从《平行四边形的面积计算》谈转化思想在小学数学中的应用[1]

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从《平行四边形的面积计算》谈转化思想在数学教学中的应用仙佛学校:徐开容继教编号:o04232041 11月17日我有幸参加了泸县进修校组织的数学教研活动,这次教研中我参与设计并教学《平行四边形的面积计算》,《平行四边形面积的计算》是西师版五年级上册第五单元的教学内容,这个单元的教学内容有平行四边形、三角形、梯形的面积计算。它是在学生认识了这些图形,掌握了长方形面积的计算方法之后安排的,是整个小学阶段平面图形面积计算的一个重点,也是整个小学阶段中能较明显体现教学数学方法的一个章节。教学这个单元,一般是把将要学习的图形转化成已经学会的图形,在引导学生比较之后得出将要学习图形的面积计算方法。随着教学的步步深入,转化思想从原先的陌生到最后的熟悉,越发显得重要。

平行四边形面积公式是以长方形的面积和平行四边形的底和高为基础,运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知中。另外平行四边形面积公式这一内容学习得如何,直接与学习三角形和梯形的面积公式有着直接的关系。课上我引导学生运用转化思想,在数方格法的基础上,用割补法,平移法把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。学生掌握了这种推导方法,也为后面学习三角形、梯形的面积公式的推导做了准备。

本节课重点在剪拼转化,验证猜想活动环节。动手操作是学生学习循序渐进的探索过程。由于前面在数格子时用到割补法来求面积,教师这时顺水推舟,让学生动手操作,将两个图形重叠发现,想办法将平行四边形转化为长方形,之后汇报。剪法可能有好多种,这时及时抛给学生问题"为什么要沿高剪开?"学生思考,再引导比较两个图形,"拼出的长方形与原平行四边形比较什么变了,什么没变?""拼成的长方形的长与原平行四边形的底有什么联系,长方形的宽与原平行四边形的高有什么联系?"顺势引导学生得出推导过程:将平行四边形剪、拼后转化成长方形,拼成的长方形的长就是平行四边形的底,宽就是平行四边形的高。因为长方形的面积=长*宽,所以平行四边形的面积=底*高。如用S表示平行四边形的面积,a表示平行四边形的底,h表示平行四边形的高,那么平行四边形的面积分公式用字母表示为S=ah同桌互说整个操作过程,真正理解。

最后让学生回顾推导过程,在闭上眼睛回想进一步深化公式的推导过程。

分层训练,理解内化新知及时巩固,才能得到理解与内化。本着"重基础,验能力,拓思维"的原则,设计三个层次的练习:第一层:基本练习正确分清平行四边形的底和高的关系。

第二层:综合练习

要求平行四边形的面积必须具备哪些条件?动手操作量底和高,体现"重实践"这一理念。通过不同的高引起学生的混淆。在计算中让学生明确计算平行四边形面积时要注意底与高的对应,根据面积公式

的灵活运用求平行四边形的底或高。

第三层次:拓展提高(深化学生的转化意识,为后面三角形面积、梯形面积的推导作铺垫

全课总结,质疑问难让学生说说本节课学到的知识,并说说是怎样学到的。还有什么问题想与老师和同学商讨。培养学生整理知识的能力和质疑问难的能力

通过这节课的教学,我的收获颇丰:

1、导入部分能针对教学目标进行设计,注重了新旧知识的联系,为新知识的学习做好了铺垫,为引发学生学习求知的欲望营造了良好的氛围,同时也揭示了知识产生的过程。

2、注重操作,使学生在实际活动中推倒出公式。课上我通过创设情境导入新课,给学生造成悬念,为探索新知创设了情境。在这样的情境中学习,学生容易兴奋、有积极性,学生产生了我要学的欲望。这样的教学方式培养学生的创新精神、合作意识,提高探究能力。

3、结合知识内容本身的灵活性,活动与习题的设计体现开放性和探索性。最后一道练习,体现了数学学习开放性、灵活性、发散性和挑战性。可以激发学生的学习兴趣,拓展学生的思维空间,使不同的学生得到不同的发展。把培养学生的创新意识落到实处。

综观本堂课也有一些遗憾,需要在今后的教学中引起注意:

1、语言组织的不是很严谨、到位!如在最后一道练习题的处理有些操之过急,今后还要在提高课堂的应变能力上下工夫,这种应变

能力是建立在教师对教材的深入钻研的基础之上的,把握住了这个关键点才能驾驭教材、驾驭课堂、驾驭学生的思维。

2、在今后的教学中还要在课堂操作讨论的过程中,教师如何介入,何时介入,才能既节约时间,又充分保留学生思维的空间和在课堂教学中应如何培养学生合作交流的习惯与能力这些问题上加以研究,提高学生小组学习的实效性。

3、要重视对学生的即时评价,不断提高学生学习数学的兴趣。

我想,不止“学无止境”,教也无止境。今后的教学中,我在努力提高自己善于捕捉信息的能力的同时,更要提升自己判断、重组的能力,在新的水平上更好地胜任教学过程的“重组者”、动态生成的“推进者”这一重要角色。与此同时本节课应用到了非常重要的数学思想——转化思想

在教学转化的过程中,我认为特别需要注意一个问题:谁在要求学生转化?

教材在编排“平行四边形的面积计算”这一内容时,先让学生比较两组图形的面积是否相等,要求学生把平行四边形转化成长方形;在编排“三角形的面积计算” 时,先让学生说一说平行四边形的一半(一个三角形)的面积是多少……如此的安排,如果教师在教学过程中没有足够的警惕,照搬教材中的教法的话,那么,转化就成了教师的一个要求,学生的操作、思考都将处于被动的状态,对转化的理解则可能浮于表面。

转化应该成为学生在解决问题过程中的内在的迫切需要,而不应

该是教师所提出的要求。在教学的过程中,可以将“怎样计算平行四边形的面积”直接抛向学生,让学生独立自由地思考。陌生的题目,调动所有的储备,寻找可能的方法,在此过程中转化的思想也就随之潜入学生的心中。

当然,为了能达到最佳的效果,对于转化过程中需要的基础性的知识,可以安排在这一课之前先行梳理,使诸多要用的知识成为学生熟知的内容,转化就能水到渠成。

转化成什么?

学生将没有学过的平行四边形的面积计算转化成已经学过的长方形的面积的时候,需要让学生体会两个方面:一是在转化的过程,把平行四边形剪一剪、拼一拼,最后得到的长方形和原来的平行四边形的面积是相等的(等积转化)。在这个前提之下,长方形的长就是平行四边形的底,宽就是高,所以平行四边形的面积就等于底乘高。二是在转化完成之后应提醒学生反思“为什么要转化成长方形的”。因为长方形的面积我们先前已经会计算了,所以,将不会的生疏的知识转化成了已经会了的、可以解决的知识,从而解决了难题。其他图形的教学亦是如此。

转化思想是解决数学问题的一种最基本的数学思想,在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题,我们也常常在不同的数学问题之间互相转化,可以说在解决数学问题时转化思想几乎是无处不在的。

相关文档
最新文档