概率统计第3章答案

合集下载

概率论与数理统计第三章习题及答案

概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。

概率论与数理统计第三章多维随机变量及其分布习题解答

概率论与数理统计第三章多维随机变量及其分布习题解答

习题3-11、设(,)X Y 的分布律为求a 。

解:由分布律的性质,得1,0iji jp a =>∑∑,即111111691839a +++++=,0a >, 解得,29a =。

注:考察分布律的完备性和非负性。

2、设(,)X Y 的分布函数为(,)F x y ,试用(,)F x y 表示:(1){,}P a X b Y c ≤≤<;(2){0}P Y b <<;(3){,}P X a Y b ≥<。

解:根据分布函数的定义(,){,}F x y P X x Y y =≤≤,得(1){,}{,}{,}(,)(,)P a X b Y c P X b Y c P X a Y c F b c F a c ---≤≤<=≤<-<<=-; (2){0}{,}{,0}(,)(,0)P Y b P X Y b P X Y F b F -<<=≤+∞<-≤+∞≤=+∞-+∞; (3){,}{,}{,}(,)(,)P X a Y b P X Y b P X a Y b F b F a b ---≥<=≤+∞<-<<=+∞-。

3、设二维随机变量(,)X Y 的分布函数为(,)F x y ,分布律如下:试求:(1)13{,04}22P X Y <<<<;(2){12,34}P X Y ≤≤≤≤;(3)(2,3)F 。

解:由(,)X Y 的分布律,得 (1)1311{,04}{1,1}{1,2}{1,3}002244P X Y P X Y P X Y P X Y <<<<===+==+===++=; (2){12,34}{1,3}{1,4}{2,3}{2,4}P X Y P X Y P X Y P X Y P X Y ≤≤≤≤===+==+==+==1150016416=+++=;(3)(2,3){2,3}{1,1}{1,2}{1,3}F P X Y P X Y P X Y P X Y =≤≤===+==+==1119{2,1}{2,2}{2,3}000416416P X Y P X Y P X Y +==+==+===+++++=。

概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第三章

概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第三章

01 1/401/41/2习题4设(X,Y)的联合分布密度为f(x,y)=12πe-x2+y22,Z=X2+Y2,求Z的分布密度.解答:FZ(z)=P{Z≤z}=P{X2+Y2≤z}.当z<0时,FZ(z)=P(∅)=0;当z≥0时,FZ(z)=P{X2+Y2≤z2}=∫∫x2+y2≤z2f(x,y)dxdy=12π∫∫x2+y2≤z2e-x2+y22dxdy=12π∫02πdθ∫0ze-ρ22ρdρ=∫0ze-ρ22ρdρ=1-e-z22.故Z的分布函数为FZ(z)={1-e-z22,z≥00,z<0.Z的分布密度为fZ(z)={ze-z22,z>00,z≤0.习题5设随机变量(X,Y)的概率密度为f(x,y)={12(x+y)e-(x+y),x>0,y>00,其它,(1)问X和Y是否相互独立?(2)求Z=X+Y的概率密度.解答:(1)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞12(x+y)e-(x+y)dy,x>00,x≤0\under2line令x+y=t{∫x+∞12te-tdt=12(x+1)e-x,x>00,x≤0,由对称性知fY(y)={12(y+1)e-y,y>00,y≤0,显然f(x,y)≠fX(x)fY(y),x>0,y>0,所以X与Y不独立.(2)用卷积公式求fZ(z)=∫-∞+∞f(x,z-x)dx.当{x>0z-x>0 即 {x>0x<z时,f(x,z-x)≠0,所以当z≤0时,fZ(z)=0;当z>0时,fZ(z)=∫0z12xe-xdx=12z2e-z.于是,Z=X+Y的概率密度为fZ(z)={12z2e-z,z>00,z≤0.习题6设随机变量X,Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数1的指数分布,求随机变量Z=X+Y的概率密度.解答:据题意,X,Y的概率密度分布为fX(x)={1,0<x<10,其它, fY(y)={e-y,y≥00,y<0,由卷积公式得Z=X+Y的概率密度为fZ(z)=∫-∞+∞fX(x)fY(z-x)dx=∫-∞+∞fX(z-y)fY(y)dy=∫0+∞fX(z-y)e-ydy.由0<z-y<1得z-1<y<z,可见:当z≤0时,有fX(z-y)=0, 故fZ(z)=∫0+∞0⋅e-ydy=0;当z>0时,fZ(z)=∫0+∞fX(z-y)e-ydy=∫max(0,z-1)ze-ydy=e-max(0,z-1)-e-z,即fZ(z)={0,z≤01-e-z,0<z≤1e1-z-e-z,z>1.习题7设随机变量(X,Y)的概率密度为f(x,y)={be-(x+y),0<x<1,0<y<+∞,0,其它.(1)试确定常数b;(2)求边缘概率密度fX(x),fY(y);(3)求函数U=max{X,Y}的分布函数. 解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数b.∫01dx∫0+∞be-xe-ydy=b(1-e-1)=1,所以b=11-e-1,从而f(x,y)={11-e-1e-(x+y),0<x<1,0<y<+∞,0,其它.(2)由边缘概率密度的定义得fX(x)={∫0+∞11-e-1e-(x+y)dy=e-x1-e-x,0<x<1,0,其它,fY(x)={∫0111-e-1e-(x+y)dx=e-y,0<y<+∞,0,其它(3)因为f(x,y)=fX(x)fY(y),所以X与Y独立,故FU(u)=P{max{X,Y}≤u}=P{X≤u,Y≤u}=FX(u)FY(u),其中FX(x)=∫0xe-t1-e-1dt=1-e-x1-e-1,0<x<1,所以FX(x)={0,x≤0,1-e-x1-e-1,0<x<1,1,x≥1.同理FY(y)={∫0ye-tdt=1-e-y,0<y<+∞,0,y≤0,因此FU(u)={0,u<0,(1-e-u)21-e-1,0≤u<1,1-e-u,u≥1.习题8设系统L是由两个相互独立的子系统L1和L2以串联方式联接而成,L1和L2的寿命分别为X与Y, 其概率密度分别为ϕ1(x)={αe-αx,x>00,x≤0,ϕ2(y)={βe-βy,y>00,y≤0,其中α>0,β>0,α≠β,试求系统L的寿命Z的概率密度.解答:设Z=min{X,Y},则F(z)=P{Z≥z}=P{min(X,Y)≤z}=1-P{min(X,Y)>z}=1-P{X≥z,Y≥z}=1-[1P{X<z}][1-P{Y<z}]=1-[1-F1{z}][1-F2{z}]由于F1(z)={∫0zαe-αxdx=1-e-αz,z≥00,z<0,F2(z)={1-e-βz,z≥00,z<0,故F(z)={1-e-(α+β)z,z≥00,z<0,从而ϕ(z)={(α+β)e-(α+β)z,z>00,z≤0.习题9设随机变量X,Y相互独立,且服从同一分布,试证明:P{a<min{X,Y}≤b}=[P{X>a}]2-[P{X>b}]2.解答:设min{X,Y}=Z,则P{a<min{X,Y}≤b}=FZ(b)-FZ(a),FZ(z)=P{min{X,Y}≤z}=1-P{min{X,Y}>z}=1-P{X>z,Y>z}=1-P{X>z}P{Y>z}=1-[P{X>z}]2,代入得P{a<min{X,Y}≤b}=1-[P{X>b}]2-(1-[P{X>a}]2)=[P{X>a}]2-[P{X>b}]2.证毕.复习总结与总习题解答习题1在一箱子中装有12只开关,其中2只是次品,在其中取两次,每次任取一只,考虑两种试验:(1)放回抽样;(2)不放回抽样.我们定义随机变量X,Y如下:X={0,若第一次取出的是正品1,若第一次取出的是次品, Y={0,若第二次取出的是正品1,若第二次取出的是次品,试分别就(1),(2)两种情况,写出X和Y的联合分布律.解答:(1)有放回抽样,(X,Y)分布律如下:P{X=0,Y=0}=10×1012×12=2536; P{X=1,Y=0}=2×1012×12=536,P{X=0,Y=1}=10×212×12=536, P{X=1,Y=1}=2×212×12=136,(2)不放回抽样,(X,Y)的分布律如下:P{X=0,Y=0}=10×912×11=4566, P{X=0,Y=1}=10×212×11=1066,P{X=1,Y=0}=2×1012×11=1066, P{X=1,Y=1}=2×112×11=166,解答:X可取值为0,1,2,3,Y可取值0,1,2.P{X=0,Y=0}=P{∅}=0,P{X=0,Y=1}=C30C21C33/C84=2/70,P{X=0,Y=2}=C30C22C32/C84=3/70, P{X=1,Y=0}=C31C20C33/C84=3/70,P{X=1,Y=1}=C31C21C32/C84=18/70,P{X=1,Y=2}=C31C22C31/C84=9/70,P{X=2,Y=0}=C32C20C32/C84=9/70,P{X=2,Y=1}=C32C21C31/C84=18/70,P{X=2,Y=2}=C32C22C30/C84=3/70,P{X=3,Y=0}=C33C20C31/C84=3/70,P{X=3,Y=1}=C33C21C30/C84=2/70,P{X=3,Y=2}=P{∅}=0,所以,(X,Y)的联合分布如下:(3)由FX(x)=P{X≤x,Y<+∞}=∑xi<x∑j=1+∞pij, 得(X,Y)关于X的边缘分布函数为:FX(x)={0,x<114+14,1≤x<214+14+16+13,x≥2={0,x<11/2,1≤x<21,x≥2,同理,由FY(y)=P{X<+∞,Y≤y}=∑yi≤y∑i=1+∞Pij, 得(X,Y)关于Y的边缘分布函数为FY(y)={0,y<-12/12,-1≤y<01,y≥0.习题6设随机变量(X,Y)的联合概率密度为f(x,y)={c(R-x2+y2),x2+y2<R0,x2+y2≥R,求:(1)常数c; (2)P{X2+Y2≤r2}(r<R).解答:(1)因为1=∫-∞+∞∫-∞+∞f(x,y)dydx=∫∫x2+y2<Rc(R-x2+y)d xdy=∫02π∫0Rc(R-ρ)ρdρdθ=cπR33,所以有c=3πR3.(2)P{X2+Y2≤r2}=∫∫x2+y2<r23πR3[R-x2+y2]dxdy=∫02π∫0r3πR3(R-ρ)ρdρdθ=3r2R2(1-2r3R).习题7设f(x,y)={1,0≤x≤2,max(0,x-1)≤y≤min(1,x)0,其它,求fX(x)和fY(y).解答:max(0,x-1)={0,x<1x-1,x≥1, min(1,x)={x,x<11,x≥1,所以,f(x,y)有意义的区域(如图)可分为{0≤x≤1,0≤y≤x},{1≤x≤2,1-x≤y≤1},即f(x,y)={1,0≤x≤1,0≤y≤x1,1≤x≤2,x-1≤y≤1,0,其它所以fX(x)={∫0xdy=x,0≤x<1∫x-11dy=2-x,1≤x≤20,其它,fY(y)={∫yy+1dx=1,0≤y≤10,其它.习题8若(X,Y)的分布律为则α,β应满足的条件是¯, 若X与Y独立,则α=¯,β=¯.解答:应填α+β=13;29;19.由分布律的性质可知∑i⋅jpij=1, 故16+19+118+13+α+β=1,即α+β=13.又因X与Y相互独立,故P{X=i,Y=j}=P{X=i}P{Y=j}, 从而α=P{X=2,Y=2}=P{X=i}P{Y=j},=(19+α)(14+α+β)=(19+α)(13+13)=29,β=P{X=3,Y=2}=P{X=3}P{Y=2}=(118+β)(13+α+β)=(118+β)(13+13),∴β=19.习题9设二维随机变量(X,Y)的概率密度函数为f(x,y)={ce-(2x+y),x>0,y>00,其它,(1)确定常数c; (2)求X,Y的边缘概率密度函数;(3)求联合分布函数F(x,y); (4)求P{Y≤X}; (5)求条件概率密度函数fX∣Y(x∣y); (6)求P{X<2∣Y<1}.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1求常数c.∫0+∞∫0+∞ce-(2x+y)dxdy=c⋅(-12e-2x)\vline0+∞⋅(-e-y)∣0+∞=c2=1,所以c=2.(2)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞2e-2xe-ydy,x>00,x≤0={2e-2x,x>00,x≤0,fY(y)=∫-∞+∞f(x,y)dx={∫0+∞2e-2xe-ydx,y>00,其它={e-y,y>00,y≤0.(3)F(x,y)=∫-∞x∫-∞yf(u,v)dvdu={∫0x∫0y2e-2ue-vdvdu,x>0,y>00,其它={(1-e-2x)(1-e-y),x>0,y>00,其它.(4)P{Y≤X}=∫0+∞dx∫0x2e-2xe-ydy=∫0+∞2e-2x(1-e-x)dx=13.(5)当y>0时,fX∣Y(x∣y)=f(x,y)fY(y)={2e-2xe-ye-y,x>00,x≤0={2e-2x,x>00,x≤0.(6)P{X<2∣Y<1}=P{X<2,Y<1}P{Y<1}=F(2,1)∫01e-ydy=(1-e-1)(1-e-4)1-e-1=1-e-4.习题10设随机变量X以概率1取值为0, 而Y是任意的随机变量,证明X与Y相互独立.解答:因为X的分布函数为F(x)={0,当x<0时1,当x≥0时, 设Y的分布函数为FY(y),(X,Y)的分布函数为F(x,y),则当x<0时,对任意y, 有F(x,y)=P{X≤x,Y≤y}=P{(X≤x)∩(Y≤y)}=P{∅∩(Y≤y)}=P{∅}=0=FX(x)FY(y);当x≥0时,对任意y, 有F(x,y)=P{X≤x,Y≤y}=P{(X≤x)∩(Y≤y)}=P{S∩(Y≤y)}=P{Y≤y}=Fy(y)=FX(x)FY(y),依定义,由F(x,y)=FX(x)FY(y)知,X与Y独立.习题11设连续型随机变量(X,Y)的两个分量X和Y相互独立,且服从同一分布,试证P{X≤Y}=1/2.解答:因为X,Y独立,所以f(x,y)=fX(x)fY(y).P{X≤Y}=∫∫x≤yf(x,y)dxdy=∫∫x≤yfX(x)fY(y)dxdy =∫-∞+∞[fY(y)∫-∞yfX(x)dx]dy=∫-∞+∞[fY(y)FY(y)]dy=∫-∞+∞FY(y)dFY(y)=F2(y)2∣-∞+∞=12,也可以利用对称性来证,因为X,Y独立同分布,所以有P{X≤Y}=P{Y≤X},而P{X≤Y}+P{X≥Y}=1, 故P{X≤Y}=1/12.习题12设二维随机变量(X,Y)的联合分布律为若X与Y相互独立,求参数a,b,c的值.解答:关于X的边缘分布为由于X和Y的地位平等,同法可得Y的边缘概率密度是:fY(y)={2R2-y2πR2,-R≤y≤R0,其它.(2)fX∣Y(x∣y)=f(x,y)fY(y)注意在y处x值位于∣x∣≤R2-y2这个范围内,f(x,y)才有非零值,故在此范围内,有fX∣Y(x∣y)=1πR22πR2⋅R2-y2=12R2-y2,即Y=y时X的条件概率密度为fX∣Y(x∣y)={12R2-y2,∣x∣≤R2-y20,其它.同法可得X=x时Y的条件概率密度为fY∣X(y∣x)={12R2-x2,∣y∣≤R2-x20,其它.由于条件概率密度与边缘概率密度不相等,所以X与Y不独立.习题15设(X,Y)的分布律如下表所示求:(1)Z=X+Y; (2)Z=max{X,Y}的分布律.解答:与一维离散型随机变量函数的分布律的计算类似,本质上是利用事件及其概率的运算法则. 注意,Z的相同值的概率要合并.概率(X,Y)X+YXYX/Ymax{X,Y}1/102/103/102/101/101/10 (-1,-1)(-1,1)(-1,2)(2,-1)(2,1)(2,2)--1-2-2241-1-1/2-221-于是(1)max{X,Y} -112pi 1/102/107/10习题16设(X,Y)的概率密度为f(x,y)={1,0<x<1,0<y<2(1-x)0,其他,求Z=X+Y的概率密度.解答:先求Z的分布函数Fz(z),再求概率密度fz(z)=dFz(z)dz.如右图所示.当z<0时,Fz(z)=P{X+Y≤z}=0;当0≤z<1时,Fz(z)=P{X+Y≤z}=∫∫x+y≤zf(x,y)dxdy=∫0zdx∫0z-x1dy=∫0z(z-x)dx=z2-12x2∣0z=12z2;当1≤z<2时,Fz(z)=∫02-zdx∫0z-xdy+∫2-z1dx∫02(1-x)dy=z(2-z)-12(2-z)2+(z-1)2;当z≥2时,∫∫Df(x,y)dxdy=∫01dx∫02(1-x)dy=1.综上所述Fz(z)={0,z<012z2,0≤z<1z(2-z)-12(2-z)2+(z-1)2,1≤z<21,z≥2,故fz(z)={z,0≤z<12-z,1≤z<20,其它.习题17设二维随机变量(X,Y)的概率密度为f(x,y)={2e-(x+2y),x>0,y>00,其它,求随机变量Z=X+2Y的分布函数.解答:按定义FZ(Z)=P{x+2y≤z},当z≤0时,FZ(Z)=∫∫x+2y≤zf(x,y)dxdy=∫∫x+2y≤z0dxdy=0.当z>0时,FZ(Z)=∫∫x+2y≤zf(x,y)dxdy=∫0zdx∫0(z-x)/22e-(x+2y)dy=∫0ze-x⋅(1-ex-z)dx=∫0z(e-x-e-z)dx=[-e-x]∣0z-ze-z=1-e-z-ze-z,故分布函数为FZ(Z)={0,z≤01-e-z-ze-z,z>0.习题18设随机变量X与Y相互独立,其概率密度函数分别为fX(x)={1,0≤x≤10,其它, fY(y)={Ae-y,y>00,y≤0,求:(1)常数A; (2)随机变量Z=2X+Y的概率密度函数.解答:(1)1=∫-∞+∞fY(y)dy=∫0+∞A⋅e-ydy=A.(2)因X与Y相互独立,故(X,Y)的联合概率密度为f(x,y)={e-y,0≤x≤1,y>00,其它.于是当z<0时,有F(z)=P{Z≤z}=P{2X+Y≤z}=0;当0≤z≤2时,有F(z)=P{2X+Y≤z}=∫0z/2dx∫0z-2xe-ydy=∫0z/2(1-e2x-z)dx;当z>2时,有F(z)=P{2X+Y≤2}=∫01dx∫0z-2xe-ydy=∫01(1-e2x-z)dx.利用分布函数法求得Z=2X+Y的概率密度函数为fZ(z)={0,z<0(1-e-z)/2,0≤z<2(e2-1)e-z/2,z≥2.习题19设随机变量X,Y相互独立,若X与Y分别服从区间(0,1)与(0,2)上的均匀分布,求U=max{X,Y}与V=min{X,Y}的概率密度.解答:由题设知,X与Y的概率密度分别为fX(x)={1,0<x<10,其它, fY(y)={1/2,0<y<20,其它,于是,①X与Y的分布函数分别为FX(x)={0,x≤0x,0≤x<11,x≥1, FY(y)={0,y<0y/2,0≤y<21,y≥2,从而U=max{X,Y}的分布函数为FU(u)=FX(u)FY(u)={0,u<0u2/2,0≤u<1u/2,1≤u<21,u≥2,故U=max{X,Y}的概率密度为fU(u)={u,0<u<11/2,1≤u<20,其它.②同理,由FV(v)=1-[1-FX(v)][1-FY)]=FX(v)+FY(v)-FX(v)FY(v)=FX(v)+FY(v)-FU(v),得V=min{X,Y}的分布函数为FV(v)={0,v<0v2(3-v),0≤v<11,v≥1,故V=min{X,Y}的概率密度为fV(v)={32-v,0<v<10,其它.注:(1)用卷积公式,主要的困难在于X与Y的概率密度为分段函数,故卷积需要分段计算;(2)先分别求出X,Y的分布函数FX(x)与FY(y), 然后求出FU(u),再求导得fU(u); 同理先求出FV(v), 求导即得fV(v).。

概率论与数理统计第三章课后习题及参考答案

概率论与数理统计第三章课后习题及参考答案

概率论与数理统计第三章课后习题及参考答案1.设二维随机变量),(Y X 只能取下列数组中的值:)0,0(,)1,1(-,31,1(-及)0,2(,且取这几组值的概率依次为61,31,121和125,求二维随机变量),(Y X 的联合分布律.解:由二维离散型随机变量分布律的定义知,),(Y X 的联合分布律为2.某高校学生会有8名委员,其中来自理科的2名,来自工科和文科的各3名.现从8名委员中随机地指定3名担任学生会主席.设X ,Y 分别为主席来自理科、工科的人数,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:(1)由题意,X 的可能取值为0,1,2,Y 的可能取值为0,1,2,3,则561)0,0(3833====C C Y X P ,569)1,0(381323====C C C Y X P ,569)2,0(382313====C C C Y X P ,561)3,0(3833====C C Y X P ,283)0,1(382312====C C C Y X P ,289)1,1(38131312====C C C C Y X P ,283)2,1(382312====C C C Y X P ,0)3,1(===Y X P ,563)0,2(381322====C C C Y X P ,563)1,2(381322====C C C Y X P ,0)2,2(===Y X P ,0)3,2(===Y X P .),(Y X 的联合分布律为:(2)X 的边缘分布律为X 012P1452815283Y 的边缘分布律为Y 0123P285281528155613.设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其他.,0,42,20),6(),(y x y x k y x f 求:(1)常数k ;(2))3,1(<<Y X P ;(3))5.1(<Y P ;(4))4(≤+Y X P .解:方法1:(1)⎰⎰⎰⎰--==∞+∞-∞+∞-422d d )6(d d ),(1yx y x k y x y x f ⎰--=42202d |)216(y yx x x k k y y k 8d )210(42=-=⎰,∴81=k .(2)⎰⎰∞-∞-=<<31d d ),()3,1(y x y x f Y X P ⎰⎰--=32102d d )216(yx yx x x ⎰--=32102d |)216(81y yx x x 83|)21211(81322=-=y y .(3)),5.1()5.1(+∞<<=<Y X P X P ⎰⎰∞+∞-∞---=5.1d d )6(81yx y x ⎰⎰--=425.10d d )6(81y x y x y yx x x d )216(81422⎰--=3227|)43863(81422=-=y y .(4)⎰⎰≤+=≤+4d d ),()4(y x y x y x f Y X P ⎰⎰---=2042d )6(d 81x y y x x ⎰+-⋅=202d )812(2181x x x 32|)31412(1612032=+-=x x x .方法2:(1)同方法1.(2)20<<x ,42<<y 时,⎰⎰∞-∞-=yxv u v u f y x F d d ),(),(⎰⎰--=y xv u v u 20d d )6(81⎰--=y xv uv u u 202d |)216(81⎰--=y v xv x x 22d )216(81y xv v x xv 222|)21216(81--=)1021216(81222x xy y x xy +---=,其他,0),,(=y x F ,∴⎪⎩⎪⎨⎧<<<<+---=其他.,0,42,20),1021216(81),(222y x x x xy y x xy y x F 83)3,1()3,1(==<<F Y X P .(3))42,5.1(),5.1()5.1(<<<=+∞<<=<Y X P Y X P X P )2,5.1()4,5.1(<<-<<=Y X P Y X P 3227)2,5.1()4,5.1(=-=F F .(4)同方法1.4.设随机变量),(Y X 的概率密度为⎩⎨⎧>>=--其他.,0,0,0,e ),(2y x A y x f y x 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)⎰⎰⎰⎰∞+∞+--∞+∞-∞+∞-==02d d e d d ),(1yx A y x y x f y x ⎰⎰∞+∞+--=02d e d e y x A y x2|)e 21(|)e (020A A y x =-⋅-=∞+-∞+-,∴2=A .(2)0>x ,0>y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰--=yxv u vu 02d d e 2yv x u 020|)e 21(|)e (2---⋅-=)e 1)(e 1(2y x ----=,其他,0),(=y x F ,∴⎩⎨⎧>>--=--其他.,0,0,0),e 1)(e 1(),(2y x y x F y x .5.设随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤=其他.,0,10,10,),(y x Axy y x f 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)2121d d d d ),(11010⋅⋅===⎰⎰⎰⎰∞+∞-∞+∞-A y y x x A y x y x f ,∴4=A .(2)10≤≤x ,10≤≤y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰=yxv u uv 0d d 4220202||y x v u yx =⋅=,10≤≤x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4xv u uv 210202||x v u x =⋅=,10≤≤y ,1>x 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4yu v uv 202102||y v u y =⋅=,1>x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=101d d 4v u uv 1||102102=⋅=v u ,其他,0),(=y x F ,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>>≤≤>>≤≤≤≤≤≤=其他.,0,1,1,1,10,1,,1,10,,10,10,),(2222y x y x y y x x y x y x y x F .6.把一枚均匀硬币掷3次,设X 为3次抛掷中正面出现的次数,Y 表示3次抛掷中正面出现次数与反面出现次数之差的绝对值,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:由题意知,X 的可能取值为0,1,2,3;Y 的可能取值为1,3.易知0)1,0(===Y X P ,81)3,0(===Y X P ,83)1,1(===Y X P ,0)3,1(===Y X P 83)1,2(===Y X P ,0)3,2(===Y X P ,0)1,3(===Y X P ,81)3,3(===Y X P 故),(Y X 得联合分布律和边缘分布律为:7.在汽车厂,一辆汽车有两道工序是由机器人完成的:一是紧固3只螺栓;二是焊接2处焊点,以X 表示由机器人紧固的螺栓紧固得不牢的数目,以Y 表示由机器人焊接的不良焊点的数目,且),(Y X 具有联合分布律如下表:求:(1)在1=Y 的条件下,X 的条件分布律;(2)在2=X 的条件下,Y 的条件分布律.解:(1)因为)1,3()1,2()1,1()1,0()1(==+==+==+====Y X P Y X P Y X P Y X P Y P 08.0002.0008.001.006.0=+++=,所以43)1()1,0()1|0(=======Y P Y X P Y X P ,81)1()1,1()1|1(=======Y P Y X P Y X P ,101)1()1,2()1|2(=======Y P Y X P Y X P ,401)1()1,3()1|3(=======Y P Y X P Y X P ,故在1=Y 的条件下,X 的条件分布律为X 0123P4381101401(2)因为)2,2()1,2()0,2()2(==+==+====Y X P Y X P Y X P X P 032.0004.0008.002.0=++=,所以85)2()0,2()2,0(=======X P Y X P X Y P ,41)2()1,2()2,1(=======X P Y X P X Y P ,81)2()2,2()2,2(=======X P Y X P X Y P ,故在2=X 的条件下,Y 的分布律为:Y 012P8541818.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧>>=+-其他.,0,0,0,e ),()2(y x c y x f y x 求:(1)常数c ;(2)X 的边缘概率密度函数;(3))2(<+Y X P ;(4)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)⎰⎰⎰⎰∞+∞++-∞+∞-∞+∞-==0)2(d d e d d ),(1yx c y x y x f y x⎰⎰∞+∞+--=02d e d ey x c y x2|)e (|)e 21(002c c y x =-⋅-=∞+-∞+-,∴2=c .(2)0>x 时,⎰∞+∞-=y y x f x f X d ),()(⎰∞++-=0)2(d e 2y y x x y x 202e 2|)e (e 2-+∞--=-=,0≤x 时,0)(=x f X ,∴⎩⎨⎧≤>=-.0,0,0,e 2)(2x x x f x X ,同理⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)⎰⎰<+=<+2d d ),()2(y x y x y x f Y X P ⎰⎰---=20202d d e 2xy x yx 422202e e 21d e d e 2-----+-==⎰⎰xy x y x .(4)由条件概率密度公式得,当0>y 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e 2,0,0,e e 2)(),()|(22|x x y f y x f y x f xy y x Y Y X ,同理,当0>x 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e ,0,0,2e e 2)(),()|(22|y y x f y x f x y f yx y x X X Y .9.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧<<<<=其他.,0,0,10,3),(x y x x y x f 求:(1)关于X 、Y 的边缘概率密度函数;(2)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)10<<x 时,⎰∞+∞-=y y x f x f X d ),()(203d 3x y x x==⎰,其他,0)(=x f X ,∴⎩⎨⎧<<=其他.,0,10,3)(2x x x f X ,密度函数的非零区域为}1,10|),{(}0,10|),{(<<<<=<<<<x y y y x x y x y x ,∴10<<y 时,⎰∞+∞-=x y x f y f Y d ),()()1(23d 321y x x y-==⎰,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<-=其他.,0,10),1(23)(2y y y f Y .(2)当10<<y 时,有⎪⎩⎪⎨⎧<<-=⎪⎪⎩⎪⎪⎨⎧<<-==其他.其他.,0,1,12,0,1,)1(233)(),()|(22|x y y x x y y xy f y x f y x f Y Y X .当10<<x 时,有⎪⎩⎪⎨⎧<<=⎪⎩⎪⎨⎧<<==其他.其他.,0,0,1,0,0,33)(),()|(2|x y x x y x x x f y x f x y f X X Y .10.设条件密度函数为⎪⎩⎪⎨⎧<<<=其他.,0,10,3)|(32|y x y x y x f Y X Y 的概率密度函数为⎩⎨⎧<<=其他.,0,10,5)(4y y y f Y 求21(>X P .解:⎩⎨⎧<<<==其他.,0,10,15)|()(),(2|y x y x y x f y f y x f Y X Y ,则6447d )(215d d 15d d ),(21(121421211221=-===>⎰⎰⎰⎰⎰>x x x x y y x y x y x f X P xx .11.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧<<<<+=其他.,0,20,10,3),(2y x xyx y x f 求:(1)),(Y X 的边缘概率密度;(2)X 与Y 是否独立;(3))),((D Y X P ∈,其中D 为曲线22x y =与x y 2=所围区域.解:(1)10<<x 时,x x y xy x y y x f x f X 322d )3(d ),()(222+=+==⎰⎰∞+∞-,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<+=其他.,0,10,322)(2x x x x f X ,20<<y 时,⎰∞+∞-=x y x f y f Y d ),()(316)d 3(12+=+=⎰y x xy x ,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<+=其他.,0,20,316)(y y y f Y .(2)∵),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(3)}22,10|),{(2x y x x y x D ≤≤<<=,∴⎰⎰+=∈102222d d 3()),((xxx y xy x D Y X P 457d )32238(10543=--=⎰x x x x .12.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=-其他.,0,0,0,e )1(),(2y x y xy x f x试讨论X ,Y 的独立性.解:当0>x 时,xx x X x yx y y x y y x f x f -∞+-∞+-∞+∞-=+-=+==⎰⎰e |11e d )1(e d ),()(002,当0≤x 时,0)(=x f X ,故⎩⎨⎧≤>=-.0,0,0,e )(x x x x f x X ,同理,可得⎪⎩⎪⎨⎧≤>+=.0,0,0,)1(1)(2y y y y f Y ,因为)()(),(y f x f y x f Y X =,所以X 与Y 相互独立.13.设随机变量),(Y X 在区域}|),{(a y x y x g ≤+=上服从均匀分布,求X 与Y 的边缘概率密度,并判断X 与Y 是否相互独立.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤+=其他.,0,,21),(2a y x a y x f ,当0<<-x a 时,有)(1d 21d ),()(2)(2x a a y a y y x f x f xa x a X +===⎰⎰++-∞+∞-,当a x <≤0时,有)(1d 21d ),()(2)(2x a a y a y y x f x f x a x a X -===⎰⎰---∞+∞-,当a x ≥时,0d ),()(==⎰+∞∞-y y x f x f X ,故⎪⎩⎪⎨⎧≥<-=.a x a x x a a x f X ,0,),(1)(2,同理,由轮换对称性,可得⎪⎩⎪⎨⎧≥<-=.a y a y y a a y f Y ,0,),(1)(2,显然)()(),(y f x f y x f Y X ≠,所以X 与Y 不相互独立.14.设X 和Y 时两个相互独立的随机变量,X 在)1,0(上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2y y y f yY (1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为022=++Y aX a ,试求a 有实根的概率.解:(1)由题可知X 的概率密度函数为⎩⎨⎧<<=其他.,0,10,1)(x x f X ,因为X 与Y 相互独立,所以),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧><<==-其他.,0,0,10,e 21)()(),(2y x y f x f y x f y Y X ,(2)题设方程有实根等价于}|),{(2X Y Y X ≤,记为D ,即}|),{(2X Y Y X D ≤=,设=A {a 有实根},则⎰⎰=∈=Dy x y x f D Y X P A P d d ),()),(()(⎰⎰⎰---==1021002d )e 1(d d e 2122xx y x x y⎰--=12d e12x x ⎰--=12d e 21212x x ππππ23413.01)]0()1([21-=Φ-Φ-=.15.设i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,求行列式4321X X X X X =的分布律.解:由i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,易知41X X ~)84.0,16.0(b ,32X X ~)84.0,16.0(b .因为1X ,2X ,3X ,4X 相互独立,所以41X X 与32X X 也相互独立,又32414321X X X X X X X X X -==,则X 的所有可能取值为1-,0,1,有)1()0()1,0()1(32413241======-=X X P X X P X X X X P X P 1344.016.084.0=⨯=,)1,1()0,0()0(32413241==+====X X X X P X X X X P X P )1()1()0()0(32413241==+===X X P X X P X X P X X P 7312.016.016.084.084.0=⨯+⨯=,)0()1()0,1()1(32413241=======X X P X X P X X X X P X P 1344.084.016.0=⨯=,故X 的分布律为X 1-01P1344.07312.01344.016.设二维随机变量),(Y X 的概率密度为⎩⎨⎧>>=+-其他.,0,0,0,e 2),()2(y x y x f y x 求Y X Z 2+=的分布函数及概率密度函数.解:0≤z 时,若0≤x ,则0),(=y x f ;若0>x ,则0<-=x z y ,也有0),(=y x f ,即0≤z 时,0),(=y x f ,此时,0d d ),()2()()(2==≤+=≤=⎰⎰≤+zy x Z y x y x f z Y X P z Z P z F .0>z 时,若0≤x ,则0),(=y x f ;只有当z x ≤<0且02>-=xz y 时,0),(≠y x f ,此时,⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 2d d ),()2()()(⎰⎰-+-=zx z y x y x 020)2(d e 2d z z z ----=e e 1.综上⎩⎨⎧≤>--=--.0,0,0,e e 1)(z z z z F z z Z ,所以⎩⎨⎧≤<='=-.0,0,0,e )()(z z z z F z f z Z Z .17.设X ,Y 是相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=其他.,0,10,1)(x x f X ,⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y 求Y X Z +=的概率密度.解:0<z 时,若0<x ,则0)(=x f X ;若0≥x ,则0<-=x z y ,0)(=-x z f Y ,即0<z 时,0)()(=-x z f x f Y X ,此时,0d )()()(=-=⎰∞+∞-x x z f x f z f Y X Z .10≤≤z 时,若0<x ,则0)(=x f X ;只有当z x ≤≤0且0>-=x z y 时0)()(≠-x z f x f Y X ,此时,z zx z Y X Z x x x z f x f z f ---∞+∞--==-=⎰⎰e 1d e d )()()(0)(.1>z 时,若0<x ,0)(=x f X ;若1>x ,0)(=x f X ;若10≤≤x ,则0>-=x z y ,此时,0)()(≠-x z f x f Y X ,z x z Y X Z x x x z f x f z f ---∞+∞--==-=⎰⎰e )1e (d e d )()()(1)(.综上,⎪⎩⎪⎨⎧<>-≤≤-=--.0,0,1,e )1e (,10,e 1)(z z z z f z z Z .18.设随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=+-其他.,0,0,0,e)(21),()(y x y x y x f y x (1)X 和Y 是否相互独立?(2)求Y X Z +=的概率密度.解:(1)),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(2)0≤z 时,若0≤x ,则0)(=x f X ;若0>x ,则0<-=x z y ,0),(=y x f ,此时,0d ),()(=-=⎰∞+∞-x x z x f z f Z .0≥z 时,若0≤x ,则0)(=x f X ;只有当z x <<0且0>-=x z y 时0),(≠y x f ,此时,⎰∞+∞--=x x z x f z f Z d ),()(⎰+-+=zy x x y x 0)(d e)(21⎰-=z z x z 0d e 21z z -=e 212,所以⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2z z z z f zZ .19.设X 和Y 时相互独立的随机变量,它们都服从正态分布),0(2σN .证明:随机变量22Y X Z +=具有概率密度函数⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.证:因为X 与Y 相互独立,均服从正态分布),0(2σN ,所以其联合密度函数为2222)(2e 121),(σσπy x y x f +-⋅=,(+∞<<∞-y x ,)当0≥z 时,有⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 22d d ),()()()(22⎰⎰≤++-⋅=zy x y x y x 22222d e 1212)(2σσπ⎰⎰-⋅=πσθσπ2022d ed 12122zr r r ⎰-=zr r r 022d e122σσ,此时,2222e)(σσz Z z z f -=;当0<z 时,=≤+}{22z Y X ∅,所以0)()()(22=≤+=≤=z Y X P z Z P z F Z ,此时,0)(=z f Z ,综上,⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.20.设),(Y X 在矩形区域}10,10|),{(≤≤≤≤=y x Y X G 上服从均匀分布,求},min{Y X Z =的概率密度.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其他.,0,20,10,21),(y x y x f ,易证,X ~]1,0[U ,Y ~]2,0[U ,且X 与Y 相互独立,⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(x x x x x F X ,⎪⎪⎩⎪⎪⎨⎧≥<≤<=.2,1,20,2,0,0)(y y yy y F Y ,可得)](1)][(1[1)(z F z F z F Y X Z ---=)()()()(z F z F z F z F Y X Y X -+=⎪⎪⎩⎪⎪⎨⎧≥<≤-<=.1,1,10,223,0,02z z z z z ,求导,得⎪⎩⎪⎨⎧<<-=其他.,0,10,23)(z z z f Z .21.设随机变量),(Y X 的概率密度为⎩⎨⎧+∞<<<<=+-其他.,0,0,10,e ),()(y x b y x f y x (1)试确定常数b ;(2)求边缘概率密度)(x f X 及)(y f Y ;(3)求函数},max{Y X U =的分布函数.解:(1)⎰⎰⎰⎰∞++-∞+∞-∞+∞-==01)(d d e d d ),(1yx b y x y x f y x⎰⎰∞+--=1d e d e y x b y x )e 1(|)e (|)e (1102-+∞---=-⋅=b b y x ,∴1e11--=b .(2)10<<x 时,1)(1e1e d e e 11d ),()(--∞++--∞+∞--=-==⎰⎰x y x X y y y x f x f ,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<-=--其他.,0,10,e 1e )(1x x f xX ,0>y 时,⎰∞+∞-=x y x f y f Y d ),()(y y x x -+--=-=⎰e d e e1110)(1,0≤y 时,0)(=y f Y ,∴⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)0≤x 时,0)(=x F X ,10<<x 时,101e 1e 1d e 1e d )()(----∞---=-==⎰⎰xxt xX X t t t f x F ,1≥x 时,1)(=x F X ,∴⎪⎪⎩⎪⎪⎨⎧≥<<--≤=--.1,1,10,e1e1,0,0)(1x x x x F x X ;0≤y 时,0)(=y F Y ,0>y 时,y yv y Y Y v v v f y F --∞--===⎰⎰e 1d e d )()(0,∴⎩⎨⎧≤>-=-.0,0,0,e 1)(y y y F y Y ,故有)()()(y F x F u F Y X U =⎪⎪⎩⎪⎪⎨⎧≥-<≤--<=---.1,e 1,10,e1e1,0,01u u u uu .。

概率统计第三章题解

概率统计第三章题解

求(1)X,Y 的边缘分布律; (2)X=3 的条件下,Y 的条件分布律; (3)Y=1 的条件下,X 的条件分布律.
解: (1)X,Y 的边缘分布律见上表. 即
P { X 3, Y k } (2) P{Y k | X 3} , k 0,1,2,3 P { X 3}
K
0
X 和 Y 的联合分布律为
X
0 0 1/8
1 3/8 0
2 3/8 0
3 0 1/8
Y 1
3
3.盒子里装有 3 只黑球,2 只白球,2 只红球,在其中 任取 4 只球,以 X 表示取到黑球的只数,以 Y 表示取到红 球的只数.求 X 和 Y 的联合分布律. 解 X 的可能取值为 0,1,3,Y 的可能取值为 0,1,
由于 X 和 Y 相互独立,因此 X 和 Y 的联合概率密度为
1 1 e 2 , 0 x 1, y 0 f ( x , y ) f X ( x ) fY ( y ) 2 0, 其它
(2)设含有 a 的二次方程为a 2 2 Xa Y 0 ,试求 a 有 实根的概率.
概率统计第三章题解概率统计概率统计简明教程应用概率统计概率统计简明教程pdf概率统计学概率统计pdf理工科概率统计pdf概率统计讲义习题解答概率统计视频
三、习题解答 1.在一箱子中装有 12 只开关,其中 2 只是次品,在其
中取两次,每次任取一只,考虑两种试验: (1)放回抽样, (2)不放回抽样.我们定义随机变量 X、Y 如下:
)dx
1 2 ((1) (0))
=0.1445
14. 设 X 和 Y 是两个相互独立的随机变量,其概率密 度分别为
(1)确定常数k; (2)求P{X<1,Y<3}; (3)求 P{X<1.5};(4)求 P{X+Y 4 }.

概率论与数理统计第三、四章答案

概率论与数理统计第三、四章答案

第三章 习题参考答案1.计算习题二第2题中随机变量的期望值。

解:由习题二第2题计算结果0112{0}={1}=33p p p p ξξ====,得12201333E ξ=⨯+⨯= 一般对0-1分布的随机变量ξ有{1}E p p ξξ===2.用两种方法计算习题二第30题中周长的期望值,一种是利用矩形长与宽的期望计算,另一种是利用周长期望的分布计算。

解:方法一:先按定义计算长的数学期望290.3300.5310.229.9E ξ=⨯+⨯+⨯=和宽的数学期望190.3200.4210.320E η=⨯+⨯+⨯=再利用数学期望的性质计算周长的数学期望(22)229.922099.8E E ζξη=+=⨯+⨯=方法二:利用习题二地30题的计算结果(见下表),按定义计算周长的数学期望960.09980.271000.351020.231040.0698.8E ξ=⨯+⨯+⨯+⨯+⨯=3.对习题二第31题,(1)计算圆半径的期望值;(2)(2)E R π是否等于2ER π?(3)能否用2()ER π来计算远面积的期望值,如果不能用,又该如何计算?其结果是什么?解(1)100.1110.4120.3130.211.6ER =⨯+⨯+⨯+⨯=(2)由数学期望的性质有(2)223.2E R ER πππ==(3)因为22()()E R E R ππ≠,所以不能用2()E R π来计算圆面积的期望值。

利用随机变量函数的期望公式可求得222222()()(100.1110.4120.3130.2)135.4E R E R ππππ==⨯+⨯+⨯+⨯= 或者由习题二第31题计算结果,按求圆面积的数学期望1000.11210.41440.31690.2)135.4E ηπππ=⨯+⨯+⨯+⨯=4. 连续随机变量ξ的概率密度为,01(,0)()0,a kx x k a x ϕ⎧<<>=⎨⎩其它又知0.75E ξ= ,求k 和a 的值 解 由1010()11324a a kx dx kx dx a k E kx x dx a ϕξ+∞-∞===+=⋅==+⎰⎰⎰解得 2,3a k ==5.计算服从拉普拉斯分布的随机变量的期望和方差(参看习题二第16题)。

概率论与数理统计第3章复习题(含解答)

概率论与数理统计第3章复习题(含解答)

《概率论与数理统计》第三章复习题解答1. 设Y X ,的分布律分别为且已知0)(=<Y X P ,4)1(=+>Y X P .(1)求),(Y X 的联合分布律;(2)判定Y X ,独立否;(3)求),min(),,max(,321Y X Z Y X Z Y X Z ==+=的分布律.解:(1) 由0)(=<Y X P 知0)1,1()0,1(==-=+=-=Y X P Y X P ,故0)1,1()0,1(==-===-=Y X P Y X P ;由41)1(=+>Y X P 知41)1,1(=-==Y X P .于是可以填写出如下不完整的联合分布律、边缘分布律表格:再由联合分布律、边缘分布律的关系可填出所余的3个空, 得到(2) 41)1,1(=-=-=Y X P ,而2141)1()1(⋅=-=-=Y P X P ,故Y X ,不独立. (3) 在联合分布律中增加0=X 的一行,该行ij p 均取为0,分别沿路径:对ij p 相加, 得2. 设平面区域G 由曲线xy 1=, 直线2,1,0e x x y ===所围成. ),(Y X 在G 上服从均匀分布, 求)2(X f .解:区域G 的面积.2][ln 12211===⎰e e G x dx xS 故),(Y X 的联合概率密度为⎪⎩⎪⎨⎧><<<=其它 ,0 10,1,21),(2x y e x y x f . ⎪⎩⎪⎨⎧<<===⎰⎰∞∞-其它 ,0 1 ,2121),()(210e x x dy dy y x f x f x X , .41)2( =∴Xf 3. 一个电子仪器由两个部件构成,Y X ,分别表示两个部件的寿命(单位:千小时),已知),(Y X 的联合分布函数为⎩⎨⎧>>---=+---其它 0,0 0 ,1),()(5.05.05.0y ,x e e e y x F y x y x(1) 问Y X ,是否独立;(2)求两个部件的寿命都超过0.1千小时的概率.解:(1) ⎪⎩⎪⎨⎧>-=∞+=-其它 0, 0 ,1),()(5.0x e x F x F x X , ⎪⎩⎪⎨⎧>-=+∞=-其它 0, 0 ,1),()(5.0y ey F y F y Y , 从而有)()(),(y F x F y x F Y X =, 所以Y X ,相互独立.(2) 由Y X ,相互独立知)]1.0(1)][1.0(1[)1.0()1.0()1.0,1.0(≤-≤-=>>=>>Y P X P Y P X P Y X P.)]1.0(1)][1.0(1[1.005.005.0---==--=e e e F F Y X4. 设),(Y X 的联合概率密度⎪⎩⎪⎨⎧><+=其它,0 0,1,2),(22y y x y x f π,⎩⎨⎧≥<=Y X Y X U ,1,0,⎪⎩⎪⎨⎧<≥=Y X Y X V 3 ,13,0,求:(1) ),(V U 的联合分布律;(2))0(≠UV P .解:(1) 0)()3,()0,0(00=Φ=≥<====P Y X Y X P V U P p ;432),()3,()1,0(01===<<====⎰⎰OCD OCDS dxdy y x f Y X Y X P V U P p 扇形扇形π; 612),()3,()0,1(10===≥≥====⎰⎰OAB OABS dxdy y x f Y X Y X P V U P p 扇形扇形π; 1212),()3,()1,1(11===<≥====⎰⎰OBC OBCS dxdy y x f Y X Y X P V U P p 扇形扇形π. 于是有联合分布律:(2) 121)0(11==≠p UV P . 5. 设),(Y X 的联合概率密度为⎩⎨⎧<<<<=其它,010,10 ,1),(y x y x f求:(1))21,21(≤≤Y X P ;(2))21(>+Y X P ;(3))31(≥Y P ;(4))21(>>Y Y X P .解:(1)4121211),()21,21(21,21=====≤≤⎰⎰⎰⎰≤≤G Gy x S dxdy dxdy y x f Y X P ;(2)=>+)21(Y X P 8721212111),(21=-===⎰⎰⎰⎰>+G Gy x S dxdy dxdy y x f ;(3)=≥)31(Y P 32)311(11),(31=-===⎰⎰⎰⎰≥G Gy S dxdy dxdy y x f ;(4)41211212121)21()21,()21(=⋅=>>>=>>Y P Y Y X P Y Y X P .6. 设),(Y X 的联合概率密度为⎪⎩⎪⎨⎧<<<<-=其它 ,0 2,2010 ,20),(x y x x x xcy x f求:(1) 常数c ;(2) )(x f X ;(3) )(x y f X Y ;(4) )128(=≥X Y P .解:(1) ,25)210(20),(1201020102c dx xcdy xx c dx dxdy y x f xx =-=-==⎰⎰⎰⎰⎰∞∞-∞∞-.251 =∴c(2) ⎪⎩⎪⎨⎧<<-=-==⎰⎰∞∞-else x x dy x xdy y x f x f x x X0, 2010 ,50202520),()(2.(3) 2010 <<x 时,0)(≠x f X ,)(x y f X Y 有定义,且⎪⎪⎩⎪⎪⎨⎧<<=--==elsex y xx x x x x f y x f x y f X X Y 0, 2,250202520)(),()( (4) )20,10 (12∈=x ,⎪⎩⎪⎨⎧<<==∴elsey X y f XY 0,126 ,61)12( ,从而 3261)12()128(1288=====≥⎰⎰∞dy dy X y f X Y P X Y .7. 设Y X ,相互独立且都服从]1,0[上的均匀分布, 求Y X Z +=的概率密度.解:⎰∞∞--=dx x z f x f z f Y X Z )()()(, 其中⎩⎨⎧<<=其它x x f X ,0 10 ,1 )(, ⎩⎨⎧<-<=-其它 x z x z f Y ,0 10 ,1 )(. ⎩⎨⎧<<-<<⇔⎩⎨⎧<-<<<⇔≠-z x z x x z x x z f x f Y X 11010100)()(. (区域见图示)(1)10<<z 时, zdx z f zZ =⋅=⎰011)(;(2) 21<≤z 时, z dx z f z Z -=⋅=⎰-211)(11;(3) )2,0(∉z 时, 0)(=z f Z .综上知⎪⎩⎪⎨⎧<≤-<<=其它 z z z z z f Z ,0 21 ,210 , )(.8*. 设),(Y X 的联合概率密度⎩⎨⎧<<=-其它 ,0 0 ,),(yx xe y x f y ,求(1) )21(<<Y X P ,)21(=<Y X P ;(2)Y X Z +=的概率密度;(3) )1),(min(<Y X P .解:(1) ① 102142512121)()()2()2,1()21(22221202102202102---=---=--==<<<=<<-------⎰⎰⎰⎰⎰⎰e e e e e e dxe e x dx e e x dy xe dx dyxe dxY P Y X P Y X P x x xy x y; ②⎪⎩⎪⎨⎧≤>===--∞∞-⎰⎰0 0, 0,21),()(20y y e y dx xe dx y x f y f y y yY , 02)2( 2≠=∴-e f Y ,于是 ⎪⎩⎪⎨⎧<<====--elsex xe xef x f Y x f Y Y X 0, 20 ,22)2()2,()2(22 ,从而 412)2()21(101=====<⎰⎰∞-dy x dx Y x f Y X P Y X . (2) ⎰∞∞--=dx x z x f z f Z ),()(, 其中2000),(zx xx z x x z x f X <<⇔⎩⎨⎧>->⇔≠-. (区域见图示)(1) 0>z 时, ⎰⎰---==2020)()(z xzz x z Z dx xe edx xez f 2)12(zze ze---+=; (2)0≤z 时, 0)(=z f Z .综上知⎪⎩⎪⎨⎧≤>-+=--0 ,0 0,)12()(2z z e ze zf z z Z .(3))1,1(1)1),(min(1)1),(min(≥≥-=≥-=<Y X P Y X P Y X P1111,12111),(1-∞-∞∞-≥≥-=-=-=-=⎰⎰⎰⎰⎰e dx xe dy xe dxdxdy y x f x xyy x .9*. 设),(Y X 的联合概率密度⎩⎨⎧>>=+-其它 ,0 0,0,),()(y x e y x f y x ,求Y X Z -=的概率密度.解:)()()(z Y X P z Z P z F Z ≤-=≤= (1) 0<z 时, 0)()(=Φ=P z F Z ;(2) 0=z 时, 0),()()(0====⎰⎰>=x y Z dxdy y x f X Y P z F(3)0>z 时, 如图⎰⎰⎰⎰⎰⎰∞+---+--+<<-+==zz x zx y x zz x y x zx y z x Z dy e e dxdy e e dxdxdy y x f z F 0),()(⎰⎰∞--+------+-=zz x z x x z zx x dx e e e dx ee )()1(0z zx z z z xz xe dx e e e dx ee e-∞------=-+-=⎰⎰1)()(202综上知⎪⎩⎪⎨⎧≤>-=-0 ,0 0 ,1)(z z e z F z Z , 求导得⎩⎨⎧≤>=-0,0 0,)(z z e z f z Z .10. 设B A ,是两个随机事件, 且,41)(,21)(,41)(===B A P A B P A P 引进随机变量 ⎩⎨⎧=⎩⎨⎧=不发生当发生当 不发生当发生当 B B Y A A X ,0 ,1 , ,0 ,1.判断下列结论的正误, 并给予分析:(1)B A ,互不相容;(2)B A ,相互独立;(3)Y X ,相互独立;(4)1)(==Y X P ;(5)41)1(22==+Y X P . 解:(1)检验0)(=AB P 是否成立. 事实上0812141)()()(≠=⋅==A B P A P AB P , 故B A ,相容, 原结论错. (2)检验)()()(B P A P AB P =是否成立. 事实上由于41)(,41)(==B A P A P ,.)()()()()( A P B P B A P B P AB P ==∴ 即)()()(B P A P AB P =成立, 故B A ,独立, 原结论对.(3)检验Y X ,的联合分布律与边缘分布律之积是否都相等. 事实上81)(11==AB P p ;838121)()()()(01=-=-=-==AB P B P AB B P B A P p ; 818141)()()()(10=-=-=-==AB P A P AB A P B A P p ;83818381100=---=p . 于是有经检验, Y X ,的联合分布律与边缘分布律之积都相等, 故原结论对.(4)只需正确求出)(Y X P =的值. 事实上0218183)(1100≠=+=+==p p Y X P , 故原结论错. (5)只需正确求出)1(22=+Y X P 的值. 事实上41218183)1(100122≠=+=+==+p p Y X P , 故原结论错.。

概率论与数理统计第3章课后题答案

概率论与数理统计第3章课后题答案

概率论与数理统计第3章课后题答案第三章连续型随机变量3.1 设随机变数 的分布函数为F(x),试以F(x)表示下列概率:(1)P( a);(2)P( a);(3)P( a);(4)P( a) 解:(1)P( a) F(a 0) F(a);(2)P( a) F(a 0);(3)P( a)=1-F(a);(4)P( a) 1 F(a 0)。

3.2 函数F(x) 11 x2是否可以作为某一随机变量的分布函数,如果(1) x(2)0 x ,在其它场合适当定义;(3)- x 0,在其它场合适当定义。

解:(1)F(x)在(- , )设随机变数 具有对称的分布密度函数p(x),即p(x) p( x),证明:对任意的a 0,有(1)F( a) 1 F(a)12ap(x)dx;(2)P( a) 2F(a) 1;(3)P( a) 2 1 F(a) 。

证:(1)F( a)ap(x)dx 1ap(x)dx=1ap( x)dx 1ap(x)dx=1 F(a) 1 (2)P( ap(x)dxap(x)dxa12a0ap(x)dx;ap(x)dx 2 p(x)dx,由(1)知1-F(a)故上式右端=2F(a) 1;12ap(x)dx。

(3)P( a) 1 P( a) 1 [2F(a) 1] 2[1 F(a)]3.5 设F1(x)与F2(x)都是分布函数,又a 0,b 0是两个常数,且a b 1。

证明F(x) aF1(x) b F2(x)也是一个分布函数,并由此讨论,分布函数是否只有离散型和连续型这两种类型?证:因为F1(x)与F2(x1) F2(x2),于是F(x1) aF1(x1) b F2(x1) aF1(x2) b F2(x2) F(x2)F2(x都是分布函数,当x1 x2时,F1(x1) F1(x2),又xlimF(x) lim[aF1(x) b F2(x)] 0xlimF(x) lim[aF1(x) b F2(x)] a b 1xxF(x 0) aF1(x 0) b F2(x 0) aF1(x) b F2(x) F(x)所以,F(x)也是分布函数。

《概率论与数理统计》习题及答案 第三章

《概率论与数理统计》习题及答案  第三章

《概率论与数理统计》习题及答案第 三 章1.掷一枚非均质的硬币,出现正面的概率为p (01)p <<,若以X 表示直至掷到正、反面都出现时为止所需投掷次数,求X 的分布列。

解 ()X k =表示事件:前1k -次出现正面,第k 次出现反面,或前1k -次出现反面,第k 次出现正面,所以11()(1)(1),2,3,.k k P X k p p p p k --==-+-=2.袋中有b 个黑球a 个白球,从袋中任意取出r 个球,求r 个球中黑球个数X 的分布列。

解 从a b +个球中任取r 个球共有ra b C +种取法,r 个球中有k 个黑球的取法有k r kb a C C -,所以X 的分布列为()k r kb ara bC C P X k C -+==,max(0,),max(0,)1,,min(,)k r a r a b r =--+, 此乃因为,如果r a <,则r 个球中可以全是白球,没有黑球,即0k =;如果r a >则r 个球中至少有r a -个黑球,此时k 应从r a -开始。

3.一实习生用一台机器接连生产了三个同种零件,第i 个零件是不合格品的概率1(1,2,3)1i p i i ==+,以X 表示三个零件中合格品的个数,求X 的分布列。

解 设i A =‘第i 个零件是合格品’1,2,3i =。

则1231111(0)()23424P X P A A A ===⋅⋅=, 123123123(1)()P X P A A A A A A A A A ==++123123123()()()P A A A P A A A P A A A =++111121113623423423424=⋅⋅+⋅⋅+⋅⋅=, 123123123(2)()P X P A A A A A A A AA ==++ 123123123()()()P A A A P A A A P A A A =++ 1211131231123423423424=⋅⋅+⋅⋅⋅+⋅⋅=,20 1231236(3)()23424P X P A A A ===⋅⋅=. 即X 的分布列为01231611624242424XP. 4.一汽车沿一街道行驶,需通过三个设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且每一信号灯红绿两种信号显示的概率均为12,以X 表示该汽车首次遇到红灯前已通过的路口的个数,求X 的概率分布。

概率论与数理统计习题解答(第3章)

概率论与数理统计习题解答(第3章)

习 题 三 (A )三、解答题1. 设口袋中有3个球,它们上面依次标有数字1,1,2,现从口袋中无放回地连续摸出两个球,以X ,Y 分别表示第一次与第二次摸出的球上标有的数字,求(X ,Y )的分布律. 解:(X ,Y )取到的所有可能值为(1,1),(1,2),(2,1)由乘法公式: P {X =1,Y =1}=P {X =1}P {Y =1|X =1}=2/3⨯1/2=/3, P {X =1,Y =2}= P {X =1}P {Y =2|X =1}=2/3⨯1/2=1/3, P {X =2,Y =1}= P {X =2}P {Y =1|X =2}=1/3⨯2/2=1/3. (X ,Y )的分布律用表格表示如下:2.设盒中装有8支圆珠笔芯,其中3支是蓝的,3支是绿的,2支是红的,现从中随机抽取2支,以X ,Y 分别表示抽取的蓝色与红色笔芯数,试求: (1) X 和Y 的联合分布律;(2) P {X ,Y } ∈ A },其中A = {(x ,y )| x + y ≤ 1}. 解:X ,Y 所有可能取到的值是0, 1, 2(1) P {X =i , Y =j }=P {X =i }P {Y =j |X =i }=282223C C C C j i j i --, i , j =0,1,2, i +j ≤2 或者用表格表示如下:(2)P{(X ,Y )∈A }=P {X +Y ≤1}=P {X =0, Y =0}+P {X =1,Y =0}+P {X =0,Y =1}=3/28+9/28+6/28=9/14.3.设事件B A 、满足,21)|(,21)|(,41)(===A B P B A P A P 记X ,Y 分别为一次试验中A ,B 发生的次数,即⎩⎨⎧=不发生,发生A A X 0,1,⎩⎨⎧=不发生,发生,B B Y 0 1,求:二维随机变量(X ,Y )的分布律.解:因为P (A )=1/4,,21)|(=A B P 由P (B |A )=2/14/1)()()(==AB P A P AB P 得P (AB )=1/8, 由P (A |B )=2/1)()(=B P AB P 得P(B)=1/4.(X ,Y )取到的所有可能数对为(0,0),(1,0),(0,1),(1,1),则 P {X =0,Y =0}=)(1)()(B A P B A P B A P -===1-P (A )-P (B )+P (AB )=5/8, P {X =0,Y =1}=)(B A P =P (B -A )=P (B )-P (AB )=1/8, P {X =1,Y =0}=)(B A P =P (A -B )=P (A )-P (AB )=1/8, P {X =1,Y =1}=P (AB )=1/8.4.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<<<=.,0,10,10 ,),(其它y x Axy y x f 试求: (1) 常数A (2) P {X = Y } (3) P {X < Y }(4) (X ,Y )的分布函数. 解:(1)由归一性知:1=, 故A=4(2) P {X =Y }=0, (3) P {X <Y }=.(4)F (x ,y )=即F (x ,y )=5.设二维随机变量),(Y X 的联合概率密度为⎪⎩⎪⎨⎧<<<<+=其它0,20,10 ,3),(2y x xyx y x f求P {X + Y ≥ 1}. 解:P{X+Y ≥1}=7265)3(),(102121=+=⎰⎰⎰⎰-≥+dydx xy x dxdy y x f xy x 6.将一枚硬币掷3次,以X 表示前2次中出现正面的次数,以Y 表示3次中出现正面的次数,求X ,Y 的联合分布律及(X ,Y )的边缘分布律.解:X 的所有可能取值为0,1,2,Y 的所有可能取值为0,1,2,3. P {X =0,Y =0}=0.53=0.125; P {X =0,Y =1}=0.53=0.125P {X =1,Y =1}=25.05.05.0212=⨯C , P {X =1,Y =2}=25.05.05.0212=⨯C P {X =2,Y =2}=0.53=0.125, P {X =2,Y =3}==0.53=0.125 X ,Y 的分布律及边缘分布律可用表格表示如下:Y X 0 1 2 3 P i . 0 0.125 0.125 0 0 0.25 1 0 0.25 0.250.52 00.125 0.125 0.25P .j0.125 0.375 0.375 0.125 1解法2:,21)21()21(}|{}{},{22⨯=======-iiiC i X j Y P i X P j Y i X P.1,0,3,2,1,0,2,1,0=-==i j j i7.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<=-其它,00,),(yx e y x f y 求边缘概率密度f X (x ),f Y (y ).解:⎩⎨⎧<<=-其它,00,),(yx e y x f y⎩⎨⎧<≥=⎪⎩⎪⎨⎧<≥==-+∞-∞+∞-⎰⎰0,00,0,00,),()(x x e x x dy e dy y x f x f xxy X ⎩⎨⎧<≥=⎪⎩⎪⎨⎧<≥==--∞+∞-⎰⎰0,00,0,00,),()(0y y ye y y dx e dx y x f y f y y yY 8.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧≤≤=其它,01,),(22y x y cx y x f 求:(1) 确定常数c(2) 边缘概率密度f X (x ),f Y (y ).解:⎩⎨⎧<≤≤=0,01,),(22x y x y cx y x f(1)214212),(1104211122cdx x x c ydydx cx dxdy y x f x =-===⎰⎰⎰⎰⎰-∞+∞-∞+∞-所以 c=21/4(2) ⎪⎩⎪⎨⎧<-=⎪⎩⎪⎨⎧<==⎰⎰∞+∞-其它其它,,01||,8)1(2101||,421),()(42122x x x x ydy x dy y x f x f x X⎪⎩⎪⎨⎧<<=⎪⎩⎪⎨⎧<<==⎰⎰-∞+∞-其它其它,,010********),()(252y y y ydx x dx y x f y f y yY 9.设平面区域D 由曲线xy 1=及直线y = 0,x = 1,x = e 2围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求边缘概率密度f X (x ),f Y (y ). 解:2|ln 12211===⎰e e D x dx xS (X ,Y )在区域D 上服从均匀分布,故f (x ,y )的概率密度为⎪⎩⎪⎨⎧∈=其它,0),(,21),(Dy x y x f ⎪⎩⎪⎨⎧≤≤==⎰⎰∞+∞-其它(,01,21),()210X e x dy dy y x f x f x⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤≤≤-=-===--∞+∞-⎰⎰⎰其它(10,0),11(2121,2121),()221112X 2y e e y y dx e dx dx y x f x f y e 10.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<<<=其它,00,10,3),(xy x x y x f 试求条件概率密度f (y | x ).解:⎩⎨⎧<<<<=其它,00,10,3),(xy x x y x f)0)(( )(),()|(|>=x f x f y x f x y f X X X Y ⎪⎩⎪⎨⎧≤<===⎰⎰∞+∞-其它,010,233),()(20x x xdy dy y x f x f x X当0<x ≤1时,⎪⎩⎪⎨⎧<<==其它,00,233)(),()|(2|xy x x x f y x f x y f X X Y即,⎪⎩⎪⎨⎧≤<<=其它,010,2)|(|x y x x y f X Y11.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<<=其它,0,10,1),(xy x y x f 求条件概率密度f (x | y ).解:⎩⎨⎧<<<=其它,0||,10,1),(xy x y x f⎪⎩⎪⎨⎧>-=≤+===⎰⎰⎰-∞+∞-0,10,1),()(11y y dx y y dx dx y x f y f y y Y当y ≤0时,⎪⎩⎪⎨⎧<<-<<+==其它,0,10,11)(),()|(|x y x x y x f y x f y x f Y Y X当y >0时,⎪⎩⎪⎨⎧<<-<<-==其它,0,10,11)(),()|(|x y x x y x f y x f y x f Y Y X所以,⎪⎩⎪⎨⎧<<<-==其它,01||0,||11)(),()|(|x y y x f y x f y x f Y Y X12.已知随机变量Y 的概率密度为⎩⎨⎧<<=其它,010,5)(4y y y f Y 在给定Y = y 条件下,随机变量X 的条件概率密度为⎪⎩⎪⎨⎧<<<=其它,010,3)(32y x y x y x f 求概率P {X > 0.5}. 解:由)(),()|(|x f y x f y x f Y Y X =得 ⎩⎨⎧<<<<==其它,00,10,15)()|(),(2|yx y yx y f y x f y x f Y Y X644715),(}5.0{15.0125.0===>⎰⎰⎰⎰+∞+∞∞-xdydx yx dydx y x f X P 13.设二维随机变量(X ,Y )的分布律为试分别求),max(Y X Z =和),min(Y X W =的分布律. 解:Z =max(X ,Y ),W =min(X ,Y )的所有可能取值如下表Z =max(X ,Y ),W =min(X ,Y )的分布律为14.设X 和Y 是相互独立的随机变量,且)(~),(~θθE Y E X ,如果定义随机变量Z 如下:⎩⎨⎧>≤=Y X YX Z ,0,1 求Z 的分布律.解:⎪⎩⎪⎨⎧≤>=-0,00,1)(x x e x f x X θθ ⎪⎩⎪⎨⎧≤>=-0,00,1)(y y e y f yY θθ 由独立性得X ,Y 的联合概率密度为⎪⎩⎪⎨⎧>>=+-其它,00,0,1),(2y x e y x f yx θθ 则P {Z =1}=P {X ≤Y }=211),(002==⎰⎰⎰⎰∞++-≤xyx yx dydx edxdy y x f θθ P {Z =0}=1-P {Z =1}=0.5故Z 的分布律为15.设二维随机变量(X ,Y )的概率密度为⎪⎩⎪⎨⎧≤+=其它,01,1),(22y x y x f π求边缘概率密度f X (x ),f Y (y );并问X 与Y 是否独立?解:⎪⎩⎪⎨⎧≤+=其它,01,1),(22y x y x f π⎪⎩⎪⎨⎧<-===⎰⎰---∞+∞-其它,01||,121),()(222112x x dy dy y x f x f x x X ππ 同理,⎪⎩⎪⎨⎧<-=其它,01||,12)(2y y y f Y π显然,)()(),(y f x f y x f Y X ≠,所以X 与Y 不相互独立16.设随机变量X 和Y 相互独立,试在以下情况下求Y X Z +=的概率密度, (1) )1,0(~),1,0(~U Y U X ; (2) )1(~),1,0(~Exp Y U X .解:(1)⎩⎨⎧<<=其它,010,1)(x x f X ⎩⎨⎧<<=其它,010,1)(Y y y f利用卷积公式:⎰+∞∞--=dx x z f x f z f Y X Z )()()(求f Z (z ))()(x z f x f Y X -=⎩⎨⎧+<<<<其它,01,10,1x z x x⎪⎪⎩⎪⎪⎨⎧<≤<≤-===-=⎰⎰⎰-∞+∞-其它2110,02,)()()(110z z z dx z dx dx x z f x f z f z z Y X Z(2) ⎩⎨⎧<<=其它,010,1)(x x f X ⎩⎨⎧≤>=-0,00,)(Y y y e y f y 利用卷积公式:⎰+∞∞--=dy y f y z f z f Y X Z )()()(⎩⎨⎧+<<>=--其它,01,0,)()(y z y y e y f y z f y Y X⎰+∞∞--=dy y f y z f z f Y X Z )()()(⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧≥<≤--=≥<≤=-----⎰⎰其它其它110,0,)1(,1110,0,,10z z e e e z z dy e dy e z zzz y z y17.设)1,1(~),1,0(~N Y N X ,且X 与Y 独立,求}1{≤+Y X P . 解:由定理3.1(P75)知,X +Y ~N (1,2),故5.0)0(}21121{}1{=Φ=-≤-+=≤+Y X P Y X P 18.设随机变量(X ,Y )的概率密度为⎪⎩⎪⎨⎧>>+=+-. ,0;0,0,)(21),()(其它y x e y x y x f y x(1) 问X 和Y 是否相互独立? (2) 求Y X Z +=的概率密度. 解:(1) )1(21)(21),()0)(X +=+==-+∞+-+∞∞-⎰⎰x e dy e y x dx y x f x f x y x ((x>0) 同理,)1(21)(+=-y e y f yY y>0 显然,)()x (),(y f f y x f Y X =,所以X 与Y 不相互独立 (2).利用公式⎰+∞∞--=dx x z x f z f Z )()(,被积函数⎪⎩⎪⎨⎧>>=⎪⎩⎪⎨⎧>->-+=---+-其它其它,0,0,21,00,0,)(21),()(xz x ze x z x e x z x x z x f z x z x所以⎰+∞∞--=dx x z x f z f Z )()(,⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧≤>=≤>=--⎰0,00,210,00,2120z z e z z z dx ze z z z19. 设某系统L 由两个相互独立的系统L 1,L 2联合而成,各连接方式如图所示.已知L 1,L 2的使用寿命X 与Y 分别服从参数为α,β 的指数分布,求以下各系统L 使用寿命Z 的分布函数及概率密度.解:并联时,系统L 的使用寿命Z=max{X ,Y} 因X ~Exp (α),Y ~Exp (β),故⎪⎩⎪⎨⎧≤>=-0,00,1)(x x e x f x X αα, ⎪⎩⎪⎨⎧≤>=-0,00,1)(y y e y f y Y ββ ⎪⎩⎪⎨⎧≤>-=-0,00,1)(x x e x F xX α, ⎪⎩⎪⎨⎧≤>-=-0,00,1)(y y e y F y Y β ⎪⎩⎪⎨⎧≤>--==--0,00),1)(1()()()(z z e e z F z F z F z z Y X Z βα⎪⎩⎪⎨⎧≤>+-+=⎪⎪⎭⎫⎝⎛+---0,00,)11(11)(11z z e e e z f z z z Z βαβαβαβα 串联时,系统L 的使用寿命Z =min{X ,Y }⎪⎩⎪⎨⎧≤>-=---=⎪⎪⎭⎫⎝⎛+-0,00,1)](1)][(1[1)(11z z e z F z F z F z Y X Z βα ⎪⎩⎪⎨⎧≤>⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-0,00,11)(11z z e z f zZ βαβα (B )1.设二维随机变量(X ,Y )的分布律为已知随机事件{X = 0}与{X + Y = 1}相互独立,求a ,b 的值.解:P {X =0}=a +0.4,P {X +Y =1}=P {X =1,Y =0}+P {X =0,Y =1}=a +b. P {X =0,X +Y =1}=P {X =0,Y =1}=a 由于{X =0}与{X +Y =1}相互独立,所以 P {X =0, X +Y =1}=P {X =0} P {X +Y =1}即 a =(a +0.4)(a +b ) (1) 再由归一性知:0.4+a +b +0.1=1 (2) 解(1),(2)得 a =0.4, b =0.1 2.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<<<--=其它 ,010,10 ,2),(y x y x y x f (1) 求P {X > 2Y }(2) 求Z = X + Y 的概率密度f Z (z ). 解: (1) 247)2(),(}2{10202=--==>⎰⎰⎰⎰>xyx dydx y x dxdy y x f Y X P (2) 利用公式dx x z x f z f Z ⎰+∞∞--=),()(计算⎩⎨⎧<-<<<-=-其它,010,10,2),(x z x z x z x f ⎪⎩⎪⎨⎧≥<≤-<<-=⎪⎪⎩⎪⎪⎨⎧≥<≤-<<-=-=⎰⎰⎰-∞+∞-2,021,)2(10),22,021,)2(10,)2(),()(2110z z z z z z z dx z z dx z dx x z x f z f z z Z (3.设随机变量X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-=其它,020,4101,21)(x x x f X令2X Y =,),(y x F 为二维随机变量(X ,Y )的分布函数,求 (1) Y 的概率密度)(y f Y ;(2) )4,21(-F .解:(1) F Y (y )=P {Y ≤y }=P {X 2≤y } 当y <0时,f Y (y )=0当y ≥0时,)()(}{)(y F y F y X y P y F X X Y --=<<-=从而,⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>≤<≤<=⎪⎩⎪⎨⎧-+=4041,8110,83)]()([21)(y y y y y y f y f yy f X X Y ,(2) F (-1/2,4)=P {X ≤-1/2,Y ≤4}= P {X ≤-1/2,X 2≤4} =P {-2≤X ≤-1/2}=4121)(211212==⎰⎰----dx dx x f X 4.设(X ,Y )为二维离散型随机变量,X 和Y 的边缘分布律分别如下:如果1}0{==XY P ,试求 (1) (X ,Y )的分布律; (2) 问X 与Y 是否独立. 解:P {XY ≠0}=1-P {XY =0}=0 即 P {X =-1,Y =1}+P {X =1,Y =1}=0由概率的非负性知,P {X =-1,Y =1}=0,P {X =1,Y =1}=0由边缘分布律的定义,P {X =-1}= P {X =-1,Y =0}+ P {X =-1,Y =1}=1/4 得P {X =-1,Y =0}=1/4再由P {X =1}= P {X =1,Y =0}+ P {X =1,Y =1}=1/4 得P {X =1,Y =0}=1/4再由P {Y =1}=P {X =-1,Y =1}+ P {X =0,Y =1}+ P {X =1,Y =1}= P {X =0,Y =1} 知P {X =0,Y =1}=1/2最后由归一性得:P {X =0,Y =0}=0(X ,Y )的分布律用表格表示如下:(2) 显然,X 和Y 不相互独立,因为P {X =-1,Y =0}≠ P {X =-1}P {Y =0}5.设随机变量X 与Y 相互独立,且),(~),,(~2ππσμ-U Y N X ,求Z = X + Y 的概率密度(计算结果用标准正态分布分布函数)(x Φ表示).解:X 与Y 相互独立,利用卷积公式dx x z f x fz f Y XZ ⎰+∞∞--=)()()(计算,21)(222)(σμσπ--=x X ex f ⎪⎩⎪⎨⎧-∈=其它,0),(,21)(πππy y f Y ⎪⎩⎪⎨⎧<-<-=---其它,0,221)()(222)(ππππσσμx z e x z f x f x Y X⎰⎰⎰+---+---+∞∞-==-=ππσμπππσμπσππσz z x z z x Y X Z dx edx edx x z f x f z f 22222)(212)(21221)()()()]()([21}{21ππππππ--+=+<<-=z F z F z X z P ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--Φ-⎪⎭⎫ ⎝⎛-+Φσμπσμππz z 21 6.设二维随机变量(X ,Y )在矩形}10,20),{(≤≤≤≤=y x y x G 上服从均匀分布,试求边长为X 和Y 的矩形面积S 的概率密度)(s f S . 解:(X ,Y )~U(G )⎪⎩⎪⎨⎧∈=其它,0),(,21),(Gy x y x f设F (x )和f (s )分别表示S =XY 的分布函数和密度函数 F (s )=P {XY <s} s<0时,F S (s)=0s ≥0时,⎪⎩⎪⎨⎧+≥=⎰⎰⎰⎰s s xs S dydxdydx s F 010*******,1, 所以,⎪⎪⎩⎪⎪⎨⎧≥≥+<=2,12,2ln 220,0s s s s s s F S于是,S =XY 概率密度为⎪⎩⎪⎨⎧<<=其它,020,2ln 21)(s ss f S 7.设随机变量X 与Y 相互独立,其中X 的分布律为而Y 的概率密度为f (y ),求随机变量Y X U +=的概率密度)(u g . 解:由全概率公式: F U (u )=P {U ≤u }={X +Y ≤u }=P {X =1}P {X +Y ≤u |X =1}+ P {X =2}P {X +Y ≤u |X =2} = P {X =1}P {1+Y ≤u }+ P {X =2}P {2+Y ≤u } =0.3⨯F Y (u -1)+0.7⨯F Y (u -2)所以,f U (u ) =0.3⨯f Y (u -1)+0.7⨯f Y (u -2)8.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<<<=其它,,,020,10 ,1),(x y x y x f 求:(1) (X ,Y )的边缘概率密度f X (x ),f Y (y ); (2) Y X Z -=2的概率密度)(z f Z ; 解:(1) ⎩⎨⎧<<<<=其它,00,10,1),(x y x y x f⎩⎨⎧<<=⎪⎩⎪⎨⎧<<==⎰⎰∞+∞-其它其它,010,2,010,1),()(20x x x dy dy y x f x f x X ⎪⎩⎪⎨⎧<<-=⎪⎩⎪⎨⎧<<==⎰⎰∞+∞-其它其它,020,21,020,1),()(12y yy dx dx y x f y f y Y (2) ⎰⎰≤-=≤-=≤=zy x Z dxdy y x f z Y X P z Z P z F 2),(}2{}{)(如图所示,当z<0时,F Z (z)=0; 当z ≥2时,F Z (z)=1 当0≤z<2时:411)(212222020z z dydx dydx z F z xz x zx Z -=+=⎰⎰⎰⎰- 综上所述,⎪⎪⎩⎪⎪⎨⎧≥<≤-<=2,120,40.0)(2z z z z z z F Z 所以Z 的概率密度为:⎪⎩⎪⎨⎧<≤-=20,21,0)(z zz f Z 其它 9.设随机变量X 在区间(0,1)上服从均匀分布,在X = x (0 < x < 1)的条件下,随机变量Y 在区间),0(x 上服从均匀分布,求: (1) 随机变量X 和Y 的联合概率密度; (2) Y 的概率密度; (3) 概率P {X + Y > 1}. 解:(1) ⎩⎨⎧<<=其它,010,1)(x x f X⎪⎩⎪⎨⎧<<<<=其它,010,0,1)|(|x x y xx y f X Y ⎪⎩⎪⎨⎧<<<==其它(,010,1)()|),(|x y xx f x y f y x f X X Y(2) ⎩⎨⎧<<-=⎪⎩⎪⎨⎧<<==⎰⎰∞+∞-其它其它,010,ln ,010,1),()(1y y y dx x dx y x f y f y Y (3) 2ln 11),(}1{P 15.011-===≥+⎰⎰⎰⎰-≥+xx y x dydx xdxdy y x f Y X10. 设随机变量X 与Y 相互独立,X 的分布律为31}{==i X P ,(i = – 1,0,1),Y 的概率密度为⎩⎨⎧<≤=其它,010,1)(y y f Y ,记Y X Z +=,求:(1) 求}021{=≤X Z P (2) 求Z 的概率密度)(z f Z .解:(1) P {Z ≤1/2|X =0}=P {X +Y ≤1/2|X =0}=P {Y ≤1/2}=1/2 (2) 由全概率公式:F Z (z )=P {Z ≤z }=P {X +Y ≤z }=P {X =1}P {X +Y ≤z |X =1} +P {X =0}P {X +Y ≤z |X =0}=P {X =-1}P {X +Y ≤z|X =-1} = P {X =1}P {1+Y ≤z }+P {X =0}P {Y ≤z }=P {X =-1}P {-1+Y ≤z } =1/3⨯[F Y (z -1)+ F Y (z )+ F Y (z +1)]从而,f Z (z ) =1/3⨯[f Y (z -1)+ f Y (z )+ f Y (z +1)]=⎪⎩⎪⎨⎧<<-其它,021,31z11.设X 与Y 的联合概率密度为⎩⎨⎧<<<<=.,0;0,10 ,3),(其它x y x x y x f 试求Y X Z -=的概率密度. 解:⎩⎨⎧<<<<=其它,00,10,3).(xy x x y x f⎰⎰-≥=-≥=≤-=≤=zx y Z dxdy y x f Z X Y P z Y X P z Z P z F ),(}{}{}{)(如图,当z<0时,F Z (z)=0; 当z ≥1时,F Z (z )=1当0≤z<1时:22333)(3100z z xdydx xdydx z F z xz x zxZ -=+=⎰⎰⎰⎰-综上得:⎪⎪⎩⎪⎪⎨⎧≥<≤-<=1,010,2230,0)(3z z z z z z F Z 12Z 的概率密度为⎪⎩⎪⎨⎧<≤-=其它,010),1(23)(2z z z f Z12.设X 与Y 独立同分布,且都服从标准正态分布N (0,1),试求22Y X Z +=的分布. 解:,21)(22x X ex f -=π,21)(22y Y ey f -=π22221)()(),(y x Y X e y f x f y x f +-==π}{}{)(22z y x P z Z P z F Z ≤+=≤=当z<0时,F Z (z)=0; 当z ≥0时,220222222222121),(}{)(z zr z y x Z erdrd edxdy y x f z Y X P z F --≤+-===≤+=⎰⎰⎰⎰πθπ所以,Z 的概率密度为⎪⎩⎪⎨⎧≥=-其它,00,)(22z ze z f z Z。

《概率论与数理统计答案》第三章

《概率论与数理统计答案》第三章
第三章
习题参考答案与提示
第三章 随机变量的数字特征习题参考答案与提示
1.设随机变量 X 的概率分布为
X
-3 0.1
0 0.2
1 0.3
5 0.4
pk 试求 EX 。
答案与提示: EX = 2 。 2.已知随机变量 X 的分布列为
X
0 0.1
1
p
2 0.4
3 0.2
Pk
答案与提示:(1)由归一性, p = 0.3 ; (2) EX = 1.7 ; (3) DX = 0.81 3.已知随机变量 X 的分布列为


D X −Y = 1−
26.设灯管使用寿命 X 服从指数分布,已知其平均使用寿命为 3000 小时,现有
—5—

若一周 5 个工作日里无故障可获利 10 万元,发生一次故障仍获利 5 万元,发生二次2π网

ww w
3 ; 2
.k
hd a
EZ =
1 , DZ = 3 ; 2
w. c
解:(1)由数学期望、方差的性质及相关系数的定义( ρ XY =
第三章
习题参考答案与提示
求:(1) Y = 2 X 的数学期望;(2) Y = e −2 X 的数学期望。 答案与提示:(1) EY = E 2 X = 2 ;(2) EY = Ee −2 X = 1/ 3 。
1 11.试证明事件在一次试验中发生的次数的方差不超过 。 4
答案与提示:事件在 n 次独立重复试验中发生的次数服从参数为 n , p 的二项分 布 B ( n, p ) ,当然在一次试验中发生的次数应服从 B (1, p ) ,即为(0-1)分布。
f ( x) = 1 − x− β e 2α

概率论与数理统计第三、四章答案

概率论与数理统计第三、四章答案

概率论与数理统计第三、四章答案第三章 习题参考答案1.计算习题二第2题中随机变量的期望值。

解:由习题二第2题计算结果112{0}={1}=33pp p p ξξ====,得12201333E ξ=⨯+⨯=一般对0-1分布的随机变量ξ有{1}E p p ξξ===2.用两种方法计算习题二第30题中周长的期望值,一种是利用矩形长与宽的期望计算,另一种是利用周长期望的分布计算。

解:方法一:先按定义计算长的数学期望290.3300.5310.229.9E ξ=⨯+⨯+⨯=和宽的数学期望190.3200.4210.320E η=⨯+⨯+⨯=再利用数学期望的性质计算周长的数学期望(22)229.922099.8E E ζξη=+=⨯+⨯=方法二:利用习题二地30题的计算结果(见下表),按定义计算周长的数学期望ξ96 98 100 102 104p0.090.270.350.230.06960.09980.271000.351020.231040.0698.8E ξ=⨯+⨯+⨯+⨯+⨯=3.对习题二第31题,(1)计算圆半径的期望值;(2)(2)E R π是否等于2ER π?(3)能否用2()ER π来计算远面积的期望值,如果不能22||201()2x x D E x e dx x e dx ξξ+∞+∞---∞===⎰⎰20|22x x x e xe dx +∞-+∞-=-+=⎰6题目略解 (1)15辆车的里程均值为1274(9050150)91.33153++⋅⋅⋅+=≈ (2) 记ξ为从188辆汽车中任取一辆记录的里程数,则ξ的分布表如下表所示(a=188)ξ10 30 50 70 90 110 130 150 170p 5/a11/a 16/a 25/a 34/a 46/a 33/a 16/a 2/a故51124520103017096.1718818818847E ξ=⨯+⨯+⋅⋅⋅+⨯=≈ 7题目略解 记ξ为种子甲的每公顷产量,η为种子乙的每公顷产量,则45000.1248000.3851000.454000.14944E ξ=⨯+⨯+⨯+⨯= 45000.2348000.2451000.354000.234959E η=⨯+⨯+⨯+⨯=8.一个螺丝钉的重量是随机变量,期望值10g,标准差为1g,100个一盒的同型号螺丝钉重量的期望值和标准差个为多少(假设每个螺丝钉的重量都部首其他螺丝钉重量的影响)?解 设i ξ为一盒中第i 个螺丝钉的重量(1,2,,100)i =⋅⋅⋅,则 题设条件为101,i i E g D g ξξ==且12100,,,ξξξ⋅⋅⋅相互独立。

概率论与数理统计习题及答案----第3章习题详解

概率论与数理统计习题及答案----第3章习题详解

概率论与数理统计习题及答案----第3章习题详解习题三1.将一硬币抛掷三次,以X表示在三次中出现正面的次数,以Y表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X和Y的联合分布律.【解】X和Y的联合分布律如表:2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到红球的只数.求X和Y的联合分布律.【解】X和Y的联合分布律如表:f (x ,y )=⎩⎨⎧>>+-.,0,0,0,)43(其他y x A y x e求:(1) 常数A ;(2) 随机变量(X ,Y )的分布函数; (3) P {0≤X <1,0≤Y <2}.【解】(1) 由-(34)0(,)d d e d d 112x y Af x y x y A x y +∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得 A =12(2) 由定义,有(,)(,)d d yx F x y f u v u v -∞-∞=⎰⎰(34)340012ed d (1e )(1e )0,0,0,0,y yu v x y u v y x -+--⎧⎧-->>⎪==⎨⎨⎩⎪⎩⎰⎰其他(3){01,02}P X Y ≤<≤<12(34)3800{01,02}12ed d (1e )(1e)0.9499.x y P X Y x y -+--=<≤<≤==--≈⎰⎰ 5.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<--.,0,42,20),6(其他y x y x k(1) 确定常数k ; (2) 求P {X <1,Y <3}; (3) 求P {X <1.5}; (4) 求P {X +Y ≤4}.【解】(1) 由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==⎰⎰⎰⎰故18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=⎰⎰130213(6)d d 88k x y y x =--=⎰⎰ (3)11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y<<=⎰⎰⎰⎰如图 1.542127d (6)d .832x x y y =--=⎰⎰(4)24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y+≤+≤=⎰⎰⎰⎰如图b 240212d (6)d .83xx x y y -=--=⎰⎰题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.题6图【解】(1) 因X 在(0,0.2)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其他而55e ,0,()0,.y Y y f y -⎧>=⎨⎩其他所以(,),()()XY f x y X Y f x f y g 独立5515e25e ,00.20,0.20,0,yy x y --⎧⎧⨯<<>⎪==⎨⎨⎩⎪⎩且其他.(2)5()(,)d d 25e d d y y xDP Y X f x y x y x y-≤≤=⎰⎰⎰⎰如图0.20.2-550-1d 25e d (5e 5)d =e 0.3679.xyx x y x-==-+≈⎰⎰⎰7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.【解】(42)28e,0,0,(,)(,)0,x y x yF x yf x yx y-+⎧>>∂==⎨∂∂⎩其他.8.设二维随机变量(X,Y)的概率密度为f(x,y)= 4.8(2),01,0,0,.y x x y x-≤≤≤≤⎧⎨⎩其他求边缘概率密度.【解】()(,)dXf x f x y y+∞-∞=⎰x24.8(2)d 2.4(2),01,=0,.0,y x y x x x⎧⎧--≤≤⎪=⎨⎨⎩⎪⎩⎰其他()(,)dYf y f x y x+∞-∞=⎰12y4.8(2)d 2.4(34),01,=0,.0,y x x y y y y⎧-⎧-+≤≤⎪=⎨⎨⎩⎪⎩⎰其他题8图题9图9.设二维随机变量(X,Y)的概率密度为f(x,y)=⎩⎨⎧<<-.,0,,其他e yxy求边缘概率密度.【解】()(,)dXf x f x y y+∞-∞=⎰e d e,0,=0,.0,y xxy x+∞--⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他()(,)dYf y f x y x+∞-∞=⎰e d e,0,=0,.0,y yxx y y--⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他题10图10.设二维随机变量(X,Y)的概率密度为f(x,y)=⎩⎨⎧≤≤.,0,1,22其他yxycx(1)试确定常数c;(2)求边缘概率密度.【解】(1)(,)d d(,)d dDf x y x y f x y x y+∞+∞-∞-∞⎰⎰⎰⎰如图2112-14=d d 1.21xx cx y y c==⎰⎰得214c=.(2) ()(,)dXf x f x y y+∞-∞=⎰212422121(1),11,d840,0,.xx x xx y y⎧⎧--≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他()(,)dYf y f x y x+∞-∞=⎰5227d,01,420,0,.yyx y x y y-⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩其他11.设随机变量(X,Y)的概率密度为f(x,y)=⎩⎨⎧<<<.,0,10,,1其他xxy求条件概率密度f Y|X(y|x),f X|Y(x|y).题11图【解】()(,)dXf x f x y y+∞-∞=⎰1d2,01,0,.xxy x x-⎧=<<⎪=⎨⎪⎩⎰其他111d1,10,()(,)d1d1,01,0,.yY yx y yf y f x y x x y y-+∞-∞⎧=+-<<⎪⎪⎪===-≤<⎨⎪⎪⎪⎩⎰⎰⎰其他所以|1,||1,(,)(|)2()0,.Y XXy xf x yf y x xf x⎧<<⎪==⎨⎪⎩其他|1,1,1(,)1(|),1,()10,.X YYy xyf x yf x y y xf y y⎧<<⎪-⎪⎪==-<<⎨+⎪⎪⎪⎩其他12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X,最大的号码为Y.(1)求X与Y的联合概率分布;(2) X 与Y 是否相互独立? 【解】(1) X 与Y 的联合分布律如下表 345 {}i P X x =1 3511C 10=3522C 10= 3533C 10= 610 2 0 3511C 10=3522C 10= 310 30 02511C 10=110{}i P Y y =110310610(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠===g 故X 与Y 不独立13.设二维随机变量(X ,Y )的联合分布律为2 5 80.4 0.80.15 0.30 0.35 0.05 0.12 0.03 (1)求关于X 和关于Y 的边缘分布; (2) X 与Y 是否相互独立? 【解】(1)X 和Y 的边缘分布如下表2 5 8P {Y=y i }YX XYX Y0.4 0.15 0.30 0.350.8 0.80.05 0.12 0.03 0.2{}i P X x =0.20.420.38(2) 因{2}{0.4}0.20.8P X P Y ===⨯g 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立.14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>-.,0,0,212/其他y y e(1)求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率. 【解】(1) 因1,01,()0,X x f x <<⎧==⎨⎩其他;21e ,1,()20,yY y f y -⎧>⎪==⎨⎪⎩其他.故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -⎧<<>⎪=⎨⎪⎩g 独立其他题14图(2) 方程220aXa Y ++=有实根的条件是 2(2)40X Y ∆=-≥故X 2≥Y ,从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=⎰⎰21/2001d e d 212[(1)(0)]0.1445.x y x yπ-==Φ-Φ=⎰⎰15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}ZXF z P Z z P z Y =≤=≤(1) 当z ≤0时,()0ZF z =(2) 当0<z <1时,(这时当x =1000时,y =1000z)(如图a) 3366102222101010()d d d d yz Z zxy zF z x y y x x y x y +∞≥==⎰⎰⎰⎰33610231010=d 2z zy yzy +∞⎛⎫-=⎪⎝⎭⎰题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()d d d d zy Z xy zF z x y y xx y x y +∞≥==⎰⎰⎰⎰336231010101=d 12y yzy z +∞⎛⎫-=- ⎪⎝⎭⎰即11,1,2(),01,20,.Z z z zf z z ⎧-≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202),从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥g 之间独立34{180}{180}P X P X ≥≥g1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-<g g g44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡-⎤⎛⎫=-<=-Φ ⎪⎢⎥⎝⎭⎣⎦=-Φ==17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,…. 证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数, 所以{}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==U UL U于是{}{,},i k P Z i P X k Y i k X Y =====-∑相互独立0{}{}ik P X k P Y i k ===-∑g()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .0{}{,}ki P X Y k P X i Y k i =+====-∑00202(){}2ki k i n i k i n k ii kk n ki k n k P X i P Y k i n n p q p q i k i n n p q i k i n p q k =---+=-=-===-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭⎛⎫= ⎪⎝⎭∑∑∑g方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则X =μ1+μ2+…+μn,Y =μ1′+μ2′+…+μn ′,X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布.19.设随机变量(X ,Y )的分布律为0 1 2 3 4 50 1 2 30 0.01 0.03 0.05 0.07 0.090.01 0.02 0.04 0.05 0.06 0.080.01 0.03 0.05 0.05 0.05 0.060.01 0.02 0.04 0.06 0.06 0.05 (1) 求P {X =2|Y =2},P {Y =3|X =0}; (2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律.【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑X Y{3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑(2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i ====<+≤= 1{,}{,},i ik k P X i Y k P X k Y i -=====+==∑∑0,1,2,3,4,5i =所以V 的分布律为V =max(X ,Y ) 0 12345P 0 0.04 0.16 0.28 0.24 0.28(3){}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k i k i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+==∑∑0,1,2,3,i =于是 U =min(X ,Y ) 0 1 2 3 P0.28 0.30 0.25 0.17 (4)类似上述过程,有W =X +Y 0 1 2345678P0 0.00.00.10.10.20.10.10.02 63 94 9 25 20.雷达的圆形屏幕半径为R,设目标出现点(X,Y)在屏幕上服从均匀分布.(1)求P{Y>0|Y>X};(2)设M=max{X,Y},求P{M>0}.题20图【解】因(X,Y)的联合概率密度为22221,,(,)π0,.x y Rf x y R⎧+≤⎪=⎨⎪⎩其他(1){0,}{0|}{}P Y Y XP Y Y XP Y X>>>>=>(,)d(,)dyy xy xf x yf x yσσ>>>=⎰⎰⎰⎰π2π/405π42π/401d dπ1d dπRRr rRr rRθθ=⎰⎰⎰⎰3/83;1/24==(2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y>=>=-≤131{0,0}1(,)d1.44xyP X Y f x yσ≤≤=-≤≤=-=-=⎰⎰21.设平面区域D由曲线y=1/x及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,求(X,Y)关于X 的边缘概率密度在x=2处的值为多少?题21图【解】区域D的面积为22e e0111d ln 2.S x xx===⎰(X,Y)的联合密度函数为211,1e,0,(,)20,.x yf x y x⎧≤≤<≤⎪=⎨⎪⎩其他(X,Y)关于X的边缘密度函数为1/211d,1e,()220,.xXy xf x x⎧=≤≤⎪=⎨⎪⎩⎰其他所以1(2).4Xf=22.设随机变量X和Y相互独立,下表列出了二维随机变量(X,Y)联合分布律及关于X 和Y的边缘分布律中的部分数值.试将其余数值填入表中的空白处.y 1 y 2 y 3 P {X =x i }=p i x 1 x 21/8 1/8P {Y =y j }=p j 1/6 1【解】因21{}{,}jjiji P Y y P P X x Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+==从而11111{,}.6824P X x Y y ===-= 而X 与Y 独立,故{}{}{,}ijiiP X x P Y y P X x Y y =====g ,从而11111{}{,}.624P X x P X x Y y =⨯==== 即:1111{}/.2464P X x === 又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+==即1,3111{},4248P X x Y y =++== 从而131{,}.12P X x Y y === 同理21{},2P Y y == 223{,}8P X x Y y ===YX又31{}1jj P Y y ===∑,故3111{}1623P Y y ==--=. 同理23{}.4P X x == 从而23313111{,}{}{,}.3124P X x Y y P Y y P X x Y y ====-===-=故1y 2y 3y {}i iP X x P ==1x 124 18 112 14 2x18 38 14 34{}j jP Y y p ==161213123.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布.YX【解】(1){|}C (1),0,0,1,2,m m n mn P Y m X n p p m n n -===-≤≤=L .(2){,}{}{|}P X n Y m P X n P Y m X n ======ge C (1),,0,1,2,.!mmn mnnp p n m n n n λλ--=-≤≤=g L24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎪⎪⎭⎫⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ).【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=0.3{1|1}0.7{2|2}P Y u X P Y u X =≤-=+≤-=由于X 和Y 独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-0.3(1)0.7(2).F u F u =-+-由此,得U 的概率密度为()()0.3(1)0.7(2)g u G u F u F u '''==-+-0.3(1)0.7(2).f u f u =-+-25. 25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.解:因为随即变量服从[0,3]上的均匀分布,于是有1, 03,()30, 0,3;x f x x x ⎧≤≤⎪=⎨⎪<>⎩1, 03,()30, 0, 3.y f y y y ⎧≤≤⎪=⎨⎪<>⎩因为X ,Y 相互独立,所以1, 03,03,(,)90, 0,0,3, 3.x y f x y x y x y ⎧≤≤≤≤⎪=⎨⎪<<>>⎩推得1{max{,}1}9P X Y ≤=.26. 设二维随机变量(X ,Y )的概率分布为-1 01-1 0 1a 00.20.1 b0.20 0.1c其中a ,b ,c 为常数,且X 的数学期望E (X )= -0.2,P {Y ≤0|X ≤0}=0.5,记Z =X +Y .求: (1) a ,b ,c 的值;XY(2) Z 的概率分布; (3) P {X =Z }.解 (1) 由概率分布的性质知,a+b+c +0.6=1 即 a+b+c = 0.4.由()0.2E X =-,可得0.1a c -+=-.再由{0,0}0.1{00}0.5{0}0.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,得0.3a b +=.解以上关于a ,b ,c 的三个方程得0.2,0.1,0.1a b c ===. (2) Z 的可能取值为-2,-1,0,1,2,{2}{1,1}0.2P Z P X Y =-==-=-=,{1}{1,0}{0,1}0.1P Z P X Y P X Y =-==-=+==-=,{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y ===-=+==+==-=,{1}{1,0}{0,1}0.3P Z P X Y P X Y ====+===,{2}{1,1}0.1P Z P X Y =====,即Z 的概率分布为Z -2 -1 01 2P 0.2 0.1 0.30.3 0.1(3)====++=++=. {}{0}0.10.20.10.10.20.4 P X Z P Y b。

概率论与数理统计(理工类第四版)第三章多维随机变量及其分布习题答案

概率论与数理统计(理工类第四版)第三章多维随机变量及其分布习题答案

第一章多维随机变量及其分布二维随机变量及其分布设(X打的分布律対1^6 19 1/181'3 M 19求口-解答=由分布律性质工A - L可知I 6+ 1/9^1 "lfi +1/3 +"+ 1/9-1, 解得£戸込I习題2(丄)2.ig {X, F)的分布ill數为Fa. J'),试用尺工门表示:尸治Gf £仇F g匸}-尺机t)-尺“疋),,习題2(2)I2.® (尤n的分布函勒为川斗理),试用/-UJ)表示:(2)p;o<y<忙;尸出町yg冇j =鬥+卫』)三尸(+ 00'0)・习題24)]2■设g y)的分布働対珂扎小试用表示;(3)門疋>0, y<^i *尸尸<郴=F(+<K上)—尸他[解答=1P{max|A; n ^0| -P{Y, 少•个夭于J'O}=pgo} + W20} -P{X20. y纫4 4 3 5**7 7 7 7习題5丨(Kn只取下列数值中的值:(0.0), (-1, I), 、(2.0)且相应釈率依次为扌,,缶存请列出(x,r)的畴分布表,并写出关于啲边缘分布・解答^(I )因为所给的一组槪率实数显然均大于驭 且有1 + 1 +补+刍=1,故所给的一组实数必6 3 12 12是某二维随机变蚩(x,r )的麻合概率分布.因(* D 只取上述四组可能值,故事件:-I, r^Ob <X ・0・ y=-h{X- 0, r-1 H |x= 2・ n {*■ 2. y -1},均为不可能事件,其概率必为®.因而得到下表!0 1/3(2)F{f ・0}«P{X=-i, Y 0} +P{X-o, y=o} +P{%・2, r-0} n I 5 7=0H — + —=—,6 12 12同祥可求得P W >I 3j关于的y 边缘分布见下表^0 1/3 712 1/12 1/3 设随机向量(A ; K )服从二维正态分布M ()・(h 101101()),其低率密度为1 "八"2«0n求 PIX^Y].解答=丨由于尸氐W Y] 4 P{x> r} = h 且由正态分布图形的对称性,知円 XS n = P{x> r\,故 P{*S Y} = ;.习題7设®机变*(& D 的概率密度为7(6-Jf-卩),0<1<2,2<v<4'-I 0. Mt则⑴确罡常数灯(2)求P{Xvl 』v3”(3)求PXvlS}; (4)求P{X+y<4}・1/65-42 1/12 0 0 1/3 012 p{y=】r,解答;1如s所示(I)由「J:/(x,y)心a”. I >确定常数人-JJ^Z:(6-X-yydydx = Hj6-Ixydx = 8A = I ,⑵ P{X< l,r<3) = 4寸;1(6 7-刃在u 扌・⑶ P{X<\.5}=£ rfx£i(6-j-y)</v=寻.(4) P{无4人42J施广i(6_x-y)妇扌.[习題8」_____________________________________已知财口y的联合密度为C 、'w.OSMl.O 幻 G f{x. V)= <■ K 0, 氏它试求:(I)常数(2)尢和y的联合分布跚凡2).解答=1⑴由于TH :/(x, y)dxdy =41 xytfxdy = ~,E = 4 .⑵当X M 0或y 5 0时,显然Fg y) = 0 J当x2 1,y2l日寸,显然F(x,>■) = H设OSM I、0^> < I 有E(x, y} = P J* /{u, v}duJ\ =4(严也卜也=巧》^;设05x<l , v>l;有F{x,y}= P[X< l,K< vJ = =jr)最后,设xA(b OMpSl,有F(jr,v)= P[X< I, y<v\ =4jjM寸;vdv = r. 函数F(儿y)在平面各区域的表达式0, x<0i^<0F, 0<.v< i.>-> lF(")=巧人0<x< 1、0<y< I .r,x>i,OSySI习題9设二维随机变量伉,D的柢率密度为£[4・8只丨-X). 0<xS l.JT <y< 1心”0, ft它解答:人仗)■匚/Z)创f 4剛1 -x)a 几0, 其它2.4(l-F)(I-x), OSxSl ~1 0,其它♦_ 们4・8叩-x)dx, O£yW I0, H•它_ 2.4r(2-y), OSvSl0,其它•习a丄0 I设ee在邮刼"所ffl戒的区域仃里服从1祠分布J求联台廿布啻虜和边缘分布密度.E域G的面积月三J:b -论==,由题设知(X n的联合分布密度为6, 0盂』MhrWyW.Y/gm 二①11它”从而八h.v)fA =叮:创=(心rb s哲I,&0:—护h 0 W岸兰1.心卞)=J 3(),JI它同样的/ ") =「:rg处=或:必=6由-.V),u^v< 1^即# f小刃-1■ '■ 1 0, R L ■条件分布与随机变量的独立性二维随机变量(尤n的分布律为0 17/15 7.307/30 1/15(1)y的边缘分布律J(2)求Pr=o|x=oh P w=iro};⑶判定兀与y是否独立?解答:1⑴由(XJ)的分布律知b y只取0及1两个值・P{y=0} = P{x = 0j = 0} +Pb= l,j = 0;=«j^ +寺= 0.7,j-(j JO 15(2)P{y=Qx = 0}= P{x"0」"0} = ? ?* P{x = 0} 3⑶已知P{2 0,尸= 由⑴知Ptv=0i=0.7,樂以可得尸仪=0}-0.7.因^鬥20,尸0}*{.20}•氏2(1},所以*与y不独i・将某一医药公司9月份和8份的膏莖素针剂的订货里分别记为X与y.据以往积累的资科知X 和y的联合分布律为51 52 53 54z51 0.06 0.05 0.05 0.01 0.0152 0.07 0,05 0.01 0.01 0.0153 0,05 0.10 0.100.05 0.0554 0.05 0.02 0.01 0,01 0,030.05 QM005 0.01 0-03(1)求边缘分布律;(2)求X月份的订单数为51时,9月份订单数的条件分布律.解答=丨X5152 53 54 55 0J8 0.15 035 0.12 0.20 *对应丸的值,将每行的祗率相加b 可得円/"・}•对应y 的值(最上边的一行b 将S 列的柢率相加 可得p{y 可:•52 53 54 55~~6^2~0^~0.13 •⑵当y - 51B 寸'X 的条件分布律为鬥Ei,備宵严=粽,"5WK55.列表如口习题3 1 已乳(X n 的分布律如下表所示y-^ -1^LrL •(1) uy=i 的条件下,戈的条件分布律,(2) 在X«2的条件下,y 的条件分布律.f 解答=1由麻合分布律得关于X. y 的两个边缘分布律为故⑴在y-1条件下,尢的条件分布律为_0 1 23/11 8/11 0 ⑵在X=2的条件下.y 的条件分布律为4/7 0 3/7(I)边缘分布律丄 X "719/24 8/24 7/241024 11'24 3/24由尢与y 相互独立知PiX=x,. r=j ;j=P{X=xJP{y=yJ, /=l,2,3.4, 7=1,2.3, 从丽(A ; y )的K 合祗率分布为P{X+y=\}= P{X«・ P{X«O, y=l}=—+ — = 16 4K 12P{X+ y*0} = I - P{X+ F 二0}= 】-P{X 二-b y=i}-p4x== -二2 2 1 I 32S12 6 4习題5丨丸与y 相互独立,其概率分布如表S )及表⑹所示,求:(KK )的联合概率分布, Pj%+r=iH P{*+y*o}・-20 1/2-1/2 1/4 1/3 142 1/31/21/4 1/4表3)解答: (I)由题设易知fk I人(-4—, I a M 尼又y 卜相互独立,故A ■与》的联合槪率密度为L tk 找它⑵因2有实根}-:判另弑A=-4A^'-4ys()! - {用2鬥,I + y-yr舌则图所示得到:、 」■尸加有实根} =P {X-> Y } = H “儿 ,曲T 町V 讪」/「 rr '%工=l - ; ."dr-r HLclx-二维随机变量函数的分布r?=1 一莎J 壮一丘『厂必■ ■ =]—血他⑴―山⑹,又tl>(IJ-0.MI.3 I 小(冊三2^于杲巾(I)-伽(0)-03413』所以 尸旧有实根! = 1 — 血冲(I)—职仙] -2.51贰0加13 = (1」4工=-t(i )z=r +y 酚布律为•2 0 A 1/10151/2 110 no-2 1/21/5 1/10 1/10 1/10J/2 1/51'5 3/10 151 10(4)Z.max1Xri 的分布律习那]设二维隨机向S (x, y )眼从矩形区,或D “(2)IOSM 2・0<八H 的均匀分布,且 ■ , fo.xsy “ 3*s2yU=1 ; v=)J, x>2r解答:I依题(U 耳的概率分布为P{CZ=O, V^Q}^P{X^KX<Y\=P{X^Y}咖:扑w ,p{(7=o,I j = P{XM};x>2r}M(bp {c/=i,r=o}=p {x>y,x<2y}=p<y<xs2Y}=例:5心,p{u-1, r-1}=1 -p{r=o, r=o|-P|c/=o, r= i }-p {u= i, r=o} = iz2,(3) Z 二*"的分布律-2 1/101/57/10[\.X> y求0与A 的联合概率分布.I习題4 I设(x,r)的联合分布密度为I E —e " 2n求2的分布密度.解答:依翹意,由_____当xO时,FX Z)=P(0)=O J当沦0时,F^z).P{X'+r'^z^)- JJ /{x.yydxdy・« ・1 ■p・5 =-j;x^ 曲» [g ,dp■ 1 - e •故2的分布函数为FQ・0, 2<02的分布密度为ze \ 2>0L 0, 2<0习題5〕颇机变量(X "师率密度为・a + v)<? A”, x>0.y>0r(x 丿” \ 2I 0,煤它(I )冋;V 和y 是否相互独立?(2)求7«* †+ y 的概率密度• 解答=1(|)/7力=厂/("曲依题童,x,y 的柢率密度分布为fl, Owl心0.其它'由卷积公式得Z«x+ y 的概率密度为//2)=匸:/(xteG ~x)dx,于是当 0<x<l, z-x>O01,广(x)j?U-x)*O,故兰 Ovx<Nv I 日寸,有 /'/z)=£t* '• m 办=1-t? r ;当沦I 时,有//z>=£e» *■ **rfr=e*即2的駅率密度为x> 0 一时,/(X. z-.v)*O,所 X<2-xe ^dx = —z^e :. ? 2习题6 1设随机变S* y相互独i,若刘艮从(0, I)上那咖布,}服从参数I的指数分布,求随机变量z=x+y的率密度.解答=IQp八0鮒)0. «它■-e—e0<二<I习題7 I0. VMO01lt0, M<0 (1-C 于丁〒OS“vl ・设随机变量(X y)的槪率密度为bgWj 0<xvl,0<y<+80,具它(1)试确定常数切⑵求边缘概率密度/e), ⑶求函数U= max数.⑴由J 工 J{x,y}dxdy = 1 ,确定常数 b.J ;厶J ;仏 'e Py-W-e *)/(x.y} =-—e Ovx< 1,0vyV+8 e~'0, 其它(2)由边缘概率密度的定义得--- e 0,-e(叫几Ovxvl 淇它0. «它~e0•氏它I0,氏它⑶因为/(x,j)=/,Xx)/,<v),所以龙与y 独立,故F(W) = Pfmax {兀 Y] W i/} =P{X^ u, r<H J =fyw)FK■ f ] ■ JI其中 Fv(X)-£-j-^<// Ovxvl,所以0, H SO-eI -a-,Q<x< 1 •"1同理£c ⑷,0<y<+ « 1—严;0vy<4oo0, y<0习題7 I1 -<?',习題B设系统丄是由两个相互独立的子系统丄和E 职串联方式联接而成,人和丄,的寿命分另I 伪A 与 b 其概奉密度分另怙,隹(h ・)i(K .Y<0解答:设 Z-inin{y, V\ 则F(d = FM>二}-你miti{*= }= l-r|niiii(-\; }-r{X^2. } S J} =1-IIP""川 1 —珥 ^二}|= }-[}-F,[=]][}=由于* z>0认 z<nf I -r 巴 z>0 尺㈡* I 0, Z<n0, z<(l从而3>()习题9设随机变童疋湘互独立』且服从.同一分布』试证明;P {(t < niiniX 卄"2 [鬥出]丄—[PiX> * 口»ff 答:设血i^F}二乙则尸旧wruMfJ ; F)"} =£//>) = ◎(&)』/7二尸尸{min f A ;打"} — 1 —鬥min |兀 冷“} -l-nX>z r>r^- I -F{#dz}P{FHz} 二丨TFfvr 门代入得/^{u<imii{A ; n 5; = I - If {人、忧F-(l -f汗}打""耐证毕.复习总结与总习题解答0. v<()苴中,』>{),“〉(b 回,试束系?盍丄的寿命Z 的柢率密Rr) = *1 —严+吒£>0习題1丨在一箱子中装有12只开关,其中2只罡次品,在其中取两次,毎次任取一只,考虑两种试殓;(I )放回抽样八2)不放回披样•我们走义随机变量X. y 如下:-0若第一次取出的是止品"":1■芳® —次取卅的走次品' 解答:(I )有放回抽样,(X, n 分布律如下:p.v=o,r=o, = ^ = g,P{x=.,x=o, = ^ = l(2)不放回抽祥,(尤n 的分布律如下:P{X=(). y=()} =竺11 =竺,P{x=o,y=i} =史11 =凹12x11 66 12x11 66 P {灼,—“^二黑砒"—2二=£ 12x 11 66I2x II 66假设随机变量y 服从聲数为1的指数分布,随机变量母屮仟仏3求(兀冷的联合分布率与边缘分布率.0■若第二次取Hi 的是lE 品 1,若箔一次取出的是次跖 砂别就(I ),(2)两种谢兄,写出/和 > 的联合分布律•Y=<劭y服从劳数为啲指数分布,血=『电"|,所以有11,若 1= I} = P| y> I} = J* % ^dy = c ',f{y, = 0} = l-eP{X=I}= P{y>2}=J;l 'dy = e 2,P{Xj = O} =1 -e 2,= l)=P{y>2)=e SrjA^,= l,Yj = O( = f{X,= l}-r{X, = UXj = l} =e '-e P{X, = O,A;=O}=P{r^t!= !-<?*',p {/=o,& = H = Ptv,=o}-PM>o,y=o}=(), 故e,Ay联合分布率与边壕分布率如下表所示:在元旦茶话会上,每人发给一袋水果,内装3只橘子,2只苹果,3只香嵐今从袋中随机抽出4只,以乂记橘子数,y记苹果数,求gn的联合分布•解答=IX可取值为0,1,23 y可取值0, 1,2,则Ptv=o, r=o3=p{0( = o, P{Y=o, y=i}=c:c;c"c;=2/7o, 門X=o, y=2} =C;GC:/C:= 3/7O, = 1, r= GJ = CjC^Cj/C'; = 3/70,P{X= I, Y=\}= C;C;G/G = I 8/70, P {%= I, r=2} = C;C;C;/C = 9/70,P{X=2, r=<)}=qc^c5/C; = 9/7O, P{X = 2, r=|>=c^cjc;/q= 18/70, 門X=2,r=2}=C;C;C;/C; = 3/7(b P{X=3, r=()! =C;C;rl/C;=3/7O,P{X=3, r=l5=C;CX7C'; = 2/7O, P|Y=3, X=21=PJ0} = O,所以,(X, 合芬布如下:设斑机变量兀与y相互独立,下勵tt 了二维随机变量(x, n的联合分布律及关于尢与y的边缘分布律中的部分数值,试将其余数值《入表中的空a处:解答=]由题设X与y相互独立》即有"厂几几0- 1.2; R 1,2,3),又由独立性,有故化笃从而円产5・方-§,又由几产几P"即从而P产才类似的育I 1 3卩严亍如蔦'卩2蔦将上述数值填入衰中有(2)(x(一=呼Array n s鎗當墨(2)因窗賞J: 2X0-r叭工 <dsxa 一灶yAI-B 「FumnoJ◎脏一八 2yI -讥弋A o 畀-F(XQ )H P C SH一・y H—二 H -、4J 显X22、—-^ycoBq》 F (X ・S H 2X »一•y" — 二4P亠尢》2・y »— 二H5二2j显一人xa2;>0尹F (x・0»^x»-・ T—二*史XH 厂◎肛X W2;W O 尹/%R・Y )H P K H一・n H —二+2X H2・ PH I 二 + p 亠X H 厂 〉+解答:I 2应彳,£.由分布律的性质可知I 九=丨,故习題9 I _________________________ 设H 随机变量(尤naw 率密度函数为Ct?0,儿它⑴确定常数门(2) 求X"的边缘概率密度函数J (3) 羽联合分伟国数尸(X 』); (4) 求 P{ysx}; (5) 求条件槪率密度函数 (6) 求P{X<2\Y<\} •I 解答=1⑴由匚工 /(X, y](ix(iy^ 1 求常数 f - i :r-即0+0=■•3又因九与y 相互独立,故pjx=A r=ZJ = P^x=/iP{X=7b 从而 «・P{*・2, K-2}«P{r -i|P{r-/!r 1 VI 、V9 A4J2 *6,0 = P{X=3、X=2}=PJT=3JP{Y=2} fl I -+ -U 31+#]转1+0A3*3. 〔訂⑵A(x)=J y(x,v)Jv =■「2宀“ x>020・hx>O/Q) ■匸/(xj)必= J 「2eW 血y>00, «它严y>0 10, ySO(3)f J 〉■ r r /(“• v}dvdu< ■«! .rXJJ :2° 叫'dvdu. x>0,r>0 0,氏它J(1-宀)(iy)・ x>0,y>0 "I 0.其它•(4) 門卩£卫=厂叫2€ % 7/1 =j^ 2e -'(I-e ")必=\(5) 当八0时,,2r — ♦<-x>0 J2e, x>0 0. x<Q to ,"0(6) P{X< 2|r<I} = P'Xu 2,F(2, 1) (\-e-■ --------- : --- = 1 — e?0. xSO二/(")二J:e M 设随机变置以槪率I取值为(b而y是任—e意的随机变量,iiP加与丫相互独立.解答=I因为必的分布函数为0, %r<offfF(x)=< . 7〔1,畑側设y的分布因数为几0), (x, n的分布国数为Fgy),则兰工"时,对任意厂有F{x,y} = P{X<x, Y^y} = P{{X<x}r>(y<y}}= F{0C(F)}=F{0}=O= F3F3当20时,对任意F,有川儿卩)-PiX<x, Y<y} - P {(XS)c(FQ,)}- 勺刘-/>{〉<,} = FQ)=F/MO).依罡义,由Fg y) = F#r)厲仞知,北与V独立.设连续型随机变S(x,y)的两个弁S尢和*相互独立,且服从同一分布,试证P{X<Y\ = \fl.解答:I因为A; y独立,所咲/(X」)=//x)/)0).P伫r:=『心刃艸 =口/的/QMS•cSy jrSr■ {二[/0龙8^0皿皿・「:[/\0)尸0)]妙=J /^XvWv)=—L:=-.J" 2 2注:也可以利用对称性来证,因为X」独立同分布,所以有P\X<Y}=P\y<X\,而p{xs rj \ P{X2 Y} = \,故F{/Vsr}-I/I2.习題121设二维随机变量(A ; D 的联合分布律为“2 X 、 a 1/9 c? "9A13若久与y 相互独立,求参数a,人C 的值• 解答:]关于*的边缘分布为a + - A+ - C —9 93关于y 的边缘分布为,4 fl + c+ • b+ • 99 由于X 与y 独立,则有几2=P 、Pa 得 ( ./>= b4- /)+V 9八 由P\2訴P"得由式①得"二彳,代入式②得"右,由分布律的性质,rt + />4c + — + - -1—9 9 3代入"IV g?得心•易验证,所求绒也C 的值,对任倉的j 和/坷荐足甘化XPj.因此,所求依处的值为"丄,』,c=l18 96P K/ f9.习題14 I设(工K)的联合密度I 邂故为P ,『打匕用f(x,y)=< H R ・ ,0, K 它⑴求北与^的边缘概率密度;(2)求条件概率密度,并问龙与y 是否独立?⑴当 *<-/?或^>/?时,f/x) = J ^/(x, y)</v=J *0命=0; 当一RS T WRE 寸,AW 叮并』如爲几4 =务戸• 于是'乍■尺"/Q) = 1宛斤V 0,兀它由于X 和y 具有对称性,同法可得y 的边缘#[率密度为/爲光厂,*曲0,其它值位于IM W J R ' -}2这个范围内,/'(儿y)才有非零JlR1/ 灿)=-7 —= / . 2 '即件1R 率密JS 为—r===, 1X |M JP ■“ /WMy)= 2j 用-尸0, 它同法可得X= X 时y 的条件祗率密度为f« 2{疋-£ .(),It 它 由于条fMR 率密度与边編R 率密度不相等,所以尢与y 不独立.⑵/>0卜)=少亠,注意到在y 处X ・/心)值,敌在此范團内,有霞 一5H H-心鼻働奮吐長o r n +y 叭Z)MOJ肛0览八一孚- Es«pbv+yn 一—=n (n d oe+r*r;令«z{2lz)l5(2lzr+ (hl-)2J吐ZW2鼻』=/'(XG)4zva ・nfuYfyxan一 • 3 0.2(21^13(21* I VN A O22搭AS H 一 2 I P匚P一从0人2・t 习題IT I设H 随机娈量(X X)的概率密度为2g52.q 2()j>00,其它 求随机变Sx-乂+2y 的分布佛.按定义/7Z) = P{x 千即当 ZM0时,F/Z)= JJ f{x,y}dx<iy = JJ 0厶妙=0.J( *2*" X * 2> S J 当-A O 时,F/Z)= JJ /(斗划厶亦I 叫幼 J *2yS :=£e '(I - e" 9iZv=[(e “-e •)<Zx = [-e"*^|^-ze'* =l-g7-二 g7,0, 注0习題W 1设随机变MX 与y 相互独立,其概率密度函数分别为Ae^\y>010. yso驰(I)常数‘4; (2)随机变量Z-2X+ >的概率密度(酬•(1) 1 «「:/0)心《」「才吆 3" •(2) 因^与F 相互独立,故(A ;y)的联合概率密度为e"\ OS N M I, v>0 •, 0,氏它 于是当zwO 时,有F ⑵二P{2W Z }M P{2X+ r^r}=Oj当OS 注2时,有F(z) = P{2X +ysz}=['住% VvJ 如当A 2时,有F(z) = P{2X+ ys2}=f :次匸 \ Vv =j^(l 仙.利用分布1跚法求^寻7亠2X+ y 删率密度a 数为0,匸<0(M -1)0 ¥2.沦 2{//*)= (l-e 9/2, O<2<2・/g)=故分布酗为F") M \1 ^-se •, z> 0 一、I.OSxSl 八、朋£・其它,如十习ai9 I is 阴机变量K.y 相互独立,若尤与y 分别服从区间(0, I )与(仇2)上的均匀分布,求U= max{X 幷与 r-minM ; Y\«答=I由题设知,尢与F 的概率密度分别为1, 0<x<1 .0, It 它'于是,①尢与啲分布函数分另|]为0, xMO X. 0 M X V 1, I 1, 21从而U= max{A ; Y ]的分布为K w22故n 的柢率密度为W, 0<u<l/tO/) =②龍,由r,b')=i-[I -F A X 呱 1-®] =人何 + F") -FXv)F,{v) =尸3)+ 厲3)-耳3), 得y=niin{X n 踽布瀏为f 0,OSv< I,故心min W}的概率密度为'3I - - V, 0<v< I.A (v )=b ^,0, K 它注;(I )用卷积公式,主S 的困难在于店丫的《?率密度为分段函数,故卷积需®分段计亀 ⑵先分别求出X 」的分布函数FQ )与FQ ),然后求出片何,再求导得/沖);同理先求 出FQ ),求导即得/a.ri/2.0<>-<2M 0.其它 0. > <0 y/2, OSy V2,F,4w) = FJw)F|-(w) =0, M<0ir/2, 0<«< 1w/2, 1 S w V 2vvO* — Xt习題IT I"如x>00, ,<0 r畔I-/e Wx>0-20. je<o-(X+ l)e \ x>0(),丫<0-(V + I)e \ y> 0由対称+蜘,显然I 0, pMO.Z'g"A(x)/Q),JC>0.y>0, 所以龙与y不独立.(2)用卷积公式求= 当{即•当时,//r) = Oj 当"0吋,/血)=帛于是,z="+y的积率密度为12>0 zMO。

经济概率统计作业参考答案(第三章)

经济概率统计作业参考答案(第三章)

p{X
k} a , p{Y k} b , (k 1,2 ,3), 且
k
k2
X
与Y
相互独立,则
( D )。
( A) a 1, b 1;
(B) 11a 49 b 1 ; 6 36
(C) a, b 为任意实数 ;
(D) a 6 , b 36 。 11 49
三、计算
1、一盒子中装有 3 个黑球、2 个白球、2 个红球。在其中任意取四球,以 X 表示取到黑球 的个数,以Y 表示取到红球的个数,求( X , Y )的联合分布列。
1 0 x 1
f
X
(x)
0
其他
fY ( y)
f (x, y)dx
当0
y
2
时,
f Y
( y)
11
0 2
dx
1 2
当 y 0 或 y 2 时, fY ( y) 0
1 / 2
f Y
( y)
0
0 y2 其他
5、已知随机变量 X 和 Y 的联合分布为:
(x , y) (0,0) (0,1) (1,0) (1,1) (2,0) (2,1)
答案: F(b, c) F(a, c) , F(, a) F(,0) , F(,b) F(a,b)
2、设二维随机变量的密度函数为
p(x)
4xy
0
,0 x 1, 0 y 1
,
其他

则 p(0 X 0.5)

答案: 1 4
3、随机变量 (X ,Y ) 的分布率如下表,则, 应满足的条件是
1/ 6
3
1/12 1/ 6
0
2. 二维随机变量( X ,Y )的联合密度函数为:

《概率统计》第三章习题解答

《概率统计》第三章习题解答
0
1
可知,放回不放回都是
(2)由
0
1
2
3
1
3
可知边缘分布为
7. 设二维随机变量的概率密度为
,求边缘概率密度。
解:
1
1
2
1/2
1/2
1
2
3
1/3
1/3
1/3
1
2
3
4
1/4
1/4
1/4
1/4
13.在第9题中,(1)求条件概率密度 ,特别当=1/2时,的条件概率密度;(2)求条件概率密度,特别写出当=1/3 ,=1/2 时,的条件概率密度;(3)求条件概率。
5. 设随机变量的概率密度为
; (1)确定常数;
(2)求 ;(3)求; (4)求。
解:(1)由 可知;
(2);
(3);
(4)。
6.(1)求第1题中随机变量的边缘分布律;(2)求第2题中的随机变量的边缘分布律。
解:(1)由,
0
1
0
1

18.设和是两个相互独立的随机变量,其概率密度分别为:
,求随机变量的概率密度。
解:因为和相互独立,故 ,
则当时,,
当时,显然或,,故 ,
当时,

可知的概率密度为: 。
19.某种商品一周的需要量是一个随机变量,其概率密度为: ,
设各周的需要量是相互独立的,试求(1)两周;(2)三周的需要量的概率密度。
解:(1) ,;
设两周的需要量为,当时
,故 。
(2)设为三周需要量,则=,当>0时,

概率论与数理统计第三章课后习题答案

概率论与数理统计第三章课后习题答案

概率论与数理统计第三章课后习题答案习题二1■将一硬币抛掷二次,以X表示在二次中出现正面的次数,以Y表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X和丫的联合分布律.【解】X和丫的联合分布律如表:2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到红球的只数.求X和Y的联合分布律.【解】X和丫的联合分布律如表:3•设二维随机变量(X, F)的联合分布函数为求二维随机变量(x, y)在长方形域内的概率.4 6 3J【解】如图叫眈怎<今空^求:(1)常数/;F (x, y)sin xsiny,0,0"岁詣其他.・Tt ■兀・兀■兀=sin —_sin ——sin —_sin ——4 3 4 6二#(dl).斗sin OLfeinK ■八■兀—+sinIksin —3 6JT7说明:也可先求出密度函数,再求概率。

4•设随机变量(X, Y)的分布密度f(兀,y)j e-(3.r+4y)x >0, y >0, 其他.(2) 随机变量(X, Y)的分布函数;(3) P{0 «1, 0之<2}.【解】(1)由 f(x,y)dxdy° °Ae(3x4y)dxdy £ 1得A = 12(2) 由定义,有y xF (x, y)f (u, v)dudvy y(3u 4v)12e dudvo o0,(3) P{0 X 1,0 Y 2}P{0 X 1,0 Y 2}5. 设随机变量(X, Y )的概率密度为(1 e 3x )(1 e 4y ) y 0,x 0,0,其他212e (3x 04y)dxdy(1 e 3)(1 e 8)0.9499.f(x ,y)=k(6 x y), 0,x 2,2 y 4,其他.(1)确定常数k ;(2)求 P{X v 1, Y v 3};(3)求 P{X<1.5};(4)求 P{X+Y W 4}.【解】(1)由性质有2 4f(x, y)dxdy ° 2 k(6 x y)dydx 8k 1,31-k(6 x y)dydx86.设X和丫是两个相互独立的随机变量,X在(0,0.2)上服从均匀分布,Y的密度函数为求:(1) X与Y的联合分布密度;(2)P{YN}.(2) P{X 1,Y 3} f (x, y)dydx(3)P{X(4)P{X1.5}x 1.5f (x, y)dxdy 如图 a f (x,y)dxdy1.5 4 10 dx -(6 x y)dy82732Y 4}Xf (x, y)dxdy如图 b f (x,y)dxdy(61 ) y)f Y( y)5e5y, y 0,0, 其他.【解】(1)因X 在(0, 0.2) 上服从均匀分布,所以X 的密度函数为f x (X)10 x 0.2,0.2,0,其他.而f/y)5e 5y , y 0,0,其他.所以f (x, y)X,丫独立 fx(x)gf Y (y)⑵ P(Y X) f (x, y)dxdy 如图 25e 5y dxdyy xD丄 0.2 5e 5y0,25e 5y, 0 x 0.2且 y 0, 0, 其他•0.2 0dx25e -5ydy0.2 5x0 ( 5e5)dx■1=e 0.3679.7.设二维随机变量(X, Y )的联合分布函数为F ( x ,y )(1 e 4x)(1 e 2y), x 0,y 0,0,其他.求(X ,Y )的联合分布密度2[解] f(x,y)x y8e(4x 2y), x 0,y 0,0, 其他.8.设二维随机变量(X, Y )的概率密度为f (x, y)=4.8y(2 x), 0 0,x 1,0 y x,其他.求边缘概率密度.【解】f x(x) f (x,y)dyx0 4.8y(2x)dy0,2.4X2(2 x), 0 x 1,0, 其他.f y(y) f (x,y)dx1=y4-8y(2x)dx 2.4y(3 4y y2), 0 y 1,0, 其他.,题8图9.设二维随机变量题9图X, Y)的概率密度为f (x, y) e y, 0 x y,0, 其他.求边缘概率密度.【解】f x(X) f (x, y)d yx0,e y dy xe , x 0,0, 其他.f Y(y) f (x,y)dxy e y dx0,ye x, y 0,0, 其他.y\i■v=xw p题10图10.设二维随机变量(X, Y)2f (x, y)= J试确定常数c;求边缘概率密度的概率密度为x2y 1,其他.(1)(2)【解】(1)f (x, y)dxdy如图Df (x,y)dxdy1 12-1dx x2cx ydy4c211.214f x(X) f(x,y)dy1 212 , xydyx 40, 212。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率统计第3章答案P {X=0, 丫=2 }= c ;c ;c 41 35P {X=1, Y=1 }=c 3c 2c fc 435第三章作业一1. 将一硬币抛掷三次,以 X 表示在三次中出现正面的次数,以丫表示三次中出现正面次数 与出现反面次数之差的绝对值.试写出X 和 丫的联合分布律.【解】X 和丫的联合分布律如表:2. 盒子里装有3只黑球,2只红球,2只白球, 在其中任取4只球,以X 表示取到黑球的只数, 以丫表示取到白球的只数,求 X 丫的联合分布 律。

X 丫)的可能取值为(i , j ),i =0,1, 2, 3, j =0, 12, i + j >2,联合分布律为123丫0 0 03 35 2 35 16 35 12 35 2 352 1 35_6_ 353 35班级 学号: 姓名:P {X=1, Y=2 }= C 3C 2C26 C4 _35P{ X=2, 2 2Y=)}= c,= 3 P {X=2, 2 1 1Y=| }= C 3C 2C212C ; _35P{ X=2, 2 2Y=2 }= C 3C2 -3 C; 35P {X=3, 3 1丫=)}= CCC 2= iP {X=3, 31Y=| }=C 3C22C ; 35P {X=3, Y=2 }=03. 设随机变量(X Y )的分布密度求:(1) 常数A ;(2) 随机变量(X, Y )的分布函数; (3) P {0 < X <1, 0< Y <2}.【解】(1 )由—f(x, y)dxdy=:0:0「Ae-(3x"y)dxdy =£ = 1得 A =12(2)由定义,有y xF (x, y)f(u,v)dudv*rr(x, y )=屁少杓)0,x 0,y 0,其他.【解】(1)因X 在(0, 所以X 的密度函数为〔丄 f x (x )二 0.2' 0,题6图0.2 )上服从均匀分0 : x :0.2,f()』5e%y>0,Yy0, 其他.; y y0 012e® 4v)dudv(i_e&(1-e ,y) y 0,x ■ 0, =0,= 0, 其他(3) P{0 _X :::1,0 _Y ::: 2}二 P{0 :: X 叮,0 :: Y < 2}1 2=J o [ 12e4F y)dxdy = (1—e 」)(1 — e»)壯 0.9499.X 在上服从均匀分布,丫的密度函数为 f Y ( y )=4.设X 和丫是两个相互独立的随机变量,(0, 0.2)求:(1 )5e 亠,y 0, 0, 其他.X 与丫的联合分布密度;(2)所以f (x, y)X,丫独立f x (x)Llf Y (y)1一5e5y25e'y, Q :. x 0.2且y 0,=《02 =20, 0,其他.(2) P(丫乞X)二f(x, y)dxdy如图25e“y dxdyy兰D0.2 x 5y0.2 5x=J0 dxj0 25e y dy =[0 (-5e +5)dx=e-10.3679.第三章作业二1. 袋中有五个号码1, 2, 3, 4, 5,从中任取 三个,记这三个号码中最小的号码为 X ,最 大的号码为Y(1) 求X 与丫的联合概率分布; (2) X 与丫是否相互独立?【解】(1) X 与丫的联合分布律如下表二345P{X =幼1 1 13' =C 5 10 2 2_ 3 =C 5 10 33 _ 3 =C 5106 10 2 0 1 1于五2 2 31031 12 —C 5 10110P {Y *}丄102 10_6_ 10(2)因 p{X =1}L p {^3^160 ★盘=”P{X=1,Y=3}, 故X 与丫不独立2. 设二维随机变量(X, 丫)的概率密度为(X, y )七,(1)试确定常数C ; 求边缘概率密度.【解】(1)f'bOf'bOf (x, y)dxdy 如图卩 f(x, y)dxdy!r jnJP% IfJH J"1!, - !r ITD1 124= f 1dxf x 2cx ydy祐 c =1.21(x, y)dy121 20,fY(八;",朋ff -oOf x (X)二21x 2(1 — x 4), ^<x<1, =80,其他.y21 2 =-V4xydx0,757y 2,0,Q< y <1,其他.3.设X 和丫是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,丫的概率密度为f v (y )=汁 y>0,io, 其他.(1) 求x 和丫的联合概率密度; (2) 设含有a 的二次方程为a 2+2XaY =0, 试求a 有实根的概率.-y/2f(x, y)X,Y 独立 f x (x)Lf Y (y)二 2I0,题14图⑵ 方程a 22Xa Y =0有实根的条件是.==(2X)2-4Y _0X 2> Y ,从而方程有实根的概率为:P{ X 2_ Y} = f (x, y)dxdyx 2_y1x 21 =dx0 2e=1 -,書少⑴-:"。

)]= 0.1445.4. 设随机变量(X Y )的概率密度为【解】(1)因fx(x )1, 0 : x :: 1, 0,其他;fY(y) == 2y丄"2, y 1,0, 其他.f (x , y )=1, |y c x,0v x v 1,其他.0 . x :: 1, y0,其他x 2"2dy求条件概率密度(y I x),f x i (X I y)[解]f x(x) = y)dy所以Y| X题11图I i 1dy = 2x, 0 x 1, 0, 其他.■befY(y r .;f(x,y)dx 二"1f 1dx = 1 +y,-y1[1dx=1 _y,L y0,_1 ::y :: 0,o _y :: 1,其他.r 1 f Y|X(y|x)卅?| y| ::x :1,其他.f xY (x| y)f(x, y)f y(y)11 - y11 y0,y ■x :: 1,_ y ::x :: 1,其他.P{Y =3|X0}P{Y =3,X =0} P{X =0}第三章作业三1. 设随机变量(X, Y )的分布律为1 2345(1)求 P { X =2 | Y =2}, P { Y =3 | X =0};(2) 求V =max( X , Y )的分布律; (3) 求U =min (X , Y )的分布律; (4)求V=X +Y 的分布律.【解】(1 ) P{X =2|Y =2}=竺空级P{Y =2}P{X =2,Y =2}""57 P{X 二 i,Y =2}i =00.05 1 0.252P{X =0,Y =3} 二 ~3、P{X =0,丫二 j}j =0⑵ P{V =i} =P{max( X,Y) = i}P{X =i,Y<i} + P{X Mi,Y =i}i 1i7 P{X =i,Y =k} ' p{x =k,Y =i},k =0k=0i =0,123,4,5(3) P{U =i} =P{min( X,Y) =i}二 P{X 二i,Y _i} P{X i,Y =i}35八 P{X 二 i,丫二 k} ' P{X 二 k,丫二 i}k ±k 4 1i =0,123,于是 (4) 类似上述过程,有0.01 0.03V=X +Y012345678P 0 0.0 0.0 0.1 0.1 0.2 0.1 0.1 0.0263949252. 设人丫是相互独立的随机变量,它们都服从 参数为n, p 的二项分布.证明Z =X +Y 服从参 数为2n , p 的二项分布.【证明】方法一:X +Y 可能取值为0, 1, 2,…, 2n .kP{X 丫 =k}=為 P{X =i,Y =k —i}i=@Y = 1 1 + 1 2 +…+ 1 n ,X +Y = 1 1+ 1 2 +…+k工嘉 P(X =i)l_P{Y =k -i}i £ k=zi £ k=11n jk —i k _L n _k : ;i p qi :£ Q八_ ‘2n 、 <k」k -ik 2n -kp qk 2n -kp q[1 1,卩2, •…卩n ; ,1 n ‘均服从两p ),X = 1 1+ 1 2 +…+所以,X+丫服从参数为(2n, p)的二项分3.雷达的圆形屏幕半径为R设目标出现点(X, 丫)在屏幕上服从均匀分布.(1)求P{Y> 0 | 丫> X};(2)设M=max{X, 丫},求P{M> 0}.题20图【解】因(X 丫)的联合概率密度为..f(x,y)d二..f(x,y)d匚n R 1d 2rdr0 2TR3/8 31/2 4’f (x, y)二T R2'o, 其他.x2y^R2,(1) P{Y 0|Y X H P{Y 0,Y X}P{Y X}TT/40TT/407rdr(2) P{M . 0} =P{max( X,Y) . 0} * 一P{max( X,Y)乞0}1 3=1 —P{X 乞0,Y 乞0} =1 - f(x,y)d二=1 一-4.设某种型号的电子管的寿命(以小时计)近似地服从N( 160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率. 【解】设这四只寿命为X(i =1,2,3,4),则X 〜N (160, 202),从而P{min( X1,X2,X3,X4)_180}X i之间独立P{X^ 1801JP{X^ 180}P{X3_180}L P{X4 -180}二[1 _P{X j < 180}] l[1 -P{X2::180}] _[1 -P{X3::180}]」1 -P{X4 ::: 180}]180 -160 ] I.20=[1 -门⑴]4=(0.158)4=0.00063.班级________________________ 学号:________________________________ 姓名: _____________________。

相关文档
最新文档