七年级数学典型几何证明50题

合集下载

七年级几何证明题训练(含答案)

七年级几何证明题训练(含答案)

1. 已知:如图11所示,∆ABC 中,∠=C E ,且有AC AD CE ==。

求证:DE CD =122. 已知:如图 求证:BC =AC3. 已知:如图13所示,过∆ABC 的顶点A ,在∠A 内任引一射线,过B 、C 作此射线的垂线BP 和CQ 。

设M 为BC 的中点。

求证:MP =MQ4. ∆ABC 中,∠=︒⊥BAC AD BC 90,于D ,求证:()AD AB AC BC <++14【试题答案】1. 证明:取AC ADAF CDAFC =∴⊥∴∠= 又∠+∠=︒∠+∠=︒14901390,∴∠=∠=∴≅∴=∴=4312AC CEACF CED ASA CF EDDE CD∆∆()2. 分析:本题从已知和图形上看好象比较简单,但一时又不知如何下手,那么在证明一条线段等于两条线段之和时,我们经常采用“截长补短”的手法。

“截长”即将长的线段截CB CE BCD ECD CD CD CBD CEDB EBAC B BAC E=∠=∠=⎧⎨⎪⎩⎪∴≅∴∠=∠∠=∠∴∠=∠∆∆22又∠=∠+∠BAC ADE E∴∠=∠∴=∴==ADE E AD AEBC CE ,3. 证明:延长PM CQ AP BP BP CQ PBM ⊥∴∴∠=∠,// 又BM CM =,∴≅∴=∆∆BPM CRMPM RM∴QM 是Rt QPR ∆斜边上的中线AD BC AD AEBC AE AD⊥∴<∴=>,22()AB AC BCBC AB AC BC AD AB AC BC AD AB AC BC +>∴<++∴<++∴<++2414。

七年级上册几何题50道

七年级上册几何题50道

七年级上册几何题50道1.画出一个点A,并从点A画出两条射线,形成一个角∠BAC,测量并写出∠BAC的度数。

2.如果∠1=35°且∠2与∠1互为余角,求∠2的度数。

3.画出一个直角三角形,其中一个锐角为45°,并测量另一锐角的度数。

4.证明等腰三角形底角相等。

5.一个三角形的两个内角分别为60°和50°,求第三个内角的度数。

6.画出一个平行四边形ABCD,如果∠A=110°,求∠B的度数。

7.一个矩形的长是宽的两倍,如果宽是10厘米,求矩形的面积。

8.一个正方形的周长是20厘米,求它的面积。

9.一个圆的半径是3厘米,求圆的周长和面积。

10.如果一个圆的直径是10厘米,求半圆的周长。

11.画出一个直角梯形,上底3cm,下底7cm,高5cm,求它的面积。

12.一个等边三角形的边长为6cm,求它的高。

13.求一个边长为5cm的正六边形的周长。

14.如果一个平行四边形的两邻边分别是5cm和8cm,且夹角为60°,求它的面积。

15.一个直角三角形的两直角边分别为3cm和4cm,求斜边的长度。

16.画出一个角,然后使用圆规和直尺将其二等分。

17.证明直角三角形斜边上的中线等于斜边的一半。

18.一个圆的周长是31.4cm,求它的半径。

19.画出一个等腰梯形,底边分别是12cm和8cm,高为5cm,求它的面积。

20.如果一个矩形的面积是24cm²,长是6cm,求它的宽。

21.一个直角三角形的斜边为10cm,其中一个锐角为30°,求较短的直角边的长度。

22.画出一个角,使用圆规和直尺将其三等分。

23.如果一个圆的面积是100πcm²,求它的半径。

24.一个正方形的对角线长为8cm,求它的边长。

25.一个等腰三角形的底边为10cm,腰长为8cm,求底角的度数。

26.画出一个正五边形,如果一个内角是108°,求它的一个外角的度数。

七年级下册数学期末考试几何大题证明必考题

七年级下册数学期末考试几何大题证明必考题

图①DA EC BFl图②ABE F ClD七年级下册数学期末考试几何大题证明必考题精选类型一、正方形中三角形全等与线段长度之间的关系例1、如图①,直线l 过正方形ABCD 的顶点B ,A 、C 两顶点在直线l 同侧,过点A 、C 分别作AE ⊥直线l 、CF ⊥直线l . (1)试说明:EF =AE +CF ;(2)如图②,当A 、C 两顶点在直线l 两侧时,其它条件不变,猜想EF 、AE 、CF 满足什么数量关系(直接写出答案,不必说明理由).练习: 如图,△ABC 中,AB=AC ,∠BAC =90°.(1)过点A 任意一条直线l (l 不与BC 相交),并作B D ⊥l ,C E ⊥l ,垂足分别为D 、E .度量BD 、CE 、DE ,你发现它们之间有什么关系?试对这种关系说明理由; (2)过点A 任意作一条直线l (l 与BC 相交),并作B D ⊥l ,C E ⊥l ,垂足分别为D 、E .度量BD 、CE 、DE ,你发现经们之间有什么关系?试对这种关系说明理由.例2、已知正方形的四条边都相等,四个角都是90º。

如图,正方形ABCD 和正方形AEFG 有一个公共点A ,点G 、E 分别在线段AD 、AB 上。

A E B 图1D CG FA BD CG FE图2(1)如图1, 连结DF 、BF ,说明:DF =BF ; (2)若将正方形AEFG 绕点A 按顺时针方向旋转,连结DG ,在旋转的过程中,你能否找到一条长度与线段DG 的长始终相等的线段?并以图2为例说明理由。

练习:如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,B 、C 、G 三点在一条直线上,且边长分别为2和3,在BG 上截取GP =2,连结AP 、PF. (1)观察猜想AP 与PF 之间的大小关系,并说明理由.(2)图中是否存在通过旋转、平移、反射等变换能够互相重合的两个三角形?若存在,请说明变换过程;若不存在,请说明理由.(3)若把这个图形沿着PA 、PF 剪成三块,请你把它们拼成一个大正方形,在原图上画出示意图,并请求出这个大正方形的面积.附加:如图,△ABC 与△ADE 都是等边三角形,连结BD 、CE(1)BD 与CE 相等吗?请说明理由.A BCFDE GP32B(2)你能求出BD与CE的夹角∠BFC的度数吗?(3)若将已知条件改为:四边形ABCD与四边形AEFG都是正方形,连结BE、DG交点记为点M(如图).请直接写出线段BE和DGF例3、正方形四边条边都相等,四个角都是90o.如图,已知正方形ABCD在直线MN 的上方,BC在直线MN上,点E是直线MN上一点,以AE为边在直线MN的上方作正方形AEFG.(1)如图1,当点E在线段BC上(不与点B、C重合)时:①判断△ADG与△ABE是否全等,并说明理由;②过点F作FH⊥MN,垂足为点H,观察并猜测线段BE与线段CH的数量关系,并说明理由;(2)如图2,当点E在射线CN上(不与点C重合)时:①判断△ADG与△ABE是否全等,不需说明理由;②过点F 作FH ⊥MN ,垂足为点H ,已知GD =4,求△CFH 的面积.练习:如图1,四边形ABCD 是正方形,G 是CD 边上的一个点(点G 与C 、D 不重合),以CG 为一边作正方形CEFG ,连结BG ,DE .(1)如图1,说明BG= DE 的理由(2)将图1中的正方形CEFG 绕着点C 按顺时针方向旋转任意角度 ,得到如图2.请你猜想①BG= DE 是否仍然成立?②BG 与DE 位置关系?并选取图2验证你的猜想.图 2FG DA图 1FDA类型二、探究题例1、如图,已知等边△A B C 和点P ,设点P 到△A B C 三边A B 、A C 、B C (或其延长线)的距离分别为h 1、h 2、h 3,△A B C 的高为h .在图(1)中,点P 是边B C 的中点,此时h 3=0,可得结论:h h h h =++321. 在图(2)--(5)中,点P 分别在线段M C 上、M C 延长线上、△A B C 内、△A B C 外.(1)请探究:图(2)--(5)中, h 1、h 2、h 3、h 之间的关系;(直接写出结论)(2)证明图(2)所得结论; (3)证明图(4)所得结论.(4)(附加题2分)在图(6)中,若四边形R B C S 是等腰梯形,∠B =∠C =60o ,R S =n ,B C =m ,点P 在梯形内,且点P 到四边B R 、R S 、S C 、C B 的距离分别是h 1、h 2、h 3、h 4,桥形的高为h ,则h 1、h 2、h 3、h 4、h 之间的关系为: ;图(4)与图(6)中的等式有何关系?ABC DEPM(3)ABCDE (2)ABCD EM (P )(1)练习:1、如图,在△ABC 中,AB=AC ,P 为底边上任意一点,PE ⊥AB ,PF ⊥AC ,BD ⊥AC.(1)求证:PE+PF=BD ;(2)若点P 是底边BC 的延长线上一点,其余条件不变,(1)中的结论还成立吗?如果成立,请说明理由;如果不成立,请画出图形,并探究它们的关系.CBAPDE2、如图,已知△ABC 三边长相等,和点P ,设点P 到△ABC 三边AB 、AC 、BC (或其延长线)的距离分别为h 1、h 2、h 3,△ABC 的高为h .在图(1)中, 点P 是边BC 的中点,由S △ABP+S △ACP=S △ABC 得,h BC h AC h AB ⋅=⋅+⋅21212121可得h h h =+21又因为h 3=0,所以:h h h h =++321.图(2)~(5)中,点P 分别在线段MC 上、MC 延长线上、△ABC 内、△ABC 外.(1)请探究:图(2)~(5)中, h 1、h 2、h 3、h 之间的关系;(直接写出结论)⑵ ⑶ ⑷ ⑸ (2)说明图(2)所得结论为什么是正确的; (3)说明图(5)所得结论为什么是正确的.ABC DEP ABCDEPM(3)ABCDE P M (2)ABCDEM (P )(1)ABCDEP M(5)FC B E 例2、已知△ABC 是等边三角形,将一块含30o 角的直角三角板DEF 如图1放置,当点E 与点B 重合时,点A 恰好落在三角板的斜边DF 上. (1)AC=CF 吗? 为什么?(2)让三角板在BC 上向右平行移动,在三角板平行移动的过程中,(如图2)是否存在与线段EB 始终相等的线段(设AB ,AC 与三角板斜边的交点分别为G ,H )?如果存练习:1、如图1,一等腰直角三角尺GEF (∠EGF=90°,∠GEF=∠GFE=45°,GE=GF )的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转.(1)如图2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 相等吗?并说明理由;(2)若三角尺GEF 旋转到如图3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立C图1吗?请说明理由.2、已知:△ABC 为等边三角形,M 是BC 延长线上一点,直角三角尺的一条直角边经过点A ,且60º角的顶点E 在BC 上滑动,(点E 不与点B 、C 重合),斜边∠ACM 的平分线CF 交于点F(1)如图(1)当点B 在BC 边得中点位置时(6分) ○1猜想AE 与BF 满足的数量关系是 。

初中经典几何证明练习题(含问题详解)

初中经典几何证明练习题(含问题详解)

初中几何证明题经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴FG EO =HGGO∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD∴CD COHG GO =∴CDCO FG EO = ∵EO=CO ∴CD=GF2、已知:如图,P 是正方形ABCD 部的一点,∠PAD =∠PDA =15°。

求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15°∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15°∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD∴△BAP ≌∠CDP ∴∠BPA=∠CPD∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75°∴∠BPC=360°-75°×4=60°∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F .证明:连接AC ,取AC 的中点G,连接NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN=21AD ∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM=21BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM∴∠GMN=∠GNM ∴∠DEN=∠F经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB⌒ =AB ⌒ ∴∠F=∠ACB又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD∴BH=BF 又AD ⊥BC ∴DH=DF∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC ∴∠BOM=21∠BOC=60°∴∠OBM=30° ∴BO=2OM由(1)知AH=2OM ∴AH=BO=AO2、设MN 是圆O 外一条直线,过O 作OA ⊥MN 于A ,自A 引圆的两条割线交圆O 于B 、C 及D 、E ,连接CD并延长交MN 于Q ,连接EB 并延长交MN 于P. 求证:AP =AQ .证明:作点E 关于AG 的对称点F ,连接AF 、CF 、QF ∵AG ⊥PQ ∴∠PAG=∠QAG=90°又∠GAE=∠GAF ∴∠PAG+∠GAE=∠QAG+∠GAF 即∠PAE=∠QAF∵E 、F 、C 、D 四点共圆 ∴∠AEF+∠FCQ=180° ∵EF ⊥AG ,PQ ⊥AG ∴EF ∥PQ∴∠PAF=∠AFE ∵AF=AE∴∠AFE=∠AEF ∴∠AEF=∠PAF ∵∠PAF+∠QAF=180° ∴∠FCQ=∠QAF ∴F 、C 、A 、Q 四点共圆 ∴∠AFQ=∠ACQ 又∠AEP=∠ACQ ∴∠AFQ=∠AEP3、设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)证明:作OF ⊥CD 于F ,OG ⊥BE 于G ,连接OP 、OQ 、OA 、AF 、AG ∵C 、D 、B 、E 四点共圆 ∴∠B=∠D ,∠E=∠C ∴△ABE ∽△ADC ∴DFBGFD 2BG 2DC BE AD AB === ∴△ABG ∽△ADF ∴∠AGB=∠AFD ∴∠AGE=∠AFC ∵AM=AN , ∴OA ⊥MN 又OG ⊥BE ,∴∠OAQ+∠OGQ=180° ∴O 、A 、Q 、E 四点共圆 ∴∠AOQ=∠AGE 同理∠AOP=∠AFC ∴∠AOQ=∠AOP又∠OAQ=∠OAP=90°,OA=OA ∴△OAQ ≌△OAP ∴AP=AQ 4、如图,分别以△ABC 的AB 和AC 为一边,在△ABC 的外侧作正方形ABFG 和正方形ACDE ,点O 是DF 的中点,在△AEP 和△AFQ 中 ∠AFQ=∠AEP AF=AE ∠QAF=∠PAE ∴△AEP ≌△AFQ ∴AP=AQOP ⊥BC求证:BC=2OP (初二)证明:分别过F 、A 、D 作直线BC 的垂线,垂足分别是L 、M 、N ∵OF=OD ,DN ∥OP ∥FL ∴PN=PL∴OP 是梯形DFLN 的中位线 ∴DN+FL=2OP ∵ABFG 是正方形 ∴∠ABM+∠FBL=90° 又∠BFL+∠FBL=90° ∴∠ABM=∠BFL又∠FLB=∠BMA=90°,BF=AB ∴△BFL ≌△ABM ∴FL=BM同理△AMC ≌△CND ∴CM=DN∴BM+CN=FL+DN ∴BC=FL+DN=2OP经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)证明:连接BD 交AC 于O 。

初一数学几何图形的性质与证明练习题及答案

初一数学几何图形的性质与证明练习题及答案

初一数学几何图形的性质与证明练习题及答案几何图形是数学中的一个重要概念,它们具有独特的性质和特征。

在初一的数学学习中,学生需要了解不同几何图形的性质,并且能够通过证明来验证这些性质。

本文将提供一些初一数学几何图形的性质与证明练习题及答案,帮助学生深入理解几何图形。

一、直线和线段的性质及证明性质1:两点确定一条直线。

证明:设有两点A和B,我们可以通过连接这两个点的直线来得到一条直线。

性质2:直线上的任意一点都在直线的同一侧。

证明:设直线上有一点C,在直线上我们可以找到一点D,并通过连接点C和D得到一条直线。

点C和点D的连接线与原始直线重合,因此点C和原始直线上的点A、B都在直线的同一侧。

性质3:线段的中点即为线段上到两个端点距离相等的点。

证明:设线段AB上有一点E,若点E到点A和点B的距离相等,则点E为线段AB的中点。

二、三角形的性质及证明性质4:三角形的内角和等于180度。

证明:设三角形ABC,我们可以通过在点B处做一条平行于边AC的直线,连接点A和点C,构成直线ABCD。

由于直线ABCD是一条直线,所以角ABC + 角BCD = 180度。

因此,三角形ABC的内角和等于180度。

性质5:等腰三角形的底边上的高线也是中位线。

证明:设等腰三角形ABC中,AB = AC,点D为底边BC上的中点,我们需要证明AD是三角形ABC的高线。

通过连接点A和点D,我们可以得到线段AD。

由于AB=AC,所以角BAD =角CAD,即角B = 角C。

又因为线段AD是BC的中点,所以BD = CD。

根据三角形的SAS相等性质,我们可以得知三角形ABD与三角形ACD全等。

根据全等三角形的性质,我们可以得出AD是三角形ABC的高线。

性质6:直角三角形的斜边平方等于两直角边平方和。

证明:设直角三角形ABC ,其中∠C为直角。

我们需要证明AB² = AC² + BC²。

通过在边AC上做一条垂直于AC的高线AD,我们可以将直角三角形ABC分为两个矩形,分别为ABCD和ABDE。

七年级数学典型几何证明50题

七年级数学典型几何证明50题

初一典型几何证明题1、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=22、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴△BCF ≌△EDF (S.A.S)ADBCA BC DEF 21∴ BF=EF,∠CBF=∠DEF 连接BE在△BEF 中,BF=EF ∴ ∠EBF=∠BEF 。

∵ ∠ABC=∠AED 。

∴ ∠ABE=∠AEB 。

∴ AB=AE 。

在△ABF 和△AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ABF ≌△AEF 。

∴ ∠BAF=∠EAF (∠1=∠2)。

3、已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG∥EF 交AD 的延长线于点G CG∥EF,可得,∠EFD=CGD DE =DC∠FDE=∠GDC(对顶角) ∴△EFD≌△CGD EF =CG ∠CGD=∠EFD 又,EF∥AB ∴,∠EFD=∠1 ∠1=∠2 ∴∠CGD=∠2∴△AGC 为等腰三角形, AC =CG 又 EF =CG ∴EF =AC4、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CBA CDF2 1 EA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C5、已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE6、如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。

初一几何证明题及答案

初一几何证明题及答案

初一几何证明题及答案【篇一:七年级数学几何证明题(典型)】3.已知,如图,在△ abc中,ad,ae分别是△ abc的高和角平分线,若∠b=30dc4、一个零件的形状如图,按规定∠a=90o ,∠c=25o,∠b=25o,检验已量得∠bdc=150o,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。

db5、如图,已知df∥ac,∠c=∠d,你能否判断ce∥bd?试说明你的理由 aebc8、如图,ad⊥bc于d,eg⊥bc于g,∠e =∠1,求证ad平分∠bac。

e3gdc10、如图,将一副三角板叠放在一起,使直角的顶点重合于o,则∠aoc+∠dob11、如图,将两块直角三角尺的直角顶点c叠放在一起. (1)若∠dce=35,求∠acb的度数;(2)若∠acb=140,求∠dce的度数;(3)猜想:∠acb与∠dce有怎样的数量关系,并说明理由12、已知:直线ab与直线cd相交于点o,∠boc=45,(1)如图1,若eo⊥ab,求∠doe的度数;(2)如图2,若eo平分∠aoc,求∠doe的度数.13、已知?aob,p为oa上一点.(1)过点p画一条直线pq,使pq∥ob;(2)过点p画一条直线pm,使pm⊥oa交ob于点m;(3)若?aob?40?,则?pmo? ?adecodbad cob16、已知:线段ab=5cm,延长ab到c,使ac=7cm,在ab的反向延长线上取点d,使bd=4bc,设线段cd的中点为e,问线段ae 是线段cd的几分之一?【篇二:初中数学几何证明经典试题(含答案)】题(一)1、已知:如图,o是半圆的圆心,c、e是圆上的两点,cd⊥ab,ef⊥ab,eg⊥co.求证:cd=gf.(初二).如下图做gh⊥ab,连接eo。

由于gofe四点共圆,所以∠gfh=∠oeg, 即△ghf∽△oge,可得eogf=gogh=cocd,又co=eo,所以cd=gf得证。

eadofb2、已知:如图,p是正方形abcd内点,∠pad=∠pda=150.求证:△pbc是正三角形.(初二) a.如下图做gh⊥ab,连接eo。

【中考数学】初中数学几何证明精选50道题,都是常考题型(可下载)

【中考数学】初中数学几何证明精选50道题,都是常考题型(可下载)

【中考数学】初中数学几何证明精选50道题,都是常考题型
(可下载)
今天老师为大家整理的是初中数学几何证明精选50道题,都是考试常考题型,文内含详细证明过程,超适合寒假预习复习使用~
PS:电子版文末获取!(点亮“在看”“点赞”按钮,好资料分享给身边更多需要的小伙伴吧~)
寒假预习函数
这是我见过最好的初中数学【二次函数】复习资料!
七下
初中数学七年级下册学霸笔记整理!寒假就该这么学!
八下
初中数学八年级下册+中考复习学霸笔记整合!寒假提前看!
九下
初中数学九年级下册+中考复习学霸笔记整合!寒假提前看!
中考数学初中数学学霸笔记中考数学初中数学学霸笔记写在最后。

初一几何证明题

初一几何证明题

初一几何证明题1.已知AB∥CD,∠1=∠2,证明:∠XXX∠XXX。

根据平行线内角相等的性质,可得∠1=∠2=∠XXX。

同时,因为AB∥CD,所以∠BEF+∠EFC=180°,即∠BEF=180°-∠XXX。

代入前面的等式,可得∠XXX∠XXX。

2.如图2,AB∥CD,∠3∶∠2=3∶1,求∠1的度数。

根据平行线内角相等的性质,可得∠1=180°-∠2.又因为∠3∶∠2=3∶1,所以∠3=3x,∠2=x。

代入前面的等式,可得∠1=180°-x。

因此,∠1+∠2+∠3=180°,即4x=180°,x=45°。

代入前面的等式,可得∠1=135°。

3.如图3,C在AB的延长线上,CE⊥AF于E,交FB于D,若∠F=40°,∠C=20°,求∠XXX的度数。

根据直角三角形的性质,可得∠CEA=90°。

又因为CE⊥AF,所以∠EAF=90°-∠F=50°。

根据三角形内角和为180°的性质,可得∠EFA=180°-∠F-∠EAF=90°。

因为AB∥CD,所以∠XXX∠EFA=90°。

4.如图4,EF∥AD,∠1=∠2,∠BAC=80°。

求证:∠AGD=100°。

因为EF∥AD,所以∠AGD=∠AGE。

又因为∠BAC=80°,所以∠XXX°-∠BAC/2=50°。

因为∠1=∠2,所以∠DGE=∠AGE=180°-∠1-∠GAC=50°。

因此,∠AGD=∠AGE=50°+∠DGE=100°。

5.如图5,B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,C处在B处的XXX°方向。

求∠C的度数。

根据题意,可画出如图6所示的图形。

(完整word版)七年级数学几何证明题

(完整word版)七年级数学几何证明题

初一七年级数学几何证明题经典练习题1. 如图,在ABC 中,D 在AB 上,且△ CAD^P A CBE 都是等边三角形, 求证:(1)DE=AB (2)Z EDB=602. 如图,在A ABC 中, AD 平分/ BAC DE||AC,EF 丄AD 交BC 延长线于F 。

求证: / FAC " B3. 已知,如图,在厶ABC 中,AD ,AE 分别是 △ ABC 的高和角平分线,若/ B=30 B D C5、如图,已知DF // AC, / C=Z D,你能否判断CE // BD?试说明你的理由/ C=50°求:(1),求/ DAE 的度数 何关系?(不必证明)(2)试写出 / DAE 与 / C - / B 有6、如图,△ ABC中,D在BC的延长线上,过D作DE丄AB于E,交AC于F.已知/ A=30 ° ,Z FCD=80° ,求/D。

A87、如图,BE 平分/ ABD , CF 平分/ ACD , BE 、CF 交于 G , 若/ BDC = 140。

,/ BGC = 110。

,则 / A ?8、如图,AD 丄BC 于D , EG 丄BC 于G ,Z E =Z 1,求证 AD 平分/ BAC9、如图,直线。

丘交厶ABC 的边AB AC 于 D E,交BC 延长线于F , 若/ B = 67°,/ ACB= 74°,/ AED= 48°,求/ BDF 的度数•10、如图,将一副三角板叠放在一起,使直角的顶点重 合于O,贝U/ AOC / DOB11、如图,将两块直角三角尺的直角顶点C 叠放在一起 (1) 若/ DCE=3&求/ ACB 的度数;(2) 若/ ACB=140,求/ DCE 的度数; (3) 猜想:/ ACB 与/ DCE 有怎样的数量关系,并说明理由 AE12、已知:直线AB 与直线CD 相交于点O ,/ B0C= 45° ,(1) 如图1,若E0丄AB ,求/ D0E 的度数;(2) 如图2,若E0平分/ AOC ,求/ DOE 的度数.13、已知 AOB , P 为0A 上一点. (1)过点P 画一条直线PQ ,使PQ // 0B ;(2)过点P 画一条直线PM ,使PM 丄0A 交0B 于点M ;14、如图。

初一数学几何证明题带图答案

初一数学几何证明题带图答案

初一数学几何证明题带图答案初一数学几何证明题带图答案几何证明是初中几何入门教学的一项重要内容,初一几何证明题答案有哪些呢?下面是的初一几何证明题答案资料,欢迎阅读。

初一几何证明题答案图片发不上来,看参考资料里的1 如图,AB⊥BC于B,EF⊥AC于G,DF⊥AC于D,BC=DF。

求证:AC=EF。

2 已知AC平分角BAD,CE垂直AB于E, CF垂直AD于F,且BC=CD(1)求证:△BCE全等△DCF3.如图所示,过三角形ABC的顶点A分别作两底角角B和角C的平分线的垂线,AD垂直于BD于D,AE垂直于CE于E,求证:ED||BC.4.已知,如图,PB、PC分别是△ABC的外角平分线,且相交于点P。

求证:点P在∠A的平分线上。

回答人的补充2010-07-19 00:10 1.在三角形ABC中,角ABC为60度,AD、CE分别平分角BAC 角ACB,试猜想,AC、AE、CD有怎么样的数量关系2.把等边三角形每边三等分,经其向外长出一个边长为原来三分之一的小等边三角形,称为一次生长,如生长三次,得到的多边形面积是原三角形面积的几倍求证:同一三角形的重心、垂心、三条边的中垂线的交点三点共线。

(这条线叫欧拉线) 求证:同一三角形的三边的中点、三垂线的垂足、各顶点到垂心的线段的中点这9点共圆。

~~ (这个圆叫九点圆)3.证明:对于任意三角形,一定存在两边a、b,满足a比b大于等于1,小于2分之根5加14.已知△ABC的三条高交于垂心O,其中AB=a,AC=b,∠BAC=α。

请用只含a、b、α三个字母的式子表示AO的长(三个字母不一定全部用完,但一定不能用其它字母)。

5.设所求直线为y=kx+b (k,b为常数.k不等于0). 则其必过x-y+2=0与x+2y-1=0的交点(-1,1).所以b=k+1,即所求直线为y=kx+k+1 (1) 过直线x-y+2=0与Y轴的交点(0,2)且垂直于x-y+2=0的直线为y=-x+2 (2). 直线(2)与直线(1)的交点为A,直线(2)与直线x+2y-1=0的交点为B,则AB的中点为(0,2),由线段中点公式可求k.6. 在三角形ABC中,角ABC=60,点P是三角ABC内的一点,使得角APB=角BPC=角CPA,且PA=8 PC =6则PB= 2 P是矩形ABCD内一点,PA=3 PB= 4 PC=5 则PD= 3 三角形ABC是等腰直角三角形,角C=90 O是三角形内一点,O点到三角形各边的距离都等于1,将三角形ABC饶点O顺时针旋转45度得三角形A1B1C1 两三角形的公共部分为多边形KLMNPQ,1)证明:三角形AKL 三角形BMN 三角形CPQ 都是等腰直角三角形 2)求三角形ABC与三角形A1B1C1公共部分的面积。

初中经典几何证明练习题集(含答案解析)

初中经典几何证明练习题集(含答案解析)

初中几何证明题经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴FG EO =HGGO∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD∴CD COHG GO =∴CDCO FG EO = ∵EO=CO ∴CD=GF2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。

求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15°∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15°∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD∴△BAP ≌∠CDP ∴∠BPA=∠CPD∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75°∴∠BPC=360°-75°×4=60°∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F .证明:连接AC ,取AC 的中点G,连接NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN=21AD ∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM=21BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM∴∠GMN=∠GNM ∴∠DEN=∠F经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB⌒ =AB ⌒ ∴∠F=∠ACB又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD∴BH=BF 又AD ⊥BC ∴DH=DF∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC ∴∠BOM=21∠BOC=60°∴∠OBM=30° ∴BO=2OM由(1)知AH=2OM ∴AH=BO=AO2、设MN 是圆O 外一条直线,过O 作OA ⊥MN 于A ,自A 引圆的两条割线交圆O 于B 、C 及D 、E ,连接CD 并延长交MN 于Q ,连接EB 并延长交MN 于P. 求证:AP =AQ .证明:作点E 关于AG 的对称点F ,连接AF 、CF 、QF ∵AG ⊥PQ ∴∠PAG=∠QAG=90°又∠GAE=∠GAF ∴∠PAG+∠GAE=∠QAG+∠GAF 即∠PAE=∠QAF∵E 、F 、C 、D 四点共圆 ∴∠AEF+∠FCQ=180° ∵EF ⊥AG ,PQ ⊥AG ∴EF ∥PQ∴∠PAF=∠AFE ∵AF=AE∴∠AFE=∠AEF ∴∠AEF=∠PAF ∵∠PAF+∠QAF=180° ∴∠FCQ=∠QAF ∴F 、C 、A 、Q 四点共圆 ∴∠AFQ=∠ACQ 又∠AEP=∠ACQ ∴∠AFQ=∠AEP3、设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)证明:作OF ⊥CD 于F ,OG ⊥BE 于G ,连接OP 、OQ 、OA 、AF 、AG ∵C 、D 、B 、E 四点共圆 ∴∠B=∠D ,∠E=∠C ∴△ABE ∽△ADC ∴DFBGFD 2BG 2DC BE AD AB === ∴△ABG ∽△ADF ∴∠AGB=∠AFD ∴∠AGE=∠AFC ∵AM=AN , ∴OA ⊥MN 又OG ⊥BE ,∴∠OAQ+∠OGQ=180° ∴O 、A 、Q 、E 四点共圆 ∴∠AOQ=∠AGE 同理∠AOP=∠AFC ∴∠AOQ=∠AOP又∠OAQ=∠OAP=90°,OA=OA ∴△OAQ ≌△OAP在△AEP 和△AFQ 中 ∠AFQ=∠AEP AF=AE ∠QAF=∠PAE ∴△AEP ≌△AFQ ∴AP=AQ4、如图,分别以△ABC 的AB 和AC 为一边,在△ABC 的外侧作正方形ABFG 和正方形ACDE ,点O 是DF 的中点,OP ⊥BC求证:BC=2OP (初二)证明:分别过F 、A 、D 作直线BC 的垂线,垂足分别是L 、M 、N ∵OF=OD ,DN ∥OP ∥FL ∴PN=PL∴OP 是梯形DFLN 的中位线 ∴DN+FL=2OP ∵ABFG 是正方形 ∴∠ABM+∠FBL=90° 又∠BFL+∠FBL=90° ∴∠ABM=∠BFL又∠FLB=∠BMA=90°,BF=AB ∴△BFL ≌△ABM ∴FL=BM同理△AMC ≌△CND ∴CM=DN∴BM+CN=FL+DN ∴BC=FL+DN=2OP经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)证明:连接BD 交AC 于O 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一典型几何证明题1、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=22、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴△BCF ≌△EDF (S.A.S)ADBCA BC DEF 21∴ BF=EF,∠CBF=∠DEF 连接BE在△BEF 中,BF=EF ∴ ∠EBF=∠BEF 。

∵ ∠ABC=∠AED 。

∴ ∠ABE=∠AEB 。

∴ AB=AE 。

在△ABF 和△AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ABF ≌△AEF 。

∴ ∠BAF=∠EAF (∠1=∠2)。

3、已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG∥EF 交AD 的延长线于点G CG∥EF,可得,∠EFD=CGD DE =DC∠FDE=∠GDC(对顶角) ∴△EFD≌△CGD EF =CG ∠CGD=∠EFD 又,EF∥AB ∴,∠EFD=∠1 ∠1=∠2 ∴∠CGD=∠2∴△AGC 为等腰三角形, AC =CG 又 EF =CG ∴EF =AC4、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CBA CDF2 1 EA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C5、已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE6、如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。

求证:BC=AB+DC。

在BC上截取BF=AB,连接EF ∵BE平分∠ABC∴∠ABE=∠FBE又∵BE=BE∴⊿ABE≌⊿FBE(SAS)∴∠A=∠BFE∵AB//CD∴∠A+∠D=180º∵∠BFE+∠CFE=180º∴∠D=∠CFE 又∵∠DCE=∠FCE CE平分∠BCDCE=CE∴⊿DCE≌⊿FCE(AAS)∴CD=CF∴BC=BF+CF=AB+CD7. P是∠BAC平分线AD上一点,AC>AB,求证:PC-PB<AC-AB在AC上取点E,使AE=AB。

∵AE=ABAP=AP∠EAP=∠BAE,∴△EAP≌△BAP ∴PE=PB。

PC<EC+PE ∴PC<(AC-AE)+PB∴PC-PB<AC-AB。

P D ACB8. 已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE 证明:在AC 上取一点D ,使得角DBC=角C ∵∠ABC=3∠C∴∠ABD=∠ABC -∠DBC=3∠C -∠C=2∠C; ∵∠ADB=∠C+∠DBC=2∠C; ∴AB=AD∴AC – AB =AC-AD=CD=BD在等腰三角形ABD 中,AE 是角BAD 的角平分线, ∴AE 垂直BD ∵BE⊥AE∴点E 一定在直线BD 上,在等腰三角形ABD 中,AB=AD ,AE 垂直BD ∴点E 也是BD 的中点 ∴BD=2BE ∵BD=CD=AC-AB ∴AC-AB=2BE9. 如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC . 解:延长AD 至BC 于点E,∵BD=DC ∴△BDC 是等腰三角形 ∴∠DBC=∠DCB又∵∠1=∠2 ∴∠DBC+∠1=∠DCB+∠2 即∠ABC=∠ACB ∴△ABC 是等腰三角形 ∴AB=AC在△ABD 和△ACD 中 AB=AC ∠1=∠2 BD=DC∴△ABD 和△ACD 是全等三角形(边角边) ∴∠BAD=∠CAD ∴AE 是△ABC 的中垂线 ∴AE⊥BC ∴AD⊥BC10. 如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA 证明: ∵OM 平分∠POQ ∴∠POM =∠QOM ∵MA ⊥OP ,MB ⊥OQ∴∠MAO=∠MBO=90∵OM=OM∴△AOM≌△BOM (AAS)∴OA=OB∵ON=ON∴△AON≌△BON (SAS)∴∠OAB=∠OBA,∠ONA=∠ONB∵∠ONA+∠ONB=180∴∠ONA=∠ONB=90∴OM⊥AB11. 如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.证明:在AB上取F,使AF=AD,连接EF ∵AE平分∠DAB∴∠DAE=∠FAE在⊿ADE和⊿AFE中AD=AF∠DAE=∠FAEAE = AE∴⊿ADE≌⊿AFE(SAS)∴∠ADE=∠AFE∵AB//CD∴∠ADE+∠C=180º∵∠AFE+∠BFE=180º∴∠C=∠BFE∵ BE平分∠ABC∠CBE=∠FBE在⊿BFE和⊿BCE中∠C=∠BFE∠CBE=∠FBECE=CE∴⊿BFE≌⊿BCE(AAS)∴CB=BF∴AB=AF+FB=AD+BCPEDCBA{ {12. 如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.(1)证:∵DE⊥AC 于E ,BF⊥AC 于F , ∴∠DEC=∠BFA=90°,DE∥BF, 在Rt△DEC 和Rt△BFA 中, ∵AF=CE,AB=CD ,∴Rt△DEC≌Rt△BFA(HL ) ∴DE=BF.在△DE M 和△BF M 中 ∠DE M =∠BF M ∠D M E=∠B MF DE=BF∴△DE M ≌△BF M(AAS) ∴MB=MD ,ME=MF(2) 证:∵DE⊥AC 于E ,BF⊥AC 于F , ∴∠DEC=∠BFA=90°,DE∥BF, 在Rt△DEC 和Rt△BFA 中, ∵AF=CE,AB=CD ,∴Rt△DEC≌Rt△BF A (HL ) ∴DE=BF.在△DE M 和△BF M 中 ∠DE M =∠BF M ∠D M E=∠B MF DE=BF∴△DE M ≌△BF M(AAS) ∴MB=MD ,ME=MF13如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C{{点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.证:∵∠CEB=∠CAB=90°∠ADB=∠CDE在△ABD中,∠ABD = 180°-∠CAB-∠ADB在△CED中,∠DCE = 180°-∠CEB-∠CDE∴∠ABD =∠DCE在△ABD和△ACF中∠DAB=∠CAFAB=AC∠ABD =∠DCF∴△ABD≌△ACF(ASA)∴BD=CF∵BD是∠ABC的平分线∴∠FBE =∠CBE在△FBE和△CBE中∠FBE =∠CBEBE=BE∠BEF =∠BEC∴△FBE≌△CBE(ASA)∴CE=FE CF=2CE∴BD=2CE14. 如图:DF=CE,AD=BC,∠D=∠C。

求证:△AED≌△BFC。

证明:∵DF=CE,∴DF-EF=CE-EF,即DE=CF,在△AED和△BFC中,∵ AD=BC,∠D=∠C ,DE=CF∴△AED≌△BFC(SAS)15. 如图:AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。

求证:AM是△ABC的中线。

证明:∵BE‖CF∴∠E=∠CFM,∠EBM=∠FCM ∵BE=CF∴△BEM≌△CFMFED CBAFEDCBA{ {∴BM=CM∴AM 是△ABC 的中线16.AB=AC ,DB=DC ,F 是AD 的延长线上的一点。

求证:BF=CF 证:在△ABD 与△ACD 中AB=AC BD=DC AD=AD∴△ABD ≌△ACD(SSS) ∴∠ADB=∠ADC ∴∠BDF=∠FDC 在△BDF 与△FDC 中 BD=DC ∠BDF=∠FDC DF=DF∴△FBD ≌△FCD(SAS) ∴BF=FC17. 如图:AB=CD ,AE=DF ,CE=FB 。

求证:AF=DE 。

证:∵CF=CE+EF EB=EF+FB 又∵CE=FB ∴CF=EB在△CDF 与△ABE 中AB=CD AE=DF BE=CF∴△CDF ≌△ABE(SSS) ∴∠DCB=∠ABF 在△ABF 与△CDE 中AB=CD ∠ABF =∠DCE BF=CE∴△ABF ≌△CDE (SAS) ∴AF=ED18. 公园里有一条“Z”字形道路ABCD ,如图所示,其中AB ∥CD ,在AB ,CD ,BC 三段路旁各有一只小石凳E ,F ,M ,且BE =CF ,M 在BC 的中点,试说明三只石凳E ,F ,M 恰好在一条直线上. 证明:连接EF∵AB∥CDMFECBAFDCBAFEDCBA{{{{∴∠B=∠C ∵M 是BC 中点 ∴BM=CM在△BEM 和△CFM 中 BE=CF ∠B=∠C∴△BEM≌△CFM(SAS ) ∴CF=BEBM=CM19. 已知:如图所示,AB =AD ,BC =DC ,E 、F 分别是DC 、BC 的中点,求证: AE =AF 。

证:连接AC∵在△ADC 和△ABC 中 AD=AB DC=BC AC=AC∴△ADC ≌△ABC (SSS ) ∴∠B=∠D∵E 、F 分别是DC 、BC 的中点 又∵BC =DC ∴DE=BF∵在△ADE 和△ABF 中 AD=AB∠D =∠B DE=BF∴△ADE ≌△ABF (SAS ) ∴AE=AF20. 如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.证明:∵在△ADC 和△ABC 中∠BAC=∠DAC ∠BCA=∠DCA AC=AC∴△ADC ≌△ABC (AAS ) ∵AB=AD ,BC=CD 在△DEC 与△BEC 中CE=CE ∠BCA=∠DCA ∴△DEC ≌△BEC (SAS ) ∴∠DEC=∠BECBC=CD21.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F 。

相关文档
最新文档