《排列组合专题》PPT课件资料讲解
合集下载
人教版三年级数学上册《排列组合》PPT课件
穿法二
穿法三
穿法四
穿法五
穿法六
2×3﹦6(种)
要求:小组中一人记录,其他同学陈述自己的点。
用1,2,3可以组合成哪些两位数?
B
A
小组合作讨论二:
12
13
21
23
31
32
十位
十位
十位
个位
个位
个位
猜一猜:
我今年读九年级了,我的班级是由1、2、3这三个数字组成的一个三位数,请你猜一猜我读的是多少班?
有的问题需要考虑到顺序,也就是结果和顺序有关,例如组成几位数这样的问题等
今后我们在遇到这些问题的时候一定要认真审题,看清楚问题的“隐含条件”
这节课我们学了什么
作业:
同学们回家后仔细观察周围环境中可搭配和组合的实物,自己搭配和组合。
123
132
213
231
312
321
考考你:饮料和点心只能各选一样,有几种不同的搭配方式?
3×2=6(种)
⑥
①
②
③
④
⑤
下
M
能组成哪几个不同的两位数呢?
48 96 98
28
26
46
43
93
从宁波到北京一共有几种走法?
北京 上海 火车 火车 8种
轮船
宁波
飞机
火车
飞机
汽车
我们知道了:
有的问题不用考虑到顺序,也就是说结果和顺序无关,例如握手、比赛等问题
排列与组合
点击此处添加正文,文字是您思想的提炼,请尽量言简意赅的阐述观点。
学习目标:
01
我能找出简单事物的组合数。
02
我能用排列与组合的知识解决生活中的实际问题。
大学排列组合ppt课件
排列与组合的综合实例解析
总结词
通过综合实例,理解排列与组合在实际 问题中的应用。
VS
详细描述
通过一个复杂的问题,如安排一场活动或 者组织一次旅行,综合运用排列和组合的 知识来解决实际问题,并强调排列与组合 在解决实际问题中的重要性和关联性。
05
排列组合的解题技巧
解题思路分析
明确问题要求
01
首先需要清楚题目是关于排列还是组合的问题,排列需要考虑
04
排列组合的实例解析
排列实例解析
总结词
通过具体实例,深入理解排列的概念和计算方法。
详细描述
通过实际生活中的例子,如学生选课、物品的排列等,解释排列的概念,并介绍排列的计算公式,以及如何应用 这些公式解决实际问题。
组合实例解析
总结词
通过具体实例,深入理解组合的概念和计算方法。
详细描述
通过实际生活中的例子,如彩票中奖概率、选举代表等,解释组合的概念,并介绍组合的计算公式, 以及如何应用这些公式解决实际问题。
少?
答案解析
答案1
从5个人中选3个人参加会议共有 $C_{5}^{3} = 10$种不同的选法。
答案3
大于2000的三位数,首位数字可以为 2,3或4,共有$A_{3}^{1} times A_{4}^{2} = 36$种。
答案2
将4把椅子排好,共有$A_{5}^{3} = 60$种坐法。
答案4
不同的分法种数为$A_{5}^{4} = 120$种。
常见错误解析与避免方法
混淆排列与组合
遗漏情况
排列和组合是不同的概念,需要明确 题目要求,正确使用公式。
在解题过程中,需要注意不要遗漏某 些情况,例如在排列时需要考虑元素 的顺序,在组合时需要考虑元素的取 法。
排列组合ppt课件
排列的分类与计算方法
01
02
03
排列的定义
排列是指从给定个数的元 素中取出指定个数的元素 进行排序。
排列的分类
根据取出的元素是否重复 ,排列可分为重复排列和 不重复排列。
排列的计算方法
排列的计算公式为 nPr=n!/(n-r)!,其中n为 总元素个数,r为要取出的 元素个数。
组合的分类与计算方法
后再合并答案。
利用对称性
在某些问题中,可以利用对称性 来简化计算,例如在计算圆周率 时可以利用对称性来减少计算量
。
学会推理和猜测
在某些问题中,需要学会推理和 猜测,尝试不同的方法和思路,
以寻找正确的答案。
解题注意事项与易错点
注意细节
在解题过程中要注意细节,例如元素的重复、遗漏等问题,避免 出现错误。
组合的定义
组合是指从给定个数的元 素中取出指定个数的元素 进行组合,不考虑排序。
组合的分类
根据取出的元素是否重复 ,组合可分为重复组合和 不重复组合。
组合的计算方法
组合的计算公式为 nCr=n!/(r!(n-r)!),其中n 为总元素个数,r为要取出 的元素个数。
排列组合的复杂应用
排列与组合的应用
另一个应用是解决组合问题,例如,在从n个不同元素中 选出m个元素的所有组合的问题中,可以使用排列组合的 方法来解决。
排列组合在物理中的应用
排列组合在物理中也有着广泛的应用,其中最常见的是在量子力学和统计物理中 。例如,在量子力学中,波函数的对称性和反对称性可以通过排列组合来描述。
在统计物理中,分子和原子的分布和运动可以通过排列组合来描述。例如,在理 想气体中,分子的分布和运动可以通过组合数学的方法来描述。
排列组合讲解ppt课件
知识铺垫
首先来了解下什么是两种计数原理?两种计数原理其实就是加法原理和乘法原 理,那么什么时候用加法?什么时候用乘法呢?标准就是判断你所要用的这种方 法能否独立完成一件事,如果可以那就用加法,如果不能那就用乘法。例如: 小王想要从甲到乙地,如果坐火车有3列车可选,如果做汽车有5班车可选,问 小王从甲到乙一共有多少种到达的方式?答案很显然是3+5=8,为什么用加法 呢?因为要完成的从甲地到乙地,首先3列火车可以独立完成,5班汽车也可独 立完成,每一种方式都能够独立完成这件事情则用加法。如果题目改成:小王 从甲到乙地,有3列火车可以从甲到丙地,有5班汽车可以从丙地到乙地,问小 王从甲到乙地一共有多少种方法?答案却为3×5=15,此时为什么用乘法了呢? 因为仅仅3列火车不能够独立完成小王从甲到乙地这件事情,要想完成还需要 从丙地中转后到乙地,所以分步完成用乘法。
例题展示
如果掌握了排列组合的题型特征和解题方法,你会发现这种题型还是 很好掌握的,希望同学们日后多多加强此类题型的练习,做到举一反 三。
谢谢
知识铺垫
为了方便各位更加深刻的理解和把握好两种计数原理,我们要从两道经典例题入手, 一起来看例题展示
例题展示
【例题1】小王外出游玩,准备选择一家宾馆进行入住,现在有7家经济型宾馆,5家 舒适型宾馆,3家豪华型宾馆可供小王选择,那么小王共有多少种不同的选择方式? A.12B.15C.18D.24 【答案】B 【中公解析】根据题目的描述可知,此题是在解决小王选择一家宾馆进行入住有多 少种不同的选择方式的事情。且小王可以选择3种类型的宾馆,如果只选择其中一种 类型的宾馆,比如选择豪华型宾馆能完成我们需要解决的事情,每一类选法都可完 成这件事情,故需分类。共有7+5+3=15种,答案为B。 【例题2】南阳中学有语文教师8名、数学教师7名、英语教师5名和体育教师2名。 现要从以上四科教师中各选出1名教师去参加培训,问共有几种不同的选法?
排列与组合ppt课件
数。
从10个不同字母中取出 5个字母的所有排的个
数。
从8个不同数字中取出4 个数字的所有排列的个
数。
从n个不同元素中取出m 个元素的所有排列的个
数。
03
CHAPTER
组合的计算方法
组合的公式
组合的公式:C(n,k) = n! / (k!(n-k)!)
"!"表示阶乘,即n! = n * (n-1) * ... * 3 * 2 * 1。
3
排列组合在计算机科学中的应用
计算机科学中,排列组合用于算法设计和数据结 构分析。
排列与组合的未来发展
排列与组合理论的发展方向
随着数学和其他学科的发展,排列与组合理论将不断发展和完善,出现更多新 的公式和定理。
排列与组合的应用前景
随着科学技术的发展,排列与组合的应用领域将更加广泛,特别是在计算机科 学、统计学和信息论等领域的应用将更加深入。
在计算排列和组合时,使用的 公式和方法也不同。
02
CHAPTER
排列的计算方法
排列的公式
01
02
03
排列的公式
P(n, m) = n! / (n-m)!, 其中n是总的元素数量, m是需要选取的元素数量 。
排列的公式解释
表示从n个不同元素中取 出m个元素的所有排列的 个数。
排列的公式应用
适用于计算不同元素的排 列组合数,例如计算从n 个不同数字中取出m个数 字的所有排列的个数。
该公式用于计算从n 个不同元素中选取k 个元素(不放回)的 组合数。
组合的计算方法
直接使用组合公式进行计算。 当n和k较大时,需要注意计算的复杂性和准确性。
可以使用数学软件或在线工具进行计算。
从10个不同字母中取出 5个字母的所有排的个
数。
从8个不同数字中取出4 个数字的所有排列的个
数。
从n个不同元素中取出m 个元素的所有排列的个
数。
03
CHAPTER
组合的计算方法
组合的公式
组合的公式:C(n,k) = n! / (k!(n-k)!)
"!"表示阶乘,即n! = n * (n-1) * ... * 3 * 2 * 1。
3
排列组合在计算机科学中的应用
计算机科学中,排列组合用于算法设计和数据结 构分析。
排列与组合的未来发展
排列与组合理论的发展方向
随着数学和其他学科的发展,排列与组合理论将不断发展和完善,出现更多新 的公式和定理。
排列与组合的应用前景
随着科学技术的发展,排列与组合的应用领域将更加广泛,特别是在计算机科 学、统计学和信息论等领域的应用将更加深入。
在计算排列和组合时,使用的 公式和方法也不同。
02
CHAPTER
排列的计算方法
排列的公式
01
02
03
排列的公式
P(n, m) = n! / (n-m)!, 其中n是总的元素数量, m是需要选取的元素数量 。
排列的公式解释
表示从n个不同元素中取 出m个元素的所有排列的 个数。
排列的公式应用
适用于计算不同元素的排 列组合数,例如计算从n 个不同数字中取出m个数 字的所有排列的个数。
该公式用于计算从n 个不同元素中选取k 个元素(不放回)的 组合数。
组合的计算方法
直接使用组合公式进行计算。 当n和k较大时,需要注意计算的复杂性和准确性。
可以使用数学软件或在线工具进行计算。
排列组合的ppt课件免费
题目2:从7个不同元素 中取出4个元素的组合数 ,其中某特定元素可以 不被取出。
答案1:$A_{7}^{4} A_{6}^{3} = 7 times 6 times 5 times 4 - 6 times 5 times 4 = 336$
答案2:$C_{7}^{4} C_{6}^{3} = frac{7 times 6 times 5 times 4}{4 times 3 times 2 times 1} - frac{6 times 5 times 4}{3 times 2 times 1} = 28$
排列组合问题的变种与拓展
排列组合问题的变种
如“带限制的不同元素的排列组合” 、“重复元素的排列组合”等,需要 进一步拓展学生的思路。
拓展方法
通过变种问题的解析,引导学生深入 思考排列组合问题,并掌握其变化规 律,为解决更复杂的问题打下基础。
04
CATALOGUE
排列组合的数学原理
排列组合的数学原理简介
数学教育的核心
排列组合是数学教育中的 重要内容,对于培养学生 的数学素养和解决问题的 能力具有重要意义。
解决排列组合问题的方法与技能
乘法原理
加法原理
乘法原理是解决排列组合问题的基础,通 过将各个独立事件的产生概率相乘,可以 计算出复合事件的产生概率。
加法原理用于计算具有互斥性的事件的概 率,通过将各个互斥事件的产生概率相加 ,可以得到总的产生概率。
解析方法
通过实例演示和讲授,帮助学生理解排列组合的基本概念和计算方法,同时引导 学生思考如何解决实际问题。
实际问题的排列组合解决方案
实际问题的排列组合
如“安排会议”、“排定演出节目单”、“安排生产计划” 等,需要结合具体情境进行分析。
1.2排列与组合PPT课件
C
4 7
⑵
C
7 10
CA (3 )已 知3 2,求 n.
n
n
(4)求 C33n8-n+C231n+n的值.
例2.甲、乙、丙、丁4支足球队举行单循环赛,
(1)列出所有各场比赛的双方; (2)列出所有冠亚军的可能情况.
解:(1) 甲乙、甲丙、甲丁、乙丙、乙丁、丙丁
(2)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁
C 第 一 步 ,3( 4 ) 个 ; 4
A 第 二 步 ,3( 6 ) 个 ; 3
A C A 根 据 分 步 计 数 原 理 , 3 4
3 3
4 3 .
A 从 而 3 C A C 4
3
C43 34 3
P3 4
P3 3
如何计算:
m n
-
34
概念讲解 组合数公式
排列与组合是有区别的,但它们又有联系.
从0到9这十个数字中任取三个数字的排列
A3 10
其中以0为排头的排列数为
A
2 9
.
∴
所求的三位数的个数是
A A 3 10
2 9
1 0 9 8 - 9 8
有约束条件的排列问题
例5:由数字1、2、3、4、5组成没有重复数字的五位 数,其中小于50000的偶数共有多少个?
一般地,求从 n个不同元素中取出 m个元素的排
列数,可以分为以下2步:
第1步,先求出从这 n个不同元素中取出 m个元素
的组合数 C
m n
.
第2步,求每一个组合中m个元素的全排列数
A
m n
.
根据分步计数原理,得到: AnmCnmAm m
因此:C n mA A m n m mnn 1 n2 m !nm 1
排列组合ppt课件高中
10$
进阶练习题
题目:在数字"202X"中,各位数字相加和为10,称该 数为"如意四位数",用数字0,1,2,3,4,5组成的
无重复数字且大于202X的"如意四位数"有____个.
输标02入题
01
答案:12
03
答案:10
04
题目:在数字``202X''中,各位数字相加和为10,称该数 为``如意四位数'',用数字0,1,2,3,4,5组成的无重 复数字且大于202X的``如意四位数''有____个.
确定元素
确定题目中涉及的元素,并理 解元素之间的关系。
确定限制条件
理解题目中的限制条件,如是 否可以重复、是否需要排序等
。
建立数学模型
根据问题类型、元素和限制条 件,建立相应的数学模型。
常见题型解析
排列问题
如“5个人排成一排,有多少种不同的排法?”这类问题需要斟酌到顺序,使用排列公式 $A_n^m = n(n-1)(n-2)...(n-m+1)$进行计算。
排列的定义
从n个不同元素中取出m个元素( 0<m≤n),依照一定的顺序排成 一列,叫做从n个元素中取出m个
元素的一个排列。
排列的计算公式
P(n, m) = n! / (n-m)!,其中"!"表 示阶乘。
排列的特性
排列与取出元素的顺序有关,元素 相同但顺序不同是不同的排列。
组合的定义
01
02
03
组合的定义
从n个不同元素中取出m个元素(不放回) 进行排列,得到的排列数记为$A_{n}^{m}$ 。
组合数定义
进阶练习题
题目:在数字"202X"中,各位数字相加和为10,称该 数为"如意四位数",用数字0,1,2,3,4,5组成的
无重复数字且大于202X的"如意四位数"有____个.
输标02入题
01
答案:12
03
答案:10
04
题目:在数字``202X''中,各位数字相加和为10,称该数 为``如意四位数'',用数字0,1,2,3,4,5组成的无重 复数字且大于202X的``如意四位数''有____个.
确定元素
确定题目中涉及的元素,并理 解元素之间的关系。
确定限制条件
理解题目中的限制条件,如是 否可以重复、是否需要排序等
。
建立数学模型
根据问题类型、元素和限制条 件,建立相应的数学模型。
常见题型解析
排列问题
如“5个人排成一排,有多少种不同的排法?”这类问题需要斟酌到顺序,使用排列公式 $A_n^m = n(n-1)(n-2)...(n-m+1)$进行计算。
排列的定义
从n个不同元素中取出m个元素( 0<m≤n),依照一定的顺序排成 一列,叫做从n个元素中取出m个
元素的一个排列。
排列的计算公式
P(n, m) = n! / (n-m)!,其中"!"表 示阶乘。
排列的特性
排列与取出元素的顺序有关,元素 相同但顺序不同是不同的排列。
组合的定义
01
02
03
组合的定义
从n个不同元素中取出m个元素(不放回) 进行排列,得到的排列数记为$A_{n}^{m}$ 。
组合数定义
排列组合ppt课件
排列组合基本公式 • 排列组合的应用 • 排列组合的扩展知识 • 练习题与答案解析
01
排列组合基本概念
排列的定义
排列的定义
从n个不同元素中取出m个元素( m≤n),按照一定的顺序排成一列, 称为从n个不同元素中取出m个元素的 排列。
组合公式推导
根据乘法原理,组合数等 于从n个不同元素中取出m 个元素的排列数除以这m 个元素的全排列数。
组合公式证明
通过数学归纳法证明组合 公式。
排列组合公式的推导与证明
排列组合公式的推导
通过数学归纳法和乘法原理,逐步推导出排列和组合的公式。
排列组合公式的证明
通过数学归纳法和反证法,证明排列和组合公式的正确性。
机器学习
03
在机器学习中,排列组合用于描述样本空间和事件发生的可能
性,例如在朴素贝叶斯分类器中。
在统计学中的应用
概率分布
在统计学中,排列组合用于描述概率分布和随机事件的组合数量 ,例如在二项分布、多项分布等概率分布中。
统计推断
在统计推断中,排列组合用于计算样本数据的可能性和置信区间 ,例如在贝叶斯推断和参数估计中。
从n个不同元素中取出m个元素的所有组合方式。
排列组合在概率论中的应用
总结词
排列组合在概率论中有广泛的应用,它们是概率论中的基本概念之一。
详细描述
在概率论中,排列组合被广泛应用于各种概率模型和随机事件的计算中。例如,在计算随机事件的概率时,可以 使用排列组合来计算样本空间的大小和基本事件的数量。在计算条件概率时,可以使用排列组合来计算条件事件 的基本事件的数量。此外,在概率分布的计算中,排列组合也起着重要的作用。
3
组合的特性
组合无方向性,即顺序不影响组合的唯一性。
01
排列组合基本概念
排列的定义
排列的定义
从n个不同元素中取出m个元素( m≤n),按照一定的顺序排成一列, 称为从n个不同元素中取出m个元素的 排列。
组合公式推导
根据乘法原理,组合数等 于从n个不同元素中取出m 个元素的排列数除以这m 个元素的全排列数。
组合公式证明
通过数学归纳法证明组合 公式。
排列组合公式的推导与证明
排列组合公式的推导
通过数学归纳法和乘法原理,逐步推导出排列和组合的公式。
排列组合公式的证明
通过数学归纳法和反证法,证明排列和组合公式的正确性。
机器学习
03
在机器学习中,排列组合用于描述样本空间和事件发生的可能
性,例如在朴素贝叶斯分类器中。
在统计学中的应用
概率分布
在统计学中,排列组合用于描述概率分布和随机事件的组合数量 ,例如在二项分布、多项分布等概率分布中。
统计推断
在统计推断中,排列组合用于计算样本数据的可能性和置信区间 ,例如在贝叶斯推断和参数估计中。
从n个不同元素中取出m个元素的所有组合方式。
排列组合在概率论中的应用
总结词
排列组合在概率论中有广泛的应用,它们是概率论中的基本概念之一。
详细描述
在概率论中,排列组合被广泛应用于各种概率模型和随机事件的计算中。例如,在计算随机事件的概率时,可以 使用排列组合来计算样本空间的大小和基本事件的数量。在计算条件概率时,可以使用排列组合来计算条件事件 的基本事件的数量。此外,在概率分布的计算中,排列组合也起着重要的作用。
3
组合的特性
组合无方向性,即顺序不影响组合的唯一性。
高中数学(排列组合)课件PPT
知识清单 知识点二 排列
3.排列数公式
Pnm
(n
n! m)!
n (n
1) (n
m 1)
4.全排列公式
Pnn n!
记住下列几个阶乘数:0!=1,1!=1,2!=2,3!=6,4!=24,5!=120,6!=720.
知识清单
知识点三 组合
1.组合 一般地,从n个不同的元素中任意取出m(m≤n)个元素为一组,称为从n个不 同的元素中任意取出m个元素的一个组合. 2.组合数 我们把从n个不同的元素中任意取出m(m≤n)个元素的所有组合的个数,称为
知识清单
知识点二 排列
1.排列 一般地,从n个不同的元素中任意取出m(m≤n)个元素,按照一定的顺序排成一 列,称为从n个不同的元素中任意取出m个元素的一个排列. 2.排列数 我们把从n个不同的元素中任意取出m(m≤n)个元素的所有排列的个数,称为从n
个不同的元素中任意取出m个元素的排列数,记作 Pnm.
例
典例精析
例
典例精析
例
巩固练习
过关练习
巩固练习
过关练习
巩固练习
过关练习
巩固练习
过关练习
同学们!再见!
课后一定要多练习哦!
从n个不同的元素中任意取出m个元素的组合数,记作 Cnm
知识清单 知识点三 组合
3.组合数公式
Cnm
Pnm Pmm
n! m!(n m!)
n(n 1) (n m 1) m (m 1) 21
4.组合数的性质
Cnm Cnnm
Cnr1 Cnr Cnr1
典例精析
例
典例精析
例
典例精析
例
典例精析
高中 数学
《排列与组合自》课件
组合可以看作排列的一个特例
当一个组合中的元素都是相邻的时候,这个组合可以看作是 一个排列。
05
排列与组合的扩展知识
排列与组合的数学原理
排列的定义
从n个不同元素中取出m个元素(m≤n),按照一定的顺 序排成一列,称为从n个元素中取出m个元素的排列。
排列的计算公式
$A_{n}^{m} = n(n-1)(n-2)...(n-m+1)$
03
组合的计算方法
组合的公式
组合的公式
C(n,k) = n! / (k!(n-k)!)
组合公式的推导
通过数学归纳法证明组合公式。
组合公式的应用
利用组合公式计算从n个不同元素中取出k个元素 的组合数。
组合的实例
01
02
03
组合实例1
从5个不同的人中选出3个 人组成一个小组,有多少 种不同的选法?
用P(n,m)表示从n个不同元素中取出m个元 素的排列数。
排列的计算公式
P(n,m)=n×(n-1)×…×(n-m+1)
排列的特性
与元素的顺序有关,与元素的取出方式有 关。
组合的定义
组合的定义
从n个不同元素中取出m个元素(m≤n) ,不考虑顺序,称为从n个不同元素中取
出m个元素的组合。
组合的计算公式
《排列与组合》PPT课件
目录
• 排列与组合的定义 • 排列的计算方法 • 组合的计算方法 • 排列与组合的区别与联系 • 排列与组合的扩展知识
01
排列与组合的定义
排列的定义
排列的定义
排列的表示
从n个不同元素中取出m个元素(m≤n), 按照一定的顺序排成一列,称为从n个不同 元素中取出m个元素的排列。
当一个组合中的元素都是相邻的时候,这个组合可以看作是 一个排列。
05
排列与组合的扩展知识
排列与组合的数学原理
排列的定义
从n个不同元素中取出m个元素(m≤n),按照一定的顺 序排成一列,称为从n个元素中取出m个元素的排列。
排列的计算公式
$A_{n}^{m} = n(n-1)(n-2)...(n-m+1)$
03
组合的计算方法
组合的公式
组合的公式
C(n,k) = n! / (k!(n-k)!)
组合公式的推导
通过数学归纳法证明组合公式。
组合公式的应用
利用组合公式计算从n个不同元素中取出k个元素 的组合数。
组合的实例
01
02
03
组合实例1
从5个不同的人中选出3个 人组成一个小组,有多少 种不同的选法?
用P(n,m)表示从n个不同元素中取出m个元 素的排列数。
排列的计算公式
P(n,m)=n×(n-1)×…×(n-m+1)
排列的特性
与元素的顺序有关,与元素的取出方式有 关。
组合的定义
组合的定义
从n个不同元素中取出m个元素(m≤n) ,不考虑顺序,称为从n个不同元素中取
出m个元素的组合。
组合的计算公式
《排列与组合》PPT课件
目录
• 排列与组合的定义 • 排列的计算方法 • 组合的计算方法 • 排列与组合的区别与联系 • 排列与组合的扩展知识
01
排列与组合的定义
排列的定义
排列的定义
排列的表示
从n个不同元素中取出m个元素(m≤n), 按照一定的顺序排成一列,称为从n个不同 元素中取出m个元素的排列。
排列与组合ppt课件
C34C11A22
C24C22
A
2 2
A22
)=84种.
探究提高 排列、组合综合题目,一般是将符合 要求的元素取出(组合)或进行分组,再对取出的 元素或分好的组进行排列.其中分组时,要注意 “平均分组”与“不平均分组”的差异及分类的标 准. 知能迁移3 已知10件不同产品中有4件是次品,现 对它们进行一一测试,直至找出所有4件次品为止. (1)若恰在第5次测试,才测试到第一件次品,第 十次才找到最后一件次品,则这样的不同测试方法 数是多少? (2)若恰在第5次测试后,就找出了所有4件次品, 则这样的不同测试方法数是多少?
女生或没有女生,故可用间接法进行,
∴有 C152 C15 C74 C57=596种选法. (5)分三步进行:
第一步:选1男1女分别担任两个职务为 C17·C15 ;
第二步:选2男1女补足5人有
C
2 6
·
C14
种;
第三步:为这3人安排工作有
A
3 3
.
由分步乘法计数原理共有
C17 C15 C62 C14 A33 =12 600种选法.
列数公式即可.但要看清是全排列还是选排列;有
限制条件的排列问题,常见类型是“在与不在”、
“邻与不邻”问题,可分别用相应方法.
解 (1)从7个人中选5个人来排列,
有
A
5 7
=7×6×5×4×3=2
520种.
(2)分两步完成,先选3人排在前排,有 A种37方法,
余下4人排在后排,有 种A方44法,故共有
所以共有2
C
4 8
+
C83
=196种选法.
9分
方法二 间接法:
从10人中任选5人有C150种选法.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)取23的正因数是20,21,22,23,共3+1种;
(2)取52的正因数是50,51,52,共2+1种;
(3)取7的正因数是70,71,共1+1种.
所以1400的正因数个数为
(3+1)×(2+1)×(1+1)=24.
例9、
从1到300的自然数中,完全不含有数字3的 有多少个?
将0到299的整数都看成三位数,其中数字3不 出现的,百位数字可以是0,1或2三种情况。十位 数字与个位数字均有九种,因此除去0共有
例8、求正整数1400的正因数的个
数.
因为任何一个正整数的任何一个正因数(除1外)都是这个 数的一些质因数的积,因此,我们先把1400分解成质因数的 连乘积1400=23527.所以这个数的任何一个正因数都是由2, 5,7中的若干个相乘而得到(有的可重复)。
于是取1400的一个正因数,这件事情是分如下三个步骤 完成的:
第一类:A在第一垄,B有3种选择; 第二类:A在第二垄,B有2种选择; 第三类:A在第三垄,B有一种选择, 同理A、B位置互换 , 共12种。
例6、
某小组有10人,每人至少会英语和日语的一门, 其中8人会英语,5人会日语,从中选出会英语与会 日语的各1人,有多少种不同的选法?
由于8+5=13>10,所以10人中必有3人既会英 语又会日语。(5+2+3)
1.加法原理: 如果完成一项工作有两类相互独立的方式A和B,在方式
A中有m种完成任务的途径,在方式B中有n种完成任务的途 径,则完成这项工作的总的途径有m+n种.
2.乘法原理: 如果完成一项工作有两个连续的步骤A和B,在步骤A
中有m种不同的方式,在步骤B中有n种不同的方式,则完成 这项工作的总的方法有m*n种.
例1、
从1到4这4个数码中不重复地任取3个构成一 个三位数,求这样的三位数一共有多少个?
分析:构成三位数的过程可以看成是由连续的三步完成: 第一步:取百位上的数字,共有4种方法 第二步:取十位上的数字,共有3种方法(即不能取百位上已 经取走的数码) 第三步:取个位上的数字,共有2种方法(即不能取百位和十 位上已经取走的数码) 因此由乘法原理,这样的三位数一共有:4*3*2=24种.
如:从a,b,c这三个字母中,每次取出2个,有多少种排列方法? 第一步:确定左边的字母,在三个字母中任取一个,有3种方法; 第二步:确定右边的字母,从剩下的2个字母中选取一个,有2种 方法; 根据乘法原理,共有3×2=6种不同的排法.
ab ac ba bc ca cb
一般地,从n个不同的元素中取出r个元素的
加法原理和乘法原理
加法原理和乘法原理是排列组合的基础和核心,既可 用来推导排列数、组合数公式,也可用来直接解题。它们 的共同点都是把一个事件分成若干个分事件来进行计算。
利用加法原理,重在分“类”,类与类之间具有独立 性和并列性;
利用乘法原理,重在分步;步与步之间具有相依性和 连续性。
比较复杂的问题,常先分类再分步。
例2、
一个三位数,如果它的每一位数字都不小于另一 个三位数对应数位上的数字,就称它“吃掉”后一个 三位数,例如543吃掉432,543吃掉543,但是 543不能吃掉534。那么能吃掉587的三位数共有多 少个?
百位上有5、6、7、8、9五种选择,十位上有8、9两种选 择,个位上有7,8,9三种选择,所以共有5×2×3=30(个) 三位数。
例4、
用红、黄、绿、蓝、黑五种颜色涂在如 下图所示的ABCDE五区域,颜色可重复使用, 但同色不相邻,涂法有几种?
AC同色:5*4*4*1*4
AC不同色:5*4*4*3*3
1040
例5、
在一块并排的10垄田地中,选择二垄分别种植 A,B两种作物,每种种植一垄,为有利于作物生长, 要求A,B两种作物的间隔不少于6垄,不同的选法 共有______种。分析:采取分类的方法。
3×9×9-1=242(个).
例10、
在小于10000的自然数中,含有数字1的数有 多少个?
不妨将0至9999的自然数均看作四位数,凡位数不到 四位的自然数在前面补0,使之成为四位数。
先求不含数字1的这样的四位数共有几个,即有0,2, 3,4,5,6,7,8,9这九个数字所组成的四位数的个数。 由于每一位都可有9种写法,所以,根据乘法原理,由这九 个数字组成的四位数个数为9×9×9×9=6561。
例3、
如图,一方形花坛分成编号为①,②,③,④四块,现 有红、黄、蓝、紫四种颜色的花供选种,要求每块只种一种 颜色的花,且相邻的两块种不同颜色的花。如果编号为①的 已经种上红色花,那么其余三块不同的种法有 21 种。
编号为②的有三种选择,对于编号为③ 的,可以分成以下二类: 1、若编号为④的与编号为②的同色,则编 号为③的有三种选择。这种情况下共有3×3 种方案。 2、若编号为④的与编号为②的不同色,则 编号为③的有二种选择,编号为④的有二种 选择。这种情况下共有3×2×2种方案。
P P 选排列数用 r 表示,则 r =n!/(n-r)!
n
n
例1.全国足球甲级(A组)联赛共有14队参 加,每队都要与其它各队在主、客场分别比赛一 次,共进行多少场比赛?
任何二个队进行一次主场比赛和一场客场比 赛,相当于从14个元素中任取2个元素的一个排 列,共需进行的比赛场次是
所以可分三类:
5×2 + 5×3 + 2×3=31
例7、
在所有的三位数中,有且只有两个数字相同 的三位数共有多少个?
(1)△△□, (2)△□△, (3)□△□,
( 1 ) , ( 2 ) , ( 3 ) 类 中 每 类 都 是 9×9 种 , 共 有 9×9+9×9+9×9=3×9×9=243个只有两个数字相同的 三位数。
于是,小于10000且含有数字1的自然数共有99996561=3438个.
排列的定义
数学上,把若干元素,按照任何一种顺序排成 一列,叫做排列。
如果两个排列满足下列条件之一,它们就被认 为是不同的排列:
1.所含元素不全相同 2.所含元素相同,但顺序不同。
相异元素不重复的排列
从 n个不同的元素中,取出r个不重复的元素, 按次序排成一列,当r<n时,称为从n个中取r个的 一种选排列。
(2)取52的正因数是50,51,52,共2+1种;
(3)取7的正因数是70,71,共1+1种.
所以1400的正因数个数为
(3+1)×(2+1)×(1+1)=24.
例9、
从1到300的自然数中,完全不含有数字3的 有多少个?
将0到299的整数都看成三位数,其中数字3不 出现的,百位数字可以是0,1或2三种情况。十位 数字与个位数字均有九种,因此除去0共有
例8、求正整数1400的正因数的个
数.
因为任何一个正整数的任何一个正因数(除1外)都是这个 数的一些质因数的积,因此,我们先把1400分解成质因数的 连乘积1400=23527.所以这个数的任何一个正因数都是由2, 5,7中的若干个相乘而得到(有的可重复)。
于是取1400的一个正因数,这件事情是分如下三个步骤 完成的:
第一类:A在第一垄,B有3种选择; 第二类:A在第二垄,B有2种选择; 第三类:A在第三垄,B有一种选择, 同理A、B位置互换 , 共12种。
例6、
某小组有10人,每人至少会英语和日语的一门, 其中8人会英语,5人会日语,从中选出会英语与会 日语的各1人,有多少种不同的选法?
由于8+5=13>10,所以10人中必有3人既会英 语又会日语。(5+2+3)
1.加法原理: 如果完成一项工作有两类相互独立的方式A和B,在方式
A中有m种完成任务的途径,在方式B中有n种完成任务的途 径,则完成这项工作的总的途径有m+n种.
2.乘法原理: 如果完成一项工作有两个连续的步骤A和B,在步骤A
中有m种不同的方式,在步骤B中有n种不同的方式,则完成 这项工作的总的方法有m*n种.
例1、
从1到4这4个数码中不重复地任取3个构成一 个三位数,求这样的三位数一共有多少个?
分析:构成三位数的过程可以看成是由连续的三步完成: 第一步:取百位上的数字,共有4种方法 第二步:取十位上的数字,共有3种方法(即不能取百位上已 经取走的数码) 第三步:取个位上的数字,共有2种方法(即不能取百位和十 位上已经取走的数码) 因此由乘法原理,这样的三位数一共有:4*3*2=24种.
如:从a,b,c这三个字母中,每次取出2个,有多少种排列方法? 第一步:确定左边的字母,在三个字母中任取一个,有3种方法; 第二步:确定右边的字母,从剩下的2个字母中选取一个,有2种 方法; 根据乘法原理,共有3×2=6种不同的排法.
ab ac ba bc ca cb
一般地,从n个不同的元素中取出r个元素的
加法原理和乘法原理
加法原理和乘法原理是排列组合的基础和核心,既可 用来推导排列数、组合数公式,也可用来直接解题。它们 的共同点都是把一个事件分成若干个分事件来进行计算。
利用加法原理,重在分“类”,类与类之间具有独立 性和并列性;
利用乘法原理,重在分步;步与步之间具有相依性和 连续性。
比较复杂的问题,常先分类再分步。
例2、
一个三位数,如果它的每一位数字都不小于另一 个三位数对应数位上的数字,就称它“吃掉”后一个 三位数,例如543吃掉432,543吃掉543,但是 543不能吃掉534。那么能吃掉587的三位数共有多 少个?
百位上有5、6、7、8、9五种选择,十位上有8、9两种选 择,个位上有7,8,9三种选择,所以共有5×2×3=30(个) 三位数。
例4、
用红、黄、绿、蓝、黑五种颜色涂在如 下图所示的ABCDE五区域,颜色可重复使用, 但同色不相邻,涂法有几种?
AC同色:5*4*4*1*4
AC不同色:5*4*4*3*3
1040
例5、
在一块并排的10垄田地中,选择二垄分别种植 A,B两种作物,每种种植一垄,为有利于作物生长, 要求A,B两种作物的间隔不少于6垄,不同的选法 共有______种。分析:采取分类的方法。
3×9×9-1=242(个).
例10、
在小于10000的自然数中,含有数字1的数有 多少个?
不妨将0至9999的自然数均看作四位数,凡位数不到 四位的自然数在前面补0,使之成为四位数。
先求不含数字1的这样的四位数共有几个,即有0,2, 3,4,5,6,7,8,9这九个数字所组成的四位数的个数。 由于每一位都可有9种写法,所以,根据乘法原理,由这九 个数字组成的四位数个数为9×9×9×9=6561。
例3、
如图,一方形花坛分成编号为①,②,③,④四块,现 有红、黄、蓝、紫四种颜色的花供选种,要求每块只种一种 颜色的花,且相邻的两块种不同颜色的花。如果编号为①的 已经种上红色花,那么其余三块不同的种法有 21 种。
编号为②的有三种选择,对于编号为③ 的,可以分成以下二类: 1、若编号为④的与编号为②的同色,则编 号为③的有三种选择。这种情况下共有3×3 种方案。 2、若编号为④的与编号为②的不同色,则 编号为③的有二种选择,编号为④的有二种 选择。这种情况下共有3×2×2种方案。
P P 选排列数用 r 表示,则 r =n!/(n-r)!
n
n
例1.全国足球甲级(A组)联赛共有14队参 加,每队都要与其它各队在主、客场分别比赛一 次,共进行多少场比赛?
任何二个队进行一次主场比赛和一场客场比 赛,相当于从14个元素中任取2个元素的一个排 列,共需进行的比赛场次是
所以可分三类:
5×2 + 5×3 + 2×3=31
例7、
在所有的三位数中,有且只有两个数字相同 的三位数共有多少个?
(1)△△□, (2)△□△, (3)□△□,
( 1 ) , ( 2 ) , ( 3 ) 类 中 每 类 都 是 9×9 种 , 共 有 9×9+9×9+9×9=3×9×9=243个只有两个数字相同的 三位数。
于是,小于10000且含有数字1的自然数共有99996561=3438个.
排列的定义
数学上,把若干元素,按照任何一种顺序排成 一列,叫做排列。
如果两个排列满足下列条件之一,它们就被认 为是不同的排列:
1.所含元素不全相同 2.所含元素相同,但顺序不同。
相异元素不重复的排列
从 n个不同的元素中,取出r个不重复的元素, 按次序排成一列,当r<n时,称为从n个中取r个的 一种选排列。