2019-2020高中数学第一章集合与函数概念1-3函数的基本性质第3课时预习导航学案新人教A版必修1

合集下载

高中数学 第一章 集合与函数概念 1.1.3.1 并集、交集

高中数学 第一章 集合与函数概念 1.1.3.1 并集、交集

课前自学
课堂互动
课堂达标
类型一 集合并集的运算 【例 1】 (1)已知集合 A={0,2,4},B={0,1,2,3,5},
则 A∪B=________; (2)若集合 A={x|-1≤x<2},B={x|0<x≤3},则 A∪B= ________. 解析 (1)∵A={0,2,4},B={0,1,2,3,5}, ∴A∪B={0,1,2,3,4,5}. (2)将集合 A、B 用数轴表示,如图所示, 可得,A∪B={x|-1≤x≤3}.
课前自学
课堂互动
课堂达标
提示 (1)错,A∪B 的元素个数小于或等于集 合 A 与集合 B 的元素个数和. (2)错,当集合 A 与 B 没有公共元素时,集合 A 与 B 的交集为∅,即 A∩B=∅. (3)错,B 中最多有 3 个元素,也可能 B=∅. 答案 (1)× (2)× (3)×
课前自学
1.1.3 集合的基本运算
第1课时 并集、交集
目标定位 1.理解两个集合并集和交集的含义, 掌握有关术语和符号.2.会求两个简单集合的并集 和交集.3.能用Venn图表达集合的并集与交集,体 会数形结合思想.
课前自学
课堂互动
课堂达标
1.集合的并集
自主预习
属于集合A或属于集合B 并集
A∪B
A并B
{x|x∈A, 或x∈B
课前自学
课堂互动
课堂达标
【训练 1】 (1)已知集合 A={x|(x-1)(x+2)=0};B={x|(x
+2)(x-3)=0},则集合 A∪B 是( )
A.{-1,2,3}
B.{-1,-2,3}
C.{1,-2,3}
D.{1,-2,-3}
(2)设集合 A={m|m-2>0},B={m|-1≤m<5},则 A∪B

人教版高中数学-必修1(函数)知识点总结

人教版高中数学-必修1(函数)知识点总结

(4)若 A B 且 B A ,则 A B
A(B)
BA

真子集
集合 相等
AB
(或 B A)
A B ,且 B 中至
少有一元素不属于 A
(1) A (A 为非空子集)
(2)若 A B 且 B C ,则 AC
A 中的任一元素都属 于 B,B 中的任一元素 都属于 A
(1)A B (2)B A
如果对于函数 f(x)定义域内 任意一个 x,都有 .f.(-.x..)=.f.(.x.)., 那么函数 f(x)叫做偶.函.数..
(1)利用定义(要先 判断定义域是否关于 原点对称) (2)利用图象(图象 关于原点对称) (1)利用定义(要先 判断定义域是否关于 原点对称) (2)利用图象(图象 关于 y 轴对称)

(5)函数的表示方法 表示函数的方法,常用的有解析法、列表法、图象法三种. 解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间 的对应关系.图象法:就是用图象表示两个变量之间的对应关系.
(6)映射的概念
①设 A 、 B 是两个集合,如果按照某种对应法则 f ,对于集合 A 中任何一个元素,在集合 B 中都
的定义域应由不等式 a g(x) b 解出.
⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个 最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是 提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值. ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的 值域或最值.

人教版高中数学必修1课件:第一章__集合与函数概念_章末归纳总结课件

人教版高中数学必修1课件:第一章__集合与函数概念_章末归纳总结课件
(1)y=f(-x)的图象与y=f(x)的图象关于y轴对称; (2)y=-f(x)的图象与y=f(x)的图象关于x轴对称; (3)y=-f(-x)的图象与y=f(x)的图象关于原点对称; (4)奇函数的图象关于原点对称,偶函数的图象关于 y轴对称; (5)如果函数y=f(x)对定义域内的一切x值,都满足 f(a+x)=f(a-x),其中a是常数,那么函数y=f(x)的图象关
①方程(※)有两不等实根⇔Δ>0,方程(※)有两相等
实根⇔Δ=0,方程(※)无实根⇔Δ<0,方程(※)有实数解
⇔Δ≥0.
②方程(※)有零根⇔c=0.
Δ≥0 ③ 方 程 (※) 有 两 正 根 ⇔ x1+x2>0
x1x2>0
⇔较小的根 x=
-b- 2a
Δ >0 (a>0)
⇔-f(02)b>a>00
.
(2)集合 A 是直线 y=x 上的点的集合,集合 B 是抛物线 y=x2 的图象上点的集合,∴A∩B 是方程组yy= =xx2 的解为坐 标的点的集合,∴A∩B={(0,0),(1,1)}.
2.熟练地用数轴与Venn图来表达集合之间的关系 与运算能起到事半功倍的效果.
[例2] 集合A={x|x<-1或x>2},B={x|4x+p<0}, 若B A,则实数p的取值范围是________.
当 a≠0 时,应有 a=1a,∴a=±1.故选 D.
二、函数的定义域、值域、单调性、奇偶性、最值 及应用
1.解决函数问题必须第一弄清函数的定义域
[ 例 1] 函 数 f(x) = x2+4x 的 单 调 增 区 间 为 ________.
[解析] 由x2+4x≥0得,x≤-4或x≥0,又二次函数u =x2+4x的对称轴为x=-2,开口向上,故f(x)的增区间为 [0,+∞).

高中数学必修1 集合与函数概念 PPT课件 图文

高中数学必修1 集合与函数概念 PPT课件 图文

a23a0 0a3
1 . 下 面 四 组 中 的 函 数 f ( x ) 与 g ( x ) , 表 示 同 一 个 函 数 的 是 ( C )
A .f(x )x ,g (x )( x)2
B .f(x)x,g(x)x2
C .f(x)x,g(x)3x3
D .f(x ) |x 2 1 |,g (x ) |x 1 |
函数值, 函数值y的集合叫做
.
, 与X的值对应的y值 叫做
(2)函数的三要素: , ,

(3)区间的概念。
(4)函数的表示法: , ,

(5)两个函数相同必须是它们的 和 分别完全相同
(6)映射的定义:设A、B是两个非空集合,如果按照某个对应关系f ,对
于A中的
, 在集合B中都有 的元素 f (x) 与之对应, 那么就
3. 教材在例题、习题教学中注重运用集合的观点研究、处理数学问题,这一观点,一直贯穿 到以后的数学学习中.
4. 在例题和习题的编排中,渗透了集合中的分类思想,让学生体会到分类思想在生活中和数 学中的广泛运用,这是学生在初中阶段所缺少的. 在教学中,一定要循序渐进,从繁到难,逐步渗透这方 面的训练 .
3x
f(2)4p25 p2 63
设 x1x21 则 x 1 x 2 0 ,x 1 x 2 1
f(x1)f(x2)2 3(x1x 21 1x2x 22 1)23(x1
x2)
x1x2 1 x1x2

0
f(x1)f(x2)
即 函 数 f ( x ) 在 ( , 1 ) 上 是 增 函 数 .
问题,感受集合语言的意义和作用. 3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑

高中数学必修一课件 第一章集合与函数概念 1.3.1.2 函数的单调性与最值

高中数学必修一课件 第一章集合与函数概念 1.3.1.2 函数的单调性与最值

f-32;当
x=12时,有最大值
1 f2.
答案 C
2.函数 f(x)=x12在区间12,2上的最大值是
1 A.4
B.-1
C.4
D.-4
( ).
解析 由 t=x2 在12,2上是增函数,易知 f(x)=x12在12,2上 是减函数.
∴f(x)max=f12=4. 答案 C
(2)∵f(x)的最小值为 f(2)=121,
∴f(x)>a
恒成立,只须
f(x)min>a,即
11 a< 2 .
类型三 函数最值的实际应用 【例 3】 某公司生产一种电子仪器的固定成本为 20 000 元, 每生产一台仪器需增加投入 100 元,已知总收益满足函数:
R(x)=400x-12x2,0≤x≤400, 其中 x 是仪器的月产量. 80 000,x>400.
课堂小结 1.函数最值定义中两个条件缺一不可,若只有(1),M不是
最大(小)值,如f(x)=-x2(x∈R), 对任 意x∈R, 都有 f(x)≤1成立,但1不是最大值,否则大于0的任意实数都是 最 大 值 了 . 最 大 ( 小 ) 值 的 核 心 就 是 不 等 式 f(x)≤M( 或 f(x)≥M),故也不能只有(2).
2.若函数f(x)在区间[a,b]上单调,且f(x)的图象连续不间断,
则函数f(x)的最值必在
区间端点处取得.
互动探究 探究点1 函数f(x)=x2≥-1总成立,f(x)的最小值是-1吗? 提示 不是.因为对x∈R,找不到使f(x)=-1成立的实数x. 探究点2 函数最大值或最小值的几何意义是什么? 提示 函数的最大值或最小值是函数的整体性质,从图象上 看,函数的最大值或最小值是图象最高点或最低点的纵坐 标.

1.3 函数的基本性质(人教版高中数学必修1 第1章集合与函数概念)

1.3 函数的基本性质(人教版高中数学必修1 第1章集合与函数概念)

必修3 选修2-1 数学全集
必修4 选修2-2
必修5 选修2-3
点击题目,即可下载对应的资料
高中数学 高中物理 高考专题
更多精彩资料,请下载点击下方文字/图案 更多资料
更多精彩内容,weixingongzhonghao:学霸兔
f(x)为奇函数,则f(-x)=-f(x) 当 x=0 时,有 f(0) = -f(0),因此有f(0)=0
函数的奇偶性
2. f(x)为奇函数 f(-x)=-f(x)
f(x)为偶函数 f(-x)=f(x)
定义域
x≠0
3. f(x)为奇函数,且f(x)在 x=0 处有定义 f(0)=0
f(x)为奇函数,则f(-x)=-f(x) 当 x=0 时,有 f(0) = -f(0),因此有f(0)=0
函数的奇偶性
5. 根据函数奇偶性的特征,可以简化函数图象的画法.
偶函数图象关于 y轴 对称. 奇函数图象关于 原点 对称.
例3、已知函数 y=f(x) 是偶函数,它在 y 轴右边的图象如下 图,画出在 y 轴左边的图象.
y
相等
0
x
例3、已知函数 y=f(x) 是奇函数,它在 y 轴右边的图象如下 图,画出在 y 轴左边的图象.
即f ( x 1 ) < f ( x 2 ) 所以,函数 f ( x ) = 3x+2 在 R上是单调增函数。
练习1 证明:函数 f ( x ) = x2+3 在 (0,+∞)上是单调增函数.
练习2 证明函数 y 1 在 (0,+∞)上是单调性. x
证明:设x1, x2是(0,+∞)上任意两个实数,且x1<x2,则
若函数在此区间上是增函数,则区间为单调递增区间

2019_2020学年高中数学第一章集合与函数概念1.2.1函数的概念第一课时函数的概念课件新人教A版必修1

2019_2020学年高中数学第一章集合与函数概念1.2.1函数的概念第一课时函数的概念课件新人教A版必修1
解:所给的四个图象中,只有图象A的定义域和值域均为{x|0≤x≤3}. 故选A.
题型三 求简单函数的定义域
[例 3] (12 分)求下列函数的定义域. (1)y= x 1 · 1 x ;
规范解答:(1)要使函数有意义,须
x 1 1 x

0, 0,
即 x=1,因此函数的定义域为{1}.………………4 分
即时训练 3-1:求下列函数的定义域. (1) y=3- 1 x;
2 (2)y=2 x - 1 7x ;
解:(1)函数 y=3- 1 x 的定义域为 R. 2
(2)由
x 0, 1 7x

0,

0≤x≤
1 7
,
所以函数 y=2 x - 1 7x 的定义域为{x︱0≤x≤ 1 }. 7
解:因为函数 y=f(x)的定义域为{x|-2≤x≤3},即 x∈{x|-2≤x≤3},函数 y=f(2x-3)中 2x-3 的范围与函数 y=f(x)中 x 的范围相同,所以-2≤2x-3≤
3,解得 1 ≤x≤3,所以函数 y=f(2x-3)的定义域为{x︱ 1 ≤x≤3}.
2
2
方法技巧
两类抽象函数的定义域的求法 (1)已知f(x)的定义域,求f(g(x))的定义域:若f(x)的定义域为[a,b], 则f(g(x))中a≤g(x)≤b,从中解得x的取值集合即为f(g(x))的定义域. (2)已知f(g(x))的定义域,求f(x)的定义域:若f(g(x))的定义域为 [a,b],即a≤x≤b,求得g(x)的取值范围,g(x)的值域即为f(x)的定 义域.
(3)y= 2x 3 - 1 + 1 . 2x x
2x 3 0,
解:(3)要使函数有意义,需 2 x>0, x 0,

高一数学人教A必修一 课件 第一章 集合与函数概念 1.3.1.1

高一数学人教A必修一 课件 第一章 集合与函数概念 1.3.1.1

数 学 第一章 集合与函数概念
必修1
学案·新知自解 教案·课堂探究 练案·学业达标
(2)函数的单调性是对某个区间而言的,在某一点上不存在单调性. (3)一个函数出现两个或者两个以上的单调区间时,不能用“∪”连接, 而应该用“和”连接.如函数 y=1x在(-∞,0)和(0,+∞)上单调递减,却不 能表述为:函数 y=1x在(-∞,0)∪(0,+∞)上单调递减. (4)并非所有的函数都具有单调性.如函数 f(x)=10,,xx是是有无理理数数, 就不 具有单调性.
数 学 第一章 集合与函数概念
必修1
学案·新知自解 教案·课堂探究 练案·学业达标
1.函数 f(x)图象如下,指出函数的递增区间.
解析: 由函数f(x)图象可知,函数的递增区间为[4,14].
数 学 第一章 集合与函数概念
必修1
学案·新知自解 教案·课堂探究 练案·学业达标
函数单调性的证明 多维探究型
数 学 第一章 集合与函数概念
必修1
学案·新知自解 教案·课堂探究 练案·学业达标
1.3 函数的基本性质 1.3.1 单调性与最大(小)值
第 1 课时 函数的单调性
数 学 第一章 集合与函数概念
必修1
学案·新知自解 教案·课堂探究 练案·学业达标
学案·新知自解
数 学 第一章 集合与函数概念
必修1
学案·新知自解 教案·课堂探究 练案、难点) 2.掌握判断函数单调性的一般方法.(重点、易错点)
数 学 第一章 集合与函数概念
必修1
学案·新知自解 教案·课堂探究 练案·学业达标
定义域为I的函数fx的增减性
数 学 第一章 集合与函数概念
必修1
学案·新知自解 教案·课堂探究 练案·学业达标

高中数学 第一章 集合与函数概念 1.3 函数的基本性质 1.3.2 奇偶性课件 新人教A版必修1

高中数学 第一章 集合与函数概念 1.3 函数的基本性质 1.3.2 奇偶性课件 新人教A版必修1

函数单调性与奇偶性的综合
题点一:比较大小问题
1.已知偶函数 f(x)在[0,+∞)上单调递减,则 f(1)和 f(-10)的大
小关系为
()
A.f(1)>f(-10)
B.f(1)<f(-10)
C.f(1)=f(-10)
D.f(1)和 f(-10)关系不定
解析:∵f(x)是偶函数,∴f(-10)=f(10).又 f(x)在[0,+∞)
(× )
(2)奇函数的图象一定通过原点.
(× )
(3)函数 f(x)=x2,x∈[-1,2]是偶函数.
(× )
(4)若 f(x)是定义在 R 上的奇函数,则 f(-x)+f(x)=0. ( √ )
2.函数 y=f(x),x∈[-1,aห้องสมุดไป่ตู้(a>-1)是奇函数,则 a 等于 ( )
A.-1
B.0
C.1
1.3.2 奇偶性
预习课本 P33~36,思考并完成以下问题 (1)偶函数与奇函数的定义分别是什么? (2)奇、偶函数的定义域有什么特点? (3)奇、偶函数的图象分别有什么特征?
[新知初探]
函数奇偶性的概念
偶函数
奇函数
条件 定
义 结论
对于函数 f(x)定义域内任意一个 x,都有
f(-x)= f(x)
利用函数的奇偶性求解析式
[例 3] 若 f(x)是定义在 R 上的奇函数,当 x>0 时,f(x) =x2-2x+3,求 f(x)的解析式.
[解] 当 x<0 时,-x>0, f(-x)=(-x)2-2(-x)+3=x2+2x+3,由于 f(x)是奇函 数,故 f(x)=-f(-x),所以 f(x)=-x2-2x-3. 即当 x<0 时,f(x)=-x2-2x-3.

2020高中数学必修1知识点(超全)

2020高中数学必修1知识点(超全)

2020高中数学必修1知识点(超全)高中数学知识点必修1第一章集合与函数概念1.1.1 集合的含义与表示1) 集合的概念是指集合中的元素具有确定性、互异性和无序性。

2) 常用数集及其记法:N表示自然数集,N*或N+表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集。

3) 集合与元素间的关系:对象a与集合M的关系是a∈M,或者a∉M,两者必居其一。

4) 集合的表示法包括自然语言法、列举法、描述法和图示法。

5) 集合的分类包括有限集、无限集和空集(∅)。

1.1.2 集合间的基本关系6) 子集、真子集、集合相等的定义和符号表示如下:名称记号意义子集 A⊆B A中的任一元素都属于B真子集 A⊂B A⊆B,且B中至少有一元素不属于A集合相等 A=B A中的任一元素都属于B,B中的任一元素都属于A7) 已知集合A有n(n≥1)个元素,则它有2n个子集,2n-1个真子集,2n-1个非空子集和0个非空真子集。

1.1.3 集合的基本运算8) 交集、并集、补集的定义和符号表示如下:名称记号意义交集A∩B {x|x∈A,且x∈B}并集 A∪B {x|x∈A,或x∈B}补集 A' {x|x∈U,且x∉A}补充知识】含绝对值的不等式与一元二次不等式的解法1) 含绝对值的不等式|x|0)的解集为{-a<x<a}。

1.解一元一次不等式对于形如 $ax+b$ 的一元一次不等式,可以将其看成一个整体,化成 $|ax+b|a(a>0)$ 型的不等式来求解。

2.解一元二次不等式对于形如 $ax^2+bx+c$ 的一元二次不等式,首先计算其判别式 $\Delta=b^2-4ac$,然后根据二次函数$y=ax^2+bx+c(a>0)$ 的图像,分类讨论 $\Delta$ 的大小关系。

当 $\Delta>0$ 时,解集为 $\{x|xx_2\}$;当 $\Delta=0$ 时,解集为 $\{x|x=x_1\}$;当 $\Delta<0$ 时,无实数解。

高中数学必修一课件 第一章集合与函数概念 1.3.1.1 函数的单调性

高中数学必修一课件 第一章集合与函数概念 1.3.1.1 函数的单调性

[规律方法] 1.本题逆用函数单调性,将函数值的不等关系,转 化为与之等价的代数不等式组,但一定注意定义域.
2.设x1,x2∈D,且x1<x2: (1)f(x1)<f(x2)⇔f(x)在D上是增函数; (2)f(x1)>f(x2)⇔f(x)在D上是减函数.
【活学活用 3】 已知函数 f(x)的定义域为[-2,2],且 f(x)在区 间[-2,2]上是增函数,f(1-m)<f(m),求实数 m 的取值范围. 解 ∵f(x)在[-2,2]上是增函数,且 f(1-m)<f(m),
类型二 求函数的单调区间 【例 2】 画出函数 y=-x2+2|x|+1 的图象并写出函数的单调 区间. [ 思 路 探 索 ] 去绝对值 → 化为分段函数 → 作图象 → 求单调区间
解 y=--xx22+-22xx++11,,xx≥<00,, 即 y=- -xx- +1122+ +22, ,xx≥ <00,. 函数的大致图象如图所示,单调增区间为(-∞,-1],[0,1], 单调减区间为[-1,0],[1,+∞).
高一数学必修一
第一章 集合与函数概念 1.3 函数的基本性质
1.3.1 单调性与最大(小)值 第1课时 函数的单调性
【课标要求】 1.理解函数的单调性的概念. 2.掌握判断函数单调性的一般方法. 【核心扫描】 1.单调性的概念.(重点、难点) 2.判断函数的单调性及函数单调性的应用.(重点)
新知导学 1.定义域为I的函数f(x)的增减性
探究点3 若函数f(x)在定义域内的两个区间A、B上都是减(增) 函数,你能认为f(x)在区间A∪B上是减(增)函数吗? 提示 不能.如f(x)=在(-∞,0)上是减函数,在(0,+∞)上 也是减函数,但不能说它在定义域(-∞,0)∪(0,+∞)上是 减函数,如取x1=-1<1=x2,有f(-1)=-1<1=f(1),不 满足减函数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.会用定义判断函数的奇偶性.
一、偶函数
二、奇函数
名师点拨由奇偶函数的定义可得:
(1)函数f(x)是偶函数⇔对定义域内任意一个x,有f(-x)-f(x)=0⇔f(x)的图象关于y轴对称.
(2)函数f(x)是奇函数⇔对定义域内任意一个x,有f(-x)+f(x)=0⇔f(x)的图象关于原点对称.
(3)如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0,有时可以用这个结论来否定一个函数为奇函数.
(4)如果函数f(x)是偶函数,那么f(x)=f(|x|)=f(-x)=f(-|x|).
自主思考1奇、偶函数的定义域有什么特点?
提示:奇函数和偶函数的定义中的“任意”是指定义域中所有的实数;由于f(-x)与f(x)有意义,则-x与x同时属于定义域,即具有奇偶性的函数的定义域关于原点对称.
自主思考2有没有既是奇函数又是偶函数的函数?若有,有多少个?
2019-2020高中数学第一章集合与函数概念1-3函数的基本性质第3课时预习导航学案新人教A版必修1
编 辑:__________________
时 间:__________________
1.3 函数的基本性质
预习导航
课程明确定义中“任意”两字的意义.
2.了解奇函数、偶函数图象的特征.
提示:有,如函数f(x)=0,x∈D(其中定义域D是关于原点对称的非空数集)既是奇函数又是偶函数,这样的函数有无数个,只要定义域是关于原点对称的任一个非空数集即可.
相关文档
最新文档