双曲线的渐近线方程ppt课件

合集下载

双曲线-完整版PPT课件可编辑全文

双曲线-完整版PPT课件可编辑全文

∴x-32a2+y2=a22.

又 P 点在双曲线上,得ax22-by22=1.

由①,②消去 y,得
(a2+b2)x2-3a3x+2a4-a2b2=0,
即[(a2+b2)x-(2a3-ab2)](x-a)=0.
当 x=a 时,P 与 A 重合,不符合题意,舍去.
当 x=2aa32-+abb2 2时,满足题意的 P 点存在, 需 x=2aa32-+abb2 2>a, 化简得 a2>2b2, 即 3a2>2c2,ac< 26. 又 e>1,∴离心率 e=ac∈1, 26.
考向三 [149] 双曲线的几何性质
(1)(2014·天津高考)已知双曲线ax22-by22=1(a>0,
b>0)的一条渐近线平行于直线 l:y=2x+10,双曲线的一个
焦点在直线 l 上,则双曲线的方程为( )
A.x52-2y02 =1
B.2x02 -y52=1
C.32x52-130y02 =1
二、双曲线的标准方程和几何性质
标准方程 ax22-by22=1(a>0,b>0)
ay22-bx22=1(a>0, b>0)
图形
范围
x≥a或x≤-a
对称轴: 坐标轴
对称性
对称中心: 原点
y≤-a或y≥a 对称轴: 坐标轴 对称中心: 原点
性 顶点 顶点坐标:
顶点坐标:

A1 (-a,0),A2 (a,0) A1 (0,-a,) A2 (0,a)
————————— [1 个对点练] ——————— 过点2,12能作几条与双曲线x42-y2=1 有一个公共点的 直线.
【解】 (1)当斜率不存在时,直线方程为 x=2,显然符 合题意.

2.3.1 双曲线及其标准方程 课件(共23张ppt)

2.3.1 双曲线及其标准方程 课件(共23张ppt)

o
x
因 为 PA PB 340 2 680 0,所 以 x 0.
因此炮弹爆炸点的轨迹(双曲线)的方程为
x2 y2 1( x 0). 115 600 44 400
【举一反三】 1.若在A,B两地同时听到炮弹爆炸声,则炮弹爆炸点 的轨迹是什么? 解: 爆炸点的轨迹是线段AB的垂直平分线.
X
离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.
问题2:如果把椭圆定义中的“距离之和”改为“距
离之差”,那么点的轨迹是怎样的曲线?
即“平面内与两个定点F1,F2的距离的差等于非零常
数的点的轨迹 ”是什么?
看图分析动点M满足的条件: ①如图(A),
|MF1|-|MF2|=|F2F| =2a. ②如图(B),
解:
如图所示,建立直角坐标系xOy,使A,B两点在x
轴上,并且坐标原点O与线段AB的中点重合.
设爆炸点P的坐标为(x,y),则
PA PB 340 2 680,
y
A
P B
即 2a=680,a=340. 又 AB 800,
所以 2c=800,c=400,
b2 c 2 a 2 44 400,
3.列式 由定义可知,双曲线就是集合: P= {M
|||MF1
| - | MF2|| = 2a },

( x c )2 y 2 ( x c )2 y 2 2a .
2
4.化简 代数式化简得:(c 2 a 2) x 2 a 2 y a 2(c 2 a 2),
两 边 同 除 以 a 2 ( c 2 a 2 ), 得
x2 y2 2 1. 2 2 a c a

3.2.2双曲线的简单几何性质 课件(共24张PPT)

3.2.2双曲线的简单几何性质 课件(共24张PPT)
2
2
=λ(λ≠0).
(5)渐近线为y=±kx的双曲线方程可设为k2x2-y2=λ(λ≠0).
(6)渐近线为ax±by=0的双曲线方程可设为a2x2-b2y2=λ(λ≠0).
跟踪训练 求适合下列条件的双曲线的标准方程:
5
(1)焦点在x轴上,虚轴长为8,离心率为3 ;ห้องสมุดไป่ตู้
跟踪训练
A.
1
4
双曲线x2-my2=1的实轴长是虚轴长的2倍,则m等于
B.
1
2
C.2
D.4
(D)
二、求双曲线方程
例2
根据下列条件,求双曲线方程:
(1)双曲线 x
2
9

y2
1 有共同渐近线,且过点 ( 3, 2 3) ;
16
(2)与双曲线 x
2
16

y2
1 有公共焦点,且过点 (3 2 , 2) .
第三章
3.2
双曲线
3.2.2 双曲线的简单几何性质
学习目标
1.理解双曲线的简单几何性质(范围、对称性、顶点、渐近线、离心率).
2.能用双曲线的简单性质解决一些简单的问题
核心素养:数学运算、数学建模
新知学习
复习引入
定义
| |MF1|-|MF2| | =2a(0 < 2a<|F1F2|)
y
y
M
M
F2
(2)焦点在 y 轴上的双曲线的标准方程可设为
2
(3)与双曲线
2
2 +
2

2
2
2

=1(a>0,b>0).
2
2
=1 共焦点的双曲线方程可设为

《双曲线方程》课件

《双曲线方程》课件

直接代入法: 将已知条件 代入方程求 解
消元法:通 过消去一个 未知数求解
换元法:通 过引入新的 未知数求解
待定系数法: 通过设定未 知数的系数 求解
数值方法: 通过数值计 算求解
图解法:通 过画图求解
确定双曲线方程的形式,如 x^2/a^2 - y^2/b^2 = 1
确定双曲线的焦点位置,如 (c,0)
双曲线方程的离 心率:e = c/a
双曲线方程与 椭圆方程的联 系:都是二次 曲线方程,具 有相似的几何
性质
双曲线方程与 抛物线方程的 联系:都是二 次曲线方程, 但几何性质不

双曲线方程与 圆方程的联系: 都是二次曲线 方程,但几何
性质不同
双曲线方程与 直线方程的联 系:直线与双 曲线的交点问 题,需要运用 双曲线方程进
确定双曲线的焦点位 置
确定双曲线的顶点位 置
确定双曲线的渐近线 方程
确定双曲线的离心率
确定双曲线的标准方 程
确定双曲线的渐近线 方程
标准双曲线方程:x^2/a^2 - y^2/b^2 = 1 焦点在x轴上的双曲线方程:x^2/a^2 - y^2/b^2 = -1 焦点在y轴上的双曲线方程:x^2/a^2 - y^2/b^2 = 1 焦点在原点的双曲线方程:x^2/a^2 - y^2/b^2 = -1
确定双曲线的渐近线方程,如 y = ±b/a * x
利用双曲线的性质,如离心率、 渐近线等,求解双曲线方程
双曲线的定义: 平面内到两个 定点的距离之 差的绝对值等 于常数的点的
轨迹
双曲线的性质: 对称性、周期Байду номын сангаас性、渐近线等
双曲线的方程: x^2/a^2-
y^2/b^2=1 或y^2/a^2x^2/b^2=1

第三章3.2.2第1课时双曲线的简单几何性质PPT课件(人教版)

第三章3.2.2第1课时双曲线的简单几何性质PPT课件(人教版)

4.双曲线x2-y2=1的顶点到其渐近线的距离等于
A.12
√B.
2 2
C.1
D. 2
解析 双曲线x2-y2=1的渐近线方程为x±y=0,顶点坐标为(1,0) 2.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
5.已知双曲线 C:ax22-by22=1(a>0,b>0)的离心率为 25,则双曲线 C 的渐近线方
∴b=2,∴-m1 =b2=4, ∴m=-41,故选 C.
12345
3.中心在原点,焦点在x轴上,且一个焦点在直线3x-4y+12=0上的等轴双曲
线的方程是
√A.x2-y2=8
B.x2-y2=4
C.y2-x2=8
D.y2-x2=4
解析 令y=0,得x=-4, ∴等轴双曲线的一个焦点为(-4,0), ∴c=4,a2=b2=21c2=21×16=8,故选 A.
实轴长2a=6,虚轴长2b=4,
离心率 e=ac= 313, 渐近线方程为 y=±bax=±23x.
延伸探究 求双曲线nx2-my2=mn(m>0,n>0)的实半轴长、虚半轴长、焦点坐标、离心 率、顶点坐标和渐近线方程.
解 把方程 nx2-my2=mn(m>0,n>0)化为标准方程为xm2-yn2=1(m>0,n>0), 由此可知,实半轴长 a= m,
所以双曲线的离心率为 1+ 2.
3 随堂演练
PART THREE
1.(多选)已知双曲线方程为x2-8y2=32,则
√A.实轴长为 8 2
√B.虚轴长为 4
C.焦距为 6
√D.离心率为3 4 2
解析 双曲线方程 x2-8y2=32 化为标准方程为3x22 -y42=1, 可得 a=4 2,b=2,c=6,

双曲线及其标准方程课件

双曲线及其标准方程课件
双曲线及其标准方程ppt 课件
欢迎来到本次ppt课件,将带您深入了解双曲线及其标准方程。让我们一起探 索这个有趣而美丽的数学概念!
什么是双曲线?
双曲线是数学中的一种曲线,它的形状类似于一个张开的双金属圆弧。它具有很多独特的特性和 性质。
图形特征
形状
双曲线的主轴长度大于副轴 长度,呈现出独特的开口形 状。
双曲线的图像与性质
焦点与准线
双曲线有两个焦点和两条 准线,这些元素决定了曲 线的位置和形状。
双曲线的离心率
离心率是衡量曲线弯曲程 度的指标,对于双曲线而 言,离心率大于1。
双曲线的对称性
双曲线具有对称性,关于 焦点、顶点、中心和原点 都存在对称性。
双曲线的应用
天文学
双曲线在行星轨道和彗星轨道的描述中发挥着重要作用。
渐近线
双曲线具有两条渐近线,可 以帮助我们更好地理解其形 状和趋势。
顶点
双曲线有两个顶点,它们是 曲线的最近点和最远点。
双曲线的标准方程
1 横轴标准方程
x²/a² - y²/b² = 1
2 纵轴标准方程
y²/a² - x²/b² = 1
3 参数方程
x = a*cos(θ), y = b*sin(θ)
通信技术
双曲线广泛应用于卫星通信和雷达系统中。
工程建模
双曲线在工程建模、电子设计和信号处理等领Leabharlann 具有广泛的应用价值。练习题
1
问题1
找到双曲线的焦点和准线。
问题2
2
计算给定双曲线的离心率。
3
问题3
应用双曲线方程解决实际问题。
结论和要点
1 双曲线是一种独特的数学曲线。
它具有特殊的形状、标准方程和性质。

标准方程离心率及双曲线的渐近线通用课件

标准方程离心率及双曲线的渐近线通用课件
提高习题2
已知双曲线的标准方程为 $frac{y^2}{4} - frac{x^2}{3} = 1$, 且渐近线方程为$y = pm frac{4}{3}x$,求rac{x^2}{a^2} - frac{y^2}{b^2} = 1$,离心率$e = sqrt{1 + frac{b^2}{a^2}}$, 渐近线方程为$y = pm frac{b}{a}x$,求证:$a^2 = b^2 - c^2$。
03 双曲线的渐近线
渐近线的定义
渐近线是双曲线的一种特殊直线,它 与双曲线的两个分支无限接近,但永 远不相交。
渐近线的位置由双曲线的标准方程决 定,不同的双曲线有不同的渐近线。
渐近线的求法
根据双曲线的标准方程,可以求出渐近 线的方程。
对于标准方程为 $frac{x^2}{a^2} frac{y^2}{b^2} = 1$ 的双曲线,其渐 近线方程为 $y = pm frac{b}{a}x$。
综合习题2
已知双曲线的标准方程为$frac{x^2}{a^2} - frac{y^2}{b^2} = 1$,离心率$e = sqrt{1 + frac{b^2}{a^2}}$, 渐近线方程为$y = pm frac{b}{a}x$,求证:焦点到渐近线的距离等于$frac{bc}{sqrt{a^2 + b^2}}$。
定义公式
$e = frac{c}{a}$,其中 $c$ 是焦 点到中心的距离, $a$ 是顶点到 中心的距离。
离心率与双曲线的关系
01
双曲线的离心率 $e > 1$ ,表示 双曲线与中心的距离大于其顶点 到中心的距离。
02
随着离心率 $e$ 的增大,双曲线 的开口会变得更开阔,反之则会 变得更狭窄。

双曲线的性质课件(PPT 15页)

双曲线的性质课件(PPT 15页)

y
B2
A1 F1 O
F2 A2
x
B1
y C3C2 C1
O
x
焦点在x轴上的双曲线图像
y 渐进线方程: b x a
Y x2 y2 1 a2 b2
B2
F1
A1
A2 F2 X B1
离心率对双曲线形状的影响
焦点在y轴上的双曲线图

Y
y2 a2
x2 b2
1
F2
A2
B1
O
B2
X
A1
F1
焦点在y轴上的双曲线的几何性质
2、对称性:关于x轴,y轴,
原点对称。 3、顶点 A1(-a,0),A2(a,0)
F1 A1 O
A2 F2
x
4、轴:实轴 A1A2 虚轴 B1B2
B1
|A1A2|=2ca,|B1B2|=2b 5、离心率:e= a
根据以上几何性质能够
根据以上几何性质能否
较准确地画出椭圆的图形? 较准确地画出双曲线的图形呢?
双曲线标准方程:y 2 x 2 1 双曲线性质: a 2 b2
Y
1、范围:y≥a或y≤-a
F2
2、对称性:关于x轴,y轴,原点对称。
A2
3、顶点 A1(0,-a),A2(0,a)
4、轴:实轴 A1A2 ; 虚轴 B1B2 B1
5、渐近线方程: y a x
o
b
6、离心率:e=c/a
A1
F2
B2 X
Y
F1
B2
F’1 A1 o
B1
X
A2 F’2
F2
证明:(1)设已知双曲线的方程是:
x2 a2
y2 b2
1

双曲线的渐近线和共轭双曲线课件

双曲线的渐近线和共轭双曲线课件
和特性。
渐近线的存在使得双曲线在某些 方向上看起来更接近于直线。
渐近线的求法
确定双曲线的焦点位置
确定渐近线的方程
首先需要确定双曲线的焦点位置,这 可以通过给定的双曲线方程或已知条 件来确定。
利用已知的渐近线斜率和焦点位置, 可以确定渐近线的方程。
计算渐近线的斜率
根据双曲线的焦点位置和原点之间的 连线斜率,可以计算出渐近线的斜率 。
方程。
根据给定双曲线的焦距,求出 与给定双曲线共轭的双曲线方
程。
03
双曲线与渐近线、共轭双曲线的 联系
双曲线与渐近线的关系
渐近线是双曲线的一种特殊直线,它 与双曲线的形状和位置密切相关。
渐近线的斜率与双曲线的实轴和虚轴 的斜率相等。
当双曲线上的点逐渐接近渐近线时, 该点与渐近线的距离会无限接近于零 。
双曲线与共轭双曲线的关系源自共轭双曲线是与原双曲线具有相 同渐近线但不同顶点和焦点的双
曲线。
共轭双曲线的性质与原双曲线相 似,但在几何形状上可能有所不
同。
共轭双曲线的实轴和虚轴的长度 相等,且与原双曲线的实轴和虚
轴成直角。
双曲线、渐近线、共轭双曲线在实际问题中的应用
在物理学中,双曲线、渐近线和共轭双曲线可以用于描述波动、光学和力学等现象 。
双曲线的渐近线和共轭双曲 线课件
• 双曲线的渐近线 • 共轭双曲线 • 双曲线与渐近线、共轭双曲线的联
系 • 双曲线的几何意义 • 习题与解答
01
双曲线的渐近线
渐近线的定义
渐近线是双曲线上的一个重要概 念,它描述了双曲线在无穷远处
趋于直线的趋势。
渐近线是双曲线与直线之间的“ 桥梁”,它反映了双曲线的形状
渐近线的性质

3.2.2 双曲线的简单几何性质课件ppt

3.2.2 双曲线的简单几何性质课件ppt
椭圆的差异性.
2.如果双曲线的方程确定,那么其渐近线的方程是确定的,但如果双曲线的渐
近线确定,那么其对应的双曲线有无数条,具有共同渐近线的双曲线方程可
x2
设为 2
a

y2
=λ(λ≠0),当
b2
λ>0 时,对应的双曲线焦点在 x 轴上,当 λ<0 时,对应的
双曲线焦点在 y 轴上.
3.因为
c
e=a
=
x2
y2
− 2 =λ(λ≠0).
a2
b
2.共轭双曲线
(1)定义:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,与原双曲线是
一对共轭双曲线.
(2)共轭双曲线的性质:
①有相同的渐近线;②有不同的离心率,离心率倒数的平方和为1.
课堂篇 探究学习
探究一
由双曲线的方程求几何性质
例1求双曲线9y2-4x2=-36的顶点坐标、焦点坐标、实轴长、虚轴长、离心
M(-3,2 3);
(3)若双曲线的渐近线方程为2x±3y=0,且两顶点间的距离是6.
思路分析对于(1)和(2),可直接设出双曲线方程,根据条件求出参数a,b的值,
即得方程;对于(3),焦点位置不确定,应分类讨论.

2
(1)设双曲线方程为 2

∵双曲线过点 P(
由题意得

4
6,2),∴ 2


2
[激趣诱思]
火电厂、核电站的循环水自然通风冷却塔是一种大型薄壳型构筑物.建在
水源不十分充足的地区的电厂,为了节约用水,需建造一个循环冷却水系统,
以使得冷却器中排出的热水在其中冷却后可重复使用.大型电厂采用的冷
却构筑物多为双曲线形冷却塔.这样从结构稳定,强度高,能够获得更大的

《二讲双曲线》课件

《二讲双曲线》课件

添加 标题
双曲线的图像:双曲线有两个分支,在平 面坐标系中呈现出“马蹄形”的形状。
添加 标题
参数方程与图像的关系:通过参数方程可 以绘制出双曲线的图像,而通过图像也可 以读取出双曲线的参数方程。
添加 标题
参数方程的应用:双曲线的参数方程在物理学、 工程学等领域有着广泛的应用,例如在研究天体 运动、电磁波传播等问题时常常会用到双曲线的 参数方程。
预习内容建议:回 顾双曲线的定义、 性质和图像
所需准备材料:笔 记本、笔、教材等
预习时间安排:建 议提前一周开始预 习
感谢观看
汇报人:PPT
图像特征:与双曲 线渐行渐远
双曲线的离心率
离心率的定义:离心率是双曲线的一个重要几何性质,它表示双曲线与焦点的距离与双曲线实 轴长度的比值。
离心率的取值范围:离心率的取值范围是大于1,表示双曲线与焦点的距离大于双曲线实轴长度。
离心率与双曲线形状的关系:离心率越大,双曲线的开口越宽,形状越扁平;离心率越小,双 曲线的开口越窄,形状越接近于椭圆。
双曲线的性质
双曲线是平面上的两条曲线,它们在两个不同的方向上弯曲。 双曲线的两个焦点位于其对称轴上,并且离原点的距离相等。 双曲线的渐近线是与双曲线无限接近的直线,它们与双曲线在同一直线上。 双曲线的离心率大于1,这是双曲线与椭圆和圆的区别之一。
双曲线的几何性质
双曲线的对称性
定义:双曲线关 于原点对称
双曲线的渐近线:双曲线与坐标轴的交点为渐近线,其斜率为b/a。
双曲线的离心率:离心率e是描述双曲线离散程度的参数,其值为c/a, 其中c为焦点到原点的距离。
双曲线的焦点位置:对于中心在原点的双曲线,其焦点位置为x轴正负 方向上,距离原点为c的点。

双曲线复习PPT优秀课件

双曲线复习PPT优秀课件
97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔·普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉·彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔·卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰·罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳·厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝·C·科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔·卡内基] 110.每天安静地坐十五分钟·倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克·佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根·皮沙尔·史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。

双曲线的几何性质课件

双曲线的几何性质课件
双曲线的渐近线方程为y=±b/a*x,其中a和b是双曲线的半焦距。
双曲线的
标准方程


x^2/a^2 -
y^2/b^2 =
1
a和b是双 曲线的半 轴长, a>b
双曲线的
标准方程
可以表示


x^2/a^2 -
y^2/b^2 =
1
双曲线的
标准方程
可以表示


x^2/a^2 -
y^2/b^2 =
1
双曲线的
双曲线关于x轴对称
双曲线关于原点对称
添加标题
添加标题
双曲线关于y轴对称
添加标题
添加标题
双曲线关于直线y=x对称
顶点:双曲线有两个顶点,分 别位于x轴和y轴上
中心:双曲线的中心位于顶点 连线的中点
顶点坐标:顶点的坐标可以通 过双曲线的方程求解得到
中心坐标:中心的坐标可以通 过顶点的坐标和双曲线的方程 求解得到
双曲线的离心率与焦点距离成反比 离心率越大,焦点距离越短 离心率越小,焦点距离越长 双曲线的离心率决定了焦点距离的大小
离心率:双曲线 的离心率是双曲 线的性质之一, 决定了双曲线的 形状和位置
开口大小:双曲 线的开口大小是 指双曲线的两个 焦点之间的距离, 与离心率有关
关系:双曲线的 离心率越大,开 口越小;离心率 越小,开口越大
双曲线的渐近 线与直线的交 点称为渐近线 与直线的交点
渐近线与直线 的交点性质是 双曲线的几何
性质之一
渐近线与直线 的交点性质决 定了双曲线的
形状和位置
渐近线与直线 的交点性质是 双曲线的重要
特征之一
确定双曲线的渐近线方程 计算渐近线与直线的交点坐标 判断交点是否在双曲线上 应用交点坐标求解双曲线的参数

双曲线渐近线的探究+课件-2024-2025学年高二上学期数学人教A版(2019)选择性必修第一册

双曲线渐近线的探究+课件-2024-2025学年高二上学期数学人教A版(2019)选择性必修第一册

设 MQ 是点 M 到直线 y
b
x 的距离,则 MQ MN .当 x 逐渐增大时, MN 逐渐
a
减小, x 无限增大时, MN 无限接近于 0, MQ 也无限接近于 0.
双曲线在第一象限向右上方延伸时,是从射线 ON ( O 为原点)的下方逐渐接近于射线
ON ,但与射线 ON 永远不相交
根据双曲线的对称性,在其他象限内,也有类似的结论. 综上所述即证
b2 a
2
2
2
a
(1)当 k 2 b 2 0
时, b 0 在在 x 2(0,b) 2上恒成立。
2
(2)当 k a2 0 时,二次函数 y (k 2 ) x b 的图象必须开口向上才能
ba2 2
ba2
2
2
2
2
y

(
k

)
x

b
(2)当 k 2 0 时,二次函数

x

(0,

)
2
y

x
k
b
由此可知
的最小值
,因此猜想在第一象限双曲线的渐近线方程是
等式成立,因此
综上所述 k 2k 22 2 a 20 。
a
a
ba a
2
综上所述 k 2
a2
b
b2
2
2
综上所述 k 2 ,显然当 x (0, ) 时, k 2
a
a
2
x2 y 2
b
[问 3]虽然验证了 y x 与双曲线 2 2 1 永不相交,但还需要严谨验证
2
2
(k 2 ) x b 0b在

已知双曲线的渐近线方程求其方程 公开课课件

已知双曲线的渐近线方程求其方程 公开课课件
94
(1)双曲线的焦点在 x 轴时, 0 则a2 9.
由题设2a 6
(2)双曲线的焦点在 y
1 双曲线方程为
轴上, 0 则a2
x2 9
4.
y2 4
1
由题设2a 6 9
4
双曲线方程为 y 2 4x2 1 9 81
故双曲线方程为 x 2 y 2 1或 y 2 4x 2 1
二、 与双曲线
有相同的渐近线的
双曲线方程可设为
例1 已知双曲线渐近线的方程为

若双曲线顶点间的距离是6,求双曲线的方程。
解法一:
解: 渐近线的方程为
即:
(1)双曲线的焦点在 x 轴上,
b 2 a 3 2a 6
a 3 b 2
双曲线方程为 x 2 y 2 94
1
(2)双曲线的焦点在 y 轴上,
已知双曲线的渐近线方程,求双曲线的方程
复习回顾
一 、如何求双曲线的渐近线方程?
方法一:
1.双曲线的焦点在 轴上,渐近线方程为
2.双曲线的焦点在 轴上,渐近线方程为
方法二: 渐近线的求法:对于双曲线
x2 a2
y2 b2
1(a 0,b 0),
把方程右边的“1”换成“0”,
得双曲线的渐近线方程

94
9 81
例2 已知双曲线渐近线的方程为

若双曲线经过
,求双曲线的方程。
解法一:
解: 渐近线的方程为
(1)双曲线的方程为
6 a2
b a
2 3 4
b2
1
a 2 3(无解)
(2)双曲线的方程为
4
a2 b3 6
1
a2 b2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 5、双曲线
x 2 y上2 一点P到左焦点距离18,则点P到 1
54
• 右焦点距离_____.
x2 y2 1
64 36
;.
2
二、几何性质 • 1、对称性: • 2、顶点: • 实轴 • 3、离心率: • 4、渐近线:
虚轴
• 等轴双曲线:
;.
x
y

F1
0 F2
Y F1
M
0
X
F2 3
三、应用 • 例1、求双曲线
,其 离心率和
F1,F 2
14 5
;.
6
五、综合练习
• 1、双曲线 9x216y214的4实轴长_____,虚轴长___,焦点______,渐
• • 近线方程_____
• 2、知双曲线的离心率 ,2 过点P(-3,5),其标准方程______.
• 3、双曲线的渐近线方程 x y 0,且过点(2,-6),其标准方程 23
5x2 4的y2顶点20虚轴、顶点、离心率、渐近线

• (1)
(2)
x2 y2 1 81 9
y2 4x2 1
;.
4
例2:求实轴长12,离心率 ,2 焦点在横轴上的双曲线标准方程
练: 1、求焦距10,离心率
,焦点在y轴上的双曲线
2、知等轴双曲线的一个焦点(e-6,0)5,求标准方程和渐近线 3
• ______________
• 4、知双曲线 x 2 y 的离心率是方程 1
• 实数m的值是_3____m
的根,则
2x211x50
• 5、知
为双曲线与椭圆
的公共焦点,左焦点 到
• 双曲线渐F近1 F线2 距离为
,求(1)x2双曲4y线2 标4准方程 (2)设P是双曲F 1
• 线与椭圆在第一象限的交点2 ,求
的值
;.
7
cosF1PF2
;.
8
放映结束 感谢各位批评指导! 谢 谢!
让我们共同进步
;.
9
顶点、离心率、渐近线
;.
1
一、知识回顾 • 1、椭圆的定义、标准方程、几何性质?
• 2、双曲线的定义、标准方程?
• 3、知椭圆
,则其长轴长_____,短轴长___,
y2 x2 1 • 焦点坐标____3_6_,顶1点6坐标____,离心率____.
• 4、双曲线
的焦点坐标_______,焦距______.
3、求焦距26,过点(0,-12)的双曲线标准方程
;.
5
四、提高 1、求 a 2 3,且与双曲线
x2
y
2
有公1 共焦点的双曲线标准方程
16 4
2、求焦点在x轴上,渐近线方程为 程
y ,3 且x 过点N(2,1)的双曲线标准方 4
3、求知双双曲曲线线的与标椭准圆方程x、2 渐y近2 线有1方公程共焦点 9 25
相关文档
最新文档