12122log log log 1n n n na a a a ++-==,所以12n na a +=,.即{}n a 是首项为12a =,公比为2的等比数列,所以()1*222n n n a n -=⨯=∈N .(2)由()()32322nn n a n -=-⨯,故()()231124272352322n n n S n n -=⨯+⨯+⨯++-⨯+-⨯ ,所以()()23412124272352322nn n S n n +=⨯+⨯+⨯++-⨯+-⨯ ,则()23123222322n n n S n +⎡⎤-=+⨯+++--⨯⎣⎦,()()()11212433221053212n n n n n ++-=-+⨯--⨯=-+-⋅-,故()110352n n S n +=+-⋅.18.【解析】(1)解法一:由题,cos cos 2cos a A c C b B +=,由正弦定理得,sin2sin cos sin cos B A A C C =+,.3,,sin2sin 2sin 2cos2422C A B C B A A A ππππ⎛⎫⎛⎫=++==-=-=- ⎪ ⎪⎝⎭⎝⎭,所以1cos2sin cos 2A A A -=+,221sin cos sin cos 2A A A A --=22tan 1tan 1tan 12A A A --=+,化简得2tan 2tan 30A A --=,解得tan 3A =或tan 1A =-(舍去).解法二:由题,cos cos 2cos a A c C b B +=,由正弦定理得,2sin2sin2sin2B A C =+,即()()()()2sin2sin sin B A C A C A C A C ⎡⎤⎡⎤=++-++--⎣⎦⎣⎦,即()()sin2sin cos B A C A C =+-,又A B C π++=,故()sin sin A C B +=,所以()2sin cos sin cos B B B A C =-,又0B π<<,故sin 0B ≠,所以()2cos cos B A C =-,又A B C π++=,故()cos cos B A C =-+,化简得sin sin 3cos cos A C A C =,因此tan tan 3A C =且tan 1C =,所以tan 3A =.(2)由(1)知tan 3A =,因此()tan tan tan tan 21tan tan A CB AC A C+=-+=-=-,.所以sin 10A =,sin 5B =2sin 2C =,因为,6sin sin a c a A C==,.所以1125sin 612225ABC S ac B ==⨯⨯= .19.【解析】(1)因为,PB PC O =是BC 的中点,所以PO BC ⊥,在直角POC 中,1PC OC ==,所以PO =,在矩形ABCD 中,1,2AB BC ==,所以DO =,又因为2PD =,所以在POD 中,222PD PO OD =+,即PO OD ⊥.而,,BC OD O BC OD ⋂=⊂平面ABCD ,所以PO ⊥平面ABCD ,而PO ⊂平面PBC ,所以平面PBC ⊥平面ABCD .'(2)由(1)平面PBC ⊥平面ABCD ,且DC BC ⊥,所以DC ⊥平面PBC ,所以DC PC ⊥,即PCD 是直角三角形,因为1PC CD ==,所以13122PDC S =⨯=,又知11212ACD S =⨯⨯= ,PO ⊥平面ABCD ,设点A 到平面PCD 的距离为d ,则A PCD P ACD V V --=,即1133PCD ACD S d S PO ⨯⨯=⨯⨯ ,即1311323d ⨯⨯=⨯⨯所以263d =,所以点A 到平面PCD 的距离为3..20.【解析】(1)由题当1n =时,()111223262a +=-⋅+=,即11a =.()21112122222326n n n n n a a a a n -+-++++=-⋅+ ①当2n 时,()211212222526n n n a a a n --+++=-⋅+ ②.①-②得()()()1223262526212nn n n n a n n n +=-⋅+--⋅-=-⋅,所以21n a n =-..(2)由(1)知,212221n an n n b a n -=+=+-,则()()()()3521212325221n n T n -=++++++++- ()()3521222213521n n -=+++++++++-⋅()()212214121232..1423nn n n n +⨯-+-+-=+=-21.【解析】(1)当1a =时,()()111e ln ,e 1x xf x x x f x x--=-+=-+',所以()()12,11f f '==,.则切线方程为()211y x -=⨯-,.即10x y -+=曲线()f x 在点()()1,1f 处的切线方程为10x y -+=.(2)证明:要证()2f x x >+,即证e ln 2x a x -->,设()eln ,0x aF x x x -=->,即证()2F x >,当0a 时,()()1e 1e ln ,ex a x ax ax F x x F x x x----=-=-='在()0,∞+上为增函数,且()e1x ah x x -=-中,()()0100e 110,1e 1e 10a a h h --=⨯-=-=-->.故()0F x '=在()0,∞+上有唯一实数根0x ,且()00,1x ∈..当()00,x x ∈时,()0F x '<,当()0,x x ∞∈+时,()0F x '>,从而当0x x =时,()F x 取得最小值.由()00F x '=,得001ex ax -=,故()()000001eln 2x aF x F x x x a a x -=-=+->.综上,当0a 时,()2F x >即()2f x x >+.22.【解析】(1)由题2,21,2x a t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),消去参数t得直线:20l x a -=,.22413sin ρθ=+,即2224cos 4sin ρθθ=+,即曲线C 的直角坐标方程为2214x y +=.(2)由,2,x x y y ⎧=⎪⎨⎪='⎩'得2,,x x y y =⎧⎨=''⎩又2214x y +=,所以()()22214x y +'=',即'2'21x y +=,所以曲线C '的方程是221x y +=,.由1d =得11a -.所以a 的取值范围是[]1,1-.23.【解析】(1)()222f x x x t x x t x t =++-=++-+-,()2222y x x tx x t t t =++-+--=+=+,当2x t -时等号成立,.⋅又知当x t =时,x t -取得最小值,所以当x t =时,()f x 有最小值,此时()min ()25f x f t t ==+=,所以3t =..(2)由(1)知,23a b c ++=,()22141114111162(121)232333a b c a b c a b c ⎛⎫++=++++=++= ⎪⎝⎭,当且仅当333,,824a b c ===时取等号,所以1412a b c ++的最小值为163.。
五岳联考2020届河南广东等省高三普通高等学校招生全国统一考试4月联考数学(理)试卷及答案
绝密★启用前 试卷类型:B五岳联考2020届河南广东等省高三普通高等学校招生全国统一考试4月联考数学(理)试卷★祝考试顺利★本试卷共5页,23小题(含选考题),满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上用2B 铅笔将试卷类型(B )填在答题卡相应位置上,将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试卷和答题卡一并上交。
一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}N x x x x A ∈<--=,0322,则集合A 的真子集有( )A .5个 B. 6个 C. 7个 D. 8个 2.已知i 是虚数单位,则化简2020)11(ii -+的结果为( ) A.i B.i - C.1- D.13.若干年前,某教师刚退休的月退休金为400元,月退休金各种用途占比统计图如下面的条形图该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( )A .4500元 B. 5000元 C .5500元D .6000元4.将包括甲、乙、丙在内的8人平均分成两组参加文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料,则甲、乙至少一人参加指挥交通且甲、丙不在同一组的概率为( ) A.72 B.73 C.71 D.143 5已知抛物线x y 42=的焦点为F,过点F 和抛物线上一点)32,3(M 的直线l 交抛物线于另一点N,则NM NF :等于( )A.2:1B.3:1C.4:1D.3:16.在所有棱长都相等的直三棱柱111C B A ABC -中,D,E 分别为棱AC CC ,1的中点,则直线AB 与平面DE B 1所成角的余弦值为( ) A.1030 B.2030 C.20130 D.1070 7已知点A (4,3),点B 为不等式组⎪⎩⎪⎨⎧≤-+≤-≥06200y x y x y 所表示平面区域上的任意一点,则AB 的最小值为( ) A.5 B.554 C.5 D.552 8.给出下列说法①定义在[a,b]上的偶函数b x a x x f ++-=)4()(2的最大值为20;。
湖南省多校2024届高三下学期4月大联考数学试题含答案
2024届高三4月大联考数学(答案在最后)(试题卷)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试题卷上无效.3.本试题卷共7页,19小题,满分150分,考试用时120分钟.如缺页,考生须及时报告监考老师,否则后果自负.4.考试结束后,将本试题卷和答题卡一并交回.姓名______.准考证号______.祝你考试顺利!机密★启用前一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.6(2)x -的展开式中,3x 的系数是()A.160B.160- C.220D.220-【答案】B 【解析】【分析】利用二项式定理直接列式求出3x 的系数.【详解】二项式6(2)x -的展开式中,3x 系数为333366C 2(1)C 8160⨯⨯-=-⨯=-.故选:B2.已知集合{}{}27120,14M x x x N x x =-+<=-<,则M N ⋂=()A.(),5-∞ B.[]3,4- C.()6,8 D.()3,4【答案】D 【解析】【分析】解集合中的不等式,得到这两个集合,再由交集的定义求解.【详解】不等式27120x x -+<解得34x <<,不等式14x -<,即414x -<-<,解得35x -<<,可得()()()3,4,3,5,3,4M N M N ==-⋂=.故选:D.3.若复数z 满足i zz=,则z 可以是()A.1i +B.2i+ C.1i- D.12i+【答案】A 【解析】【分析】设i z a b =+,由此写出z ,根据z 与z 的关系得到a 与b 的关系,从而选出正确选项.【详解】设i,,R z a b a b =+∈,则i,i zz a b z=-=,即()i i i ,i i a b a b a b a b +=-+=+,即a b =,故选:A.4.原核生物大肠杆菌存在于人和动物的肠道内,在适宜的环境和温度下会迅速繁殖导致肠道内生态环境失衡从而引发腹泻等症状,已知大肠杆菌是以简单的二分裂法进行无性繁殖,在适宜的条件下分裂一次(1个变为2个)需要约24分钟,那么在适宜条件下1个大肠杆菌增长到1万个大肠杆菌至少需要约()(参考数据:lg20.3≈)A.4小时 B.5小时C.6小时D.7小时【答案】C 【解析】【分析】依据题意列出方程,利用对数的运算性质结合给定的特殊对数值处理即可.【详解】设适宜条件下1个大肠杆菌增长到1万个大肠杆菌大约需要x 分钟,则241210000x⋅=,两边取对数得lg2lg10000424x⋅==,解得42496320lg20.3x ⨯=≈≈,所以大约需要320165.3603=≈小时,故在适宜条件下1个大肠杆菌增长到1万个大肠杆菌至少需要6小时.故选:C.5.已知直线220x y ++=与抛物线2:C y ax =有唯一交点,则C 的准线方程为()A.=1x -B.1x = C.12x =-D.12x =【答案】C 【解析】【分析】直线与抛物线联立方程组消去x ,由Δ0=求出a 的值,由抛物线方程求其准线方程.【详解】依题意,联立2220x y y ax++=⎧⎨=⎩,消去x 得2220y ay a ++=,则2Δ480a a =-=,由0a ≠得2a =,故抛物线C 的方程为22y x =,其准线方程为12x =-.故选:C.6.在不断发展的过程中,我国在兼顾创新创造的同时,也在强调已有资源的重复利用,废弃资源的合理使用,如土地资源的再利用是其中的重要一环.为了积极响应国家号召,某地计划将如图所示的四边形荒地ABCD 改造为绿化公园,并拟计划修建主干路AC 与BD .为更好的规划建设,利用无人机对该地区俯视图进行角度勘探,在勘探简化图中,,,AD AC AB BC AC ⊥⊥平分,BCD BD CD ∠=,则cos ACD ∠=()A.3B.9C.3D.3【答案】A 【解析】【分析】设ACD θ∠=,则2BCD θ∠=,根据余弦定理及二倍角公式求得22cos 3θ=,根据θ的范围即可得解.【详解】设ACD θ∠=,则2BCD θ∠=,设CD BD a ==,则2cos ,cos AC a BC a θθ==.故在BCD △中,由余弦定理可得224222cos 1cos22cos 2a a a a a θθθθ+-==⋅,而2cos22cos 1θθ=-,故2212cos 1cos 2θθ-=,解得221cos ,cos233θθ==,在直角三角形ACD 中,θ为锐角,故cos 0θ>,故cos 3θ=.故选:A.7.将编号为1,2,3,4的4个小球随机放入编号为1,2,3,4的4个凹槽中,每个凹槽放一个小球,则至少有2个凹槽与其放入小球编号相同的概率是()A.14B.724 C.712D.1724【答案】B 【解析】【分析】利用排列组合,先求出将编号为1,2,3,4的4个小球随机放入编号为1,2,3,4的4个凹槽中的放法数,再求出至少有2个凹槽与其放入小球编号相同的放法数,再利用古典概率公式,即可求出结果.【详解】将编号为1,2,3,4的4个小球随机放入编号为1,2,3,4的4个凹槽中,共有44A 24=种放法,恰有2个凹槽与其放入小球编号相同的有24C 6=种放法,4个凹槽与其放入小球编号相同的有1种放法,所以至少有2个凹槽与其放入小球编号相同的概率是2444C 17A 24P +==,故选:B.8.使得不等式()()()()()sin sin2cos sin cos cos sin sin sin cos θθθθθ≤⋅-⋅成立的一个充分不必要条件是()A.π0,4θ⎡⎤∈⎢⎥⎣⎦B.ππ,42θ⎡⎤∈⎢⎣⎦C.3π,π4θ⎡⎤∈⎢⎥⎣⎦D.5ππ,4θ⎡⎤∈⎢⎥⎣⎦【答案】C 【解析】【分析】换元sin cos t θθ=+,利用二倍角公式和两角和的余弦公式的逆用将题干不等式转化为关于t 的不等式,解出t 满足的关系进而排除得到正确选项.【详解】令πsin cos 4t θθθ⎛⎫⎡=+=+∈ ⎪⎣⎝⎭,则()()2222sin 22sin cos sin cos sincos 1t θθθθθθθ==+-+=-,()()()()()cos sin cos cos sin sin sin cos cos sin cos cos tθθθθθθ⋅-⋅=+=所以已知不等式化为()2πsin 1cos sin 2t t t ⎛⎫-≤=+⎪⎝⎭.[]2πππ11,1,222t t ⎡-∈-+∈+⎢⎣,故原不等式的解分两段:①πππ122t -≤+≤-得π12t ⎡⎤∈-⎢⎥⎣⎦,原不等式化为2π12t t -≤+,即2π102t t ---≤.②πππ122t -≤+≤+得π2t ⎡∈-⎢⎣,原不等式化为2π1π2t t ⎛⎫-≤-+ ⎪⎝⎭,即2π102t t +--≤.四个选项对应的t 取值范围分别为[[][,,1,0,1⎡⎤---⎣⎦,当t =时,由②2ππ11022+--=->t t 不符合题意,排除A 、B ;当t =2ππ11022--=+->-t t 不符合题意,排除D ;[]1,0t ∈-时易验证满足①,故选:C.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对得3分,有选错得0分9.已知直线()():2240l m x m y +---=,圆22:4690C x y x y ++-+=,则()A.l 过定点()1,1B.圆C 与y 轴相切C.若l 与圆C 有交点,则m 的最大值为0D.若l 平分圆C ,则25m =-【答案】ABD 【解析】【分析】利用直线方程与m 的取值无关,求解定点判A ,利用直线与圆的位置关系判断B ,C ,先发现直线必过圆心,后将圆心代入直线,求解参数,判断D 即可.【详解】对A ,整理直线l 的方程,得()()240m x y x y -++-=,令0x y -=,解得x y =,当x y =时,直线方程与m 的取值无关,又2x y +=,解得1x y ==,即l 必过定点()1,1,故A 正确;对B ,整理圆C 的方程,得22(2)(3)4x y ++-=,易知圆心到y 轴的距离为2,又2r =,故得圆C 与y 轴相切,故B 正确;对C ,若l 与圆C 有交点,设圆心C 到直线l 的距离为d ,可得2d =,解得142,,17m ⎡⎤∈-⎢⎥⎣⎦故C 错误;对D ,若l 平分圆C ,则l 必过圆心,易知圆心为()2,3-,将()2,3-代入直线l 的方程,得5240m -+-=,解得25m =-,故D 正确.故选:ABD.10.的正方形ABCD 沿对角线AC 折起,当以,,,A B C D 四点为顶点的三棱锥体积最大时()A.AB CD⊥B.直线BD 与平面ABC 所成角的大小为π4C.平面ABD 与平面BCD 夹角的余弦值为13D.四面体ABCD的内切球的半径为2【答案】BCD 【解析】【分析】根据题意画出图形,再由几何法求解异面直线垂直、线面成角、面面成角和内切球半径即可.【详解】如图所示,当平面BAC ⊥平面DAC时,三棱锥体积最大,记E 为AC 中点,此时DE ⊥平面BAC ,因为AB ⊂平面BAC ,所以AB DE ⊥,因为CD DE D = ,所以AB 与CD 不垂直,A 错误.对于B :直线BD 和平面ABC 所成角即为EBD ∠,因为tan 1ED EBD BE ∠==,故π4EBD ∠=,B 正确.对于C :由于BC CD BA AD ===,取BD 中点G ,则有,CG BD AG BD ⊥⊥,故CGA ∠为平面ABD 与平面BCD 所成角的平面角.则2221cos 23AG CG AC CGA AG CG +-∠==⨯,C 正确.对于D :设内切球球心为I ,内切球半径为r ,由等体积法知,13ABCD I ABC I BCD I ACD I ABD ABCD V V V V V rS ----=+++=其中,1133ABCD ACD V BE S =⨯=,1122222ABCD S ⎡⎤⎛⎫⎛=⨯⨯+⨯= ⎪ ⎢⎥⎝⎭⎝⎣⎦,故32ABCD ABCD V r S ===D 正确.故选:BCD.11.已知函数()f x 是定义在()1,+∞上的连续函数,且在定义域上处处可导,()f x '是()f x 的导函数,且()()1f x x f x x'>>>,则()A.()()()42f f f < B.()()422f f >C.()2f < D.()()24e 2>f f 【答案】BC 【解析】【分析】根据()10f x '>>可判断()f x 在()1,∞+单调递增,即可判断A ,构造()()f x g x x=,利用导数求解()g x 在()1,∞+单调递增,即可判断BC,构造()()exf x h x =,求导求解()h x 在()1,∞+单调递减,即可判断D.【详解】由已知得()f x x x>,故()()22,422f f >>,又因为()10f x '>>,所以()f x 在()1,∞+单调递增,所以()()()42,f f f >A 错误;构造函数()()f x g x x=,则()()()10f x g x f x x x ⎛⎫=⋅-> ⎪⎝⎭'',所以()g x 在()1,∞+单调递增,因此()()42g g >,即()()()()42,42242f f f f >>,B 正确;由于()()1,1f x f x x x>>>,故()()()()()()()()()()2,,()f f x f x g f x g x f x xf f x f x x>><,因此()2f <,C 正确;构造函数()()exf x h x =,则()()()exf x f x h x '='-,而()()f x x f x >>',故()()0,h x h x '<在()1,∞+单调递减,因此()()()()()()2424242,4e 2e e f f h h f f <<<,D 错误.故选:BC.【点睛】方法点睛:利用导数比较大小的基本步骤(1)作差或变形;(2)构造新的函数()h x ;(3)利用导数研究()h x 的单调性或最值;(4)根据单调性及最值,得到所证不等式.三、填空题:本题共3小题,每小题5分,共15分.12.已知公比为2的等比数列{}n a 满足2341a a a ++=,则1a =______.【答案】114【解析】【分析】利用等比数列的通项公式可得答案.【详解】由题意可得()2323411141a a a a q q q a++=++==,解得1114a =,故答案为:114.13.函数()cos (0)f x x ωω=>的图象在x ω=与2x ω=处的切线斜率相同,则ω的最小值为______.【答案】【解析】【分析】对()f x 求导,可得()2f f ωω⎛⎫=⎪⎝'⎭',则2sin sin2ω=,即可得出ω的最小值.【详解】因为()cos (0)f x x ωω=>,所以()sin f x x ωω=-',因为函数()cos (0)f x x ωω=>的图象在x ω=与2x ω=处的切线斜率相同,所以()2sin f ωωω'=-,2sin2f ωω⎛⎫=-⎪⎝⎭',故有2sin sin2ωωω-=-,即2sin sin2ω=,则()222πk k ω=+∈Z 或()22π2πk k ω+=+∈Z ,解得)k ω=∈Z 或)k ω=∈Z ,当0k =,<,故ω的最小值为..14.若函数()log (0,0x f x a a x =>>,且1)x ≠的图象与直线2ln x y a +=没有交点,则a 的取值范围是______.【答案】{}e 1⎛⎫⋃ ⎪ ⎪⎝⎭【解析】【分析】由题意可得方程log 2ln x a x a =-+在()()0,11,x ∞∈⋃+无解,即函数()ln 2ln ln ln g x x x a x a =-⋅+在()()0,11,x ∞∈⋃+无零点,当1a =时直接判断,当1a ≠时求出函数的导函数,再分1a >、01a <<两种情况讨论,当1a >时利用导数说明函数的单调性,求出函数的最小值,依题意只需()()0min 0g x g x =>,从而求出0x 的取值范围,再结合()0011ln ln 2x x a +=求出a 的范围.【详解】由题意可得方程log 2ln x a x a =-+在()()0,11,x ∞∈⋃+无解,将方程变形得ln 2ln ln ln 0x x a x a -⋅+=,即函数()ln 2ln ln ln g x x x a x a =-⋅+在()()0,11,x ∞∈⋃+无零点,易得()g x 的定义域为()0,∞+,仅在讨论零点时舍去1x =的情况;若1a =时,则()ln g x x x =,当01x <<时()0g x <,当1x >时()0g x >,故在()()0,11,∞⋃+无零点,因此1a =符合题意;当1a ≠时,则()2ln 1ln a g x x x =+-',设()2ln 1ln a x x x ϕ=+-,则()22ln x ax x ϕ='+,当1a >时()0x ϕ'>,则()x ϕ在()0,∞+单调递增,即()g x '在()0,∞+单调递增,由于0x →时()g x ∞'→-,x →+∞时()g x ∞'→+,由零点存在性定理可知()g x 在()0,∞+必有、且只有一个零点,设为0x ,则当()00,x x ∈时()0g x '<,当()0,x x ∞∈+时()0g x '>,所以()g x 在()00,x 上单调递减,在()0,x ∞+上单调递增,其中()0011ln ln 2x x a +=,故只需令()00g x >,当01x =时()0ln 0g x a =>符合题意,因此()()()000000001ln ln 1ln 1ln 2g x x x x x x x x =-+++()200012ln ln 102x x x ⎡⎤=--->⎣⎦,即()2002ln ln 10x x --<,解得01ln 12x -<<,则0e x <<,设()()11ln2h x x x =+,e x ⎫<<⎪⎭,则()()12ln 02h x x =+>',所以()h x 在⎫⎪⎭上单调递增,又h =,()e e h =,ln ea <<,则ee a <<;当01a <<时,()1ln 0g a =<,02g=>,故()g x 在区间1,2⎛⎫ ⎪ ⎪⎝⎭必有零点,与所求不符.综上,a 的取值范围为{}e 1⎛⎫⋃ ⎪ ⎪⎝⎭.故答案为:{}e 1⎛⎫⋃ ⎪ ⎪⎝⎭【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.已知函数()213ex x f x --=.(1)求()f x 的单调区间;(2)求()f x 的极值.【答案】(1)单调递减区间为()(),1,3,∞∞--+,单调递增区间为()1,3-(2)极大值为26e,极小值为22e -【解析】【分析】(1)根据函数求出导函数,再由导函数解出原函数的单调区间即可;(2)根据第1问的单调性求出极值即可.【小问1详解】因为()213e x x f x --=,所以()()()2113123e ex x x x x x f x --'--+-+==,令()0f x '=,解得3x =或=1x -,令()0f x '<得3x >或1x <-,令()0f x '>得13x -<<,列表如下:x(),1∞---1()1,3-3()3,∞+()f x '-0+-()f x极小值极大值故()f x 的单调递减区间为()(),1,3,∞∞--+,单调递增区间为()1,3-.【小问2详解】由(1)可得()f x 的极大值为()263ef =,极小值为()212e f -=-.16.多样性指数是生物群落中种类与个体数的比值.在某个物种数目为S 的群落中,辛普森多样性指数211si i n D N =⎛⎫=- ⎪⎝⎭∑,其中i n 为第i 种生物的个体数,N 为总个体数.当D 越大时,表明该群落的多样性越高.已知,A B 两个实验水塘的构成如下:绿藻衣藻水绵蓝藻硅藻A66666B124365(1)若从,A B 中分别抽取一个生物个体,求两个生物个体为同一物种的概率;(2)(i )比较,A B 的多样性大小;(ii )根据(i )的计算结果,分析可能影响群落多样性的因素.【答案】(1)15(2)(i )A 的多样性大于B (ii )答案见解析【解析】【分析】(1)利用古典概型的求法可得答案;(2)根据给出211si i n D N =⎛⎫=- ⎪⎝⎭∑求出,然后比较即可.【小问1详解】记事件C 为“两个生物个体为同一物种”,则C 发生的概率为()11155P C =⨯=.【小问2详解】(i )由表可知30,5,A B A B N N S S ==⎧⎨==⎩所以2214156305A D =-⨯⨯=,()22222216711243653090B D =-⨯++++=;即A BD D >,故A 的多样性大于B ;(ii )在(i )中两群落物种数目相同,各物种数量不同,而A 中各物种数量均相同,即物种均匀度更大,分析可得物种均匀度也会影响群落多样性.17.如图所示,正四棱锥P ABCD -中,,AB PA M N ==分别为,PA PC 的中点,2=PE BE ,平面EMN 与PD 交于G .(1)证明:PD ⊥平面EMGN ;(2)求二面角P ME N --的余弦值.【答案】(1)证明见解析(2)4515【解析】【分析】(1)先通过PHE PGS ∽,证PD GE ⊥,再通过MN ⊥平面PBD ,证MN PD ⊥,最后通过线面垂直判定定理即可证PD⊥平面EMGN ;(2)建立空间直角坐标系,利用空间向量的方法求二面角P ME N --的余弦值即可.【小问1详解】连接,AC BD ,设AC BD O = ,连接PO ,有PO ⊥平面ABCD ,由题意得,ME NE MG NG ==,且6,6BD PO ===,连接MN ,EG ,设EG MN S ⋂=,则MS NS =,故S 在PO 上,过E 作,EH PO H ⊥为垂足,在POB 中,23PE EH PB OB ==,故2EH =,因为MN AC ,所以13,12PS PO SH PH PS ===-=,故1tan tan 2SEH DPO ∠==∠,所以PHE PGS ∽,所以90,PGE PHE PD GE ∠∠==⊥ ,又,,MN OP MN BD ^^OP ⊂平面PBD ,BD ⊂平面PBD ,BD OP O = ,故MN ⊥平面PBD ,因为PD ⊂平面PBD ,故MN PD ⊥.又,MN GE S GE ⋂=⊂平面,EMGN MN ⊂平面EMGN ,故PD ⊥平面EMGN .【小问2详解】以,,OA OB OP 所在的直线分别为,,x y z 轴建立空间直角坐标系可得()()()()3,0,0,0,3,0,0,0,6,0,3,0A B P D -,由(1)得PD ⊥平面EMGN ,故平面EMGN 的一个法向量为()0,3,6DP =其中()()3,0,6,3,3,0AP AB =-=-设平面PAB 的一个法向量为(),,n x y z =,则03603300n AP x z x y n AB ⎧⋅=-+=⎧⎪⇒⎨⎨-+=⋅=⎩⎪⎩,令1z =可得()2,2,1n =设θ为二面角P ME N --的平面角,则cos cos ,15n DP θ==,由图可知所求二面角为锐角,故二面角P ME N --的余弦值为15.18.已知椭圆221:12x C y +=,焦点在x 轴上的双曲线2C,且过点),点()00,P x y 在2C 上,且002x y >>,2C 在点P 处的切线交1C 于,A B 两点.(1)求直线AB 的方程(用含00,x y 的式子表示);(2)若点()0,3Q ,求QAB 面积的最大值.【答案】(1)0002x y x y y =-(22+【解析】【分析】(1)由离心率和所过的点求出双曲线的方程为222:2C x y -=,由点P 在第一象限,将双曲线2C变形为y =,利用导数求切点处的切线方程.(2)直线与双曲线联立方程组,利用弦长公式和点到直线距离表示出QAB 面积,消元后由基本不等式求最大值.【小问1详解】焦点在x 轴上的双曲线2C,则双曲线为等轴双曲线,设双曲线方程为222x y a -=,由双曲线过点),代入方程,解得双曲线222:2C x y -=,点()00,P x y 在2C 上,有22002x y -=,因为点P 在第一象限,所以可以将双曲线2C变形为y =.求导有y '=当0x x =时,000x x x y y =='=,所以AB 的方程为:()0000x y y x x y -=-,化简有0002x y x y y =-.【小问2详解】设()()01122002,,,,,x k m A x y B x y y y ==-,有2222k m -=,联立2212x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得()222124220k x kmx m +++-=,有12221224212221km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩,()22Δ821240k m =+-=>,12AB x =-=222121k k =++,点Q 到直线AB的距离d =,则12QABS AB d == 0002,x k m y y ==-代入,有QAB S =△)200203234y y y ++()()()0002200222411343212216y y y y y ⎡⎤⎫--=+=+⎢⎥⎪⎪+-+-+⎢⎥⎝⎭⎣⎦()0021116232122y y ⎡⎤⎡⎤⎢⎥⎥⎢⎥=+≤+=⎢⎥-++⎢⎢⎥-⎣⎦⎢⎣当且仅当023y =+时取等号,故QAB 面积的2+.【点睛】方法点睛:把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.19.若数列{}n a 在某项之后的所有项均为一常数,则称{}n a 是“最终常数列”.已知对任意()*,n m m n ≥∈N ,函数()f x 和数列{}n a 满足{}()11min n i i na f a +≤≤=.(1)当()f x x >时,证明:{}n a 是“最终常数列”;(2)设数列{}n b 满足11m b a +=,对任意正整数()1,n n n b f b +=.若方程()0f x x-=无实根,证明:{}n a 不是“最终常数列”的充要条件是:对任意正整数i ,i m i b a +=;(3)若(){}21,,n m f x x a ==不是“最终常数列”,求1a 的取值范围.【答案】(1)证明见解析(2)证明见解析(3)()0,1【解析】【分析】(1)利用“最终常数列”定义即可证明;(2)利用反证法结合“最终常数列”新定义证明必要性,利用“最终常数列”定义证明必要性;(3)利用第二问的证明结论即可求出1a 的取值范围.【小问1详解】因为()f x x >,所以对任意{}(){}111,min min n i i i ni nn m a f a a +≤≤≤≤≥=>,故数列最小值不变.即对于任意{}{}{}(){}()11111,min min ,min min i i n i i i ni mi ni mn m a a a f a f a +≤≤≤≤≤≤≤≤≥===恒成立.故对于任意1n m ≥+,有{}()1min n i i ma f a ≤≤=,故{}n a 是“最终常数列”.【小问2详解】必要性,若{}n a 不为“最终常数列”,假设存在一个n m ≥使得{}11min n i i n a a +≤≤≥,则由(1)同理可知其最小值不变,故{}n a 为“最终常数列”,矛盾.所以对任意{}11,min n i i nn m a a +≤≤≥<.故对任意1n m ≥+,均有{}1min n i i na a ≤≤=成立,故()1n n a f a +=对任意1n m ≥+成立,又由{}nb 定义递推,知对任意正整数,i m i i b a +=.充分性:若任意正整数,i m i i b a +=,则()1n n a f a +=对任意1n m ≥+成立,又由{}n a 定义知任意1n m ≥+,均有{}1min n i i n a a ≤≤=成立.由此知{}{}1111min min n i i n i n i na a a a +≤≤+≤≤=≤=.又由()0f x x -=知1+≠n n a a ,故1n n a a +<,即{}n a 在第1m +项后严格递减,故不是“最终常数列”.综上,原命题得证.【小问3详解】由(2)知:要求(){}12111min i i f a a a a ≤≤=<=,解得()10,1a ∈.下面证明:()11,4a ∈即为所求.由()11,4a ∈时,()()22110,1a f a a ==∈,由递推可知,对任意*n ∈N 均有()0,1n a ∈.进而()1n n a f a +=对任意*n ∈N 均成立,结合(2)结论知{}n a 不是“最终常数列”.故1a 的取值范围是()0,1.【点睛】关键点点睛:本题求解的关键是:一要准确理解给定的新定义;二要利用反证法得出矛盾.。
五岳金太阳2020年普通高等学校招生全国统一考试4月联考数学(理数)卷(含答案)
理科数学试题弟 贞(共5 fi )A.4 500 元D.6 0∞ 元绝密★总用祁 2020年普通高竽学校招生全国统一考试•联考理科数学本试卷共5页,23小题(含选再题),淄分150分,野试用时⑵ 分钟. 注爲事项:∣∙答卷前•考牛务必将自己的姓名芳牛号、考场号和座付号填写金答题卡上•用2R 铅笔将试卷 类型(R )填涂在答题卡相应位買上,将条形码横贴在答题卡右上角“条形码粘贴处”. 2. 作答选择题时.选出毎小题答案后.用2R 铅笔在答题卡匕对应题冃选项的答案信息点涂 然;如需改动,用橡皮擦于净后,在选涂具他答案.答案不能答在试卷上.3. 卄选择題必须用黑色字迹的钢笔或签字笔作答,容案必须写在答题卡各题忖指定区域内 相应位置上;如需改动,先划掉原来的答案•然后再写上新答案;不准使用铅笔和涂改液. 不按以上要求作答无效・4. 选考题的作答:先把所选题目的题号在答题卡匕指定的位置用2B 铅笔涂黑。
答案写在 答题R L 对应的答题区域内•写在试卷、茸稿纸和答题R I.的非答题区域均无效C5. 為试结束后,请将本试卷和答题K 一并上交氏 一、选择题:本题共12小题,毎小題5分,共60分.在甜小题给岀的四个选项中,只育一项是符合题目要求的•I.设集合A = MX 2-2r-3<0,r∈∕V},则集合A 的真子集有 A.5个B.6个C∙7个D∙8个2.已知混虚数单位,则化简(; ^y O20的结果为AJB.TCTD 」3.若干年囲,某教师刚退休的月退休金为4 0∞元,月诅休金各种用途占比统计图如下面的条形 图孩教师退休后加强了体育綏炼,冃的月追休金的各种用途占比统计图如下面的折线图•巳 知H 前的月就页费比刚退休时少IOO 兀,则H 肚该教帅的月退休金为试卷类型:BB.5 000 JLC.5 500 元理科数学试题第2页(共5币)A∙9两G 266πrc∙W ■两250 T274•将包話甲上■丙在内的X 人平均分成两组参加“文明交通乜愿若活动,其中一组指挥交通, 一组分发宣传资料,则甲Z 至少一人参加指挥交通且甲、丙不在同一组的概率为 A,⅜ 75•已知她物线y 2 =4x 的焦点为八过点F 和抛物线上一点M(3∙2√J)的直线I 交抛物线丁另一 点 /V,则IpFl : I/VMI 等于 A.1 : 2B.1 : 3C.1 : 4D.1 : 436. 在所有棱长都相竽的首三棱柱ABC-A I B l C I 中,0,E 分别为棱CC I I AC 的中点•则首线仙与 平面H x UE 所成角的余弦值为C √30G √∏0TV √70F ⅛C∙^⅞^D∙^ΠΓ^>07. 已知点A(4,3) •点B 为不尊式组y-yWO 所表示平面K 域上的任意一点,则IAB I 的最小x+2y-6≤0值为 A.5B.—C.√58. 给出下列说法:① 定义在[a 9b ]卜的偶函数/(x) = √-(α+4)z+Λ的賢大值为20; ② 絕■绘∙ la 冲“"的充分不必要条件;4③ 命 Ir 3x φe (0,+» )竝+丄 M2”的否定形式 Jft “ ∀xe(0,+oo) ,x+-<2∖X其中正确说法的个数为 A.0B.lC.2D.39. B⅛log m 3>0,α=m k ∙?,b =m ,β∙? I C- Irf a5 ,JM a,b r c 间的大小关系为 A.α<∂<cB.b<a<cC.c<a<bD.6<c<α10. 元代数学家朱世杰在《算学启蒙〉中提及如下问题:今有银-秤-斤十两(1秤=15斤,1斤=16丙),令甲、乙、丙从上作折半羞分Z,问:各得几何?其奁思是:现有银一秤一斤十两,现 将银分给甲、乙、丙三人,他们三人毎一个人所得是前一个人所得的一半•若银的数量不变, 按此法将银依次分给7个人•则得银最少的-•个人得银 c ∙7A V z 30A nr理科数学试題第3页(共5页)12. 已知/(”)为奇函数,g(%)为偶函数,且/(%)怙d)=b β3(3W),不等式3g(*)∙√μHM 对 恒成立,则/的晟大值为 A 」B.3-2 log 32C.2D.ylog j 2-I 二、填空题:本题共4小题,每小题5分,共20分. 13.已知向星"(2厂√5)J=(1.2√5),则/在。
全国大联考2020届高三4月联考数学(文)试题
在直线
l
:
y
=
1 的上方,
所以
g ( x) min
=
g (n)
=
e n
n
1,解得
n
e.
所以 n 的取值集合为 A = 1, 2.
(3)对 x1x2 (0, +),
f
( x1 ) − g ( x2 )
的最小值等价于 g ( x) min
−
f
(x) max
=
e n
n
−
1, ne
当 n = 1时,
所以 OAOB = x1x2 + y1y2 0 ,
( ) 又 x1x2 + y1 y2 = 1 + k 2 y1 y2 − k ( y1 + y2 ) + 1
( ) =
1+ k2
−3 4+ k2
−
2k 2 4+ k2
+1
=
−3
−
3k
2
− 2k 2 4+ k2
+
4
+
k2
=
1 − 4k2 4+ k2
0,
故所求的椭圆方程为 x2 + y2 = 1。 4
(2)设
A
(
x1
,
y1
)
,
B
(
x2
,
y2
)
,由
1 3
x1
1 e
,
得
y1
+
y2
=
2k k2 +
4
,3 k2 +4
,
( ) = (2k )2 +12 4 + k2 = 16k2 + 48 0 ,
(全国I卷)2020届高三数学五省优创名校联考试题 理
2020~2020年度高三全国Ⅰ卷五省优创名校联考数学(理科)第Ⅰ卷一、选择题:本大题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合M={x|3x2-13x-10<0}和N={x|x=2k,k∈Z}的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有A.1个B.2个C.3个D.无穷个2.34i34i 12i12i +--= -+A.-4B.4C.-4iD.4i3.如图1为某省2020年1~4月快递业务量统计图,图2是该省2020年1~4月快递业务收入统计图,下列对统计图理解错误的是A.2020年1~4月的业务量,3月最高,2月最低,差值接近2000万件B.2020年1~4月的业务量同比增长率均超过50%,在3月最高C.从两图来看,2020年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致D.从1~4月来看,该省在2020年快递业务收入同比增长率逐月增长4.设x,y满足约束条件60330x yxx y-+⎧⎪⎨⎪+-⎩≥≤≥,则11x yzx++=+的取值范围是A.(-∞,-8]∪[1,+∞)B.(-∞,-10]∪[-1,+∞)C.[-8,1]D.[-10,-1]5.某几何体的三视图如图所示,其中,正视图中的曲线为圆弧,则该几何体的体积为A.4643π-B.64-4πC.64-6πD.64-8π6.有一程序框图如图所示,要求运行后输出的值为大于1000的最小数值,则在空白的判断框内可以填入的是A.i<6 B.i<7 C.i<8 D.i<97.在直角坐标系xOy中,F是椭圆C:22221x ya b+=(a>b>0)的左焦点,A,B分别为左、右顶点,过点F作x轴的垂线交椭圆C于P,Q两点,连接PB交y轴于点E,连接AE交PQ 于点M,若M是线段PF的中点,则椭圆C的离心率为A.2 2B.1 2C.1 3D.1 48.已知f(x)为定义在R上的奇函数,g(x)=f(x)-x,且当x∈(-∞,0]时,g(x)单调递增,则不等式f(2x-1)-f(x+2)≥x-3的解集为A.(3,+∞)B.[3,+∞)C.(-∞,3]D.(-∞,3)9.函数f(x)=ln|x|+x2-x的图象大致为A.B.C.D.10.用0与1两个数字随机填入如图所示的5个格子里,每个格子填一个数字,并且从左到右数,不管数到哪个格子,总是1的个数不少于0的个数,则这样填法的概率为A .532 B .516C .1132D .111611.已知函数f (x )=3sin (ωx+φ)(ω>0,0<φ<π),()03f π-=,对任意x ∈R 恒有()|()|3f x f π≤,且在区间(15π,5π)上有且只有一个x 1使f (x 1)=3,则ω的最大值为A .574 B .1114C .1054D .117412.设函数f (x )在定义域(0,+∞)上是单调函数,且(0,)x ∀∈+∞,f[f (x )-e x+x]=e .若不等式f (x )+f′(x )≥ax 对x ∈(0,+∞)恒成立,则a 的取值范围是 A .(-∞,e -2] B .(-∞,e -1] C .(-∞,2e -3] D .(-∞,2e -1]第Ⅱ卷二、填空题:本大题共4小题.将答案填在答题卡中的横线上. 13.已知单位向量a ,b 的夹角为60°,则|2|________|3|+=-a b a b .14.已知正三棱柱ABC —A 1B 1C 1的高为6,AB =4,点D 为棱BB 1的中点,则四棱锥C —A 1ABD的表面积是________.15.在(x2-2x-3)4的展开式中,含x6的项的系数是________.16.已知双曲线C:22221 x yab-=(a>0,b>0),圆M:222()4bx a y-+=.若双曲线C的一条渐近线与圆M相切,则当22224149aaa b-+取得最大值时,C的实轴长为________.三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题.17.设数列{a n}的前n项和为S n,a1=3,且S n=na n+1-n2-n.(1)求{a n}的通项公式;(2)若数列{b n}满足22121(1)nnnbn a++=-,求{b n}的前n项和T n.18.△ABC的内角A,B,C所对的边分别为a,b,c.已知22()23sina cb ab C+=+.(1)求B的大小;(2)若b=8,a>c,且△ABC的面积为33,求a.19.如图所示,在四棱锥S—ABCD中,SA⊥平面ABCD,底面ABCD为直角梯形,其中AB∥CD,∠ADC=90°,AD=AS=2,AB=1,CD=3,且CE CSλ=u u u r u u u r.(1)若23λ=,证明:BE⊥CD;(2)若13λ=,求直线BE与平面SBD所成角的正弦值.20.在直角坐标系xOy中,动圆P与圆Q:(x-2)2+y2=1外切,且圆P与直线x=-1相切,记动圆圆心P的轨迹为曲线C.(1)求曲线C的轨迹方程;(2)设过定点S(-2,0)的动直线l与曲线C交于A,B两点,试问:在曲线C上是否存在点M(与A,B两点相异),当直线MA,MB的斜率存在时,直线MA,MB的斜率之和为定值?若存在,求出点M的坐标;若不存在,请说明理由.21.已知函数f(x)=e x+ax2,g(x)=x+blnx.若曲线y=f(x)在点(1,f(1))处的切线与曲线y=g(x)在点(1,g(1))处的切线相交于点(0,1).(1)求a,b的值;(2)求函数g(x)的最小值;(3)证明:当x>0时,f(x)+xg(x)≥(e-1)x+1.(二)选考题:请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程]已知直线l的参数方程为,2x my⎧=⎪⎪⎨⎪=⎪⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,椭圆C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=48,其左焦点F在直线l上.(1)若直线l与椭圆C交于A,B两点,求|FA|+|FB|的值;(2)求椭圆C的内接矩形面积的最大值.23.[选修4—5:不等式选讲]已知函数f(x)=|x+2|-|ax-2|.(1)当a=2时,求不等式f(x)≥2x+1的解集;(2)若不等式f(x)>x-2对x∈(0,2)恒成立,求a的取值范围.2020~2020年度高三全国Ⅰ卷五省优创名校联考数学参考答案(理科)1.C 2.D 3.D 4.A 5.B 6.B 7.C 8.B 9.C 10.B 11.C 12.D 13.114.36 15.121617.解:(1)由条件知S n =na n +1-n 2-n ,① 当n =1时,a 2-a 1=2;当n≥2时,S n -1=(n -1)a n -(n -1)2-(n -1),② ①-②得a n =na n +1-(n -1)a n -2n , 整理得a n +1-a n =2.综上可知,数列{a n }是首项为3、公差为2的等差数列,从而得a n =2n +1. (2)由(1)得222221111[](22)4(1)n n b n n n n +==-++, 所以22222221111111111[(1)()()][1]4223(1)4(1)44(1)n T n n n n =-+-++-=-=-+++L .18.解:(1)由22()sin a c b C +=+得2222sin a c ac b C ++=+,所以2222sin a c b ac C +-+=,即2(cos 1)sin ac B C +=,所以有sin (cos 1)sin C B B C +=,因为C ∈(0,π),所以sinC >0,所以cos 1B B +=,cos 2sin()16B B B π-=-=,所以1sin()62B π-=.又0<B <π,所以666B ππ5π-<-<,所以66B ππ-=,即3B π=.(2)因为11sin 222ac B ac =⋅=ac =12. 又b 2=a 2+c 2-2accosB =(a +c )2-3ac =(a +c )2-36=64, 所以a +c =10,把c =10-a 代入到ac =12(a >c )中,得5a =. 19.(1)证明:因为23λ=,所以23CE CS =,在线段CD 上取一点F 使23CF CD =,连接EF ,BF ,则EF ∥SD 且DF =1. 因为AB =1,AB ∥CD ,∠ADC =90°, 所以四边形ABFD 为矩形,所以CD ⊥BF . 又SA ⊥平面ABCD ,∠ADC =90°, 所以SA ⊥CD ,AD ⊥CD .因为AD∩SA=A ,所以CD ⊥平面SAD . 所以CD ⊥SD ,从而CD ⊥EF .因为BF∩EF=F ,所以CD ⊥平面BEF . 又BE ⊂平面BEF ,所以CD ⊥BE .(2)解:以A 为原点,AD u u u r的正方向为x 轴的正方向,建立空间直角坐标系A —xyz ,则A (0,0,0),B (0,1,0),D (2,0,0),S (0,0,2),C (2,3,0),所以142(,1,)333BE BC CE BC CS =+=+=u u u r u u u r u u u r u u u r u u u r ,(0,1,2)SB =-u u r ,(2,0,2)SD =-u u u r .设n =(x ,y ,z )为平面SBD 的法向量,则0SB SD ⎧⋅=⎪⎨⋅=⎪⎩u u r u u u rn n , 所以20y z x z -=⎧⎨-=⎩,令z =1,得n =(1,2,1).设直线BE 与平面SBD 所成的角为θ,则||2174sin |cos ,|||||BE BE BE θ⋅===u u u ru u u r u u u r n n n .20.解:(1)设P (x ,y ),圆P 的半径为r ,因为动圆P 与圆Q :(x -2)2+y 2=1外切,1r =+,①又动圆P 与直线x =-1相切,所以r =x +1,②由①②消去r 得y 2=8x ,所以曲线C 的轨迹方程为y 2=8x .(2)假设存在曲线C 上的点M 满足题设条件,不妨设M (x 0,y 0),A (x 1,y 1),B (x 2,y 2),则2008y x =,2118y x =,2228y x =, 1010108MA y y k x x y y -==-+,2020208MB y y k x x y y -==-+, 所以120210*********(2)88()MA MB y y y k k y y y y y y y y y y +++=+=+++++,③ 显然动直线l 的斜率存在且非零,设l :x =ty -2,联立方程组282y x x ty ⎧=⎨=-⎩,消去x 得y 2-8ty +16=0,由Δ>0得t >1或t <-1,所以y 1+y 2=8t ,y 1y 2=16,且y 1≠y 2, 代入③式得02008(82)816MA MB t y k k y ty ++=++,令02008(82)816t y m y ty +=++(m 为常数), 整理得2000(864)(1616)0my t my y m -+-+=,④因为④式对任意t ∈(-∞,-1)∪(1,+∞)恒成立,所以0200864016160my my y m -=⎧⎪⎨-+=⎪⎩, 所以024m y =⎧⎨=⎩或024m y =-⎧⎨=-⎩,即M (2,4)或M (2,-4), 即存在曲线C 上的点M (2,4)或M (2,-4)满足题意.21.(1)解:因为f′(x )=e x+2ax ,所以f′(1)=e +2a ,切点为(1,e +a ),所以切线方程为y =(e +2a )(x -1)+(e +a ),因为该切线过点(0,1),所以a=-1.又()1bg xx'=+,g′(1)=1+b,切点为(1,1),所以切线方程为y=(1+b)(x-1)+1,同理可得b=-1.(2)解:由(1)知,g(x)=x-lnx,11 ()1xg xx x-'=-=,所以当0<x<1时,g′(x)<0;当x>1时,g′(x)>0,所以当x=1时,g(x)取极小值,同时也是最小值,即g(x)min=g(1)=1.(3)证明:由(1)知,曲线y=f(x)在点(1,f(1))处的切线方程为y=(e-2)x +1.下面证明:当x>0时,f(x)≥(e-2)x+1.设h(x)=f(x)-(e-2)x-1,则h′(x)=e x-2x-(e-2),再设k(x)=h′(x),则k′(x)=e x-2,所以h′(x)在(0,ln2)上单调递减,在(ln2,+∞)上单调递增.又因为h′(0)=3-e,h′(1)=0,0<<ln2<1,所以h′(ln2)<0,所以存在x0∈(0,1),使得h′(x0)=0,所以,当x∈(0,x0)∪(1,+∞)时,h′(x)>0;当x∈(x0,1)时,h′(x)<0.故h(x)在(0,x0)上单调递增,在(x0,1)上单调递减,在(1,+∞)上单调递增.又因为h(0)=h(1)=0,所以h(x)=f(x)-(e-2)x-1≥0,当且仅当x=1时取等号,所以e x-(e-2)x-1≥x2.由于x>0,所以e(e2)1x xxx---≥.又由(2)知,x-lnx≥1,当且仅当x=1时取等号,所以,e(e2)11lnx xx xx---+≥≥,所以e x-(e-2)x-1≥x(1+lnx),即e x-x2+x(x-lnx)≥(e-1)x+1,即f(x)+xg(x)≥(e-1)x+1.22.解:(1)将cos,sinxyρθρθ=⎧⎨=⎩代入ρ2cos2θ+3ρ2sin2θ=48,得x2+3y2=48,即221 4816x y+=,因为c 2=48-16=32,所以F的坐标为(-,0), 又因为F 在直线l上,所以m =-把直线l的参数方程22x y t ⎧=-⎪⎪⎨⎪=⎪⎩代入x 2+3y 2=48,化简得t 2-4t -8=0,所以t 1+t 2=4,t 1t 2=-8,所以12||||||FA FB t t +=-=== (2)由椭圆C 的方程2214816x y +=,可设椭圆C 上在第一象限内的任意一点M 的坐标为(θ,4sinθ)(02θπ<<),所以内接矩形的面积8sin 2S θθθ=⋅=, 当4θπ=时,面积S取得最大值 23.解:(1)当a =2时,4,2()|2||22|3,214,1x x f x x x x x x x --⎧⎪=+--=-<<⎨⎪-+⎩≤≥,当x≤-2时,由x -4≥2x+1,解得x≤-5;当-2<x <1时,由3x≥2x+1,解得x ∈∅;当x≥1时,由-x +4≥2x+1,解得x =1.综上可得,原不等式的解集为{x|x≤-5或x =1}.(2)因为x ∈(0,2),所以f (x )>x -2等价于|ax -2|<4, 即等价于26a x x-<<, 所以由题设得26a x x-<<在x ∈(0,2)上恒成立, 又由x ∈(0,2),可知21x -<-,63x >, 所以-1≤a≤3,即a 的取值范围为[-1,3].。
2020届全国大联考高三4月联考文科数学试题
秘密★考试结束前 [考试时间:2020年4月2日 15:00~17:00]全国大联考 2020 届高三 4 月联考文科数学试卷注意事项:1.考试前,请务必将考生的个人信息准确的输入在正确的位置。
2.考试时间120分钟,满分150分。
3.本次考试为在线联考,为了自己及他人,请独立完成此试卷,切勿翻阅或查找资料。
4.考试结束后,本次考试原卷及参考答案将在网上公布。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有 一项是符合题目要求的。
1. 不等式>-x 110成立的充分不必要条件是 A. x>1 B. x>−1 C.x<−1或0<x< 1 D. −1<x<12. 复数z=1+2i 的共轭复数是z ,则z ·z =A. 3B. 3C. 5D. 53. 甲乙两名同学高三以来6次数学模拟考试的成绩统计如下图1,甲乙两组数据的平均数分别为 x 甲、 x 乙,标准差分别为σ甲、σ乙,则A. x 甲< x 乙,σ甲<σ乙 B. x 甲< x 乙,σ甲>σ乙C. x 甲> x 乙,σ甲<σ乙 D. x 甲> x 乙,σ甲>σ乙4. 设m,n 是两条不同的直线,α,β是两个不同的平面,由下列四个命题,其中正确的是A. 若m ⊥α,m ⊥n ,则n ∥αB. 若m ∥α,n ∥α,则m ∥nC. 若α∥β,m ⊂ α,则m ∥βD. 若m ∥β,m ⊂ α,则α∥β 5. 《九章算术》中“开立圆术”曰:“置积尺数,以十六乘之,九而一,所得开立方除之,即立圆颈”.“开立圆术”相当于给出了已知球的体积V ,求球的直径d 的公式:d =31)916(V .若球的半径为r=1,根据“开立圆术”的方法计算该球的体积为A. 34πB. 169C. 49πD. 29 6.若需右边框图输出的值S=41,则判断框内应填入的条件是A .k >3?B .k >4?C .k >5?D .k >6?7. 已知,log ,41,3133132π=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=c b a 则a,b,c 的大小关系为A. a>b>cB. a>c>bC. c>a>bD. c>b>a8. 下列各图都是正方体的表面展开图,将其还原成正方体后,所得正方体完全一致(即各面所标序号相对位置相同)的是A. (I)和(IV)B. (I)和(III)C. (II)和(III)D. (II)和(IV)9. 在长为12cm 的线段AB 上任取一点C. 现作一矩形,邻边长分别等于线段AC,CB 的长,则该矩形面积大于20cm 2的概率为 A. 61 B. 31 C. 54 D. 32 10 双曲线E: 2222by a x -=1(a>0,b>0)的左,右焦点分别为F 1,F 2,过F 1作一条直线与两条渐近线分别相交于A ,B 两点,若F F 112=,||2||21OB F F =,则该双曲线的离心率为 A .2 B .3 C .2 D .311. 已知直线x=t 分别与函数f(x)=log 2(x+1)和g(x)=2log 2(x+2)的图象交于P ,Q 两点,则 P ,Q 两点间的最小距离为A. 4B. 1C.2 D. 212. 定义在 R 上的函数 f(x)满足 f(-x)= f(x),且对任意的不相等的实数 x 1,x 2∈[0,+∞)有 2121)()(x x x fx f -⋅<0成立,若关于x 的不等式f(2mx-lnx-3)≥2f(3)-f(-2mx+lnx+3)在x ∈[1,3]恒成立,则实数m 的取值范围是A. [e 21 ,1+63ln ]B. [e 1,2+36ln ]C. [e 1,2+33ln ]D. [e 21 ,1+66ln ]二、填空题:本大题共4小题,每小题5分,共20分.13. 某班级有50名学生,现采取系统抽样的方法在这50名学生中抽出10名,将这50名 学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~ 50号,若在第三组中抽得号码为12号的学生,则在第八组中抽得号码为____的学生. 14. 某公司计划在2020年春季校园双选招聘会招收x 名女性,y 名男性,若x, y 满足约束条件⎪⎩⎪⎨⎧≤≤-≥-6252x y x y x ,则该公司计划在本次校招所招收人数的最大值为________.15. 已知f(x)是定义在R 上的偶函数,对任意x ∈R 都有f(x+3)=f(x)且f(−1)=4,则f(1)的值为_______.16. 过抛物线C :x 2=2py (p>0)的焦点F 的直线交该抛物线于A 、B 两点,若4|AF|=|BF|,O 为坐标原点,则 =||||OF AF _______. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤。
五岳联考·河南广东等省2020届高三普通高等学校招生全国统一考试4月联考数学(理)【带答案】
绝密★启用前 试卷类型:B2020年普通高等学校招生全国统一考试·联考理科数学本试卷共5页,23小题(含选考题),满分150分,考试用时120分钟. 注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上用2B 铅笔将试卷类型(B )填在答题卡相应位置上,将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试卷和答题卡一并上交。
一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}N x x x x A ∈<--=,0322,则集合A 的真子集有( ) A .5个 B. 6个 C. 7个 D. 8个 2.已知i 是虚数单位,则化简2020)11(ii -+的结果为( ) A.i B.i - C.1- D.13.若干年前,某教师刚退休的月退休金为400元,月退休金各种用途占比统计图如下面的条形图该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( )A .4500元 B. 5000元 C .5500元 D .6000元 4.将包括甲、乙、丙在内的8人平均分成两组参加文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料,则甲、乙至少一人参加指挥交通且甲、丙不在同一组的概率为( ) A.72 B.73 C.71 D.143 5已知抛物线x y 42=的焦点为F ,过点F 和抛物线上一点)32,3(M 的直线l 交抛物线于另一点N ,则NM NF :等于( )A.2:1B.3:1C.4:1D.3:16.在所有棱长都相等的直三棱柱111C B A ABC -中,D ,E 分别为棱AC CC ,1的中点,则直线AB 与平面DE B 1所成角的余弦值为( )A.1030 B.2030 C.20130 D.10707已知点A (4,3),点B 为不等式组⎪⎩⎪⎨⎧≤-+≤-≥06200y x y x y 所表示平面区域上的任意一点,则AB 的最小值为( ) A.5 B.554 C.5 D.552 8.给出下列说法①定义在[a ,b]上的偶函数b x a x x f ++-=)4()(2的最大值为20; ②“4π=x ”是“1tan =x ”的充分不必要条件;③命题“21),,0(000≥++∞∈∃x x x ”的否定形式是“21),,0(<++∞∈∀xx x ” 其中正确说法的个数为( )A.0B.1C.2D.3 9.已知5.03422log 2log ,,,03log m c m b ma m ===>,则cb a ,,间的大小关系为A.c b a <<B.c a b <<C.b a c <<D.a c b <<10.元代数学家朱世杰在《算学启蒙》中提及如下问题:今有银一秤一斤十两(1秤=15斤,1斤=16两),令甲、乙、丙从上作折半差分之,问:各得几何?其意思是:现有银一秤一斤十两,现将银分给甲、乙、丙三人,他们三人每一个人所得是前一个人所得的一半.若银的数量不变,按此法将银依次分给7个人,则得银最少的一个人得银( )A .9两 B.127266两 C.63266两 D.127250两 11在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若3cos cos c A b B a =-,则Bb A a Ba cos cos cos +的最大值为( ) A.2 B.22 C.23 D.332 12.已知几)(x f 为奇函数,)(x g 为偶函数,且)13(log )()(3+=+xx g x f ,不等式0)()(3≥--t x f x g 对R x ∈恒成立,则t 的最大值为( )A.1B.2log 233-C.2D.12log 233- 二、填空题:本题共4小题,每小题5分,共20分13已知向量a =(2,5-),b =(1,52),则b 在a 方向上的投影等于 . 14在△ABC 中,∠B=32π,A 、B 是双曲线E 的左、右焦点,点C 在E 上,且BC=21AB ,则E 的离心率为 .5已知函数)0,0)(cos()(πϕωϕω≤≤>+=x x f 是奇函数,且在]4,6[ππ-上单调减,则ω的最大值是 .16已知三棱锥A-BCD 中,平面ABD ⊥平面BCD ,BC ⊥CD ,BC=CD=2,AB=AD=6,则三棱锥A-BCD 的外接球的体积为 .三、解答题:共70分解答应写出文字说明、证明过程或演算步骤第次年题为必考题,每个试题考生都必须作答第22、23题为选考题,考生根据要求作答 (一)必考题:共60分 17.(12分)已知数列{a n }的前n 项和为S n ,且112n n n S na a =+-. (1)求数列{a n }的通项公式;(2)若数列22n a ⎧⎫⎨⎬⎩⎭的前n 项和为T n ,证明: 32n T <.18.(12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABEF 为正方形,AF ⊥DF ,AF=22FD ,∠DFE=∠CEF=45. (1)证明DC ∥FE ;(2)求二面角D-BE-C 的平面角的余弦值.19.(12分)已知点P 在圆O :x 2+y 2=9上,点P 在x 轴上的投影为Q ,动点M 满足432PQ MQ u u u r u u u u r.(1)求动点M 的轨迹E 的方程;(2)设G (-3,0),H (3,0),过点F (1,0)的动直线l 与曲线E 交于A 、B 两点,问直线AG 与直线BH 的斜率之比是否为定值?若为定值,求出该定值;若不为定值,试说明理由.20.(12分)某县为了帮助农户脱贫致富,鼓励农户利用荒地山坡种植果树,某农户考察了三种不同的果树苗A 、B 、C .经过引种实验发现,引种树苗A 的自然成活率为0.7,引种树苗B 、C 的自然成活率均为p (0.6≤p≤0.8)(1)任取树苗A 、B 、C 各一棵,估计自然成活的棵数为X ,求X 的分布列及其数学期望; (2)将(1)中的数学期望取得最大值时p 的值作为B 种树苗自然成活的概率,该农户决定引种n 棵B 种树苗,引种后没有自然成活的树苗有75%的树苗可经过人栽培技术处理,处理后成活的概率为0.8,其余的树苗不能成活. ①求一棵B 种树苗最终成活的概率;②若每棵树苗引种最终成活可获利400元,不成活的每棵亏损80元该农户为了获利期望不低于10万元,问至少要引种种树苗多少棵?21.(12分)已知函数f (x )=(a-1)x+xlnx 的图象在点A (e 2,f (e 2))(e 为自然对数的底数)处的切线斜率为4(1)求实数a 的值;(2)若m ∈Z ,且m (x-1)<f (x )+1对任意x>1恒成立,求m 的最大值.(二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题记分. 22.[选修4-4:坐标系与参数方程](10分)以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为=2-22ππρθ⎡⎤∈⎢⎥⎣⎦(,),直线l 的参数方程为2cos 4sin x t y ts αα=-+⎧⎨=-+⎩(t 为参数). (1)点A 在曲线C 上,且曲线C 在点A 处的切线与直线:x+2+1=0垂直,求点A 的直角坐标; (2)设直线l 与曲线C 有且只有一个公共点,求直线l 的斜率的取值范围.23.[选修4-5:不等式选讲](10分) 设函数f (x )=|x-1|+2|x+1|,x ∈R (1)求不等式f (x )<5的解集;(2)若关于x 的不等式122)(-<+t x f 在实数范围内解集为空集,求实数t 的取值范围。