(理学)大学物理2 第15章课件

合集下载

大学物理第15章机械波

大学物理第15章机械波
2222???????????????????22cosyxatxuu???????222cosyxa?ttu?????????????????????222221yyxut?????这就是一维谐波满足的微分关系
第四篇
波动与光学
§15.1
波动
机械波的产生与传播
振动状态(相位)的传播称为波动,简称波。
y ( m)
0.01
y ( m)
0.01
u
x ( m)
0 .2
t (s)
0 .1
a
b
第四篇
波动与光学
直接读出振动特征量:

y ( m)
0.01
t (s)
0 .1
A 0.01m T 0.1 s 20 (rad / s)


2 ya (t ) 0.01 cos( 20t
第四篇
波动与光学
二、波动微分方程
1.一维波动方程的导出 对于一维波动方程:
可分别对自变量x、t求偏导得:
x y x, t A cos t u
2 y 2 x A 2 cos t 2 x u u 2 y x 2 A cos t 2 t u
频率 波速

u
uT
u

讨论
①波的周期、频率与介质无关,由波源确定。 ②不同频率的波在同一介质中波速相同。
③波在不同介质中频率不变(由波源决定)。
第四篇
波动与光学
六、弹性介质与波的传播
在一种弹性介质中能够传播的是横波还是纵波,波速能够有多大, 都与介质的弹性有关。 1.长变变形 应力 单位截面上的受力称为应力。

大学物理第15章a光的衍射课件

大学物理第15章a光的衍射课件
(a+b)sin0
(a+b)(sin sin0 )=k k=0,±1, ±2, ±3 ···
2、暗纹条件 暗条纹是由各缝射出的衍射光因干涉相消形成的。
( a b ) sin ( k n )
N
k 0,1,2,
k — 主极大级数 N — 光栅缝总数
n为正整数 n 1,2,N 1
在两个相邻主极大之间, 分布着N-1条暗条纹和N-2条次级明条纹。
缺级条件:
光栅衍射加强条件:
(a b)sin k
单缝衍射极小条件: a sin k '
两式相比得
缺级条件: a b k (式中k和k必须为整数) a k'
缺级级数为: k a b k a
(k 1, 2,3 )
当 a b k 4时 a k'
谱线中的第 –8、 – 4、4、8级条纹缺级。
b a
不透光缝宽度 b
d
光栅常数:
d a b
f
单缝的夫琅和费衍射图样,不随缝的上下移动而变化。 衍射角相同的光线,会聚在接收屏的相同位置上。
如果让平行光照射整个光栅,那么每个单缝在 屏上所产生的振幅情况是完全一样的。在单缝的情 况下振幅为零的地方迭加起来的合振幅仍为零。但 振幅不为零的地方,其位置仍没有变,但振幅变大 了,光强变大了。
个单缝上。如果所用的单缝的宽度a=1mm,缝后紧挨
着的薄透镜焦距f=100cm,求:(a)第一级暗纹到衍
射图样中心的距离;(b)中央明条纹的角宽度;
(c)中央亮纹的线宽度。
解: (a)
a sin0
atg0
a
x f
一级暗纹条件
x f 10010 5000107 mm 0.5mm

大学物理PPT完整全套教学课件pptx(2024)

大学物理PPT完整全套教学课件pptx(2024)
2
匀速圆周运动的实例分析
3
2024/1/29
13
圆周运动
2024/1/29
01
变速圆周运动
02
变速圆周运动的特点和性质
03
变速圆周运动的实例分析
14
相对运动
2024/1/29
01 02 03
参考系与坐标系 参考系的选择和建立 坐标系的种类和应用
15
相对运动
2024/1/29
相对速度与牵连速度 相对速度的定义和计算
2024/1/29
简谐振动的动力学特征
分析简谐振动的动力学特征,包括回复力、加速度 、速度、位移等物理量的变化规律。
简谐振动的能量特征
讨论简谐振动的能量特征,包括动能、势能 、总能量等的变化规律,以及能量转换的过 程。
32
振动的合成与分解
2024/1/29
同方向同频率简谐振动的合成
分析两个同方向同频率简谐振动的合成规律,介绍合振动振幅、合 振动相位等概念。
5
大学物理的研究方法
03
观察和实验
建立理想模型
数学方法
物理学是一门以实验为基础的自然科学, 观察和实验是物理学的基本研究方法,通 过实验可以验证物理假说和理论,发现新 的物理现象和规律。
理想模型是物理学中经常采用的一种研究 方法,它忽略了次要因素,突出了主要因 素,使物理问题得到简化。
数学是物理学的重要工具,通过数学方法 可以精确地描述物理现象和规律,推导物 理公式和定理。
2024/1/29
适用范围
适用于一切自然现象,包括力学、热学、电磁学 、光学等各个领域。
应用举例
热力学第一定律、机械能守恒定律、爱因斯坦的 质能方程等。

大学物理--光的偏振(完全)

大学物理--光的偏振(完全)

e
方 解 石 的 主 平 面

o

21
3.惠更斯原理研究双折射现象 作图方法 1. o光在各个方向的传播速度相同,子波面应为 球面。 e光的传播速度随方向变化,但可以证明子波面 为旋转椭球面。 2. o光和e光在光轴方向传播速度相同,故子波 面在光轴方向相切;实验表明,在垂直于光轴的方 向上速度相差最大。 3.对负晶体(如方解石),在垂直于光轴的方向上, o<e , no>ne ,故e光的子波面(旋转椭球面)应包围o光 的子波面(球面)。

例题 一束光是自然光和线偏振光的混合。当它通 过一偏振片后,测得最大透射光强是最小透射光强的5 倍,求入射光中自然光和线偏振光的光强之比。 解 设入射光中自然光的光强为I1,线偏振光的光 强为I2,则透射光强
1 1 I max I1 I 2 , I min I1 2 2 I max 2I 2 I 2 2 5 1 , I1 I min I1

8
例题 自然光连续通过两个叠在一起的偏振片后, 透射光强为入射光强的四分之一,求两个偏振片偏振 化方向之间的夹角。 解 设两偏振片偏振化方向间的夹角为,于是 Io
自然光
1 Io 2


1 2 ( I o ) cos 2

解得: =45°(or 135°)。
9
1 1 2 I I o cos I o 2 4
2
1.自然光 部分偏振光 线偏振光 普通光源发出的光、阳光都是自然光。 由于原子发光的间歇性和无规则性,使得普通光源发 出的光的光矢量在垂直于传播方向的平面内以极快的 速度取0~360°内的一切可能的方向,且没有哪一个 方向占有优势。具有上述特性的光,称为自然光。

大学物理讲稿(第15章量子力学基础)

大学物理讲稿(第15章量子力学基础)

第15章 量子力学基础人们用经典物理解释黑体辐射、光电效应、氢原子光谱等实验规律时,遇到了不可克服的困难.经过不断的探索和研究,终于突破了经典物理的传统观念,建立起量子理论.量子理论和相对论是现代物理学的两大支柱.量子理论的诞生,对研究原子、电子、质子、光子等微观粒子的运动规律提供了正确的导向.从此使物理学发生了一次历史性的飞跃,促进了原子能、激光、超导、半导体等众多新技术的生产和发展.本章前部分,分别介绍黑体辐射、光电效应、氢原子光谱等实验规律以及为解释这些实验规律而提出的量子假设,即早期的量子论.本章的后部分简要介绍量子力学的基本概念及原理,并通过几个具体事例的讨论说明量子力学处理问题的一般方法.§15.1 黑体辐射与普朗克的量子假设一、黑体辐射的基本规律1 热辐射组成物体的分子中都包含着带电粒子,当分子作热运动时物体将会向外辐射电磁波,由于这种电磁波辐射与物体的温度有关,故称其为热辐射.实验表明,热辐射能谱是连续谱,发射的能量及其按波长的分布是随物体的温度而变化的.随着温度的升高,不仅辐射能在增大,而且辐射能的波长范围向短波区移动.物体在辐射电磁波的同时,也吸收投射到物体表面的电磁波.理论和实验表明,物体的辐射本领越大,其吸收本领也越大,反之亦然.当辐射和吸收达到平衡时,物体的温度不再变化而处于热平衡状态,这时的热辐射称为平衡热辐射.为描述物体热辐射能按波长的分布规律,引入单色辐射出射度(简称单色辐出度)这一物理量,其定义为:物体单位表面积在单位时间内发射的、波长在λ+λ→λd 范围内的辐射能dM λ与波长间隔d λ的比值,用M λ(T)表示,即λ=λλd dM T M )( (15.1) 而辐出度定义为⎰∞λλ=0d T M T M )()( (15.2) 2 黑体辐射的基本规律投射到物体表面的电磁波,可能被物体吸收,也可能被物体反射和透射.能够全部吸收各种波长的辐射能而完全不发生反射和透射的物体称为绝对黑体,简称黑体.绝对黑体是一种理想模型,实验室中用不透明材料制成带有小孔的空腔物体可近似看作黑体.图15.1为用实验方法测得的黑体单色辐出度M B λ (T)按波长和温度分布的曲线.关于黑体辐射,有两个基本定律:一个是斯特藩—玻耳兹曼定律(M B (T )=σT 4 ,即黑体的辐出度与其热力学温度的四次方成正比 ,其中σ=5.6705×10-8 W•m -2 • K -4 称为斯特藩—玻耳兹曼常数);另一个是维恩位移定律(λm T=b,即黑体单色辐出度的最大值对应的波长λm 与其绝对温度T 成反比,其中b=2.8978×10-3m •K 为与温度无关的常数).这两个定律在现代科学技术中有广泛的应用.通常用于测量高温物体(如冶炼炉、钢水、太阳或其他发光体等)温度的光测高温法就是在这两个定律的基础上建立起来的,同时,这两个定律也是遥感技术和红外跟踪技术的理论依据.从理论上导出绝对黑体单色辐出度与波长和温度的函数关系,即M Bλ=f(λ, T) ,是19世纪末期理论物理学面临的重大课题.维恩(W.Wien,1864—1928年)假定带电谐振子的能量按频率的分布类似于麦克斯韦速率分布率,然后用经典统计物理学方法导出了黑体辐射的下述公式T c B e c T M λ-λλ=/)(251 (15.3) 其中 和 是两个由实验确定的参数.上式称为维恩公式.维恩公式只是在短波波段与实验曲线相符,而在长波波段明显偏离实验曲线,如图15.2所示.瑞利(J.W.S.Rayleigh,1842—1919年)和金斯(J.H.Jeans,1877—1946年)根据经典电动力学和经典统计物理学导出了另一个力图反映绝对黑体单色辐出度与波长和温度关系的函数 42λπ=λckT T M B )( (15.4) 式中c 是真空中的光速,k 是玻耳兹曼常数.上式称为瑞利—金斯公式.该公式在长波波段与实验相符,但在短波波段与实验曲线有明显差异,如图15.2所示.这在物理学史上曾称为“紫外灾难”.234167895οοοοοοοοοοοοοο瑞利—金斯线 维恩线 普朗克线 能量密度 m/μ波长图15.2二、普朗克的量子假设1900年普朗克(M.Planck,1858—1947年)在综合了维恩公式和瑞利—金斯公式各自的成功之处以后,得到黑体的单色辐出度为)()(/11252-λπ=λλkT hc B e hc T M (15.5) 这就是普朗克公式,式中h 为普朗克常数,1986年的推荐值为 h=6.6260755×10-34 J ·s.普朗克公式与实验结果的惊人符合预示了其中包含着深刻的物理思想.普朗克指出,如果作下述假定,就可以从理论上导出他的黑体辐射公式:物体若发射或吸收频率为ν的电磁辐射,只能以ε=hν为单位进行,这个最小能量单位就是能量子,物体所发射或吸收的电磁辐射能量总是这个能量子的整数倍,即),,,(Λ321=ν=ε=n nh n E (15.6)普朗克的能量子思想是与经典物理学理论不相容的,也正是这一新思想,使物理学发生了划时代的变化,宣告了量子物理的诞生.普朗克也因此荣获1918年的诺贝尔物理学奖.作业(P224):23§15.2 光电效应与爱因斯坦的光量子假设普朗克的量子假设提出后的最初几年中,并未受到人们的重视,甚至普朗克本人也总是试图回到经典物理的轨道上去.最早认识普朗克假设重要意义的是爱因斯坦,他在1905年发展了普朗克的思想,提出了光子假设,成功的解释了光电效应的实验规律.一、光电效应的实验规律金属在光的照射下,有电子从表面逸出,这种现象称为光电效应.光电效应中逸出金属表面的电子称为光电子.光电子在电场的作用下所形成的电流叫光电流.研究光电效应的实验装置如图15.3所示.在一个抽空的玻璃泡内装有金属电极K(阴极)和A(阳极),当用适当频率的光从石英窗口射入照在阴极K 上时,便有光电子自其表面逸出,经电场加速后为阳极A 所吸收,形成光电流.改变电位差U AK ,测得光电流 i ,可得光电效应的伏安特性曲线,如图15.4所示.实验研究表明,光电效应有如下规律:1)阴极K 在单位时间内所发射的光电子数与照射光的强度成正比.从图15.4可以看出,光电流i 开始时随 增大而增大,而后就趋于一个饱和值 ,它与单位时间内从阴极K 发射的光子数成正比.所以单位时间内从阴极K 发射的光电子数与照射光强成正比.2)存在截止频率.实验表明,对一定的金属阴极,当照射光频率小于某个最小值i s 时,不管光强多大,都没有光电子逸出,这个最小频率v 0称为该种金属的光电效应截止频率,也叫红限,对应的波长0λ称为截止波长.每一种金属都有自己的红限.3)光电子的初动能与照射光的强度无关,而与其频率成线性关系.在保持光照射不变的情况下,改变电位差U AK ,发现当U AK =0时,仍有光电流.这显然是因为光电子逸出时就具有一定的初动能.改变电位差极性,使U AK <0 ,当反向电位差增大到一定值时,光电流才降为零,如图15.4所示.此时反向电位差的绝对值称为遏止电压,用U a 表示.不难看出,遏止电压与光电子的初动能间有如下关系a eU m =υ2021 (15.7) 式中m 和e 分别是电子的静质量和电量, 0υ是光电子逸出金属表面的最大速率. 实验还表明,遏止电压U a 与光强I 无关,而与照射光的频率v 成线性关系,即 0V K U a -ν= (15.8)式中K 和V 0都是正值,其中K 为普适恒量,对一切金属材料都是相同的,而V 0=Kv 0对同一种金属为一恒量,但对于不同的金属具有不同的数值.将式(15.8)代入式(15.7)得 )(002021ν-ν=-ν=υeK eV eK m (15.9) 上式表明,光电子的初动能与入射光的频率成线性关系,与入射光强无关.4)光电子是即时发射的,滞后时间不超过10-9s.实验表明,只要入射光的频率大于该金属的红限,当光照射这种金属表面时,几乎立即产生光电子,而无论光强多大.二、爱因斯坦光子假设和光电效应方程对于上述实验事实,经典物理学理论无法解释.按照光的波动理论,光波的能量由光强决定,在光照射下,束缚在金属内的“自由电子”将从入射光波中吸收能量而逸出表面,因而逸出光电子的初动能应由光强决定,但光电效应中光电子的初动能与光强无关;另外,如果光波供给金属中“自由电子”逸出表面所需的足够能量,光电效应对各种频率的光都能发生,不应该存在红限,而且,光电子从光波中吸收能量应有一个积累过程,光强越弱,发射光子所需要的时间就越长,这都与光电效应的实验事实相矛盾.由此可见,光的波动理论无法解释光电效应的实验规律.为了克服光的波动理论所遇到的困难,从理论上解释光电效应,爱因斯坦发展了普朗克能量子的假设,于1905年提出了如下的光子假设:一束光就是一束以光速运动的粒子流,这些粒子称为光量子(简称光子);频率为v 的光子所具有的能量为hv ,它不能再分割,而只能整个的被吸收或产生出来.按照光子理论,当频率为v 的光照射金属表面时,金属中的电子将吸收光子,获得 的能量,此能量的一部分用于电子逸出金属表面所需要的功(此功称为逸出功A);另一部分则转变为逸出电子的初动能.据能量守恒定律有(15.10) 这就是爱因斯坦的光电效应方程.)(002021ν-ν=-ν=υ↓eK eV eK m 比较 00eK νeV A eK,h === (15.11)由实验可测量K 和V 0,算出普朗克常数h 和逸出功A,进而还可求出金属的红限v 0.按照光子理论,照射光的光强就是单位时间到达被照物单位垂直表面积的能量,它是由单位时间到达单位垂直面积的光子数N 决定的.因此光强越大,光子数越多,逸出的光电子数就越多.所以饱和光电流与光强成正比;由于每一个电子从光波中得到的能量只与单个光子的能量hv 有关,所以光电子的初动能与入射光的频率成线性关系,与光强无关.当光子的能量hv 小于逸出功A,即入射光的频率v 小于红限v 0时,电子就不能从金属表面逸出;另外,光子与电子作用时,光子一次性将能量 全部传给电子,因而不需要时间积累,即光电效应是瞬时的.这样光子理论便成功地解释了光电效应的实验规律,爱因斯坦也因此获得1921年的诺贝尔物理学奖.例题15.1 用波长为400nm 的紫光去照射某种金属,观察到光电效应,同时测得遏止电压为1.24V ,试求该金属的红限和逸出功.解:由光电效应方程得逸出功为1.87eV J 102.9919=⨯=-=-=-020eU λc h m υ21h νA 根据红限与逸出功的关系,得红限为Hz 1051410626610992143419⨯=⨯⨯==--...h A ν0 三、光(电磁波)的波粒二象性一个理论若被实验证实,它必定具有一定的正确性.光子论被黑体辐射、光电效应以及其他实验所证实,说明它具有一定的正确性.而早已被大量实验证实了的光的波动论以及其他经典物理理论的正确性,也是无可非议的.因此,在对光的本性的解释上,不应该在光子论和波动论之间进行取舍,而应该把它们同样地看作是光的本性的不同侧面的描述.这就是说,光具有波和粒子这两方面的特性,这称为光的波粒二象性.既是粒子,也是波,这在人们的经典观念中是很难接受的.实际上,光已不是经典意义下的波,也不是经典意义下的粒子,而是波和粒子的统一.光是由具有一定能量、动量和质量的粒子组成的,在它们运动的过程中,在空间某处发现它们的几率却遵从波动的规律.描述光的粒子特征的能量与描述其波动特征的频率之间的关系为(15.12)由狭义相对论能量—动量关系并考虑光子的静质量为零得光子动量与波长的关系为====Ph Pc/h c E/h c νc λ (15.13) 它们通过普朗克常数紧密联系起来.通过质能关系还可得光子的质量为c P ch c E m 22=ν==作业(P224):26§15.3 氢原子光谱与玻尔的量子论经典物理学不仅在说明电磁辐射与物质相互作用方面遇到了如前所述的困难,而且在说明原子光谱的线状结构及原子本身的稳定性方面也遇到了不可克服的困难.丹麦物理学家玻尔发展了普朗克的量子假设和爱因斯坦的光子假设等,创立了关于氢原子结构的半经典量子理论,相当成功的说明了氢原子光谱的实验规律.一、氢原子光谱的实验规律实验发现,各种元素的原子光谱都由分立的谱线所组成,并且谱线的分布具有确定的规律.氢原子是最简单的原子,其光谱也是最简单的.对氢原子光谱的研究是进一步学习原子、分子光谱的基础,而后者在研究原子、分子结构及物质分析等方面有重要的意义.在可见光范围内容易观察到氢原子光谱的四条谱线,这四条谱线分别用H α、H β、H γ和H δ表示,如图15.5所示.1885年巴耳末(J.JBalmer,1825—1898)发现可以用简单的整数关系表示这四条谱线的波长6543,,,=-=n ,2n n B λ222(15.14) 式中B 是常数,其值等于364.57nm.后来实验上还观察到相当于n 为其他正整数的谱线,这些谱线连同上面的四条谱线,统称为氢原子的巴耳末系.光谱学上经常用波数 表示光谱线,它被定义为波长的倒数,即λ=ν1~(15.15) 引入波数后,式(15.14)可改写为Λ,,,),(~54312122=-=n n R ν (15.16) 式中172m 100967761B 2R -⨯==./,称为里德伯(J.R.Rydberg,1854—1919)常数.在氢原子光谱中,除了可见光范围的巴耳末线系以外,在紫外区、红外区和远红外区分别有赖曼(T.Lyman)系、帕邢(F.Paschen)系、布拉开(F.S.Brackett)系和普丰德(A.H.Pfund)系.这些线系中谱线的波数也都可以用与式(15.16)相似的形式表示.将其综合起来可表为)(~2211n k R T(n)T(k)νkn -=-= (15.17) 式中k 和n 取一系列有顺序的正整数,k 取1、2、3、4、5分别对应于赖曼线系、巴耳末线系、帕邢线系、布拉开线系和普丰德线系;一旦k 值取定后,n 将从k+1 开始取k+1, k+2, k+3等分别代表同一线系中的不同谱线. T(n)=R/n 2称为氢的光谱项.式(15.17)称为里德伯—里兹并合原理.实验表明,并合原理不仅适用于氢原子光谱,也适用于其他元素的原子光谱,只是光谱项的表示式要复杂一些.并合原理所表示的原子光谱的规律性,是原子结构性质的反映,但经典物理学理论无法予以解释.按照原子的有核模型,根据经典电磁理论,绕核运动的电子将辐射与其运动频率相同的电磁波,因而原子系统的能量将逐渐减少.随着能量的减少,电子运动轨道半径将不断减小;与此同时,电子运动的频率(因而辐射频率)将连续增大.因此原子光谱应是连续的带状光谱,并且最终电子将落到原子核上,因此不可能存在稳定的原子.这些结论显然与实验事实相矛盾,从而表明依据经典理论无法说明原子光谱规律等.二、玻尔的量子论玻尔(N.H.D.Bohr,1885—1962)把卢瑟福关于原子的有核模型、普朗克量子假设、里德伯—里兹并合原理等结合起来,于1913年创立了氢原子结构的半经典量子理论,使人们对于原子结构的认识向前推进了一大步.玻尔理论的基本假设是1)原子只能处在一系列具有不连续能量的稳定状态,简称定态,相应于定态,核外电子在一系列不连续的稳定圆轨道上运动,但并不辐射电磁波;2)作定态轨道运动的电子的角动量L 的数值只能是)/(π2h η的整数倍,即(15.18)这称为角动量量子化条件,n 称为主量子数,m 是电子的质量;3)当原子从一个能量为E k 的定态跃迁到另一个能量为E n 的定态时,会发射或吸收一个频率为v kn 的光子(15.19) 上式称为辐射频率公式, v kn >0表示向外辐射光子, v kn <0表示吸收光子.玻尔还认为,电子在半径为r 的定态圆轨道上以速率υ绕核作圆周运动时,向心力就是库仑力,因而有2202re πεr υm ⋅=41 (15.20) 由式(15.18)和式(15.20)消去υ,即可得原子处于第n 个定态时电子轨道半径为),,,()Λ321(1===n r n πme h εn r 22202n (15.21)对应于n=1的轨道半径r 1是氢原子的最小轨道半径,称为玻尔半径,常用a 0表示,其值为m 10291772495111-⨯===.2200πme h εr a (15.22) 这个数值与用其他方法得到的数值相符合.氢原子的能量应等于电子的动能与势能之和,即re πεr e πεm υE 20202⋅-=⋅-=814121 处在量子数为n 的定态时,能量为),,,()(Λ321n 81812n n =-=⋅-=220420h εme n r e πεE (15.23)由此可见,由于电子轨道角动量不能连续变化,氢原子的能量也只能取一系列不连续的值,这称为能量量子化,这种量子化的能量值称为原子的能级.式(15.23)是氢原子能级公式.通常氢原子处于能量最低的状态,这个状态称为基态,对应于主量子数n=1, E 1=-13.6 eV . n>1的各个稳定状态的能量均大于基态的能量,称为激发态,或受激态.处于激发态的原子会自动地跃迁到能量较低的激发态或基态,同时释放出一个能量等于两个状态能量差的光子,这就是原子发光的原理.随着量子数n 的增大,能量E n 也增大,能量间隔减小. 当n →∞时,rn →∞, E n →0 ,能级趋于连续,原子趋于电离. E > 0时,原子处于电离状态,能量可连续变化.图15.6和图15.7分别是氢原子处于各定态的电子轨道图和氢原子的能级图.使原子或分子电离所需要的能量称为电离能.根据玻尔理论算出的氢原子基态能量值与实验测得的氢原子基态电离能值13.6eV 相符.下面用玻尔理论来研究氢原子光谱的规律.按照玻尔假设,当原子从较高能态E n 向较低能态E k (n>k)跃迁时,发射一个光子,其频率和波数为1n =2n =3n =4n =1r r =14r r =19r r =116r r =赖曼系巴耳末系帕邢系 图15.6 氢原子定态的轨道图hE E νk n nk -= (15.24) )~k n nk nk nk E E hcc νλν-===(11 (15.25) 将能量表示式(15.23)代入即可得氢原子光谱的波数公式)()(~k n nk c h εme ν0nk >-=22324118 (15.26) 显然式(15.26)与氢原子光谱的经验公式(15.17)是一致的,同时可得里德伯常数的理论值为173204m 10097373118-⨯=ε=.ch me R H 理论 (15.27) 这也与实验值符合得很好.这表示玻尔理论在解释氢原子光谱的规律性方面是十分成功的,同时也说明这个理论在一定程度上反映了原子内部的运动规律.三、玻尔理论的缺陷和意义玻尔的半经典量子理论在说明光谱线规律方面取得了前所未有的成功.但是它也有很大的局限性,如只能计算氢原子和类氢离子的光谱线,对其他稍微复杂的原子就无能为力了;另外,它完全没有涉及谱线强度、宽度及偏振性等.从理论体系上讲,这个理论的根本问题在于它以经典理论为基础,但又生硬的加上与经典理论不相容的若干重要假设,如定态不辐射和量子化条件等,因此它远不是一个完善的理论.但是玻尔的理论第一次使光谱实验得到了理论上的说明,第一次指出经典理论不能完全适用于原子内部运动过程,揭示出微观体系特有的量子化规律.因此它是原子物理发展史上一个重要的里程碑,对于以后建立量子力学理论起到了巨大的推动作用.另外,玻尔理论在一些基本概念上,如“定态”、“能级”、“能级跃迁决定辐射频率”等在量子力学中仍是非常重要的基本概念,虽然另有一些概念,如轨道等已被证实对微观粒子不再适用.作业(P224):27§15.4 微观粒子的波—粒二象性 不确定关系一、微观粒子的波—粒二象性1923~1924年间,德布罗意仔细地分析了光的微粒说和波动说的历史,深入的研究了光子假设.他认为,19世纪以来,在光的研究中人们只重视了光的波动性,而忽视了它的粒子性.但在实物粒子的研究中却又发生了相反的情况,只重视实物粒子的粒子性,而忽略了它的波动性.在这种思想的支配下,德布罗意大胆的提出了物质的波—粒二象性假设.他认为,质量为m,速度为υ的自由粒子,一方面可用能量E 和动量p 来描述它的粒子性;另一方面还可用频率v 和波长λ来描述它的波动性.它们之间的关系与光的波—粒二相性所描述的关系一样,即h/p λE/h,ν== (15.28)式(15.28)叫德布罗意公式.这种和实物粒子相联系的波称为德布罗意波,或叫物质波.德布罗意因这一开创性工作而获得了1929年的诺贝尔物理学奖.由于自由粒子的能量和动量均为常量,所以与自由粒子相联系的波的频率和波长均不变,这说明与自由粒子相联系的德布罗意波可用平面波描述.对于静质量为m 0,速度为υ的实物粒子,其德布罗意波长为220/c υυm h p h λ-==1 (15.30) 德布罗意关于物质波的假设,1927年首先由戴维孙(C.J.Davisson,1881—1958)和革末(L.H.Germer,1896—1971)通过电子衍射实验所证实.戴维孙和革末作电子束在晶体表面散射实验时,观察到了和X 射线在晶体表面衍射相似的电子衍射现象,从而证实了电子具有波动性.当时的实验中,采用50KV 的电压加速电子,波长约为0.005nm.由于波长非常短,实验难度很高,因此这一实验是极其卓越的.后来证实了不仅电子具有波动性,其他微观粒子,如原子、质子和中子等也都具有波动性.微观粒子的波动性在现代科学技术上已得到广泛的应用,利用电子的波动性,已制造出了高分辨率的电子显微镜;利用中子的波动性,制成了中子摄谱仪.既然微观粒子具有波动性,原子中绕核运动的电子无疑也具有波动性.不过处于原子定态中的电子的波动形式,与戴维孙和革末实验中由小孔衍射的电子束的波动形式是不同的,后者可认为是行波,而前者则应看为驻波.处于定态中的电子形成驻波的情形,与端点固定的振动弦线形成驻波的情形是相似的.原子中电子驻波可如图15.8形象地表示.由图可见,当电子波在离开原子核为r 的圆周上形成驻波时,圆周长必定等于电子波长的整数倍,即),,,(Λ3212==n n λπr (15.31)利用德布罗意关系便可得电子的轨道角动量应满足下面的关系),,,(Λη3212====n n λh πλn rP L (15.32) 这正是玻尔作为假设引入的量子化条件,在这里,考虑了微观粒子的波动性就自然的得出了量子化条件.例题15.2 计算经过电势差U=150V 和U=104V 加速的电子的德布罗意波长(在U<104V 时,可不考虑相对论效应).解:忽略相对论效应,经过电势差U 加速后,电子的动能和速率分别为202,21m eU eU υm =υ= 式中m 0为电子的静止质量.利用德布罗意关系可得德布罗意波长nm 11.225m 1102512121000UU U e m h υm h λ=⨯=⋅==-. 式中U 的单位是伏特. 1nm 0150V U 11.=λ→=,0.0123nm V 10U 242=λ→=由此可见,在这样的电压下,电子的德布罗意波长与X 射线的波长相近。

大学物理(第四版)下册(康颖主编)PPT模板

大学物理(第四版)下册(康颖主编)PPT模板
光子假设
05
20.5德布罗 意物质波假

03
20.3康普顿 效应
06
20.6不确定 关系
第20章量子 物理基础
0 1
20.7薛定谔方 程
0 4
20.10固体的 能带
0 2
20.8氢原子
0 5
内容提要
0 3
20.9原子中电 子的分布
0 6
习题
第20章量子物理 基础
阅读材料14核磁共振
第21章现代技术的物理基
202X
大学物理(第四版)下册 (康颖主编)
演讲人
2 0 2 X - 11 - 11
01 第14章振动
第14章 振动
01 1 4 .1 简 谐运动
02 1 4 .2 微 振动的简谐
近似
03 1 4 .3 简 谐运动的旋 04 1 4 .4 简 谐运动的能
转矢量表示法

05
14.5 振动 方 向 相 互 平 06
05 第18章光的偏振
第18章光的偏振
18.1自然光和偏振光
18.3反射和折射时的 偏振布儒斯特定律 18.5偏振光的干涉
18.2起偏和检偏马吕 斯定律
18.4双折射现象
18.6人工双折射旋光 现象
第18章光的偏振
内容提要 习题 阅读材料13液晶
06 第19章狭义相对论基础
第19章狭义 相对论基础
0 6
15.6驻波
第15章波 动
15.7 声波
内容提 要
15.8多普 勒效应
习题
15.9 电磁波
阅读材料 10次声武

03 第16章光的干涉
A
16.1光矢 量光程

大学物理下15磁介质

大学物理下15磁介质

二、 介质中的磁场 磁场强度
B B0 B
1、介质中的磁高斯定理
B
B0
B0 dS 0
s
B dS 0
s

B dS 0
s
2、有磁介质时的安培环路定理 磁场强度 无限大各向同性的均匀磁介质中: 磁场强度
H
B
0 r

B

单位(SI): A/m
r : 介质的相对磁导率
0 r
称介 H dl I
L
第 15 章 磁介质
一、 顺磁性和抗磁性
传导电流产生
真空中: B0
磁介质中:
(类比电介质中的电场)
B B0 B
与介质有关的电流产生
无限大均匀磁介质中: B r B0
B 相对磁导率: r B0
r 1 r 1
抗磁质(铜、铋、硫、氢、银等) 顺磁质(锰、铬、铂、氧、氮等) 铁磁质(铁、钴、镍等) 完全抗磁性
r 1
r 0
几种磁介质的相对导磁率
磁介质种类 铋(293K) 汞(293K) 抗磁质 r<l 铜(293K) 氢(气体) 液氧(90K) 氧气(293K) 顺磁质 r >1 铝(293K) 铂(293K) 铁磁质 r >>1 纯 铁 硅 钢 坡莫合金 相对导磁率 l-16.0×10-5 l-2.90×10-5 l-1.00×10-5 l-3.98×10-5 1+769.9×10-5 l+344.9×10-5 l+1.650×10-5 l+26.00×10-5 5 ×103(最大值) 7 ×102(最大值) 1 ×105(最大值)

大学物理下册课件 第15章 机械波

大学物理下册课件 第15章 机械波

已知振动状态以速度 沿 轴正向传播 。对应同一时刻 ,
振动状态与原点在
时刻的振动状态相同。
点的
因此,在设定坐标系中,波线上任一点、任意时刻的振动规律为
这就是沿 X 轴正向传播的平面简谐波动方程。它是时间和空间的双重周期函数。
15.2.1 平面简谐波的波函数
沿 X 轴正向传播的平面简谐波动方程
t = 7T / 8
t = T
在同一坐标系
XOY 中
正向波
反向波
驻波
点击鼠标,观察在一个周期T 中不同时刻各波的波形图。
每点击一次,
时间步进
合成驻波
15.4.3 驻 波
为简明起见,

改写原式得
并用

正向波
反向波
驻 波 方 程
注意到三角函数关系

驻 波 方 程
驻 波 方 程
波节
波腹
波腹处振幅最大
固体的容变弹性模量
液体和气体:液体可以产生容变,其容变弹性模量如固体一致
对于密度为 的固体,在其中传播横波和纵波的速度为
液体和气体中传播纵波的波速为
15.1.3 波的特征量
关于波速问题: 波速取决于媒质的弹性(弹性模量)和媒质的惯性(密度)
细长棒:沿着棒的长度方向传播纵波的波速取决于杨氏弹性模量及其惯性
上下
抖动
振速 最小
振速 最大
形变最小
形变最大
时刻波形
在波动中,各体积元产生不同程度的 弹性形变,
具有 弹性势能
各体积元以变化的振动速率 上下振动,
具有振动动能
总能量
15.3 波的能量
动能
动能计算
势能计算

2024版年度《大学物理》全套教学课件(共11章完整版)

2024版年度《大学物理》全套教学课件(共11章完整版)

01课程介绍与教学目标Chapter《大学物理》课程简介0102教学目标与要求教学目标教学要求教材及参考书目教材参考书目《普通物理学教程》(力学、热学、电磁学、光学、近代物理学),高等教育出版社;《费曼物理学讲义》,上海科学技术出版社等。

02力学基础Chapter质点运动学位置矢量与位移运动学方程位置矢量的定义、位移的计算、标量与矢量一维运动学方程、二维运动学方程、三维运动学方程质点的基本概念速度与加速度圆周运动定义、特点、适用条件速度的定义、加速度的定义、速度与加速度的关系圆周运动的描述、角速度、线速度、向心加速度01020304惯性定律、惯性系与非惯性系牛顿第一定律动量定理的推导、质点系的牛顿第二定律牛顿第二定律作用力和反作用力、牛顿第三定律的应用牛顿第三定律万有引力定律的表述、引力常量的测定万有引力定律牛顿运动定律动量定理角动量定理碰撞030201动量定理与角动量定理功和能功的定义及计算动能定理势能机械能守恒定律03热学基础Chapter1 2 3温度的定义和单位热量与内能热力学第零定律温度与热量热力学第一定律的表述功与热量的关系热力学第一定律的应用热力学第二定律的表述01熵的概念02热力学第二定律的应用03熵与熵增原理熵增原理的表述熵与热力学第二定律的关系熵增原理的应用04电磁学基础Chapter静电场电荷与库仑定律电场与电场强度电势与电势差静电场中的导体与电介质01020304电流与电流密度磁场对电流的作用力磁场与磁感应强度磁介质与磁化强度稳恒电流与磁场阐述法拉第电磁感应定律的表达式和应用,分析感应电动势的产生条件和计算方法。

法拉第电磁感应定律楞次定律与自感现象互感与变压器电磁感应的能量守恒与转化解释楞次定律的含义和应用,分析自感现象的产生原因和影响因素。

介绍互感的概念、计算方法以及变压器的工作原理和应用。

分析电磁感应过程中的能量守恒与转化关系,以及焦耳热的计算方法。

电磁感应现象电磁波的产生与传播麦克斯韦方程组电磁波的辐射与散射电磁波谱与光子概念麦克斯韦电磁场理论05光学基础Chapter01光线、光束和波面的概念020304光的直线传播定律光的反射定律和折射定律透镜成像原理及作图方法几何光学基本原理波动光学基础概念01020304干涉现象及其应用薄膜干涉及其应用(如牛顿环、劈尖干涉等)01020304惠更斯-菲涅尔原理单缝衍射和圆孔衍射光栅衍射及其应用X射线衍射及晶体结构分析衍射现象及其应用06量子物理基础Chapter02030401黑体辐射与普朗克量子假设黑体辐射实验与经典物理的矛盾普朗克量子假设的提普朗克公式及其物理意义量子化概念在解决黑体辐射问题中的应用010204光电效应与爱因斯坦光子理论光电效应实验现象与经典理论的矛盾爱因斯坦光子理论的提光电效应方程及其物理意义光子概念在解释光电效应中的应用03康普顿效应及德布罗意波概念康普顿散射实验现象与经德布罗意波概念的提典理论的矛盾测不准关系及量子力学简介测不准关系的提出及其物理量子力学的基本概念与原理意义07相对论基础Chapter狭义相对论基本原理相对性原理光速不变原理质能关系广义相对论简介等效原理在局部区域内,无法区分均匀引力场和加速参照系。

【大学物理】第15章热力学第一定律

【大学物理】第15章热力学第一定律

例补:20mol氧气由状态1变化到状态2所经历的过程
如图,(1)沿1-m-2路径;(2)沿1-2直线。试分
别求出这两过程中的A与Q及氧气内能的变化 氧气分子当成刚性分子理想气体看待。
E2

E1
p(1.03105 pa)
20 2
m
5 0 10
1
50 V (L)
解(1)1-m-2过程:
对于1-m过程,由于体积不变(等容过程),所以
I绝热膨胀:V2 V1 T2 T1
II绝热压缩:V2 V1 T2 T1
四、绝热过程的P-V图
1、P-V图: 将绝热方程代入
A V2 PdV 可得: V1
A P1V1 P2V2
1
A

p1V1
1
1


V1 V2


1



dQ dE dA dE PdV
dE 0
PV M RT

( dQ)T dA PdV
QT
A
V2 PdV
V1
代入上式
QT

M

RT
V2 dV V V1

M

RT ln V2 V1
P1V1 P2V2
QT

M

RT
ln
P1 P2
3、理想气体等温过程作功图示:
对于AB过程,因为热力学第一定律得气体吸收的热量应等于气体对外做的功, 功可以通过过程曲线下的面积求得
QAB
WAB

1 2 (pA

pB )(VB
VA )

大学物理 第十五章 磁介质的磁化

大学物理 第十五章 磁介质的磁化
22
临界温度Tc。在Tc以上,铁磁性完全消失而 成为顺磁质,Tc称为居里温度或居里点。不 同 的 铁 磁 质 有 不 同 的 居 里 温 度 Tc 。 纯 铁 : 770ºC,纯镍:358ºC。
居里
装置如图所示:将悬挂着的镍片移近永 久磁铁,即被吸住,说明镍片在室温下 具有铁磁性。用酒精灯加热镍片,当镍 片的温度升高到超过一定温度时,镍片 不再被吸引,在重力作用下摆回平衡位 置,说明镍片的铁磁性消失,变为顺磁 性。移去酒精灯,稍待片刻,镍片温度 下降到居里点以下恢复铁磁性,又被磁 铁吸住。
第15章 磁介质的磁化
§15.1 磁介质的磁化 磁化强度矢量 §15.2 磁场强度 有磁介质时的安培环路定理 §15.3 铁磁质 §15.4 磁路定理
作业:练习册 选择题:1 — 5 填空题:1 — 6 计算题:1 — 4
1
§1 磁介质的磁化 磁化强度矢量
1. 磁介质 磁介质:实体物质在磁场作用下呈现磁性,该物体称磁介质。 磁化:磁介质在磁场中呈现磁性(在磁场的作用下产生附加 磁场)的现象称为磁化。
B B0 B
I
I
磁介质
抗磁质: r 1, B B0
B与B0 反方向,
如氮、水、铜、银、金、铋等。
I
I
铁磁质: r 1, B B0 B与B0 同方向,
如铁、钴、镍等,
超导体是理想的抗磁体。
B0 B
3
2.分子电流模型和分子磁矩
原子中电子参与两种运动:自
pm B
旋及绕核的轨道运动,对应有轨道
矢量和为零。
极化、位移极化。
4
加外磁场时 : M Pm B
B B0 B
当外磁场存在时,各分子固有磁矩受磁场力矩的作用,或

大学物理学(下册)第15章 量子物理基础

大学物理学(下册)第15章 量子物理基础
2020/12/10
5、爱因斯坦的光子假说和光电效应方程
1).爱因斯坦光子假设 ①.光是一束以光速c运动的粒子流,这些粒子称为光子;
②.光子的能量: h
③.光的强度: SNh
2).爱因斯坦光电效应方程
爱因斯坦认为:在光电效应中,金属中的电子吸收
一个光子的能量h,一部分消耗在使金属中电子挣脱原子
2020/12/10
2. 普朗克理论与经典理论不同
经典理论的基本观点
普朗克能量子假设
(1)电磁波辐射来源于 带电粒子的振动,电磁波 频率与带电粒子振动频率 相同。 (2)振子辐射电磁波含 各种波长,是连续的,辐 射能量也是连续的。
对于频率为的振子,
振子辐射的能量不是 连续的,而是分立的, 它的取值是某一最小 能量 的整数倍
出的、在波长 附近单位波长间隔内的能量。称为单色辐
射出射度或单色辐出度。
M(T)
dM(T)
d
单位: W / m 3
2020/12/10
温度为 T 的物体,在单位时间内,从单位面积上所辐射
出的各种波长的电磁波的能量总和。称为辐射出射度或辐
出度。
M(T) 0M(T)d
单位: W / m 2
太阳和钨丝的单色 辐出度曲线
即:光电子的最大初动能与入射光的强度成正比关系,而 与光的频率无关。与实验结果不符。
2020/12/10
红限问题
按上述理论,无论何种频率的入射光,只要其强 度足够大,就能使电子具有足够的能量逸出金属,不 存在红限问题。与实验结果不符。
驰豫时间
按上述理论,如果入射光强很弱,则电子逸出金 属所需的能量,需要有一定的时间来积累。与实验结 果不符。
光的波动性用光波的波长 和频率 描述,光

大学物理教程-热力学第二定律

大学物理教程-热力学第二定律

15.1 热力学第二定律 卡诺定理
Harbin Institute of Technology at Weihai
15.1.3 各种不可逆过程是互相联系的
同理,假设热可以自动从低温物体传向高温物体, 这将导致热可以自动转变成功。
T1热库




Q2
T1热库
Q1


卡诺
热机
Q2
Q2
T2热库
A
Q1- Q2
态温度等于末态温度,末态体积为初态体积的2倍,可以任意设计符
合此条件的可逆过程计算该实际过程的熵变∆S >0即可,转变成另外
一种题型如下页延伸题所示。
14
哈尔滨工业大学(威海)
15.2 克劳修斯熵公式 熵增加原理
Harbin Institute of Technology at Weihai
大学物理教程
15.1.5 卡诺定理
(1)在温度为T1的高温热库和温度为T2的低温热库之间工作的一切可逆热机,无论
用什么工作物质,其效率相等,都等于
T2
η 1
T1
(2)在温度为T1的高温热库和温度为T2的低温热库之间工作的一切不可逆热机,其
效率不可能高于可逆热机的效率。
T2
1
T1
10
哈尔滨工业大学(威海)
大学物理教程
例2. 质量为m1、温度为T1的冷水与质量为m2、温度为T2的热水共置于一
绝热容器内,已知水的比热容为c。试求 (1) 平衡建立后,系统最
后的温度;(2) 系统总的熵变。
解: (1)依题意,设最后温度为 T , 则有: Q1吸 Q2放,由比热容定义得:
cm1 T T1 cm2 T2 T

大学物理第15章

大学物理第15章

外力克服f m作功(消耗机械能) 通过fm转换为感应电流的能量。
15
例长为L的铜棒,在磁感强度为B 的均匀磁场中以角速 度 在与磁场方向垂直的平面内绕棒的一端o 匀速转动,
解: 取线元 d l ,方向沿o指向A
求棒中的动生电动势。
v l d i (v B) d l vB d l
动生电动势的计算公式:
i v B dl
L
v B dl v
fL
(3)说明
L

v
dl
动生电动势的计算公式是普遍的。 动生电动势不依赖于导体回路的存在而产生。 电动势是非静电力对单位电荷所做的功。 动生电动势与“洛伦兹力不做功”并不矛盾。
金属棒上总电动势为
i Bv d l Bl d l BL
L 0 L 0 1 2
2
方向为A0,即o点电势较高。
16
另解:
1 2 S L 2

L
S
Φ BS
dΦ 1 2 d 1 2 BL i BL 2 dt 2 dt
讨论 法拉第圆盘发电机 ——铜盘在磁场中转动。
d ( B) dl
0
B sin 90 dl cos dl Rd 2 BR 2 cos d B2R
方向:
d θ dl

θ

B
R
ab
23
§15-3 感生电动势和感生电场
(1)感生电动势
考虑随时间变化的磁场,即 B Bt ,代入 B dS
分析指出:两种电动势的非静电力不同。

大学物理_力学课件(全)

大学物理_力学课件(全)

m1g T1 m1a
则mm32ggTT22
m2 (b a) m3 (a b)
2T2 T1 0
m3 对O点为 (a b)i
ab[mm(m11 ((1mm22
m3 )
m3 ) 2m2 )a
4m2m3 ] g 4m2m3 ( m1 2m2
)g
2m2
2m2
T1 m1 (g a)
52
砝码受三个力,木块六个力
F 1N1 2 N 2 Ma1
N1 N 2 Mg 0
2 N 2 ma2
N2 mg 0
解得
a2 2 g( 0);
r ji 2
(rji ) rji
F
d
v1v2
fij
G
v1v2
i dvi j dv j
rji 2
( rji rji
)
32
例. 一质量为m的质点受一质量为M,半 径为R的均匀分布圆环的万有引力(m 在垂直于环的直线上)
33
解: 线元 dl
dM dl
mdl
d F G r r2
M 2R
F
静止或匀速直线运动
49
例 . 如图,忽略摩擦,并设 绳子柔软不伸长,知 m1 200g, m2 100g, m3 50g.
求 m1、m2、m3 各自的加速度,
绳中张力。
50
解:选悬挂顶点为参考点。
设m1 向下的加速度为 a
m2 对悬挂它的滑轮2的加速度向下为b.
m2对O点的加速度为 (b a)i
0)
12
例. 半径为1 m的轮子以匀角加速度从静止开 始转动,20 s末的角速度为100 rad·s-1。求① 角加速度及20 s内转过的角度 ②第20 s末轮 边缘上一点的切向和法向加速度

大学物理第15章-热力学第一定律

大学物理第15章-热力学第一定律

所吸收的热量为 E4 E1 A 1869 747.6 26166 J Q .
一、摩尔热容 C
系统在一个过程中从外 界吸热(放热) ,温度上升(降低) ,定义: dQ dT
热容量
dQ C dT
摩尔热容C: 物质温度升高 K所吸收的热量,即 1mol 1
C C
dQ C dT
式中m, M分别为气体的总质量和 摩尔质量。
例:如图,系统沿过程 曲线abc态变化到c态共吸收热量 J,沿 500 过程曲线cda回到a态,向外放热 J,外界对系统作功 J, 300 200 求系统在abc过程中系统内能增加及 对外作功。 P
解:在cda过程中Q 300J,A 200J, 根据热力学第一定律, 有
p
III( p3 ,V3 , T3 )
T1 300K
p1 p2 p4 1.013 105 P a m RT1 2.8 103 8.31 300 V1 M p1 28 103 1.013 105 2.46 10 ( m )
3 3
2
IV( p4 ,V4 , T4 ) I ( p1 ,V1 , T1 ) II( p2 ,V2 , T2 )
单原子分子气体( 3): i
CV
3 R 2
CP
5 R 2

5 3
刚性双原子分子理想气 体(i 5),有
CV
5 R 2
CP
7 R 2
先求出每个分过程的 E, A, Q, 然后将其相加。
i) I II等压(P 0)
A1 pdV p1 (V2 V1 ) 1.013105 2.46103 249( J )
v1 v2

大学物理第十五章 狭义相对论

大学物理第十五章 狭义相对论

事件 2 (x2 , y2 , z2 ,t2 ) (x'2 , y'2 , z'2 ,t'2 )
同时 不同地
t' t'2 t'1 0 x' x'2 x'1 0
t

t'
v c2
x'

1 2
v c2
x'
0
1 2
30
结论 :沿两个惯性系运动方向,不同地点发生 的两个事件,在其中一个惯性系中是同时的, 在另 一惯性系中观察则不同时,所以同时具有相对意义; 只有在同一地点, 同一时刻发生的两个事件,在其 他惯性系中观察也是同时的 .
正如1900年英国物理学家开尔文在瞻望20世纪物理学的 发展的文章中说到:
“在已经基本建成的科学大厦中, 后辈的物理学家只要做一些零碎的修 补工作就行了。”
2
然而开尔文又说道:“但是,在物理学晴朗天空 的远处,还有两朵令人不安的乌云,----”
热辐射实验
迈克尔逊莫雷实验
后来的事实证明,正是这两朵乌云发展为一埸革命 的风暴,乌云落地化为一埸春雨,浇灌着两朵鲜花。
v y
vz

v z
11
力学相对性原理
1、加速度对伽里略变换不变
因两参考系
彼此作匀速 又
直线运动
t t
ax

d2x dt 2

d 2x dt2

ax

a

a
y

a/ y
a

az

a/zBiblioteka 2、牛顿定律对伽里略变换不变---力学相对性原理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分波面干涉法
分振幅干涉法
s1
光源 *
s2
杨氏双缝干涉
薄膜干涉
补充:光程和光程差
设光的频率为,在真空中的速度为c,波长为, 在折射率为n的介质中的速度为v,波长为' ,则
c v
n c v
介质中的波长
n
分析:光分别在真空和介质中 传播相同的距离D,相位变化?

2
k 1, 2, 3,
x (2k 1) D k 1, 2, 3,
2d
——B点处出现暗条纹。k = 1,2,……对应暗纹为
第一级,第二级,……暗纹。
3、波程差为其它值的点,光强介于最明与最暗之间。 因此上述两条纹分别是明纹中心和暗纹中心。
4、相邻两明纹(或暗纹)中心间的距离为:
相位差 2k 时,干涉加强 I 4I1
相位差 (2k 1) 时,干涉减弱 I 0
三、普通光源发光微观机制的特点 普通光源的发光机制——自发辐射

En


跃迁 基态
自发辐射
原子能级及发光跃迁
E h
1
2
P
t : 108 ~ 1010 s
普通光源发光特点: 原子发光是断续的,
解:加透明薄片后,①光路的光程为
r e ne r (n 1)e
1
1
P点是中央明纹,两
S1
光路的光程差应等于0
S
d
Δ r2 r1 (n 1)e 0
S2
r2 r1 (n 1)e
过 l 的路程所需的时间为 l / v,在相同的时间内光在 真空中传播走过的路程为:
c l u

c v

l

nl
光程
即介质中某一几何路程的光程,等于光在与走这段
路程相同时间内在真空中走过的路程。
光程是一个折合量,在相位改变相同的条件下, 把光在介质中传播的路程折合为光在真空中传播的 相应路程。
2、光程差 n2r2 n1r1
r2 r1 k k 0, 1, 2,
xd
D
x k D
d
k 0, 1, 2,
——B点处出现明条纹。k = 0的明纹称为中央明纹,
k = 1,2,3,……对应明纹为第一级,第二级,第三
级,……明纹。
2、在B点发生干涉减弱的条件为


r2

r1

(2k
1)
Δx D
说明
d
x k D
d
1) 干涉条纹是等距分布的,且各级明、暗条纹对称 分布在中央明纹两侧。
2) 当D、 一定时,x与d成反比,d 越小,条纹分
辨越清。
3) 当D 、d 一定时,x与 成正比,波长大的相邻
条纹间距大,波长小的相邻条纹间距小。
、 D一定时条纹间距 x与 d 的关系
第十五章
波动光学
15-1 光的相干性 一、光的电磁理论
光是频率在一定范
围电内磁,波对谱人眼能产
生视觉的电磁波。
可见光的范围 : 400 ~ 760 nm
电磁波谱
• 电磁波是电场强度 E 与磁场强度 H 的矢量波
y
E
O
z
H
u
x
平面简谐 电磁波
• 电磁波是横波,E 和 H 互相垂直,且与波的传播
相位差与光程差的关系: 2 n2r2 n1r1 2


干涉加强: k, k 0,1, 2,
干涉减弱: (2k 1) , k 0,1, 2,
2
说明
一列光波如经两种媒质,则光程为
n
d
n
S
r
P n(r d) nd
15-2 杨氏双缝干涉 一、杨氏双缝实验
跃变,这一跃变相当于反射光与入射光这间附加了半 个波长的波程差,故称作半波损失。
例1 如图双缝,已知入射光波长为,将折射率为
n 的劈尖缓慢插入光线 2 中,在劈尖移动过程中,问
1)干涉条纹间距是否变化? 2)条纹如何移动?
解:1)条纹 间距不变。
2)无劈尖时
r1 r2 r2 r1 0
实验现象
明条纹
S1 S
S2
明条纹 明条纹 明条纹 明条纹
理论分析
B
r
S1
1
x
r

S
d
2
O
S2
D
由S1、S2发出的光波到B点的光程差为:
r2 r1 d sin
由图可知:x D tan 当 很小时 : sin tan


r2
r1

d
tan

xd D
1、在B点发生干涉加强的条件为
方向垂直。

光矢量
• 能够引起视觉的是 E 矢量。
• 真空中电磁波的传播速度(光速)
c 1 2.998108 m/s
00
二、光的相干性 干涉现象是一切波动所具有的共同特性。 两列光的相干条件 1) 频率相同 2) 存在平行的光振动分量 3) 在相遇点相位差恒定 两列光相干叠加时干涉加强与减弱的条件
s1
S
s2
r1 r1
r2 r2
o o
e
O点为零级明纹位置
有劈尖时 (r2 e) ne r1
零级明纹位置下移
r1 (r2 e) ne
例2 在双缝实验中,入射光的波长为550nm,用一厚 e =2.85×10-4cm的透明薄片盖着S1缝,结果中央明纹移 到原来第三条明纹处,求透明薄片的折射率。
d、 D一定时,x随 的变化
用白光做光源时,除中央明纹是白光外,其它各级
条纹是彩色的,紫在内红在外;不同级次的条纹可能 发生重叠。
三、劳埃德镜
P'
P
s1
d
s2
M L 在L处为一暗纹
D
结论: 当光波由光疏介质(折射率较小)射向光密介质(折射
率较大)时,被光密介质反射的光在反射点有相位 的
真空

n
真空中: 2 D
介质中: 2 D 2 nD


即在介质中光线经过D 距离所发生的相位改变, 等于真空中经过nD所发 生的相位改变。
1、光程:光在某一介质中行进的几何路程 l与该介
质的折射率 n 的乘积 n l 叫做光程。
光程的意义:
设光在介质n中的传播速度为v ,在此种介质中走
每次发光形成一长度
有限的波列, 各原子 各次发光相互独立,
各波列互不相干。
激光光源——受激辐射
单色激光光源不同原子所 发的光具有相干性
E2
完全一样

E1
E2 E1/ h
(频率、相位、 振动方向、传播 方向都相同)
激光束干涉实验
获取相干光的方法:把光源上同一点发出的光设法 分成两部分,然后再使这两部分叠加起来。
相关文档
最新文档