用MATLAB进行控制系统的超前校正设计
基于MATLAB进行控制系统的滞后-超前校正设计要点
计算机控制技术------滞后-超前校正控制器设计系别:电气工程与自动化专业:自动化班级:B110411学号:B11041104姓名:程万里目录一、 滞后-超前校正设计目的和原理 (1)1.1 滞后-超前校正设计目的......................................................... 1 1.2 滞后-超前校正设计原理......................................................... 1 二、滞后-超前校正的设计过程 (3)2.1 校正前系统的参数 (3)2.1.1 用MATLAB 绘制校正前系统的伯德图................................. 3 2.1.2 用MATLAB 求校正前系统的幅值裕量和相位裕量.................. 4 2.1.3 用MATLAB 绘制校正前系统的根轨迹................................. 5 2.1.4 对校正前系统进行仿真分析.............................................5 2.2 滞后-超前校正设计参数计算 (6)2.2.1 选择校正后的截止频率c ω............................................. 6 2.2.2 确定校正参数β、2T 和1T (6)2.3 滞后-超前校正后的验证 (7)2.3.1 用MATLAB 求校正后系统的幅值裕量和相位裕量..................7 2.3.2 用MATLAB 绘制校正后系统的伯德图.................................8 2.3.3 用MATLAB 绘制校正后系统的根轨迹.................................9 2.3.4 用MATLAB 对校正前后的系统进行仿真分析 (10)三、前馈控制3.1 前馈控制原理..................................................................... 12 3.2控制对象的介绍及仿真......................................................... 12 四、 心得体会.............................................................................. 16 参考文献.......................................................................................17 附录 (18)一、滞后-超前校正设计目的和原理1.1 滞后-超前校正设计目的所谓校正就是在系统不可变部分的基础上,加入适当的校正元部件,使系统满足给定的性能指标。
用MATLAB进行控制系统的滞后-超前校正设计
课程设计任务书学生姓名: 专业班级:指导教师: 程 平 工作单位: 自动化学院 题 目: 用MATLAB 进行控制系统的滞后-超前校正设计 初始条件:已知一单位反馈系统的开环传递函数是)102.0)(11.0()(++=s s s Ks G要求系统的静态速度误差系数150-≥S v K , 40≥γ,s rad w c /10≥。
要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、MATLAB 作出满足初始条件的最小K 值的系统伯德图,计算系统的幅值裕量和相位裕量。
2、前向通路中插入一相位滞后-超前校正,确定校正网络的传递函数。
3、用MATLAB 画出未校正和已校正系统的根轨迹。
4、用Matlab 对校正前后的系统进行仿真分析,画出阶跃响应曲线5、课程设计说明书中要求写清楚计算分析的过程,列出MATLAB 程序和MATLAB 输出。
说明书的格式按照教务处标准书写。
时间安排:指导教师签名: 年 月 日系主任(或责任教师)签名: 年 月 日串联滞后-超前校正兼有滞后校正和超前校正的优点,即已校正系统的响应速度较快,超调量较小,抑制高频噪声的性能也较好。
当校正系统不稳定,且要求校正后系统的响应速度,相角裕度和稳态精度较高时,以采用串联滞后-超前校正为宜。
其基本原理是利用滞后-超前网络的超前部分来增大系统的相角裕度,同时利用滞后部分来改善系统的稳态性能。
此次课程设计就是利用MATLAB对一单位反馈系统进行滞后-超前校正。
通过运用MATLAB的相关功能,绘制系统校正前后的伯德图、根轨迹和阶跃响应曲线,并计算校正后系统的时域性能指标。
关键字:超前-滞后校正 MATLAB 伯德图时域性能指标1 滞后-超前校正设计目的和原理 (1)1.1 滞后-超前校正设计目的 (1)1.2 滞后-超前校正设计原理 (1)2 滞后-超前校正的设计过程 (3)2.1 校正前系统的参数 (3)2.1.1 用MATLAB绘制校正前系统的伯德图 (4)2.1.2 用MATLAB求校正前系统的幅值裕量和相位裕量 (4)2.1.3 用MATLAB绘制校正前系统的根轨迹 (5)2.1.4 对校正前系统进行仿真分析 (6)2.2 滞后-超前校正设计参数计算 (7) (8)2.2.1 选择校正后的截止频率c2.2.2 确定校正参数 (8)2.3 滞后-超前校正后的验证 (9)2.3.1 用MATLAB求校正后系统的幅值裕量和相位裕量 (9)2.3.2 用MATLAB绘制校正后系统的伯德图 (10)2.3.3 用MATLAB绘制校正后系统的根轨迹 (11)2.3.4 用MATLAB对校正前后的系统进行仿真分析 (12)3 心得体会 (14)参考文献 (16)用MATLAB进行控制系统的滞后-超前校正设计1 滞后-超前校正设计目的和原理1.1 滞后-超前校正设计目的所谓校正就是在系统不可变部分的基础上,加入适当的校正元部件,使系统满足给定的性能指标。
用MATLAB进行控制系统的滞后-超前校正设计
课程设计任务书学生姓名: 专业班级: 指导教师: 工作单位:题 目 : 用 MATLAB 进行控制系统的滞后-超前校正设计。
初始条件: 已知一单位反馈系统的开环传递函数是要求系统的静态速度误差系数 K v 10S 1, 45要求完成的主要任务 : (包括课程设计工作量及其技术要求, 以及说明书撰写等具体要求)1、MATLAB 作出满足初始条件的最小 K 值的系统伯德图, 计算系统的幅值裕 量和相位裕量。
2、前向通路中插入一相位 滞后-超前 校正,确定校正网络的传递函数。
3、用 MATLAB 画出未校正和已校正系统的根轨迹。
4、课程设计说明书中要求写清楚计算分析的过程,列出 MATLAB 程序和 MATLAB 输出。
说明书的格式按照教务处标准书写。
时间安排:指导教师签名:系主任(或责任教师)签名:G(s)Ks(s 1)(s2)用MATLAB进行控制系统的滞后-超前校正设计1滞后- 超前校正设计目的和原理1.1滞后- 超前校正设计目的校正就是在系统不可变部分的基础上,加入适当的校正元部件,使系统满足给定的性能指标。
校正方案主要有串联校正、并联校正、反馈校正和前馈校正。
确定校正装置的结构和参数的方法主要有两类:分析法和综合法。
分析法是针对被校正系统的性能和给定的性能指标,首先选择合适的校正环节的结构,然后用校正方法确定校正环节的参数。
在用分析法进行串联校正时,校正环节的结构通常采用超前校正、滞后校正和滞后 - 超前校正这三种类型。
超前校正通常可以改善控制系统的快速性和超调量,但增加了带宽,而滞后校正可以改善超调量及相对稳定度,但往往会因带宽减小而使快速性下降。
滞后 - 超前校正兼用两者优点,并在结构设计时设法限制它们的缺点。
1.2滞后- 超前校正设计原理滞后-超前校正 RC网络电路图如图 1 所示。
图1 滞后-超前校正 RC网络面推导它的传递函数:其中 T 1为超前部分的参数, T 2 为滞后部分。
用MATLAB进行控制系统的超前校正设计
用MATLAB 进行控制系统的超前校正设计1.超前校正的原理和方法1.1超前校正的原理所谓校正,就是在调整放大器增益后仍然不能全面满足设计要求的性能指标的情况下,加入一些参数可以根据需要而改变的机构或装置,使系统整个特性发生变化,达到设计要求。
无源超前网络的电路如图1所示。
图1无源超前网络电路图如果输入信号源的内阻为零,且输出端的负载阻抗为无穷大,则超前网络的传递函数可写为1()1c aTs aG s Ts +=+①(1-1)式中1221R R a R +=>,1212R R T C R R =+通常a 为分度系数,T 叫时间常数,由式(1-1)可知,采用无源超前网络进行串联校正时,整个系统的开环增益要下降a 倍,因此需要提高放大器增益交易补偿。
根据式(1-1),可以得无源超前网络()c aG s 的对数频率特性,超前网络对频率1R在1/aT 至1/T 之间的输入信号有明显的微分作用,在该频率范围内,输出信号相角比输入信号相角超前,超前网络的名称由此而得。
在最大超前角频率m ω处,具有最大超前角m ϕ。
超前网路(1-1)的相角为()c arctgaT arctgT ϕωωω=-(1-2)将上式对ω求导并令其为零,得最大超前角频率(1-3)将上式代入(1-2),得最大超前角频率(1-4)同时还易知''m c ωω=ϕm 仅与衰减因子a 有关。
a 值越大,超前网络的微分效应越强。
但a 的最大值受到超前网络物理结构的制约,通常取为20左右(这就意味着超前网络可以产生的最大相位超前大约为65度)。
利用超前网络行串联校正的基本原理,是利用其相角超前特性。
只要正确地将超前网络的交接频率1/a T 或1/T 选在待校正系统截止频率的两旁,并适当选择参数a 和T ,就可以使已校正系统的截止频率和相角裕度满足性能指标的要求,从而改善系统的动态性能。
②1.2超前校正的应用方法待校正闭环系统的稳态性能要求,可通过选择已校正系统的开环增益来保证。
用MATLAB进行控制系统的超前校正设计
012111136023学号:2课程设计用MATLAB进行控制系统的超前校正题目设计学院自动化学院专业自动化班级自动化11班姓名指导教师谭思云2013年12月25日课程设计任务书学生姓名: 刘嘉雯 专业班级:自动化1102班指导教师: 谭思云 工作单位: 自动化学院题 目: 用MATLAB 进行控制系统的超前校正设计。
初始条件:已知一单位反馈系统的开环传递函数是)3.01)(1.01()(s s s K s G ++= 要求系统的静态速度误差系数 456v ≥≤γ,K 。
要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、用MATLAB 作出满足初始条件的K 值的系统伯德图,计算系统的幅值裕度和相位裕度。
2、在系统前向通路中插入一相位超前校正,确定校正网络的传递函数,并用MATLAB 进行验证。
3、用MATLAB 画出未校正和已校正系统的根轨迹。
4、课程设计说明书中要求写清楚计算分析的过程,列出MATLAB 程序和MATLAB 输出。
说明书的格式按照教务处标准书写。
时间安排:1、课程设计任务书的布置,讲解 (半天)2、根据任务书的要求进行设计构思。
(半天)3、熟悉MATLAB 中的相关工具(一天)4、系统设计与仿真分析。
(三天)5、撰写说明书。
(二天)6、课程设计答辩(半天)指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要 01课程设计目的 (1)2设计条件及任务要求 (1)2.1设计条件 (1)2.2设计任务要求 (1)3设计基本原理 (2)3.1超前校正 (2)3.2根轨迹法 (4)4设计过程 (5)4.1基本思路及步骤 (5)4.2校正前系统分析 (5)4.2.1开环增益 (5)4.2.2相位裕度和幅值裕度 (6)4.2.3伯德图 (7)4.2.4根轨迹 (8)4.3超前校正系统设计 (9)4.3.1 理论分析 (9)4.3.2参数计算 (10)4.3.3编程设计 (11)4.4校正后系统分析 (12)4.4.1伯德图 (12)4.4.2根轨迹 (13)5结果对比与分析 (14)5.1校正前后阶跃响应曲线 (14)5.2结果分析 (15)6总结 (17)参考文献 (18)摘要在自动控制理论中,超前校正是相当重要的一环,对于系统的优化有很重要的意义。
用MATLAB进行控制系统的滞后-超前校正设计
课程设计任务书学生姓名: 李 超 专业班级: 电气 1001班 指导教师: 刘志立 工作单位: 自动化学院 题 目: 用MATLAB 进行控制系统的滞后-超前校正设计 初始条件:已知一单位反馈系统的开环传递函数是)2)(1()(++=s s s K s G 要求系统的静态速度误差系数110-≥S K v ,ο45≥γ。
要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、 MATLAB 作出满足初始条件的最小K 值的系统伯德图,计算系统的幅值裕量和相位裕量。
2、前向通路中插入一相位滞后-超前校正,确定校正网络的传递函数。
3、用MATLAB 画出未校正和已校正系统的根轨迹。
4、用Matlab 对校正前后的系统进行仿真分析,画出阶跃响应曲线,计算其时域性能指标。
5、课程设计说明书中要求写清楚计算分析的过程,列出MATLAB 程序和MATLAB 输出。
说明书的格式按照教务处标准书写。
时间安排:指导教师签名: 年 月 日系主任(或责任教师)签名: 年 月 日MATLAB是一个包含大量计算算法的集合。
其拥有600多个工程中要用到的数学运算函数,可以方便的实现用户所需的各种计算功能。
函数中所使用的算法都是科研和工程计算中的最新研究成果,而前经过了各种优化和容错处理。
在通常情况下,可以用它来代替底层编程语言,如C和C++。
在计算要求相同的情况下,使用MATLAB的编程工作量会大大减少。
MATLAB的这些函数集包括从最简单最基本的函数到诸如矩阵,特征向量、快速傅立叶变换的复杂函数。
函数所能解决的问题其大致包括矩阵运算和线性方程组的求解、微分方程及偏微分方程的组的求解、符号运算、傅立叶变换和数据的统计分析、工程中的优化问题、稀疏矩阵运算、复数的各种运算、三角函数和其他初等数学运算、多维数组操作以及建模动态仿真等。
此次课程设计就是利用MATLAB对一单位反馈系统进行滞后-超前校正。
用MATLAB进行控制系统的超前校正设计
用MATLAB进行控制系统的超前校正设计超前校正是一种用于控制系统设计的技术,它通过提前预测系统的动态性质,并校正输出信号,以改善系统的性能和稳定性。
在MATLAB中,我们可以使用控制系统工具箱来进行超前校正的设计。
超前校正的设计步骤如下:1. 确定系统的传递函数模型:首先,我们需要确定待控制系统的数学模型,通常使用传递函数表示。
在MATLAB中,我们可以使用`tf`函数定义传递函数。
例如,如果系统的传递函数为G(s) = (s + 2)/(s^2 + 5s + 6),可以用以下命令定义该传递函数:```matlabG = tf([1 2], [1 5 6]);```2.确定要求的超前时间常数和相位余量:超前校正的目标是在系统的低频区域增加相位余量,以提高系统的稳定性和性能。
我们需要根据应用需求确定所需的超前时间常数和相位余量。
一般来说,相位余量取值在30到60度之间较为合适。
3.计算所需的超前网络增益:根据所需的超前时间常数和相位余量,可以使用以下公式计算所需的超前网络增益:```matlabKc = 1 / sqrt(phi) * abs(1 / evalfr(G, j * w_c))```其中,phi为所需的相位余量,w_c为所需的截止角频率,evalfr函数用于计算传递函数在复频域上的值。
4. 设计超前校正网络:超前校正网络通常由一个增益项和一个零点组成,用于提高低频响应的相位余量。
使用`leadlag`函数可以方便地设计超前校正网络。
例如,以下命令可以设计一个零点在所需截止频率处的超前校正网络:```matlabw_c=1;%所需的截止角频率phi = 45; % 所需的相位余量Gc = leadlag(w_c, phi);```5. 计算开环传递函数和闭环传递函数:使用`series`函数可以计算超前校正网络和原系统传递函数的乘积,得到开环传递函数。
而使用`feedback`函数可以根据需要计算闭环传递函数。
用MATLAB进行控制系统的超前校正设计
目录1 MATLAB技术介绍 (1)2 超前校正的特性及方法 (2)2.1什么是超前校正 (2)2.2超前校正的方法 (3)2.3 超前校正的特点 (4)2.4 超前校正的适用条件 (4)3 超前校正装置的设计 (5)3.1 校正前系统性能分析 (5)3.1.1 开环增益 (5)3.1.2 相角裕度和幅值裕度 (6)3.1.3 校正前系统伯德图 (7)3.2 超前校正网络参数的确定 (8)3.2.1 理论分析 (8)3.2.2 参数的计算 (9)3.3校正装置的验证 (10)4 校正前后系统性能分析 (11)4.1 常用MATLAB函数简介 (11)4.1.1 step函数 (11)4.1.2 rlocus函数 (11)4.1.3 bode函数 (12)4.1.4 nyquist函数 (12)4.2 程序及图像 (12)4.2.1 单位阶跃响应 (12)4.2.2 校正前系统根轨迹 (14)4.2.3 校正后系统根轨迹 (15)4.2.4 伯德图 (16)4.2.5 奈氏图 (17)5 Simulink仿真 (18)5.1 Simulink简介 (18)5.2 校正前系统仿真 (19)5.3 校正后系统仿真 (20)6 心得体会 (21)参考文献 (22)1 MATLAB技术介绍MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。
它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。
MATLAB和Mathematica、Maple并称为三大数学软件。
它在数学类科技应用软件中在数值计算方面首屈一指。
用matlab实现超前系统的校正设计
我从中学到的不仅是些知识,还有一些对系统分析的思维方法。这两周给我的收获很大。
参考文献
[1]胡寿松.自动控制原理(第四版).北京:科学出版社,2001
rlocus(num1,den1)
grid
图6校正后系统的根轨迹
4系统校正前后的性能比较
控制信号系统中的信号可以表示为不同频率信号合成。控制系统频率特性反映正弦信号作用下系统响应的性能。
用Matlab软件作系统校正前的奈奎斯特曲线的程序为:
num=[6];
den=[conv([0.05 1],[0.5 1]) 0];
频率特性法设计校正装置主要是通过对数频率特性(Bode图)来进行。开环对数频率特性的低频段决定系统的稳态误差,根据稳态性能指标确定低频段的斜率和高度。为保证系统具有足够的稳定裕量,开环对数频率特性在剪切频率ωc附近的斜率应为-20dB/dec,而且应具有足够的中频宽度,为抑制高频干扰的影响,高频段应尽可能迅速衰减。
由图7可以看出来,系统开环传递函数无右极点,其奈奎斯特曲线都不包括(-1,0j)点,所以闭环系统是稳定的。校正后使开环系统截止频率增大,从而闭环系统带宽也增大,使响应速度加快。
系统校正前闭环传递函数为:
校正后系统的闭环传递函数为:
运用matlab软件作系统校正前后的响应曲线比较,程序为:
num=[6]
den1=conv([0.108 1 0],conv([0.05 1],[0.5 1]));
bode(num1,den1)
grid
图5校正后系统的伯德图
用MATLAB进行控制系统的滞后-超前校正设计 自动化课程设计
自动化课程设计设计题目:系统超前滞后频域法校正学院:机械电气工程学院指导老师:鲁敏学生姓名:张海港学号:2008092617专业:电气工程及其自动化班级:08级(4)班课程设计任务书学生姓名: 张海港 专业班级:电气自动化08(4) 指导教师: 鲁敏 工作单位:机械电气工程学院 题 目: 控制系统的滞后-超前校正设计 初始条件:已知系统的传递函数是)15.0)(161(180)(++=s s s s G要求系统的db Kg 10≥, 345±≥γ, s Ts 3≤,要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、MATLAB 作出的系统伯德图,计算系统的幅值裕量和相位裕量。
2、前向通路中插入一相位滞后-超前校正,确定校正网络的传递函数。
3、用MATLAB 画出未校正和已校正系统的根轨迹。
4、用Matlab 对校正前后的系统进行仿真分析,画出阶跃响应曲线,计算其时域性能指标。
5、课程设计说明书中要求写清楚计算分析的过程,列出MATLAB 程序和MATLAB 输出。
时间安排:MATLAB是一个包含大量计算算法的集合。
其拥有600多个工程中要用到的数学运算函数,可以方便的实现用户所需的各种计算功能。
函数中所使用的算法都是科研和工程计算中的最新研究成果,而前经过了各种优化和容错处理。
在通常情况下,可以用它来代替底层编程语言,如C和C++。
在计算要求相同的情况下,使用MATLAB的编程工作量会大大减少。
MATLAB的这些函数集包括从最简单最基本的函数到诸如矩阵,特征向量、快速傅立叶变换的复杂函数。
函数所能解决的问题其大致包括矩阵运算和线性方程组的求解、微分方程及偏微分方程的组的求解、符号运算、傅立叶变换和数据的统计分析、工程中的优化问题、稀疏矩阵运算、复数的各种运算、三角函数和其他初等数学运算、多维数组操作以及建模动态仿真等。
此次课程设计就是利用MATLAB对一单位反馈系统进行滞后-超前校正。
用MATLAB进行控制系统的滞后-超前校正设计.
课程设计任务书学生姓名: 专业班级:指导教师: 工作单位: 自动化学院题 目: 用MATLAB 进行控制系统的滞后-超前校正设计。
初始条件:已知一单位反馈系统的开环传递函数是)2)(1()(++=s s s Ks G要求系统的静态速度误差系数110-=S K v , 45=γ。
要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、MATLAB 作出满足初始条件的最小K 值的系统伯德图,计算系统的幅值裕量和相位裕量。
2、前向通路中插入一相位滞后-超前校正,确定校正网络的传递函数。
3、用MATLAB 画出未校正和已校正系统的根轨迹。
4、课程设计说明书中要求写清楚计算分析的过程,列出MATLAB 程序和MATLAB 输出。
说明书的格式按照教务处标准书写。
时间安排:指导教师签名: 年 月 日系主任(或责任教师)签名: 年 月 日目录摘要 (1)1.基于频率响应法校正设计概述 (2)2.串联滞后-超前校正原理及步骤 (3)2.1滞后超前校正原理 (3)2.2滞后-超前校正的适用范围 (4)2.3串联滞后-超前校正的设计步骤 (4)3.串联滞后-超前校正的设计 (5)3.1待校正系统相关参数计算及稳定性判别 (5)3.1.1判断待校正系统稳定性 (5)3.1.2绘制待校正系统的伯德图 (7)3.1.3绘制待校正系统的根轨迹图 (8)3.1.4绘制待校正系统的单位阶跃响应曲线 (8)3.1.5利用SIMULINK进行控制系统建模仿真 (9)3.2滞后超前-网络相关参数的计算 (10)3.3对已校正系统的验证及稳定性分析 (12)3.3.1绘制已校正系统的伯德图 (12)3.3.2判断已校正系统的稳定性 (14)3.3.3绘制已校正系统的根轨迹图 (16)3.3.4绘制已校正系统的单位阶跃响应曲线 (16)3.3.5利用SIMULINK进行控制系统建模仿真 (17)3.3.6串联滞后-超前校正设计小结 (18)4.心得体会 (19)参考文献 (20)附录 (21)用MATLAB进行控制系统的滞后-超前校正设计摘要本题是一个在频域中对线性定常系统进行校正的问题。
实验八 基于MATLAB控制系统的频率法串联超前校正设计
实验八基于MATLAB控制系统的频率法串联超前校正设计一、实验目的1、对给定系统设计满足频域性能指标的串联校正装置。
2、掌握频率法串联有源和无源超前校正网络的设计方法。
3、掌握串联校正环节对系统稳定性及过渡过程的影响。
二、实验原理用频率法对系统进行超前校正的基本原理,是利用超前校正网络的相位超前特性来增大系统的相位裕量,以达到改善系统瞬态响应的目标。
为此,要求校正网络最大的相位超前角出现在系统的截止频率(剪切频率)处。
串联超前校正的特点:主要对未校正系统中频段进行校正,使校正后中频段幅值的斜率为-20dB/dec,且有足够大的相位裕度;超前校正会使系统瞬态响应的速度变快,校正后系统的截止频率增大。
这表明校正后,系统的频带变宽,瞬态响应速度变快,相当于微分效应;但系统抗高频噪声的能力变差。
1、用频率法对系统进行串联超前校正的一般步骤为:1)根据稳态误差的要求,确定开环增益K。
2)根据所确定的开环增益K,画出未校正系统的波特图,计算未校正系统的相位裕度。
3)计算超前网络参数a和T。
4)确定校正网络的转折频率。
5)画出校正后系统的波特图,验证已校正系统的相位裕度。
6)将原有开环增益增加倍,补偿超前网络产生的幅值衰减,确定校正网络组件的参数。
三、实验内容1、频率法有源超前校正装置设计例1、已知单位负反馈系统被控制对象的传递函数为:试用频率法设计串联有源超前校正装置,使系统的相位裕度 ,静态速度误差系数 。
clc; clear;delta=2; s=tf('s');G=1000/(s*(0.1*s+1)*(0.001*s+1));margin(G) 原系统bode 图[gm,pm]=margin(G) phim1=50;phim=phim1-pm+delta; phim=phim*pi/180;alfa=(1+sin(phim))/(1-sin(phim)); a=10*log10(alfa); [mag,phase,w]=bode(G); adB=20*log10(mag); Wm=spline(adB,w,-a); t=1/(Wm*sqrt(alfa)); Gc=(1+alfa*t*s)/(1+t*s); [gmc,pmc]=margin(G*Gc) figure;margin(G*Gc) 矫正后bode figure(1);step(feedback(G,1)) 矫正后01 figure(2);step(feedback(G*Gc,1)) 矫正后02结果显示: gm = 1.0100 pm =0()(0.11)(0.0011)K G s s s s =++045γ≥11000v K s -=0.0584gmc =7.3983pmc =45.7404分析:根据校正前后阶跃响应的曲线可知:校正后的系统满足动态性能指标以及频域性能指标。
用MATLAB进行控制系统的超前校正设计-课设
课程设计任务书学生姓名: 汪鹏 专业班级:自动化专业0806班指导教师: 陈跃鹏 工作单位: 自动化学院题 目: 用MATLAB 进行控制系统的超前校正设计 初始条件:已知一单位反馈系统的开环传递函数是:)5.01)(05.01()(s s s Ks G ++=要求系统跟随2r/min 的斜坡输入产生的最大稳态误差为2°, 45≥γ。
要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、用MATLAB 作出满足初始条件的最小K 值的系统伯德图,计算系统的幅值裕量和相位裕量。
2、在系统前向通路中插入一相位超前校正,确定校正网络的传递函数。
3、用MATLAB 画出未校正和已校正系统的根轨迹。
4、课程设计说明书中要求写清楚计算分析的过程,列出MATLAB 程序和MATLAB 输出。
说明书的格式按照教务处标准书写。
时间安排:指导教师签名: 年 月 日系主任(或责任教师)签名: 年 月 日目录1、超前校正概述-----------------------------------------------------------------------21.1 何谓校正------------------------------------------------------------------------------21.2 超前校正的原理及方法-----------------------------------------------------------31.2.1 超前校正的原理-------------------------------------------------------------31.2.2 超前校正的应用------------------------------------------------------------42、控制系统的超前校正设计---------------------------------------------------------------52.1 初始态分析-------------------------------------------------------------------------52.2 超前校正分析及校正-------------------------------------------------------------82.2.1 校正装置参数的选择与计算---------------------------------------------82.2.2 校正后的验证------------------------------------------102.2.3校正对系统性能改变的分析------------------------------123、心得体会------------------------------------------------------------------------------------14 参考文献----------------------------------------------------------------------------------------15用MATLAB 进行控制系统的超前校正设计1、超前校正概述1.1、何谓校正所谓校正,就是在系统中加入一些其参数可以根据需要而改变的机构或装置,使系统整个特性发生变化,从而满足给定的各项性能指标。
用MATLAB进行控制系统的滞后-超前校正设计
自动化课程设计设计题目:系统超前滞后频域法校正学院:机械电气工程学院指导老师:鲁敏学生姓名:张海港学号:2008092617专业:电气工程及其自动化班级:08级(4)班课程设计任务书学生姓名: 张海港 专业班级:电气自动化08(4) 指导教师: 鲁敏 工作单位:机械电气工程学院 题 目: 控制系统的滞后-超前校正设计 初始条件:已知系统的传递函数是)15.0)(161(180)(++=s s s s G要求系统的db Kg 10≥, 345±≥γ, s Ts 3≤,要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、MATLAB 作出的系统伯德图,计算系统的幅值裕量和相位裕量。
2、前向通路中插入一相位滞后-超前校正,确定校正网络的传递函数。
3、用MATLAB 画出未校正和已校正系统的根轨迹。
4、用Matlab 对校正前后的系统进行仿真分析,画出阶跃响应曲线,计算其时域性能指标。
5、课程设计说明书中要求写清楚计算分析的过程,列出MATLAB 程序和MATLAB 输出。
时间安排:MATLAB是一个包含大量计算算法的集合。
其拥有600多个工程中要用到的数学运算函数,可以方便的实现用户所需的各种计算功能。
函数中所使用的算法都是科研和工程计算中的最新研究成果,而前经过了各种优化和容错处理。
在通常情况下,可以用它来代替底层编程语言,如C和C++。
在计算要求相同的情况下,使用MATLAB的编程工作量会大大减少。
MATLAB的这些函数集包括从最简单最基本的函数到诸如矩阵,特征向量、快速傅立叶变换的复杂函数。
函数所能解决的问题其大致包括矩阵运算和线性方程组的求解、微分方程及偏微分方程的组的求解、符号运算、傅立叶变换和数据的统计分析、工程中的优化问题、稀疏矩阵运算、复数的各种运算、三角函数和其他初等数学运算、多维数组操作以及建模动态仿真等。
此次课程设计就是利用MATLAB对一单位反馈系统进行滞后-超前校正。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学号:课程设计题目学院专业班级姓名指导教师年月日课程设计任务书学生姓名: 专业班级: 指导教师: 刘志立 工作单位: 自动化学院题 目: 用MATLAB 进行控制系统的超前校正设计 初始条件:已知一单位反馈系统的开环传递函数是)13/(/3)(+=s s K s G要求系统的静态速度误差系数120v K s -≥,相角裕度 50≥γ,幅值裕度dB G M 10≥。
要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)(1) 用MATLAB 作出满足初始条件的K 值的系统伯德图,计算系统的幅值裕度和相位裕度。
(2) 在系统前向通路中插入一相位超前校正,确定校正网络的传递函数,并用MATLAB 进行验证。
(3) 用MATLAB 画出未校正和已校正系统的根轨迹。
(4) 对上述任务写出完整的课程设计说明书,说明书中必须进行原理分析,写清楚分析计算的过程及其比较分析的结果,并包含Matlab 源程序或Simulink 仿真模型,说明书的格式按照教务处标准书写。
时间安排:指导教师签名:年月日摘要用频率法对系统进行超前校正的实质是将超前网络的最大超前角补在校正后系统开环频率特性的截止频率处,提高校正后系统的相角裕度和截止频率,从而改善系统的动态性能。
为此,要求校正网络的最大相位超前角出现在系统的截止频率处。
只要正确地将超前网络的交接频率1/aT和1/T设置在待校正系统截止频率Wc的两边,就可以使已校正系统的截止频率Wc和相裕量满足性能指标要求,从而改善系统的动态性能。
串联超前校正主要是对未校正系统在中频段的频率特性进行校正。
确保校正后系统中频段斜率等于-20dB/dec,使系统具有45°~60°的相角裕量。
以加快系统的反应速度,但同时它也削弱了系统抗干扰的能力。
在工程实践中一般不希望系数a值很大,当a=20时,最大超前角为60°,如果需要60°以上的超前相角时,可以考虑采用两个或两个以上的串联超前校正网络由隔离放大器串联在一起使用。
在这种情况下,串联超前校正提供的总超前相角等于各单独超前校正网络提供的超前相角之和。
关键词:串联超前校正;动态性能;相角裕度目录摘要 0目录 (1)1. 超前校正的原理和方法 (2). 超前校正的原理 (2). 超前校正的应用方法 (3)2. 控制系统的超前校正设计 (4). 校正前系统初始状态分析 (4). 超前校正分析及计算 (6)校正装置计算的程序 (6)校正后的验证 (8)超前校正对系统性能改变的分析 (9)3. 心得体会 (12)1. 超前校正的原理和方法1.1. 超前校正的原理所谓校正,就是在调整放大器增益后仍然不能全面满足设计要求的性能指标的情况下,加入一些参数可以根据需要而改变的机构或装置,使系统整个特性发生变化,达到设计要求。
无源超前网络的电路如图1所示。
图1 无源超前网络电路图如果输入信号源的内阻为零,且输出端的负载阻抗为无穷大,则超前网络的传递函数可写为1()1c aTs aG s Ts+=+①(1-1)式中1221R R a R +=> , 1212R RT C R R =+ 通常a 为分度系数,T 叫时间常数,由式(1-1)可知,采用无源超前网络进行串联校正时,整个系统的开环增益要下降a 倍,因此需要提高放大器增益交易补偿。
根据式(1-1),可以得无源超前网络()c aG s 的对数频率特性,超前网络对频率在1/aT 至1/T 之间的输入信号有明显的微分作用,在该频率范围内,输出信号相角比输入信号相角超前,超前网络的名称由此而得。
在最大超前角频率m ω处,具有最大超前角m ϕ。
1R超前网路(1-1)的相角为()c arctgaT arctgT ϕωωω=- (1-2) 将上式对ω求导并令其为零,得最大超前角频率(1-3)将上式代入(1-2),得最大超前角频率(1-4) 同时还易知 ''m c ωω=ϕm 仅与衰减因子a 有关。
a 值越大,超前网络的微分效应越强。
但a 的最大值受到超前网络物理结构的制约,通常取为20左右(这就意味着超前网络可以产生的最大相位超前大约为65度)。
利用超前网络行串联校正的基本原理,是利用其相角超前特性。
只要正确地将超前网络的交接频率1/aT 或1/T 选在待校正系统截止频率的两旁,并适当选择参数a 和T ,就可以使已校正系统的截止频率和相角裕度满足性能指标的要求,从而改善系统的动态性能。
②1.2. 超前校正的应用方法待校正闭环系统的稳态性能要求,可通过选择已校正系统的开环增益来保证。
用频域法设计无源超前网络的步骤如下:1) 根据稳态误差要求,确定开环增益K 。
2) 利用已确定的开环增益,计算待校正系统的相角裕度。
3) 根据截止频率''c ω的要求,计算a 和T 。
令''m c ωω=,以保证系统的响应速 度,并充分利用网络的相角超前特性。
显然''m c ωω=成立的条件是)(m '+=''c ωγϕγ '''()()10lg c c m L L a ωω-==根据上式不难求出a 值,然后由(1-3)确定T 。
1arcsin12m a arctg a aϕ-==+4) 验算已校正系统的相角裕度''γ。
验算时,由式(1-4)求得m ϕ,再由已知的''c ω算出待校正系统在''c ω时的相角裕度''()c γω。
最后,按下式算出)(m '+=''c ωγϕγ如果验算结果不满足指标要求,要重选m ω,一般使m ω增大,然后重复以上步骤。
2. 控制系统的超前校正设计2.1. 校正前系统初始状态分析由已知条件,首先根据初始条件调整开环增益。
因为)13/(/3)(+=s s K s G系统的静态速度误差系数v K =()=→s sG s 0lim K/3120-≥s ,故取K=60s -1,则待校正的系统开环传递函数为)1s/3(20)(+=s s G上式为最小相位系统,用MATLAB 画出系统伯德图,程序为: num=[20]; den=[1/3,1,0]; bode(num,den) grid得到的图形如图2所示。
图2 校正前系统的伯德图再用MATLAB求校正前的相角裕度和幅值裕度,程序为:num=[20];den=[1/3,1,0];sys=tf(num,den);margin(sys)[gm,pm,wg,wp]=margin(sys)③得到图形如图3所示。
图3 校正前系统的裕度图可得:相角裕度 Pm = 截止频率w c=s幅值裕度 Gm =∞dB用MATLAB画出其根轨迹,程序为num=[20];den=[1/3,1,0];rlocus(num,den);Sgrid;[k,p]=rlocfind(num,den);Title('控制系统根轨图')得到图形如图4所示。
图4 校正前系统的根轨迹图2.2.超前校正分析及计算2.2.1校正装置计算的程序根据中所述超前校正的原理,超前网络提供的最大超前相位角应为)(︒︒+-=10~51γγϕm11arcsin12m a a arctga aϕ--==+ 由 a L L c lg 10)()(m c ==''-ωω得在此基础上超前校正控制器设计的程序代码为: G=tf(20,1/3 1 0]);margin(G); %画出Bode 图并显示频域性能指标 phy=+10;phy1=phy*pi/180;a=(1+sin(phy1))/(1-sin(phy1)); M1=1/sqrt(a);%分别返回频域响应幅值响应m 、相角响应(以度为单位)和频率向量w [m,p,w]=bode(G);%spline 为3次曲线插值函数,通过插值求新的截止频率w m =spline(m,w,M1); T=1/(w m *sqrt(a)); Gc=tf([a*T 1],[T 1]) 超前校正控制器传递函数为, Transfer function:Gc = s + 1 ------------- s + 12.2.2校正后的验证画出校正后的Bode图,程序为num1=[20];den1=[1/3,1,0];numc=[ 1];denc=[ 1];[num,den] =series(numc,denc,num1,den1);sys=tf(num,den);margin(sys)[gm,pm,wg,wp]=margin(sys)校正后系统的Bode图如5图所示。
图5 校正后系统的裕度图相角裕度: Pm = ;截止频率: w m=sec幅值裕度: Gm =∞dB可见其相角裕度、幅值裕度均满足设计要求。
所以,已校正系统的开环传递函数为:()()()()()10.04465s 13/10.1885s 20G c +++=s s s G s 用MATLAB 画出校正后的根轨迹,程序为:num=[,20]; den=[,,1,0]; rlocus(num,den); Title('控制系统根轨图') 得到图形如图6所示。
图6 校正后系统的根轨迹2.2.3 超前校正对系统性能改变的分析用MATLAB 画出校正前后系统的单位阶跃响应的程序为num1=[20];den1=[1/3,1,0];num2=[20];den2=[1/3,1,0];numc=[ 1];denc=[ 1];[num3,den3] =series(numc,denc,num1,den1);t=[0::5][numc1,denc1]=cloop(num1,den1)y1=step(numc1,denc1,t)[numc3,denc3]=cloop(num3,den3)y3=step(numc3,denc3,t)plot(t,[y1,y3]);gridgtext('校正前')gtext('校正后')得到图形如图7所示图7 校正前后系统的单位阶跃响应图由图7明显可以看出:1)加入校正装置后,校正后系统单位阶跃响应的调节时间大大减小,大大提升了系统的响应速度。
2)校正后系统的超调量明显减小了,阻尼比增大,动态性能得到改善。
3) 校正后系统的上升时间减小很多,从而提升了系统的响应速度。
综上,串入超前校正装置后,明显地提升了系统的动态性能指标,增强了系统的稳定性。
3.心得体会在很多人眼中为期两周的课程设计是一种煎熬,确实,课设和我们习惯的单纯的看书做题目不一样,它更考验我们对知识的理解和应用。