三静态电磁场及其边值问题的解

合集下载

谢处方《电磁场与电磁波》(第4版)课后习题-第3章 静态电磁场及其边值问题的解【圣才出品】

谢处方《电磁场与电磁波》(第4版)课后习题-第3章 静态电磁场及其边值问题的解【圣才出品】

第3章 静态电磁场及其边值问题的解(一)思考题3.1 电位是如何定义的?中的负号的意义是什么?答:由静电场基本方程▽×E=0和矢量恒等式可知,电场强度E 可表示为标量函数φ的梯度,即式中的标量函数φ称为静电场的电位函数,简称电位;式中负号表示场强方向与该点电位梯度的方向相反。

3.2“如果空间某一点的电位为零,则该点的电场强度也为零”,这种说法正确吗?为什么?答:不正确。

因为电场强度大小是该点电位的变化率。

3.3“如果空间某一点的电场强度为零,则该点的电位为零”,这种说法正确吗?为什么?答:不正确。

此时该点电位可能是任一个不为零的常数。

3.4 求解电位函数的泊松方程或拉普拉斯方程时,边界条件有何意义?答:边界条件起到给方程定解的作用。

3.5 电容是如何定义的?写出计算电容的基本步骤。

答:两导体系统的电容为任一导体上的总电荷与两导体之间的电位差之比,即其基本计算步骤:①根据导体的几何形状,选取合适坐标系;②假定两导体上分别带电荷+q和-q;③根据假定电荷求出E;④由求得电位差;⑤求出比值3.6 多导体系统的部分电容是如何定义的?试以考虑地面影响时的平行双导线为例,说明部分电容与等效电容的含义。

答:多导体系统的部分电容是指多导体系统中一个导体在其余导体的影响下,与另一个导体构成的电容。

计及大地影响的平行双线传输线,如图3-1-1所示,它有三个部分电容C11、C12和C22,导线1、2间的等效电容为;导线1和大地间的等效电容为;导线2和大地间的等效电容为图3-1-13.7 计算静电场能量的公式和之间有何联系?在什么条件下二者是一致的?答:表示连续分布电荷系统的静电能量计算公式,虽然只有ρ≠0的区域才对积分有贡献,但不能认为静电场能量只存在于有电荷区域,它只适用静电场。

表示静电场能量存在于整个电场区域,所有E≠0区域对积分都有贡献,既适用于静电场,也用于时变电磁场,当电荷分布在有限区域内,闭合面S无限扩大时,有限区内的电荷可近似为点电荷时,二者是一致的。

电磁场与电磁波第三章静态场及其边值问题的解PPT课件

电磁场与电磁波第三章静态场及其边值问题的解PPT课件

解法的优缺点
分离变量法的优点是简单易行,适用于具有多个变量 的偏微分方程。但是,该方法要求边界条件和初始条
件相互独立,且解的形式较为复杂。
有限差分法的优点是简单直观,适用于各种形状的求 解区域。但是,该方法精度较低,且对于复杂边界条
件的处理较为困难。
有限元法的优点是精度较高,适用于各种形状的求解 区域和复杂的边界条件。但是,该方法计算量大,且
05 实例分析
实例一:简单电场的边值问题求解
总结词
通过一个简单的电场边值问题,介绍如 何运用数学方法求解静态场的边值问题 。
VS
详细描述
选取一个简单的电场模型,如平行板电容 器间的电场,通过建立微分方程和边界条 件,采用有限差分法或有限元法进行数值 求解,得出电场分布的解。
实例二:复杂电场的边值问题求解
恒定磁场与准静态场的定义与特性
恒定磁场
磁场强度不随时间变化的磁场。
准静态场
接近静态场的动态场,其特性随 时间缓慢变化。
特性
恒定磁场与准静态场均不产生电 磁波,具有空间稳定性和时间恒
定性。
恒定磁场与准静态场的边值问题
边值问题
描述场域边界上物理量(如电场强度、磁场强度)的约束条件。
解决边值问题的方法
静电屏蔽
在静电屏蔽现象中,静态 场用于解释金属屏蔽壳对 内部电荷或电场的隔离作 用。
高压输电
在高压输电线路中,静态 场用于分析电场分布和绝 缘性能。
02 边值问题的解法
定义与分类
定义
边值问题是指在一定的边界条件下,求解微分方程或积分方程的问题。在电磁场理论中,边值问题通常涉及到电 场、磁场和波的传播等物理量的边界条件。
特性
空间均匀性

电磁场与电磁波 第4章 静态场的边值问题

电磁场与电磁波 第4章  静态场的边值问题
像电荷 q’ 应位于球内。由对 称性, q’ 在球心与 q 的连线上。
设 q’ 距球心为b,则 q 和 q’ 在球外 任一点(r,,)处产生的电位为
第四章 静态场的边值问题
1 ( q q) 4π 0 R R
1(
q
4π 0 r 2 d 2 2rd cos
q
)
r 2 b2 2rb cos
径为a 的圆的反演点。
第四章 静态场的边值问题
将式(4-2-3)代入(4-2-2),可得球外任意点(r,,)的电位
q (
1
a
)
4π 0 r 2 d 2 2rd cos d r 2 b2 2rb cos
(4-2-5)
若导体球不接地且不带电,则当球外放置点电荷 q 后,它的
电位不为零,球面上净电荷为零。此情形下,为满足边界条件,
第四章 静态场的边值问题
第四章 静态场的边值问题
在给定的边界条件下求解泊松方程或拉普拉斯方程称为边 值问题。根据场域边界面上所给定的边界条件的不同,边值问 题通常分为 3 类:
第一类边值问题,给定位函数在场域边界面上的值; 第二类边值问题,给定位函数在场域边界面上的法向导数值; 第三类边值问题又称混合边值问题,一部分边界面上给定的 是位函数值,另一部分边界面上给定的是位函数的法向导数 值。
4.3.1 直角坐标系中的分离变量
直角坐标系中,标量拉普拉斯方程为
2 2 2
0 x2 y2 z2
(4-3-1)
第四章 静态场的边值问题
设 (x,y,z) = X (x)Y(y)Z(z),代入方程(4-3-1),整理可得
1 X
d2 X dx2
1 Y
d 2Y dy2
1 Z
d2Z dz2

电磁场与电磁波期末复习知识点归纳

电磁场与电磁波期末复习知识点归纳
第一章 矢量分析
标量场:梯度描述
静态场(稳态场):不随t变

场 矢量场:散度和旋度描述 时变场:随t变化
单位矢量:模为1的矢量
与矢量 A同方向的单位矢量:
eA



A A
A eAA
坐标单位矢量:与坐标轴正向同方向的单位矢量
如:ex
ey
ez或者xˆ


A Axex Ayey Azez
◇ 唯一性定理的意义:是间接求解边值问题的理论依据。
● 镜像法求解电位问题的理论依据是“唯一性定理”。
点电荷对无限大接地导体平面的镜像
z
r1
P
q h
r r2 介质
x
h
介质
q
点电荷对接地导体球面的镜像。
P
r
a
r2
o θ q d’
d
r1 q
q a q, d
d a2 d
第4章 时变电磁场
nˆ B1 B2 0
nˆ H1 H2 0
第三章 静态电磁场及其边值问题的解
静电场中: E 0


E(r) (r )
静磁场:B A
已知电位表达式可以用E(r) (r )求场强E
已知电场强度也可以求电位(P)
等于边界电流面密度。
1、E1t E2t
nˆ (E1 E2 ) 0
2、B1n B2n
3、D1n D2n s
nˆ B1 B2 0 nˆ (D1 D2 ) s
4、H1t H2t Js
nˆ H1 H2 Js

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》习题参考答案

况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。

《电磁场理论》3.1 唯一性定理

《电磁场理论》3.1 唯一性定理

第一类边值问题:已知电位函数在全部边界面上的分 布值。 S f 第二类边值问题:已知电位函数在全部边界面上的法 向导数。 f n S 第三类边值问题(混合边值问题):已知一部分边界 面上的电位函数值,和另一部分边界面上电位函数的法 向导数。 S f1 S S1 S2 f 2 1 01:52 2 n S2
+
-
z
+ +++
(r , )
+
+
-
1 (r, ) E0r cos
-
aO
- - -
-
当引入一个不带电的导体小球后, E0 球表面出现感应电荷。 静电平衡下的导体球为等电位体,球内电场为零, r>a空间内的电位由两个部分组成 01:52 12 1 2
1 2
唯一性定理:满足泊松方程或拉普拉斯方程及所给
的全部边界条件的解是唯一的。
利用反证法来证明。假设在一个由表面边界S包围的 体积V内,泊松方程有两个解 1 2 ,则有
2 1 2 * 1 2 2 * 21 22 0 令
01:52 11
例2:一不带电的孤立导体球(半径为a)位于均匀电 场中, E E0 e z ,如图所示,求电位函数。 解:在没有引入导体球时,均匀电场 E 的电位函数为
1 ( z ) E0 e z e z dz C E0 z C
若取z=0为电位参考点,则C=0, 1 ( z) E0 z 在球坐标内,z r cos
常数
n
n
(1)
根据式(1)仍然有
同理,有 C

V
2 ( ) dV 0

第3章 静态电磁场及其边值问题的解剖析

第3章 静态电磁场及其边值问题的解剖析
2r ρr
ε
(Poisson方程)
(2)
该式即为静电位满足的微分方程— Poisson方程。Poisson 方程和上述方程组等价,故它也唯一确定了静电场。
在无电荷分布区域
2 r 0
(Laplace方程)
求解Poisson方程或Laplace方程时,解电位中的积分常 数需要应用电位的边界条件确定:
第三章 静态电磁场及其 边值问题的解
3.1 静电场分析
1. 基本方程

D ρ



积 分
SD dS V ρdV

式 E 0
式 l E dl 0
这组方程揭示静电场的基本性质:有散、无旋、保守性
2. 边界条件
eˆn E1 E2 0 或
E1t E2t
eˆn D1 D2 S
1 r2
d dr
r2
d
dr
0
r
c1 r
c2
c
c1、c2待定积分常数。
边界条件:
求解区域的边界是r=a
和r=的两闭合球面
① r a, U
② r , 0
利用条件 1得 c1 aU 利用条件 2得 c2 0
故解 r aU
r
5. 导体系统的电容
电容是导体系统的一种基本属性,它是 描述导体系统储存电荷能力的物理量。任何导体和导体之 间以及导体和大地之间都存在电容。
-E0
r
eˆz
rE0
E0r cosθ
在柱坐标系中,取x轴与电场方向一致,则
P
-E0
r
eˆx E0
eˆρ ρ eˆzz
E0 cos
o
E0
在坐

第3章静态场的边值问题及解的唯一性定理

第3章静态场的边值问题及解的唯一性定理

l 2π
ln
r0 r
l 2π
ln
1 r
C
1)长直线电荷与接地的长直圆柱导体平行,求圆柱外电位分布
在圆柱与线电荷之间,在圆柱内离轴线的距离b 处,平行放置一
根镜像线电荷 , 代替圆柱导体上的感应电荷. l
第3 章
若令镜像线电荷 产 生的电位也取相同的 l
作r0为参考点,则
及l
在 圆柱面上 P 点共同产生的电位为
R
l
h
R′
x
-h
l ln x2 (z h)2 , z 0
l′
2 x2 (z h)2
均匀带电直线的电位分布
z 0,R R z0 0
l ln R C l ln R0
2
2 R
显然,满足边界条件。所以,原问题不变,所得的解是正确的。
第3 章
例3. 点电荷对相交半无限大接地导体平面的镜像 如图所示,两个相互垂直相连的半无限大接地导体平板,点
3、对于均匀分布在球面上的-q'电荷,可用另一个镜像电荷q"= q' 代替,但必须位于球心。
第3 章
结论:点电荷q对非接地导体球面的镜像电荷有两个:
镜像电荷1: 电量:q ' a q
位置: d ' a2
d
镜像电荷2: d
电量: q '' q ' a q
d
r r'
q O
'' d'
q' d
q
4 0 r
0
q q
即像电荷q'与原点电荷q电量相等,电性相反;用q'代替了
导体上的感应电荷。
在z>0区域内,P点的电位为

第三章 例题

第三章 例题
电磁场与电磁波
第3章 静态电磁场及其边值问题的解
1
例1 求同轴线单位长度的自感。设内导体半径为a,外导体厚
度可忽略不计,其半径为b,空气填充。 解:先求内导体的内自感。设同轴
I I 2 2 C H i dl I πa 2 π a 2 0 I I 得 Hi , Bi (0 a ) 2 2
0 I 1
o B dS
电子科技大学编写
0 I


Da a
0 I D a 1 1 ( )dx ln x Dx π a
高等教育出版社 & 高等教育电子音像出版社 出版
电磁场与电磁波
第3章 静态电磁场及其边值问题的解
4
于是得到平行双线传输线单位长度的外自感
o 0 D a 0 D Lo ln ln I π a π a
故单位长度的外自感为 单位长度的总自感为
电子科技大学编写
Li

o 0 b Lo ln I 2π a 0 0 b L Li Lo ln 8π 2π a
高等教育出版社 & 高等教育电子音像出版社 出版
电磁场与电磁波
第3章 静态电磁场及其边值问题的解
3
例2 计算平行双线传输线单位长度的自感。设导线的半径
两根导线单位长度的内自感为
0 0 Li 2 8π 4π
故得到平行双线传输线单位长度的自感为
0 0 D L Li Lo ln 4π π a
电子科技大学编写
高等教育出版社 & 高等教育电子音像出版社 出版
电磁场与电磁波
第3章 静态电磁场及其边值问题的解
5
例3 如图所示,长直导线与三角 形导体回路共面,求它们之间的互感。

电磁场理论中的边界条件与边值问题解析研究

电磁场理论中的边界条件与边值问题解析研究

电磁场理论中的边界条件与边值问题解析研究引言:电磁场理论是物理学中的重要分支,广泛应用于电磁波传播、电路分析等领域。

其中,边界条件和边值问题是电磁场理论中的核心概念,对于解析研究电磁场的性质和行为具有重要意义。

本文将就电磁场理论中的边界条件与边值问题进行探讨。

一、边界条件的概念与分类边界条件是指电磁场在两个不同介质的交界面上需要满足的条件。

根据边界条件的不同形式,可以将其分为电场边界条件和磁场边界条件。

1. 电场边界条件电场边界条件是指电场在介质交界面上满足的条件。

其中,最基本的电场边界条件是法向分量的连续性条件,即电场的法向分量在两个介质交界面上的值相等。

此外,还有切向分量的连续性条件和切向分量的不连续性条件等。

2. 磁场边界条件磁场边界条件是指磁场在介质交界面上满足的条件。

与电场边界条件类似,磁场的法向分量在两个介质交界面上的值相等,即磁场的法向分量是连续的。

此外,磁场的切向分量也需要满足一定的条件,如切向分量的连续性条件和切向分量的不连续性条件等。

二、边值问题的解析研究边值问题是指在给定边界条件的情况下,求解电磁场的数学模型。

在电磁场理论中,边值问题的解析研究是十分重要的,可以帮助我们深入理解电磁场的行为和性质。

1. 边值问题的数学模型边值问题的数学模型是由麦克斯韦方程组和边界条件共同构成的。

通过求解这个数学模型,我们可以得到电磁场的解析解,从而揭示电磁场的基本特性。

2. 边值问题的解析方法边值问题的解析方法主要有分离变量法、格林函数法和辐射条件法等。

其中,分离变量法是应用最广泛的一种方法,它将电磁场分解为多个独立的分量,并通过求解每个分量的方程来得到整个电磁场的解析解。

格林函数法则是通过引入格林函数,将边值问题转化为积分方程的形式,从而求解电磁场的解析解。

辐射条件法则是在边界条件已知的情况下,通过辐射条件来求解电磁场的解析解。

三、边界条件与边值问题的应用边界条件与边值问题在电磁场理论的应用中起着重要的作用,可以帮助我们研究电磁波的传播、电路的分析等问题。

三维静磁场Lipschitz区域上Robin问题广义解的存在与唯一性

三维静磁场Lipschitz区域上Robin问题广义解的存在与唯一性

三维静磁场Lipschitz区域上Robin问题广义解的存在与唯
一性
何汉林;王胜兵
【期刊名称】《海军工程大学学报》
【年(卷),期】2000(000)001
【摘要】近年来,电磁场边值问题的数值解法取得了飞速的发展。

由于电磁场边值问题是一类非线性偏微分方程,研究解的存在性、唯一性具有较大的困难。

前人已讨论了B-H间的几个基本不等式,并由之证明了三维静磁场带零边值问题广义解的存在与唯一性,作者也曾利用给出的B-H间的不等式证明了三维静磁场Neumann问题和二维时变场第一边值初值问题广义解的存在与唯一性。

由于在一般区域讨论存在困难,作者利用Sobolev空间理论
【总页数】1页(P39)
【作者】何汉林;王胜兵
【作者单位】海军工程大学基础部;海军工程大学基础部
【正文语种】中文
【中图分类】O441
【相关文献】
1.三维静磁场Robin问题的变分原理
2.一类拟线性波动方程Cauchy问题整体广义解的存在唯一性
3.关于高阶椭圆型方程Dirichlet问题广义解的存在唯一性
4.一
类拟线性抛物型偏微分方程在非光滑复连通区域初边值问题的广义解存在唯一性5.二维非线性退化椭圆问题广义解的存在唯一性
因版权原因,仅展示原文概要,查看原文内容请购买。

电磁场数值计算边值问题分解备课讲稿

电磁场数值计算边值问题分解备课讲稿
2、恒定磁场矢量磁位边值问题 恒定磁场的边值问题由矢量磁位的微分方程和边界
条件构成。基本方程为矢量双旋度方程
1
A
J
在库仑规范下,为矢量泊松方程
1 2 A J
2024/10/21
电磁场数值计算
相应的边界条件,第一类边界条件,在整个边界上给 定矢量磁位或其切线分量。(对应的法向分量)
A A0 或 At At0
2 0
相应的边界条件,在已知电压的电极表面上有 第一类边界条件
0
2024/10/21
电磁场数值计算
在已知流出或流入电流分布的电极表面上有第 二类边界条件
n
J n0
在导体与绝缘体分界面上有第二类齐次边界条

0
n
2024/10/21
电磁场数值计算
根据电流分布的对称性,也可构造对称 面上相应的齐次边界条件。
当材料和边界条件沿直角圆柱坐标系中 z 方向不变
时,三维恒定电场简化为二维平行平面场。
2024/10/21
电磁场数值计算
平行平面恒定电流场中,拉普拉斯算子表示为
2 2 2 x2 y2
在平行平面场中,内部衔接条件和外部边界条 件设置在材料的分界线和场域的边界线上。
当材料和边界条件沿圆柱坐标系中旋转坐标 方向不变, 即材料和边界条件围绕圆柱坐标系的 z
电磁场数值计算
电磁场数值计算边值问题分解
电磁场数值计算
2.1 静电场的边值问题
1、电位的基本方程和内部分界面衔接条件 根据静电场环路定理的微分形式
E 0 由矢量恒等式 0 ,可以设
E
静电场的辅助方程为
2024/10/21
电磁场数值计算
D E

《电磁场与电磁波》考试大纲.

《电磁场与电磁波》考试大纲.

《电磁场与电磁波》考试大纲课程类别:专业必修课课程编号:适用专业:电子信息科学与技术专业一、考试大纲说明1、课程的性质、目的与任务《电磁场与电磁波》是高等学校电子与电气信息类专业的一门重要技术基础课程,是所有强电专业和弱电专业的必修课程,也是信号与系统、通讯原理、电视机原理和信息光学等后续课程的基础。

通过本门课程的学习要求达到以下目的:(1)掌握电磁场与电磁波的基本理论知识、基本分析方法和初步应用,具有一定的分析和解决实际问题的能力,并为学习后继课程打下必要的基础。

(2)树立严肃认真的科学作风和理论联系实际的工程观点,培养科学思维能力、分析计算能力、实验研究能力和科学归纳能力。

(3)了解电磁理论发展史上某些重大的发现和发明过程中的科学思想和实验方法,了解电磁理论的发展与其它学科的关系等。

2、考试目标和要求(1)了解有关电磁现象和学科历史、概念和名词术语、电磁量及其单位、实验和规律、公式和图线。

(2)能对重要的电磁概念、模型、定理、定律的建立过程、物理意义、适用范围、成立的条件做出解释和说明。

能对同一电磁概念、规律等的不同表达形式(文字、数学解析式、图线等)进行简单的直接转换。

能根据对基本概念、定律、定理、公式的理解进行一些简单的推断,并会对典型问题做出定性的解释和定量计算等;(3)能够用所学的基本原理和概念处理新的问题。

(4)能将几个知识点多次应用于分析、判断与讨论之中,解决包含多个知识点、转几个弯子的具体问题或对复杂的具体电磁问题进行分类和解释,并从中找出解决问题的一般规律。

3、有关事项(1)考核形式:闭卷考试(2)考试时间:120分钟(3)评分方法:教师密封评卷(4)试卷难易度:较小难度20%,中等难度60%,较大难度20%(5)题型题量和分数分配:填空题20%,选择题20%,计算题60%4、教学参考书【1】Bhag Singh Guru, Hüseyin R. Hiziroglu 著.电磁场与电磁波. 周克定等译. 北京:机械工业出版社,2002.【2】杨儒贵. 电磁场与电磁波. 北京:高等教育出版社,2003.【3】杨显清,王园,赵家升. 电磁场与电磁波(第4版)教学指导书. 北京:高等教育出版社,2006.【4】杨儒贵. 电磁场与电磁波教学指导书. 北京:高等教育出版社,2003.【5】王家礼. 电磁场与电磁波学习指导. 西安:西安电子科技大学出版社,2002.二、考试内容和具体要求(一)矢量分析1、考试内容:矢量代数和正交坐标系、等值面与梯度和通量与散度、环流与旋度和格林定理与亥姆霍兹定理。

EmfW复习

EmfW复习

4U0 nπx nπy 故得到 ϕ(x, y) = ∑ sin( )sinh( ) πsinh(nπb / a) a a n=1,3,5,L n

文华信息( 文华信息(本)2007.12.20
1
复习要点: 复习要点:
1.基本内容 1.基本内容 2.基本方法 2.基本方法 3.基本问题 3.基本问题
2
1.基本内容 1.基本内容
1.1 1.1矢量分析(工具)
(1). 矢量的通量、散度、高斯定理 (2). 矢量的环流、旋度、斯托克斯定理 (3). 标量场的梯度 (4). 亥姆霍兹定理 r (5). 无 场: ∇× F = 0,∇×(∇ϕ) = 0,∴可 入 , 旋 Q 引 ϕ
v 条 : ρ ≠ 0, J ≠ 0 件 v A,ϕ的 入 引 , v A,ϕ的 动 程: 波 方 (洛 兹 范 仑 规 ) 辐 问 . 射 题
13
3.基本问题 3.基本问题
(1). 场E、H与源ρ、J的关系; 与源ρ 的关系;
(2).静态场的边值问题:包括求场量E、 (2).静态场的边值问题:包括求场量 、
6
(4). 介质特性方程 本构关系 : 介质特性方程(本构关系 本构关系):
对于线性和各向同性介质
v v v D = εE = εrε0E v v v B = µH = µr µ0H v v J =σE P的计 的计
算方法
(2.4.13) (2.4.27) (2.4.29)
v v v v v v v v QB = µ0H + M = µH, QD = D0 + P = εE, v v v v v v ∴P = D− D0 = (ε −ε0 )E ∴M = (µ − µ0 )H v v v r r r r r ρp = −∇• P ρpS = P• n JM = ∇×M, JSM = M ×en.

电动力学 第三章 静态电磁场及其边值问题的解

电动力学 第三章 静态电磁场及其边值问题的解

最后得
所以
第3章 静态电磁场及其边值问题的解
18
3.1.3 导体系统的电容与部分电容
电容器广泛应用于电子设备的电路中: • 在电子电路中,利用电容器来实现滤波、移相、隔直、旁
路、选频等作用; • 通过电容、电感、电阻的排布,可组合成各种功能的复杂
电路; • 在电力系统中,可利用电容器来改善系统的功率因数,以
减少电能的损失和提高电气设备的利用率;
第3章 静态电磁场及其边值问题的解
19
1. 电容 电容是导体系统的一种基本属性,是描述导体系统 储存电荷
能力的物理量。
孤立导体的电容
孤立导体的电容定义为所带电量q与其电位 的比值,即
两个带等量异号电荷(q)的导 体组成的电容器,其电容为
电容的大小只与导体系统的几何尺寸、形状和及周围电介质 的特性参数有关,而与导体的带电量和电位无关。

两端点乘 ,则有
上式两边从点P到点Q沿任意路径进行积分,得
电场力做 的功
关于电位差的说明
P、Q 两点间的电位差
P、Q 两点间的电位差等于电场力将单位正电荷从P点移至Q 点 所做的功,电场力使单位正电荷由高电位处移到低电位处;
电位差也称为电压,可用U 表示; 电位差有确定值,只与首尾两点位置有关,与积分路径无关。
第3章 静态电磁场及其边值问题的解
2
3.1 静电场分析
学习内容 3.1.1 静电场的基本方程和边界条件 3.1.2 电位函数 3.1.3 导体系统的电容与部分电容 3.1.4 静电场的能量 3.1.5 静电力
第3章 静态电磁场及其边值问题的解
3
3.1.1 静电场的基本方程和边界条件
1. 基本方程
两点间电位差有定值

《电磁场与电磁波》习题参考标准答案..

《电磁场与电磁波》习题参考标准答案..

《电磁场与电磁波》习题参考标准答案..《电磁场与电磁波》知识点及参考答案第1章⽮量分析1、如果⽮量场F 的散度处处为0,即0F≡,则⽮量场是⽆散场,由旋涡源所产⽣,通过任何闭合曲⾯S 的通量等于0。

2、如果⽮量场F 的旋度处处为0,即0F ??≡,则⽮量场是⽆旋场,由散度源所产⽣,沿任何闭合路径C 的环流等于0。

3、⽮量分析中的两个重要定理分别是散度定理(⾼斯定理)和斯托克斯定理, 它们的表达式分别是:散度(⾼斯)定理:SVFdV F dS ??=??和斯托克斯定理:sCF dS F dl=。

4、在有限空间V 中,⽮量场的性质由其散度、旋度和V 边界上所满⾜的条件唯⼀的确定。

( √ )5、描绘物理状态空间分布的标量函数和⽮量函数,在时间为⼀定值的情况下,它们是唯⼀的。

( √ )6、标量场的梯度运算和⽮量场的旋度运算都是⽮量。

( √ )7、梯度的⽅向是等值⾯的切线⽅向。

(× )8、标量场梯度的旋度恒等于0。

( √ ) 9、习题1.12, 1.16。

第2章电磁场的基本规律(电场部分)1、静⽌电荷所产⽣的电场,称之为静电场;电场强度的⽅向与正电荷在电场中受⼒的⽅向相同。

2、在国际单位制中,电场强度的单位是V/m(伏特/⽶)。

3、静电系统在真空中的基本⽅程的积分形式是:V V sD d S d V Q ρ?==?和0lE dl ?=?。

4、静电系统在真空中的基本⽅程的微分形式是:V D ρ??=和0E=。

5、电荷之间的相互作⽤⼒是通过电场发⽣的,电流与电流之间的相互作⽤⼒是通过磁场发⽣的。

6、在两种媒质分界⾯的两侧,电场→E 的切向分量E 1t -E 2t =0;⽽磁场→B 的法向分量B 1n -B 2n =0。

7、在介电常数为e 的均匀各向同性介质中,电位函数为 2211522x y z ?=+-,则电场强度E=5x y zxe ye e --+。

8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表⾯为等位⾯;在导体表⾯只有电场的法向分量。

谢处方《电磁场与电磁波》(第4版)章节习题-第3章 静态电磁场及其边值问题的解【圣才出品】

谢处方《电磁场与电磁波》(第4版)章节习题-第3章 静态电磁场及其边值问题的解【圣才出品】

第3章 静态电磁场及其边值问题的解一、判断题1.为了简化空间电位分布的表达式,总可以将电位参考点选择在无穷远处。

()【答案】×2.焦耳定律只适用于传导电流,不适应于运流电流。

()【答案】√3.绝缘介质与导体分界面上,在静电情况下导体外的电力线总是垂直于导体表面的。

()【答案】√4.位移电流的假说就是变化的磁场产生电场的假说。

()【答案】×5.任意两个带电导体之间都存在电容,对电容有影响的因素包括导体几何形状,导体上的电荷量、两导体相对位置和空间介质。

()【答案】×6.恒定电场中理想导体内的电场强度为零。

()【答案】√7.空间体积中有电流时,该空间内表面上便有面电流。

()【答案】×8.应用分离变量法求解电、磁场问题时,要求整个场域内媒质必须是均匀、线性的。

()【答案】×9.一个点电荷Q放在球形高斯面中心处。

如果此电荷被移开原来的球心,但仍在球内,则通过这个球面的电通量将会改变。

()【答案】×台10.在线性磁介质中,由的关系可知,电感系数不仅与导线的几何尺寸、材料L Iψ=特性有关,还与通过线圈的电流有关。

( )【答案】×二、填空题1.镜像法是在所求场的区域之外,用_______来代替场问题的边界。

假想电荷和场区域原有的电荷一起产生的电场必须要满足_______。

【答案】一些假想电荷;原问题的边界条件。

2.磁介质中恒定磁场的基本方程为:_______。

【答案】,;,.d 0S B S =⎰v v Ñ0B ∇⋅=v d 0CH l ⋅=⎰v v ÑH J ∇⨯=v v 3.位移电流假说的实质是_______。

【答案】变化的电场可以产生磁场4.位移电流和真实电流(如传导电流和运流电流)的区别在于_______。

【答案】位移电流不对应任何带电质点的运动,只是电场随时间的变化率5.已知磁感应强度为,则m 的值为_______。

第3章-镜像法

第3章-镜像法

18
q
q 该如何分析?
电子科技大学
电磁场与电磁波 第3章 静态电磁场及其边值问题的解
19
2. 点电荷对接地空心导体球壳的镜像
如图所示接地空心导体球壳的内半径为a 、外半径为b,点电荷q
位于球壳内,与球心相距为d ( d < a )。
由于球壳接地,感应电荷分布在 球壳的内表面上。镜像电荷q 应位于 导体空腔外,且在点电荷q与球心的 连线的延长线上。与点荷位于接地导 体球外同样的分析,可得到
2
3.8.1 镜像法的基本原理
1. 问题的提出 当有电荷存在于导体或介质表面附近时,导体和介质表面会
出现感应电荷或极化电荷,而感应电荷或极化电荷将影响场的分
布。
几个实例
非均匀感应面电荷
q
接地导体板附近有
一个点电荷,如图所
示。
等效电荷
q′
非均匀感应电荷产生的电位很难求 解,可以用等效电荷的电位替代
电子科技大学

q
电子科技大学
导体平面上总感应电 荷等于镜像电荷!
电磁场与电磁波 第3章 静态电磁场及其边值问题的解
9
2. 线电荷对无限大接地导体平面的镜像
原问题
2



l

x, z
h,
z

0;
0 ,
z 0,
镜像线电荷: l l , h h
有效区域
h
l
电子科技大学
电磁场与电磁波 第3章 静态电磁场及其边值问题的解 2 . 点电荷对不接地导体球的镜像
点电荷q 位于一个半径为a 的不 接地导体球外,距球心为d 。
导体球不接地时的特点:

3 电磁场与电磁波--静态电磁场及其边值问题的解

3 电磁场与电磁波--静态电磁场及其边值问题的解
第三章 静态电磁场及其边值问题的解
静态电磁场:当场源(电荷、电流)不随时间变化时,所激
发的电场、磁场也不随时间变化,称为静态电磁场,是电磁 场的一种特殊形式。 时变情况下,电场和磁场相互关联,构成统一的电磁场; 静态情况下,电场和磁场由各自的源激发,且相互独立。 三种静态电磁场: 静电场:由静止电荷产生; 恒定电场:由导电媒质中的恒定运动电荷形成; 恒定磁场:由恒定电流产生。
P
P、Q两点 间的电位差
*关于电位差的说明*
P、Q两点间的电位差等于电场力将单位正电荷从P点移至Q点所做的 功,电场力使单位正电荷由高电位处移到低电位处。 电位差也称为电压,可用U 表示。 电位差有确定值,只与首尾两点位置有关,与积分路径无关。 • 电磁场与电磁波 •
第三章 静态电磁场及其边值问题的解
l (r ')
S (r ') 1 dS ' C 面电荷 4 S ' | r r ' | 体电荷 dV ' C V ' 4 | r r ' | 1
V (r ')
引入电位函数的意义: 简化电场强度的求解!在某些情况下,直接求解电场强度很困难,但求 解电位函数则相对简单,因此可以通过先求电位函数,再由 E 关系得到电场解——间接求解法。
• 电磁场与电磁波 •
第三章 静态电磁场及其边值问题的解
• 电磁场与电磁波 •
第三章 静态电磁场及其边值问题的解
• 电磁场与电磁波 •
第三章 静态电磁场及其边值问题的解
• 电磁场与电磁波 •
第三章 静态电磁场及其边值问题的解
• 电磁场与电磁波 •
第三章 静态电磁场及其边值问题的解
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(rr ) l0 ln
2 L2 L
l 0
ln
2 L2 L
l 0
ln 2L
40 2 L2 L 20
20
当L 时,上式变为无穷大,这是因为电荷不是分布在有限区
域内,而将电位参考点选在无穷远点之故。这时可在上式中加上
一个任意常数,则有
(rr ) l0 ln 2L C 20
并选择有限远处为电位参考点。例如,选择ρ= a 的点为电位参
4 C R
点电荷的电位:(rr ) q C 4 R
3. 电位差

E
两端点乘 dl,则(
dx
dy
dy)
d
x y y
上式两边从点P到点Q沿任意路径进行积分,得
电场力做 的功
Q
Q
P E dl P d (P) (Q)
关于电位差的说明
P、Q 两点间的电位差
P、Q 两点间的电位差等于电场力将单位正电荷从P点移至Q 点 所做的功,电场力使单位正电荷由高电位处移到低电位处; 电位差也称为电压,可用U 表示; 电位差有确定值,只与首尾两点位置有关,与积分路径无关。
z
+q r2
d
o
r r1
-q
P(r, , )
r2 r 2 (d / 2)2 rd cos
电偶极子
用二项式展开,由于
r
d
,得
r1
r
d 2
cos
,
r2
r
d 2
cos
代入上式,得
(r)
qd cos 40r 2
p
er
40r 2
p r
40r 3
p qd表示电偶极矩,方向由负电荷指向正电荷。
由球坐标系中的梯度公式,可得到电偶极子的远区电场强度
4. 电位参考点 静电位不惟一,可以相差一个常数,即
C ( C)
为使空间各点电位具有确定值,可以选定空间某一点作为参考 点,且令参考点的电位为零,由于空间各点与参考点的电位差为确 定值,所以该点的电位也就具有确定值,即
选参考点
令参考点电位为零
电位确定值(电位差)
选择电位参考点的原则 应使电位表达式有意义;
3.1 静电场分析
学习内容 3.1.1 静电场的基本方程和边界条件 3.1.2 电位函数 3.1.3 导体系统的电容与部分电容 3.1.4 静电场的能量 3.1.5 静电力
3.1.1 静电场的基本方程和边界条件
1. 基本方程
微分形式:
D
E 0
本构关系: D E
积分形式:SD
dS
q
CE dl 0
R
r
r
E(r)
1
4
V
(r) R3
RdV
1
4
V
(r)( 1 )dV
R
[
1
4
V
(r)(
1 R
)dV
]
故得 (rr ) 1
(rr)dV C
( 1 ) R
R
R3
4 V R 面电荷的电位:(rr ) 1
S
(rr) dS
C
4 S R
线电荷的电位:(rr ) 1
l (rr)dl C
,而
例3.1.3 求长度为2L、电荷线密度为l0 的均匀带电线的电位。
解 采用圆柱面坐标系,令线电荷与 z 轴相重合,中点位于
坐标原点。由于轴对称性,电位与 无关。
在带电线上位于 z 处的线元 dl dz,它
z (,, z)
到点 P(,, z)的距离 R 2 (z z)2 ,
L

R
(rr) l0 L
• 静态电磁场:场量不随时间变化,包括: 静电场、恒定电场和恒定磁场
• 时变情况下,电场和磁场相互关联,构成统一的电磁场 • 静态情况下,电场和磁场由各自的源激发,且相互独立
本章内容
3.1 静电场分析 3.2 导电媒质中的恒定电场分析 3.3 恒定磁场分析 3.4 静态场的边值问题及解的惟一性定理 3.5 镜像法 3.6 分离变量法
2. 边界条件
en en
(D1 D2 ) (E1 E2 )
S
0

D1n D2n S
E1t E2t 0
若分界面上不存在面电荷,即ρS=0,则
eenn
(D1 D2 ) (E1 E2 )
0 0

D1n D2n
E1t
E2t
场矢量的折射关系
tan 1 E1t / E1n 1 / D1n 1 tan 2 E2t / E2n 2 / D2n 2
考点,则有
C l0 ln 2L 20 a
(rr ) l0 ln a 20
两点间电位差有定值
应使电位表达式最简单。若电荷分布在有限区域,通常取无
限远作电位参考点;
同一个问题只能有一个参考点。
例 3.1.1 求电偶极子的电位. 解 在球坐标系中
(r) q ( 1 1 ) q r2 r1 40 r1 r2 40 r1r2
r1 r 2 (d / 2)2 rd cos
1
dz
40 L 2 (z z)2
z ' dl dz
y
l0 ln[z z
L
2 (z z)2 ]
4 0
L
x
l0 ln 2 (z L)2 (z L)
-L
40 2 (z L)2 (z L)
在上式中若令 L ,则可得到无限长直线电荷的电位。当 L R 时,上式可写为
导体表面的边界条件
介质1
en 1
E1
1
介质2
E2
2
2
在静电平衡的情况下,导体内部的电场为0,则导体表面的边
界条件为
en en
D
S
E 0

EDtn
0
S
3.1.2 电位函数
1. 电位函数的定义

E 0
E
即静电场可以用一个标量函数的梯度来表示,标量函数 称为静
电场的标量电位或简称电位。
2. 电位的表达式 对于连续的体分布电荷,由
E(r)
(er
r
e
1 r
e
1
r sin
)
等位线方程:
q
4 0 r 3
(er
2 cos
e
sin
)
p cos 40r 2
C
r 2 C'cos
电场线微分方程:
dr rd
Er E 将 E和 Er代入上式,解得E线方程为
r C1 sin 2
电场线 等位线 电偶极子的场图
例3.1.2 求均匀电场的电位分布。
解 选定均匀电场空间中的一点o为坐标原点,而任意点P 的
位置矢量为r,则
(P) (o)
or r Pr r r r P E0 gdl o E0 gdr E0 gr
若选择点o为电位参考点,即 (o) 0,则
(P)
r E0
grr
x
P
r
o
z
E0
即rr 在er在球圆坐Er,柱0标er(z则P面z系e)r,有坐z中E故标0,Er系取0(g中Prr极),轴取与erErzE0grgrr的0rrE与E方00x轴向erx方g一EE向0致0(rer一,co致s,ez z即) Er0E0erxcEo0s
相关文档
最新文档