七年级数学有理数的乘方6

合集下载

七年级有理数乘方知识点

七年级有理数乘方知识点

七年级有理数乘方知识点在初中数学中,有理数乘方是一个很重要的知识点,它广泛应用于代数运算和几何学。

本文将详细介绍七年级有理数乘方的相关知识点。

一、有理数的乘方有理数的乘方指一个数自乘若干次的结果。

假设a为有理数,n为正整数,则a的n次方可以表示为a^n。

例如,2的3次方可以表示为2^3,结果为8。

我们可以将有理数的乘方分为两类:正数的乘方和负数的乘方。

1. 正数的乘方当a为正数时,a的n次方为正数。

例如,3的4次方可以表示为3^4,结果为81。

2. 负数的乘方当a为负数时,a的n次方具有不同的奇偶性。

当n为偶数时,a的n次方为正数;当n为奇数时,a的n次方为负数。

例如,-2的3次方可以表示为(-2)^3,结果为-8。

二、有理数乘方的运算规律有理数乘方遵守一些运算规律,这些规律对于解决乘方运算问题非常有用。

1. 幂的乘法法则当a为有理数,m、n为正整数时,(a^m)^(n) = a^(m×n)。

例如,(2^3)^(2) = 2^(3×2),结果为64。

2. 幂的除法法则当a为有理数,m、n为正整数时,a^m÷a^n = a^(m-n)。

例如,2^7÷2^3 = 2^(7-3),结果为32。

3. 幂的负指数当a为有理数,m为正整数时,a的-m次方可以表示为1÷a^m。

例如,(-3)^-2 = 1÷(-3)^2,结果为1/9。

三、有理数乘方在数轴上的表示有理数乘方的运算可以通过数轴上的表示来更好地理解。

当有理数a为正数时,a的n次方表示为沿数轴上原点方向移动n个单位。

例如,2的3次方表示为在数轴上从原点开始,向右移动3个单位。

当有理数a为负数时,a的n次方表示为沿数轴上原点相反的方向移动n个单位。

例如,-2的3次方表示为在数轴上从原点开始,向左移动3个单位。

四、习题解析1. 计算:(1.4)^2÷0.7^3解:(1.4)^2÷0.7^3 = (1.4×1.4)÷(0.7×0.7×0.7) = 1.96÷0.343 = 5.7122. 化简:(-2a^3b^2)^2解:(-2a^3b^2)^2 = (-2)^2(a^3)^2(b^2)^2 = 4a^6b^4三年级有理数乘方知识点就讲到这里,相信大家对有理数乘方有了更深刻的认识。

七年级数学上册《有理数的乘方》PPT

七年级数学上册《有理数的乘方》PPT

(3) (
1 2
)3=
(
1 2
)×(
1 )×(
2
1 2
)=
1 8
(4)-34=-3×3×3×3=-81
注意:
(1)负数的乘方,在书写时一定要把
整个负数(连同符号),用小括号括
起来.这也是辨认底数的方法
(2)分数的乘方,在书写的时一定要
把整个分数用小括号括起来.
如:(
1 2
)
3
、(-3)2
探索 & 交流 例3 计算:
七年级数学上册
1.5.1 有理数的乘方
回顾 & 思考☞ 有理数乘法法则
两个有理数相乘
两数相乘,同号得正, 异号得负,绝对值相乘. 任何数与0相乘,积仍为0.
几个有理数相乘 倒数
积的符号是由负因数的个数决定
口诀:偶为正, 奇为负
乘积为1的两个有理数互为倒数
回顾 & 思考☞
5 5 面积
5 5
5 体积
议一议
-32与(-3)2 有什么不同?结果相等吗?
-32 读作 3的平方的相反数, (-3)2 读作-3的平方
-32=-9 (-3)2 =9
学以致用 例2. 计算:
(1)43
(2) (-5)4
(3) ( 1)3 2
解:(1) 43=4×4×4=64
(4) -34
(2) (-5)4=(-5) × (-5) × (-5) × (-5)=625
(1) 102, 103, 104 , 105;
(2) (-10)2, (-10)3, (-10)4 , (-10)5 .
解:(1) 102 =100 103=1000 104=10000 105=100000

有理数乘方知识点总结

有理数乘方知识点总结

七年级数学有理数乘方知识点总结
1、乘方的意义:乘方是一种运算方式,表示将一个底数与指定的指数相乘。

2、乘方的符号法则:正数的任何次方都是正数,负数的偶次方是正数,负数的奇次方是负数。

3、乘方的运算性质:
(1)乘方的运算性质可以表示为am ×an = am+n。

(2)乘方的运算性质还可以表示为am+n = am ×an。

(3)乘方的运算性质也可以表示为am-n = am/an。

乘方运算的特殊情况:
(1)当底数为0.指数为偶数时,结果为1.
(2)当底数为0.指数为奇数时,结果为0.
(3)当底数为1.指数为任何数时,结果都为1.
(4)当底数为-1.指数为偶数时,结果为1.
(5)当底数为-1.指数为奇数时,结果为-1.
重难点解析:
1、重点掌握乘方的意义和符号法则,能够正确进行乘方运算。

2、难点在于理解乘方的运算性质和特殊情况的处理,例如负数的奇次方、0的特殊情况等。

3、在实际应用中,需要能够利用乘方的运算性质进行简化计算,例如am+n = am ×an等。

总之,学生需要熟练掌握有理数乘方的概念和运算方法,理解其算理,能够在实际问题中灵活运用。

对于难点问题,需要通过多练习来加深理解。

新人教版数学七年级上有理数的乘方课件

新人教版数学七年级上有理数的乘方课件

(5)、 0.=13 -0;.001 (6)、
(7)、 1=2n ;1 (8)、
点击中招:
= =
;.112n31
2
-1
1
8
2 若
x
3
=27,
=y225,xy<0,则x+y的值为____
若a、b互为相反数,c、d互为倒数,则
a b=2009 0 = cd 2008 1
课堂小结 通过这节课的学习,你有哪些收获?
思考:
(-1)的偶数次幂为_1__
(-1)的奇数次幂为_-_1_
1的任何次幂为__1__
0的正整数次幂为_0___
0.13 ___, 1 4 _____ 2
104 _____,104 ____, 103 _____,103 _____
例1 :计算 (1) 53 =125 (2) 4 2 =16 (3) (-3)4 =81
22 2
100
计算,在这个积中有100个2相乘。 这么长的算式有简单的记法吗?
§1.5.1有理数的乘方
知识目标:了解乘方的意义并能正确的读、写; 掌握幂的性质并能进行乘方的运算。
能力目标:培养观察、类比、归纳、知识迁移的能力。 通过乘方运算,培养运算能力;
教学重难点: 重点:有理数乘方的意义; 难点:幂、底数、指数的概念及其表示
课堂小结
1、通过这节课的学习,你有 哪些收获?
2、乘方的结果叫做幂,设n为正整数,
(-1)2n+1=_-1____
(-1)
2n
=
___1_____
珠穆朗玛峰是世 界的最高峰,它 的海拔高度是 8848米。
猜一猜
≈ 把一张足够大的 厚度为0.1毫米

初一数学第6讲:有理数的乘方(教师版)

初一数学第6讲:有理数的乘方(教师版)

第六讲有理数的乘方一、有理数乘方1.乘方的定义(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;2.有理数的乘方法则(1)正数的任何次幂都是正数.(2)负数的奇次幂是负数.负数的偶次幂是正数.注意:当n为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =a n或(a-b)n=(b-a)n .二、科学记数法把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.三、近似数的精确位一个近似数,四舍五入到哪一位,就说这个近似数的精确到那一位.四、有效数字从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.1.区分乘方与幂的不同2.熟练掌握科学计数法表示数的方法例1.﹣12的值是()A.1B.﹣1 C.2D.﹣2考点:有理数的乘方.分析:根据乘方运算,可得幂,根据有理数的乘法运算,可得答案.解答:解:原式=﹣1,故选;B.点评:本题考查了有理数的乘方,注意底数是1.例2.(﹣2)3的值为()A.﹣6 B.6C.﹣8 D.8考点:有理数的乘方.专题:计算题.分析:根据有理数乘方的法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.解答:解:(﹣2)3=﹣8,故选C.点评:本题考查了有理数的乘方法则,解题时牢记法则是关键,此题比较简单,易于掌握.例3.据统计,2014年河南省机动车保有量突破280万辆,对数据“280万”的理解错误的是()A.精确到万位B.有三个有效数字C.这是一个精确数D.用科学记数法表示为2.80×106考点:近似数和有效数字.分析:根据近似数、有效数字的意义和科学记数法的计数方法逐一分析得出答案即可.解答:解:A、280万精确到万位是正确的,此选项不合题意;B、280万有三个有效数字是正确的,此选项不合题意;C、280万是一个近似数,不是精确数,此选项符合题意;D、280万用科学记数法表示为2.80×106是正确的,此选项不合题意.故选:C.点评:此题考查近似数与有效数字,以及科学计数法,掌握基本概念和方法是解决问题的关键.例4.据国家统计局初步核算,2012年全年国内生产总值519322亿元,请用科学记数法表示519322亿元正确的是()A.5.19322×105元B.519322×105元C.5.19322×108元D.5.19322×1013元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于519322亿有14位,所以可以确定n=14﹣1=13.解答:解:519322亿=51 932 200 000 000=5.19322×1013.故选D.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.例5.一种病毒长度约为0.000056mm,用科学记数法表示这个数为()A.5.6×10﹣6B.5.6×10﹣5C.0.56×10﹣5D.56×10﹣6考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000056=5.6×10﹣5.故选:B.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.例6.用科学记数法表示数5.8×10﹣5,它应该等于()A.0.005 8 B.0.000 58 C.0.000 058 D.0.O00 005 8考点:科学记数法—原数.分析:把5.8的小数点向右移动5个位,即可得到.解答:解:5.8×10﹣5=0.000 058.故选:C.点评:本题主要考查了用科学记数法表示的数化成一般的数的方法,用科学记数法表示的数还原成原数时,n>0时,n是几,小数点就向后移几位.A档1.计算:32=.考点:有理数的乘方.分析:此题比较简单,直接利用平方的定义即可求出结果.解答:解:32=9.故填空答案:9.点评:此题只要利用平方的定义即可.2.﹣32=.考点:有理数的乘方.分析:﹣32即32的相反数.解答:解:﹣32=﹣9.点评:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.乘方的意义就是多少个某个数字的乘积.负数的奇数次幂是负数,负数的偶数次幂是正数;﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.3.计算:﹣22﹣(﹣2)2=.考点:有理数的乘方.分析:利用有理数的乘方运算法则得出即可.解答:解:﹣22﹣(﹣2)2=﹣4﹣4=﹣8.故答案为:﹣8.点评:此题主要考查了有理数的乘方运算法则,注意运算符号.4.近似数8.6×105精确到位.考点:近似数和有效数字.分析:根据近似数精确到哪一位,应当看末位数字实际在哪一位,即可得出答案.解答:解:近似数8.6×105精确到万位;故答案为:万.点评:此题考查了近似数和有效数字,最后一位所在的位置就是精确度.5.近似数3.06精确到位.考点:近似数和有效数字.分析:精确到哪一位就是看这个近似数的最后一位的数字在什么位.解答:解:近似数3.06精确到百分位.故答案为:百分.点评:本题考查近似数与有效数字,精确度由所得近似数的最后一位有效数字在该数中的位置决定.B档6.近似数1.02×105精确到了位.考点:近似数和有效数字.分析:根据近似数的精确度求解.解答:解:近似数1.02×105精确到了千位.故答案为千.点评:本题考查了近似数与有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.7.由四舍五入得到的近似数0.5600的有效数字的个数是,精确度是.考点:近似数和有效数字.分析:根据有效数字的定义和近似数的精确度求解.解答:解:近似数0.5600的有效数字是5、6、0、0,精确度为精确到0.0001.故答案为4,精确到0.0001.点评:本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.8.世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:6 700 000=6.7×106,则n=6,故答案为:6.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.嫦娥三号是嫦娥绕月探月工程计划中嫦娥系列的第三颗人造绕月探月卫星.将于2013年下半年择机发射.奔向距地球1500000km的深空.用科学记数法表示1500000为.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:1 500 000=1.5×106,故答案为:1.5×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.截至2013年12月31日,余额宝规模已达到1853亿元,这个数据用科学记数法可表示为元.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1853亿有12位,所以可以确定n=12﹣1=11.解答:解:1853亿=185 300 000 000=1.853×1011.故答案为:1.853×1011.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.C档11.环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.0000025米.用科学记数法表示0.0000025为.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 0025=2.5×10﹣6;故答案为:2.5×10﹣6.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.人的眼睛可以看见的红光的波长是0.000077cm,请把这个数用科学记数法表示,其结果是cm.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000077=7.7×10﹣5,故答案为:7.7×10﹣5.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.用小数表示1.027×10﹣6=0.000001027.考点:科学记数法—原数.分析:科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.027×10﹣6中1.027的小数点向左移动6位就可以得到.解答:解:原式=0.000001027,故答案为0.000001027.点评:本题考查了科学记数法,写出用科学记数法表示的原数.将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.14.我国第六次人口普查公布全国人口数约为137054万,将这个数精确到亿位,结果为.考点:科学记数法与有效数字.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于137054万有10位,所以可以确定n=10﹣1=9.解答:解:我国第六次人口普查公布全国人口数约为137054万,将这个数精确到亿位,结果为1.3×109,故答案为:1.3×109.点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.15.2015年3月10日,苹果公司宣布Apple Watch从4月10日起开始预售,价格从2588元﹣126800元不等,将126800元精确到千位,结果为.考点:科学记数法与有效数字.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于126800有6位,所以可以确定n=6﹣1=5.解答:解:将126800元精确到千位,结果为1.27×105;故答案为:1.27×105.点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.1.用科学记数法表示0.0000216,结果是(保留两位有效数字).考点:科学记数法与有效数字.分析:根据科学记数法的表示方法,有效数字的意义,可得答案.解答:解:0.0000216=2.2×10﹣5,故答案为:2.2×10﹣5.点评:本题考查了科学记数法与有效数字,数字的前面有几个零,科学计数法中10的指数就是负几.2.计算:=.考点:有理数的乘方.分析:直接利用乘方的意义和计算方法计算得出答案即可.解答:解:﹣(﹣)2=﹣.故答案为:﹣.点评:此题考查有理数的乘方,掌握乘方的意义和计算方法是解决问题的关键.3.计算(﹣1)2012﹣(﹣1)2011的值是.考点:有理数的乘方.分析:根据﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1解答.解答:解:(﹣1)2012﹣(﹣1)2011,=1﹣(﹣1),=1+1,=2.故答案为:2.点评:本题考查了有理数的乘方,熟记﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1是解题的关键.4.中央电视台统计显示,南京青奥会开幕式直播有超过2亿观众通过央视收看,2亿用科学记数法可记为.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将2亿=200000000用科学记数法表示为:2×108.故答案为:2×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.光的速度为300000千米/秒,太阳光从太阳照到地球约需500秒,地球与太阳距离是米(用科学记数法).考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:300000×500=150000000千米=1.5×1014米.故答案为1.5×1014.点评:本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.1.计算:﹣24+(﹣2)4=.考点:有理数的乘方.专题:计算题.分析:此题比较简单,直接利用幂的定义就可以求出结果.解答:解:﹣24+(﹣2)4=﹣16+16=0.故填空答案:0.点评:此题主要考查了乘方的定义,其中的规律:①负数的奇数次幂是负数,负数的偶数次幂是正数;②﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.2.在近似数6.48中,精确到位,有个有效数字.考点:近似数和有效数字.分析:近似数精确到哪一位,应当看末位数字实际在哪一位,最后一位是什么位就是精确到哪一位;一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.解答:解:近似数6.48中,最后一位是百分位,因而是精确到百分位,有6,4,8共3个有效数字.故答案是百分和3.点评:本题主要考查了近似数与有效数字的确定方法,精确到哪一位,即对下一位的数字进行四舍五入.有效数字的计算方法以及与精确到哪一位是需要识记的内容,经常会出错.3.用四舍五入法把3.0987精确到0.01的结果是.考点:近似数和有效数字.分析:精确到哪位,就是对它后边的一位进行四舍五入.解答:解:把3.0987精确到0.01,即对千分位的数字进行四舍五入,是3.10.故答案为:3.10.点评:精确到哪一位,即对下一位的数字进行四舍五入.这里对千分位的8入了后,百分位的是9,满了10后要进1.4.数2.30×103精确到位.考点:近似数和有效数字.分析:根据近似数的精确度求解.解答:解:2.30×103精确到十位.故答案为十.点评:本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.5.2014年我国的国内生产总值(GPD)达到636000亿元,请将636000用科学记数法表示,记为.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将636000用科学记数法表示为6.36×105.故答案为:6.36×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.人的眼睛可以看见的红光的波长是0.000077cm,请把这个数用科学记数法表示,其结果是cm.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000077=7.7×10﹣5,故答案为:7.7×10﹣5.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.写出下列用科学记数法表示的数的原来的数:2.35×10﹣2=.考点:科学记数法—原数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.因而把这个数还原,就是把2的小数点向左移动2位.解答:解:2.35×10﹣2=0.0235.故答案为:0.0235.点评:本题考查写出用科学记数法表示的原数.将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.8.我国现有约7849万名共青团员,用科学记数法(保留两个有效数字)表示为名.考点:科学记数法与有效数字.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于7849万有8位,所以可以确定n=8﹣1=7.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:7849万=7.849×107≈7.8×107,故答案为7.8×107.点评:本题考查了科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.课程顾问签字: 教学主管签字:。

第06讲 有理数的乘方(解析版)七年级数学下册

第06讲 有理数的乘方(解析版)七年级数学下册

第06讲平行线的性质课程标准学习目标①平行线的性质 1.掌握两直线平行,同位角相等,并能够灵活应用。

2.掌握两直线平行,内错角相等,并能够灵活应用。

3.掌握两直线平行,同旁内角互补,并能够灵活应用。

知识点01平行线的性质1.两直线平行,同位角相等:①性质内容:两条平行线被第三条直线所截,同位角相等。

简单说成两直线平行,同位角相等。

②符号语言:若AB ∥CD ,则∠NEB =∠NFD 2.两直线平行,内错角相等:①性质内容:两条平行线被第三条直线所截,内错角相等。

简单说成两直线平行,内错角相等。

②符号语言:若AB ∥CD ,则∠AEM =∠NFD3.两直线平行,同旁内角互补:①性质内容:两条平行线被第三条直线所截,同旁内角互补。

简单说成两直线平行,同旁内角互补。

②符号语言:若AB∥CD,则∠BEM+∠NFD=180°【即学即练1】1.用一副三角板拼成如图所示的形状,使得两个三角形的直角边互相平行,则∠1与∠2相等的依据是()A.两直线平行,同位角相等B.两直线平行,内错角相等C.两直线平行,同旁内角互补D.对顶角相等【分析】由两平行线,内错角相等,即可得到答案.【解答】解:∠1与∠2相等的依据是两直线平行,内错角相等,故选:B.【即学即练2】2.如图,直线l1∥l2,Rt△ABC中,∠B=60°,直角顶点A在直线l上,顶点C在直线l2上,已知∠1=25°,则∠2的度数为()A.35°B.45°C.55°D.65°【分析】根据含30°角的直角三角形的性质和平行线的性质得出∠2的度数即可.【解答】解:∵Rt△ABC中,∠B=60°,∴∠ACB=30°,∵l1∥l2,∴∠2=∠ACB+∠1=30°+25°=55°,故选:C.【即学即练3】3.如图,直线a,b被直线c所截,若a∥b,∠1=48°,则∠2的度数是()A.148°B.138°C.142°D.132°【分析】先根据平行线的性质求出∠3的度数,再由邻补角的定义即可得出结论.【解答】解:∵a∥b,∠1=48°,∴∠3=∠1=48°,∴∠2=180°﹣∠3=180°﹣48°=132°.故选:D.题型01根据平行线的性质计算【典例1】如图,a∥b,∠1=42°,则∠2的度数为()A.48°B.42°C.138°D.52°【分析】根据平行线的性质和对顶角相等解答即可.【解答】解:∵∠1=∠3=42°,a∥b,∴∠2=∠3=42°,故选:B.【变式1】如图,已知AE∥BC,∠BAC=100°,∠DAE=50°,则∠C=()A.10°B.20°C.30°D.40°【分析】根据邻补角定义得出∠DAC=80°,根据角的和差求出∠CAE=30°,根据平行线的性质即可得解.【解答】解:∵∠DAC+∠BAC=180°,∠BAC=100°,∴∠DAC=80°,∵∠DAC=∠DAE+∠CAE,∠DAE=50°,∴∠CAE=30°,∵AE∥BC,∴∠C=∠CAE=30°,故选:C.【变式2】如图,∠ECD=50°,点M是EC上一点,过点M作AB∥CD,若MF平分∠AME,则∠AMF 的度数为()A.60°B.55°C.70°D.65°【分析】根据两直线平行,同位角相等可得∠EMB=∠ECD=50°,于是利用平角的定义可得∠AME=130°,再根据角平分线的定义即可求解.【解答】解:∵AB∥CD,∴∠EMB=∠ECD=50°,∴∠AME=180°﹣∠EMB=180°﹣50°=130°,∵MF平分∠AME,∴∠AMF=65°.故选:D.【变式3】如图,AB∥DE,BC∥EF,若∠E=118°,则∠B的度数为()A.62°B.72°C.102°D.118°【分析】根据两直线平行,同旁内角互补求得∠1=50°,再两直线平行,内错角相等可得∠1=∠B.【解答】解:∵AB∥DE,∴∠1+∠E=180°,∵∠E=118°,∴∠1=62°,∵BC∥EF,∴∠B=∠1=62°.故选:A.题型02平行线与直角三角板【典例1】如图,将直尺与含45°角的直角三角形叠放在一起,若∠2=35°,则∠1的度数为()A.35°B.45°C.55°D.65°【分析】根据余角的定义和平行线的性质即可得到结论.【解答】解:如图,∵∠ACB=90°,∠2=35°,∴∠3=90°﹣∠2=90°﹣35°=55°,∵直尺对边平行,∴∠1=∠3=55°.故选:C.【变式1】如图,将三角尺的直角顶点放在直尺的一边上,若∠1=60°15′,则∠2的大小为()A.60°15′B.39°45′C.29°85′D.29°45′【分析】根据平行线的性质得出∠3,进而利用互余解答即可.【解答】解:如图,由直尺两边平行,可得:∠1=∠3=60°15',∴∠2=90°﹣∠3=90°﹣60°15'=29°45',故选:D.【变式2】如图,直角三角板的直角顶点放在直线b上,且a∥b,∠1=55°,则∠2的度数为()A.35°B.45°C.55°D.25°【分析】先根据平行线的性质求出∠3的度数,再由两角互余的性质求出∠2的度数即可.【解答】解:∵a∥b,∠1=55°,∴∠3=∠1=55°,∴∠2=90°﹣∠3=90°﹣55°=35°.故选:A.【变式3】将等腰直角三角形ADE和直角三角形ABC(其中∠C=30°)按如图所示的方式摆放,点D在BC上,若AE∥BC,则∠DAC的度数是()A.12°B.15°C.20°D.25°【分析】根据“两直线平行,内错角相等”求出∠CAE=30°,再根据角的和差求解即可.【解答】解:∵AE∥BC,∠C=30°,∴∠CAE=∠C=30°,∵∠DAE=45°,∴∠DAC=∠DAE﹣∠CAE=15°,故选:B.题型03平行线与折叠【典例1】如图,纸片的边缘AB,CD互相平行,将纸片沿EF折叠,使得点B,D分别落在点B',D'处.若∠1=80°,则∠2的度数是()A.50°B.60°C.70°D.80°【分析】根据平行线的性质可得∠AEB′=80°,从而利用平角定义求出∠BEB′=100°,然后根据折叠的性质进行计算即可解答.【解答】解:∵AB∥CD,∴∠1=∠AEB′=80°,∴∠BEB′=180°﹣∠AEB′=100°,由折叠得:∠2=∠FEB′=∠BEB′=50°,故选:A.【变式1】如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.20°B.30°C.35°D.55°【分析】已知四边形ABCD是矩形,则可得AB∥CD,∠C=90°;联系折叠的性质易得∠BDC′、∠DC′B的度数,由平行线的性质可求出∠ABD的度数;接下来在△BC′D中利用三角形内角和即可求出∠2.【解答】解:由题意可知:∠C=90°,AB∥CD,∴∠ABD=∠1=35°由折叠的性质可知:∠BDC′=∠1=35°,∠DC′B=∠C=90°.∴∠2=180°﹣∠DC′B﹣∠ABD﹣∠BDC′=20°.故选:A.【变式2】如图,矩形纸片ABCD,M为AD边的中点将纸片沿BM、CM折叠,使A点落在A1处,D点落在D1处,若∠1=32°,则∠BMC=()A.74°B.106°C.122°D.148°【分析】利用折叠的性质,相重合的角相等,然后利用平角定理求出角的度数.【解答】解:∵∠1=32°,∠AMA1+∠1+∠DMD1=180°,∴∠AMA1+∠DMD1=180°﹣32°=148°.∴∠BMA1+∠CMD1=74°.∴∠BMC=∠BMA1+∠CMD1+∠1=74°+32°=106°.故选:B.【变式3】如图,将一条两边互相平行的纸带折叠,下列正确的是()A.若∠1=∠2,则∠1=40°B.若∠1=∠2,则∠1=55°C.若∠1=2∠2,则∠1=80°D.若∠1=3∠2,则∠1=108°【分析】先根据已知条件画出图形,再根据平行线的性质证出∠ABC=∠1,再由折叠性质证出2∠2+∠1=180°,最后按照证出的∠1和∠2的关系式,根据各个选项的中的已知条件,求出∠1的度数,进行判断即可.【解答】解:如图所示:由平行线的性质可得:∠ABC=∠1,由折叠性质可得:∠CBD+∠ABD=180°,即∠2+∠2+∠ABC=180°,∴2∠2+∠ABC=180°,∴2∠2+∠1=180°,A.若∠1=,则,∠1=36°,故此选项不符合题意;B.若∠1=∠2,则3∠1=180°,∠1=60°,故此选项不符合题意;C.若∠1=2∠2,则4∠2=180°,∠2=45°,∠1=90°,故此选项不符合题意;D.若∠1=3∠2,则5∠2=180°,∠2=36°,∠1=108°,故此选项符合题意;故选:D.题型04平行线间的拐点【典例1】如图,直线m∥n,含有45°角的三角板的直角顶点O在直线m上,点A在直线n上,若∠1=20°,则∠2的度数为()A.15°B.25°C.35°D.45°【分析】过B作BK∥m,推出BK∥n,由平行线的性质得到∠OBK=∠1=20°,∠2=∠ABK,求出∠ABK=∠ABO﹣∠OBK=25°,即可得到∠2=25°.【解答】解:过B作BK∥m,∵m∥n,∴BK∥n,∴∠OBK=∠1=20°,∠2=∠ABK,∵∠ABO=45°,∴∠ABK=∠ABO﹣∠OBK=45°﹣20°=25°,∴∠2=∠ABK=25°.故选:B.【变式1】如图,直线m∥n,△ABC是直角三角形,∠B=90°,点C在直线n上.若∠1=50°,则∠2的度数是()A.60°B.50°C.45°D.40°【分析】根据平行线的性质可以得到∠1=∠BDC,然后直角三角形的性质,即可求得∠2的度数.【解答】解:延长AB交直线n于点D,∵m∥n,∠1=50°,∴∠1=∠BDC=50°,∵∠ABC=90°,∴∠CBD=90°,∴∠2=90°﹣∠BDC=90°﹣50°=40°,故选:D.【变式2】如图,AB∥CD,则图中∠1、∠2、∠3关系一定成立的是()A.∠1+∠2+∠3=180°B.∠1+∠2+∠3=360°C.∠1+∠3=2∠2D.∠1+∠3=∠2【分析】首先过点E作EF∥AB,由AB∥CD,可得EF∥AB∥CD,然后根据两直线平行,内错角相等,即可求得∠AEF=∠1,∠CEF=∠3,继而可得∠1+∠3=∠2.【解答】解:过点E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠AEF=∠1,∠CEF=∠3,∵∠2=∠AEF+∠CEF=∠1+∠3.故选:D.【变式3】如图,AB∥CD,则∠A、∠C、∠E、∠F满足的数量关系为()A.∠A+∠C+∠F=∠E B.∠A+∠C+∠E+∠F=360°C.∠A+∠C+∠E﹣∠F=180°D.∠A+∠C﹣∠E+∠F=180°【分析】过E作EM∥AB,过F作FN∥AB,得到EM∥FN∥CD,因此∠A+∠AEM=180°,∠MEF=∠NFE,∠NFC=∠C,得到∠MEF=∠EFC﹣∠C,故∠AEM=∠AEF+∠C﹣∠EFC,于是得到∠A+∠AEF+∠C﹣∠EFC=180°.【解答】解:过E作EM∥AB,过F作FN∥AB,∵AB∥CD,∴EM∥FN∥CD,∴∠A+∠AEM=180°,∠MEF=∠NFE,∠NFC=∠C,∴∠C+∠MEF=∠NFE+∠NFC=∠EFC,∴∠MEF=∠EFC﹣∠C,∵∠AEM=∠AEF﹣∠MEF=∠AEF+∠C﹣∠EFC,∴∠A+∠AEF+∠C﹣∠EFC=180°.故选:C.【变式4】如图,已知AB∥CD,点E,F分别在AB,CD上,点G,H在两条平行线AB,CD之间,∠AEG 与∠FHG的平分线交于点M.若∠EGH=84°,∠HFD=20°,则∠M的度数为()A.64°B.54°C.42°D.32°【分析】过点G,M,H作AB的平行线,容易得出∠AEG+∠GHF=104°,EM和MH是角平分线,所以∠AEM+∠MHF=52°,进一步求∠M即可.【解答】解:如图所示,过点G,M,H作GN∥AB,MP∥AB,KH∥AB,∵AB∥CD.∴AB∥GN∥M P∥KH∥CD,∵GN∥AB.∴∠AEG=∠EGN,∵GN∥KH,∴∠NGH=∠GHK,∵KH∥CD,∴∠HFD=∠KHF,∵∠EGH=84°,∠HFD=20°,∴∠AEG+∠GHF=104°,∵EM和MH是角平分线,∴∠AEM+∠MHF=52°,∵∠HFD=∠KHF=20°,∴∠AEM+∠MHK=32°,∵MP∥AB∥KH,∴∠EMP=∠AEM,∠PMH=∠MHK,∴∠EMP+∠PMH=32°,即∠EMH=32°.故选:D.题型05平行线的判定与性质求值【典例1】如图,已知∠1=∠2,下列结论正确的是()A.∠3=∠4B.∠1=∠4C.∠B=∠5D.∠D=∠5【分析】根据内错角相等,两直线平行可得AD∥BC,再根据两直线平行,内错角相等可得结论.【解答】解:∵∠1=∠2,∴AD∥BC,∴∠D=∠5.故选:D.【变式1】如图,已知a⊥c,b⊥c,若∠1=65°,则∠2等于()A.65°B.90°C.25°D.70°【分析】先根据a⊥c,b⊥c,可得a∥b,根据平行线的性质可得∠1=∠3,再根据对顶角的性质即可得出答案.【解答】解:因为a⊥c,b⊥c,所以a∥b,所以∠1=∠3=65°,所以∠2=∠3=65°.故选:A.【变式2】如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=76°,则∠4=()°A.76B.104C.114D.14【分析】由∠1=∠2,证出a∥b,由平行线的性质即可得出∠4=∠3=76°.【解答】解:∵∠1=∠2,∴a∥b,∴∠4=∠3=76°,故选:A.【变式3】如图,若∠1=55°,∠3+∠4=180°,则∠2的度数为()A.115°B.120°C.125°D.135°【分析】由∠3+∠4=180°,得到AB∥CD,推出∠5=∠1=55°,即可求出∠2=125°.【解答】解:∵∠3+∠4=180°,∴AB∥CD,∴∠5=∠1=55°,∵∠5+∠2=180°,∴∠2=125°.故选:C.题型06平行线的判定与性质证明【典例1】将下面的解答过程补充完整:如图,已知DE∥BC,EF平分∠CED,∠A=∠CFE,那么EF与AB平行吗?为什么?解:因为DE∥BC(已知),所以∠DEF=∠CFE(两直线平行,内错角相等①),因为EF平分∠CED(已知),所以∠DEF=∠CFE②(角平分线的定义),所以∠CFE=∠CEF(等量代换③),因为∠A=∠CFE(已知),所以∠A=∠CEF④(等量代换),所以EF∥AB(同位角相等,两直线平行⑤).【分析】先根据两直线平行,内错角相等,得到∠DEF=∠CFE,再根据角平分线得出∠DEF=∠CEF,进而得到∠CFE=∠CEF,再根据∠A=∠CFE,即可得出∠A=∠CEF,进而根据同位角相等,两直线平行,判定EF∥BC.【解答】解:因为DE∥BC(已知),所以∠DEF=∠CFE(两直线平行,内错角相等①),因为EF平分∠CED(已知),所以∠DEF=∠CFE②(角平分线的定义),所以∠CFE=∠CEF(等量代换③),因为∠A=∠CFE(已知),所以∠A=∠CEF④(等量代换),所以EF∥AB(同位角相等,两直线平行⑤)故答案为:两直线平行,内错角相等,∠CFE.等量代换,∠CEF,同位角相等,两直线平行.【典例2】如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于E.(1)求证:AD∥BC;(2)若∠ADB=36°,求∠EFC的度数.【分析】(1)求出∠ABC+∠A=180°,根据平行线的判定推出即可;(2)根据平行线的性质求出∠DBC,根据垂直推出BD∥EF,根据平行线的性质即可求出∠EFC.【解答】(1)证明:∵∠ABC=180°﹣∠A,∴∠ABC+∠A=180°,∴AD∥BC;(2)∵AD∥BC,∠ADB=36°,∴∠DBC=∠ADB=36°,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠DBC=∠EFC=36°【变式1】如图,∠B=∠BGD,∠BGC=∠F.试说明∠B+∠F=180°.请完善解答过程,并在括号内填写相应的理论根据.解:∵∠B=∠BGD(已知),∴AB∥CD(内错角相等,两直线平行).∵∠BGC=∠F(已知),∴CD∥EF(同位角相等,两直线平行).∴AB∥EF(平行于同一直线的两直线平行).∴∠B+∠F=180°(两直线平行,同旁内角互补).【分析】由平行线的判定条件可得AB∥CD,CD∥EF,再利用平行线的性质即可得到AB∥EF,从而可证得∠B+∠F=180°.【解答】解:∵∠B=∠BGD(已知),∴AB∥CD(内错角相等,两直线平行).∵∠BGC=∠F(已知),∴CD∥EF(同位角相等,两直线平行).∴AB∥EF(平行于同一直线的两直线平行).∴∠B+∠F=180°(两直线平行,同旁内角互补).故答案为:AB;内错角相等,两直线平行;EF;同位角相等,两直线平行;AB;EF;两直线平行,同旁内角互补.【变式2】请把以下证明过程补充完整,并在下面的括号内填上推理理由:已知:如图,∠1=∠2,∠A=∠D.求证:∠B=∠C证明:∵∠1=∠2,(已知)又:∵∠1=∠3,对顶角相等∴∠2=∠3,(等量代换)∴AE∥FD同位角相等,两直线平行∴∠A=∠BFD两直线平行,同位角相等∵∠A=∠D(已知)∴∠D=∠BFD(等量代换)∴AB∥CD内错角相等,两直线平行∴∠B=∠C两直线平行,内错角相等.【分析】先根据题意得出∠2=∠3,故可得出AE∥FD,故∠A=∠BFD,再由∠A=∠D可得出∠D=∠BFD,故可得出AB∥CD,进而可得出结论.【解答】证明:∵∠1=∠2(已知),又∵∠1=∠3对顶角相等,∴∠2=∠3(等量代换),∴AE∥FD(同位角相等,两直线平行),∴∠A=∠BFD(两直线平行,同位角相等).∵∠A=∠D(已知),∴∠D=∠BFD(等量代换),∴AB∥CD(内错角相等,两直线平行).∴∠B=∠C(两直线平行,内错角相等).故答案为:对顶角相等;∠3;同位角相等,两直线平行;两直线平行,同位角相等;∠BFD;AB,内错角相等,两直线平行;两直线平行,内错角相等.【变式3】如图,已知AD∥FE,∠1=∠2.(1)试说明DG∥AC;(2)若∠BAC=70°,求∠AGD的度数.【分析】(1)只要证明∠2=∠DAC即可.(2)利用平行线的性质解决问题即可.【解答】解:(1)∵AD∥EF,∴∠1=∠DAC,∵∠1=∠2,∴∠2=∠DAC,∴DG∥AC.(2)∵DG∥AC,∴∠AGD+∠BAC=180°,∵∠BAC=70°,∴∠AGD=110°【变式4】已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DF∥CA,∠FDE=∠A;(1)求证:DE∥BA.(2)若∠BFD=∠BDF=2∠EDC,求∠B的度数.【分析】(1)根据平行线的性质与判定方法证明即可;(2)设∠EDC=x°,由∠BFD=∠BDF=2∠EDC可得∠BFD=∠BDF=2x°,根据平行线的性质可得∠DFB=∠FDE=2x°,再根据平角的定义列方程可得x的值,进而得出∠B的度数.【解答】解:(1)证明:∵DF∥CA,∴∠DFB=∠A,又∵∠FDE=∠A,∴∠DFB=∠FDE,∴DE∥AB;(2)设∠EDC=x°,∵∠BFD=∠BDF=2∠EDC,∴∠BFD=∠BDF=2x°,由(1)可知DE∥BA,∴∠DFB=∠FDE=2x°,∴∠BDF+∠EDF+∠EDC=2x°+2x°+x°=180°,∴x=36,又∵DE∥AB,∴∠B=∠EDC=36°.1.如图所示,直线a∥b,直线l与a,b相交,若∠1=110°,∠2的度数为()A.110°B.55°C.70°D.80°【分析】由推出平行线的性质推出∠1+∠3=180°,又∠1=110°,求出∠3=70°,由对顶角的性质得到∠2=∠3=70°.【解答】解:∵a∥b,∴∠1+∠3=180°,∵∠1=110°,∴∠3=70°,∴∠2=∠3=70°.故选:C.2.如图,直线l1∥l2,AB=AC,∠BAC=36°,则∠1+∠2的度数是()A.66°B.72°C.78°D.82°【分析】先根据等腰三角形的性质求出∠ABC的度数,再由平行线的性质即可得出结论.【解答】解:∵AB=AC,∠BAC=40°,∴∠ABC==72°,∵直线l1∥l2,∴∠1+∠ABC+∠2+∠BAC=180°,即∠1+72°+∠2+36°=180°,∴∠1+∠2=72°.故选:B.3.如图,直线l1∥l2,Rt△ABC中,∠B=60°,直角顶点A在直线l1上,顶点C在直线l2上,已知∠1=25°,则∠2的度数为()A.35°B.45°C.55°D.65°【分析】由直角三角形的性质求出∠ACB=30°,得到∠BCD=∠ACB+∠1=55°.由平行线的性质推出∠2=∠BCD=55°.【解答】解:∵Rt△ABC中,∠B=60°,∴∠ACB=90°﹣∠B=30°,∵∠1=25°,∴∠BCD=∠ACB+∠1=55°,∵l1∥l2,∴∠2=∠BCD=55°.故选:C.4.如图两直线m、n与△ABC的边相交,且m、n分别与AB、BC平行.根据图中所示角度,可知∠B的度数为()A.52°B.58°C.70°D.72°【分析】由两直线平行,同旁内角互补可得出∠A和∠C的度数,再根据三角形内角和可得出∠B的度数.【解答】解:因为m、n分别与AB、BC平行,所以∠C+122°=180°,∠A+110°=180°,所以∠C=58°,∠A=70°,所以∠B=180°﹣∠C=∠A=52°.故选:A.5.如图,烧杯内液体表面AB与烧杯下底部CD平行,光线EF从液体中射向空气时发生折射,光线变成FH,点G在射线EF上,已知∠HFB=20°,∠FED=60°,则∠GFH的度数为()A.20°B.40°C.60°D.80°【分析】先利用平行线的性质可得∠FED=∠GFB=60°,然后利用角的和差关系进行计算,即可解答.【解答】解:∵AB∥CD,∠FED=60°,∴∠FED=∠GFB=60°,∵∠HFB=20°,∴∠GFH=∠GFB﹣∠HFB=40°,故选:B.6.如图,直线AB∥CD,GE⊥EF于点E.若∠EFD=32°,则∠BGE的度数是()A.62°B.58°C.52°D.48°【分析】过点E作AB的平行线HI,利用平行线的性质即可求解.【解答】解:过点E作直线HI∥AB.∵AB∥CD,AB∥HI,∠EFD=32°,∴CD∥HI,∴∠HEF=∠EFD=32°,∵GE⊥EF于点E,∴∠GEF=90°,∴∠GEH=∠GEF﹣∠HEF=90°﹣32°=58°,∵AB∥HI,∴∠BGE=∠GEH=58°.故选:B.7.如图,直线a∥b,直线AB⊥AC,若∠1=50°,则∠2=()A.30°B.40°C.45°D.50°【分析】根据两直线平行,内错角相等可得∠3=∠1,根据垂直的定义和余角的定义列式计算得到∠2.【解答】解:∵直线a∥b,∠1=50°,∴∠1=∠3=50°,∵直线AB⊥AC,∴∠2+∠3=90°.∴∠2=40°.故选:B.8.如图,已知AB∥CD,BE,DE分别平分∠ABF和∠CDF,且交于点E,则()A.∠E=∠F B.∠E+∠F=180°C.2∠E+∠F=360°D.2∠E﹣∠F=180°【分析】过点E作EM∥AB,利用平行线的性质可证得∠BED=(∠ABF+∠CDF),可以得到∠BED 与∠BFD的关系.【解答】解:过点E作EM∥AB,如图:∵AB∥CD,EM∥AB∴CD∥EM,∴∠ABE=∠BEM,∠CDE=∠DEM,∵∠ABF的平分线与∠CDF的平分线相交于点E,∴∠ABE=∠ABF,∠CDE=∠CDF,∴∠BED=∠BEM+∠DEM=(∠ABF+∠CDF),∵∠ABF+∠BFD+∠CDF=360°,∴∠ABF+∠CDF=360°﹣∠BFD,∴∠BED=(360°﹣∠BFD),整理得:2∠BED+∠BFD=360°.故选:C.9.图1是长方形纸条,∠DEF=α,将纸条沿EF折叠成折叠成图2,则图中的∠GFC的度数是()A.2αB.90°+2αC.180°﹣2αD.180°﹣3α【分析】由折叠得∠GEF=α,由长方形知FC∥GD,AE∥BG,从而得到∠FGD,再由平行线的性质得到∠GFC的度数.【解答】解:由折叠和∠DEF=α,得∠GEF=α,由长方形得,C∥GD,AE∥BG,∴∠GFC+∠FGD=180°,∠EFB=∠DEF=α,∴∠FGD=∠GEF+∠EFB=2α,∴∠GFC=180°﹣2α,故选:C.10.平面镜在光学仪器中有广泛的应用.平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.如图①.一束光线m射到平面镜a上,被a反射后的光线为n,则∠1=∠2.如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB平行,当∠ABM=30°时,∠DCN的度数为()A.40°B.50°C.60°D.70°【分析】由题意得∠ABM=∠CBO,∠BCO=∠DCN,根据平角的定义可求出∠ABC的度数,再根据两直线平行,同旁内角互补求出∠BCD的度数,从而求出∠DCN的度数.【解答】解:由题意得∠ABM=∠CBO,∠BCO=∠DCN,∵∠ABM=30°,∴∠CBO=30°,∴∠ABC=180°﹣∠ABM﹣∠CBO=180°﹣30°﹣30°=120°,∵AB∥CD,∴∠ABC+∠BCD=180°,∴∠BCD=60°,∵∠BCD+∠BCO+∠DCN=180°,∴∠DCN=60°,故选:C.11.为增强学生体质,望一观音湖学校将“跳绳”引入阳光体育一小时活动.图1是一位同学跳绳时的一个瞬间.数学老师把它抽象成图2的数学问题:已知AB∥CD,∠EAB=70°,∠ECD=105°,则∠AEC =35°.【分析】过E作EF∥AB,则EF∥AB∥CD,利用平行线的性质求得∠FEA=110°,∠FEC=75°,进而可求解.【解答】解:过E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠EAB+∠FEA=180°,∠ECD+∠FEC=180°,∵∠EAB=70°,∠ECD=105°,∴∠FEA=110°,∠FEC=75°,∴∠AEC=∠FEA﹣∠FEC=35°,故答案为:35°.12.如图,把△ABC沿线段DE折叠,使点A落在点F处,BC∥DE,若∠A+∠B=100°,则∠FEC=20°.【分析】根据折叠的性质、平行线的性质和三角形内角和,即可得到结论.【解答】解:由题意可得,∠AED=∠DEF,∵DE∥BC,∴∠AED=∠C,∠DEF=∠EFC,∴∠C=∠EFC,∵∠A+∠B=100°,∴∠C=180°﹣100°=80°,∴∠EFC=80°,∵∠C+∠EFC+∠FEC=180°,∴∠FEC=180°﹣80°﹣80°=20°,故答案为:20°.13.如图是两把完全相同的长方形直尺,一把直尺压住射线OB,且与射线OA交于点C,另一把直尺压住射线OA并且与第一把直尺交于点P,连接OP,已知∠POB=40°,则∠ACP的度数是80°.【分析】根据两把完全相同的长方形直尺,可知OP平分∠AOB,又∠POB=40°,进而可得∠AOB的度数.再由长方形直尺可得CP∥OB,利用平行线的性质可求解.【解答】解:由题意,得OP平分∠AOB,∴∠AOB=2∠POB=2×40°=80°,由长方形直尺可知:CP∥OB,∴∠ACP=∠AOB=80°,故答案为:80°.14.如图,∠1=37°,∠2=37°,∠D=54°,那么∠BAE=54°.【分析】根据平行线的判定与性质求解即可.【解答】解:∵∠1=37°,∠2=37°,∴∠1=∠2,∴AE∥CD,∴∠BAE=∠D=54°,故答案为:54.15.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动至图2位置的过程中,使两块三角尺至少有一组边互相平行,则∠CAE其余符合条件的度数为60°或105°或135°.【例如:图3,当∠CAE=15°时,BC∥DE】.【分析】分四种情况进行讨论,分别依据平行线的性质进行计算即可得到∠CAE的度数,再找到关于A 点中心对称的情况即可求解.【解答】解:如图3,当BC∥DE时,∠CAE=45°﹣30°=15°;如图,当AE∥BC时,∠CAE=90°﹣30°=60°;如图,当DE∥AB(或AD∥BC)时,∠CAE=45°+60°=105°;当DE∥AC时,如图①,∠CAE=45°+90°=135°.综上所述,旋转后两块三角板至少有一组边平行,则∠CAE(0°<∠CAE<180°)其它所有可能符合条件的度数为60°或105°或135°,故答案为:60°或105°或135°.16.一副三角尺按如图所示的方式摆放,∠B=∠EDF=90°,点E在AC上,点D在BC的延长线上,EF∥BC,∠A=30°,∠F=45°,求出∠CED的度数.【分析】由直角三角形的性质求出∴∠ECB=60°,∠FED=45°,由平行线的性质推出∠FEC=∠ECB =60°,即可求出∠CED=∠FEC﹣∠FED=15°.【解答】解:∵∠B=90°,∠A=30°,∴∠ECB=90°﹣∠A=60°,∵EF∥BC,∴∠FEC=∠ECB=60°,∵∠EDF=90°,∠F=45°,∴∠FED=90°﹣∠F=45°,∴∠CED=∠FEC﹣∠FED=60°﹣45°=15°.17.如图,AB∥CD,∠A=40°,∠C=∠E,求∠C的度数.【分析】根据AB∥CD,则∠A=∠1=40°,再根据三角形外角的性质即可得出结论.【解答】解:∵AB∥CD,∴∠A=∠1=40°,∵∠C+∠E=∠1,∠C=∠E,∴2∠C=40°,∴∠C=20°.18.如图,点M在CD上,已知∠BAM+∠AMD=180°,AE平分∠BAM,MF平分∠AMC,请说明AE∥MF的理由.解:因为∠BAM+∠AMD=180°(已知),∠AMC+∠AMD=180°(平角的定义),所以∠BAM=∠AMC(等量代换).因为AE平分∠BAM,所以∠BAM(角平分线的定义).因为MF平分∠AMC,所以∠AMC,得∠1=∠2(等量代换),所以AE∥MF(内错角相等,两直线平行).【分析】根据角平分线的定义,平行线的判定定理完成填空即可求解.【解答】解:因为∠BAM+∠AMD=180°(已知),∠AMC+∠AMD=180°(平角的定义),所以∠BAM=∠AMC(等量代换).因为AE平分∠BAM,所以∠BAM(角平分线的定义).因为MF平分∠AMC,所以∠AMC,得∠1=∠2(等量代换),所以AE∥MF(内错角相等,两直线平行)故答案为:已知;平角的定义;等量代换;∠BAM;角平分线的定义;∠AMC;∠1=∠2;等量代换;AE∥MF;内错角相等,两直线平行.19.综合与实践如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD 于点F.(1)当所放位置如图①所示时,∠PFD与∠AEM的数量关系是∠PFD+∠AEM=90°;(2)当所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=15°,∠PEB=30°,求∠N的度数.【分析】(1)作PH∥AB,根据平行线的性质得到∠AEM=∠HPM,∠PFD=∠HPN,根据∠MPN=90°解答;(2)根据平行线的性质得到∠PFD+∠BHN=180°,根据∠P=90°解答;(3)根据平行线的性质、对顶角相等计算.【解答】解:(1)如图①,作PH∥AB,则∠AEM=∠HPM,∵AB∥CD,PH∥AB,∴PH∥CD,∴∠PFD=∠HPN,∵∠MPN=90°,∴∠PFD+∠AEM=90°,故答案为:∠PFD+∠AEM=90°;(2)猜想:∠PFD−∠AEM=90°;理由如下:如图②,∵AB∥CD,∴∠PFD+∠BHN=180°,∵∠BHN=∠PHE,∴∠PFD+∠PHE=180°,∵∠P=90°,∴∠PHE+∠PEB=90°,∵∠PEB=∠AEM,∴∠PHE+∠AEM=90°,∴∠PFD−∠AEM=90°;(3)如图②,∵∠P=90°,∠PEB=15°,∴∠PHE=∠P−∠PEB=90°−15°=75°,∴∠BHF=∠PHE=75°,∵AB∥CD,∴∠DFH+∠BHF=180°,∴∠DFH=180°−∠BHF=105°,∴∠OFN=∠DFH=105°,∵∠DON=20°,∴∠N=180°−∠DON−∠OFN=55°.20.如图,已知AM∥BN,∠A=60°,P是射线AM上一动点(与点A不重合),BC,BD分别平分∠ABP 和∠PBN,交射线AM于点C,D.(1)求∠ABN和∠CBD的度数;(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变,请写出它们之间的关系,并说明理由;若变化,请写出变化规律;(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.【分析】(1)由平行线的性质,两直线平行,同旁内角互补可直接求出;由角平分线的定义可以证明∠CBD=∠ABN,即可求出结果;(2)不变,∠APB:∠ADB=2:1,由AM∥BN得∠APB=∠PBN,∠ADB=∠DBN,根据BD平分∠PBN得∠PBN=2∠DBN,即可推出结论;(3)可先证明∠ABC=∠DBN,由(1)∠ABN=116°,∠CBD=58°,所以∠ABC+∠DBN=58°,则可求出∠ABC的度数.【解答】解:(1)∵AM∥BN,∴∠A+∠ABN=180°.∵∠A=60°,∴∠ABN=120°.∵BC,BD分别平分∠ABP,∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=120°,∴∠CBD=∠CBP+∠DBP=60°,故答案为:120°,60°;(2)∠APB与∠ADB之间的数量关系不变,∠APB=2∠ADB;理由:∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN.又∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB=2∠ADB;(3)∵AM∥BN,∴∠ACB=∠CBN.∵∠ACB=∠ABD,∴∠CBN=∠ABD,即∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN.∵BC,BD分别平分∠ABP,∠PBN,∴.。

有理数的乘方 北师大版数学七年级上册

有理数的乘方  北师大版数学七年级上册

知识点1 科学记数法
还记得底数为10的幂有什么规律吗?算一算,想一想. 101=__1_0_ , 102=_1_0_0_ ,103=_1_0_0_0_ , 104=_1_0_0_0_0_, 106=_1_0_0_0__0_0_0_, 1010 =_1_0_0_0_0__0_0_0_0_0_0__, … 指数与运算结果的位数有什么关系?
地球半径约为 6 400 000 m.
生活中常常会遇到比100万还大的数,比如:
光在真空中的传播速度约为 300 000 000米/秒
有使这些大数易 写易读的方法吗?
这些大数书写起来非 常不便,也容易写错.
知识点1 科学记数法
还记得底数为10的幂有什么规律吗?算一算,想一想.
101=__1_0_ , 102=_1_0_0_ ,103=_1_0_0_0_ , 104=_1_0_0_0_0_, 106=_1_0_0_0__0_0_0_, 1010 =_1_0_0_0_0__0_0_0_0_0_0__, … 指数与运算结果中的0的个数有什么关系? 10的指数等于1后面0的个数;
有一张厚度为0.1 mm的纸,将它对折1次后,厚度为2×0.1 mm.
(2) 假设对折20次,厚度为多少毫米?
对折1次: 21层 对折2次: 22层
220×0.1=104 857.6(mm) =104.857 6 m
对折3次: 23层
104.857 6 ÷3≈35
… …
对折20次: 220层 这张纸对折20次后大约有35层楼高.
知识点1 底数是2的幂
对折1次
对折2次
对折3次 ……
对折20次
21层
22层
23层 …… 220层
22 ×0.1=0.4(mm) 220×0.1=104 857.6(mm)

七年级数学上册《有理数乘方》教学反思

七年级数学上册《有理数乘方》教学反思

七年级数学上册《有理数乘方》教学反思1、七年级数学上册《有理数乘方》教学反思有理数乘方是初中数学教学的重点之一,也是初中数学教学的一个难点。

所以我在教这一节课的教学中要从有理数乘方的意义、有理数乘方的符号法则、有理数乘方运算顺序、有理数乘方书写格式、有理数乘方常见错误等五个方面来教学。

一、要求学生深刻理解有理数乘方的意义。

即求n个相同的因数相乘的简便记法。

在教学上应该抓住以下几点:乘方是一种运算。

相当于“+、-、×、÷”。

教师在教学时要让学生明白这一点,同时要求学生掌握其书写方法,及格式。

强调幂的意义,幂的意义与“和、差、积、商”一样。

如2的3次方的结果是8。

所以说2的3次方的幂是8。

与2×4一样,2×4=8.所以不能说8是幂,说成2的3次方的幂是8。

同时强调a的n次方具有两个意义,它既表示n个a相乘。

又表示乘方的运算结果二、在有理数乘方的教学中主要强调它的运算,所以特别注意有理数乘方符号法则的教学。

法则是:正数的任何次幂是正数,0的任何正整数次幂是0,负数的正数次幂是负数,负数的偶数次幂是正数,教师在教学时强调做乘方时先确定符号再计算,如(-2)的平方等于+2的'平方等于4.三、注意教学生的书写格式。

注意负数与分数作底数都要加括号。

四、注意讲清有理数乘方中的常见错误。

如2的平方前面带负号,表示2的平方的相反数,-2加括号后再平方是表示–2的平方,写法不同计算的结果不同。

有理数乘方是在乘法的基础之上的一种运算,要结合乘法来教乘方。

同时讲清楚区别与联系。

2、七年级数学上册《有理数的乘方》教学反思在具体的实施过程中还是暴露出了很多问题,有事先没预计到的,也有想体现但没体现完整的。

经过课后反思及同年组教师的指点,主要表现在:(1)较多的着眼于课堂形式的多样化及学生能力(如:合作、探究、交流等)的培养,而忽视了教学中最重要的知识点的落实。

综合应用部分的练习题处理得很仓促,例题学生讲解的机会不多,教师在课前可鼓励学生大胆发表自己的意见和看法。

(2024秋新版本)北师大版七年级数学上册 《 有理数的乘方》PPT课件)

(2024秋新版本)北师大版七年级数学上册 《 有理数的乘方》PPT课件)


1 2
×

1 2
×

1 2
=18
(3)

1 4
2
=

1 4
×

1 4
=116
连接中考
1. (-1)2等于( B )
A.-1
B.1
C.-2
D.2
2. 32可表示为( C )
A.3×2
B.2×2×2
C.3×3 D.3+3
课堂检测
基础巩固题
1.关于-74的说法正确的是( C )
A.底数是-7
B.表示4个-7相乘
探究新知
想一想 (-2)4 , -24,它们一样吗?说说它们的意义与读法.
(-2)4 =(-2)×(-2)×(-2)×(-2) =16,表示4个(-2)相乘, 读作“负2的4次方” . -24 =-2×2×2×2=-16 ,表示4个2相乘的相反数, 读作“负的2的4次方”或 “2的4次方的相反数”. 思考:它们的底数分别是什么?相同么?
素养目标
3.运用乘方的意义解决相关问题;体会解决问题策略的多 样性,发展实践能力与创新意识. 2.能够正确进行有理数的乘方运算.
1.理解有理数的乘方,幂,底数,指数概念.
探究新知 细胞分裂:
知识点 有理数的乘方
一次 2
二次 2×2
三次 2×2×2
探究新知
想一想 1个细胞30分钟后分裂成2个,经过5小时,这种细胞 由1个能分裂成多少个?
探究新知
计算:(1)

3 4
2
(2)-
3 4
2
(3)-342
解:
(1)

3 4
2

七年级数学上册有理数的乘方

七年级数学上册有理数的乘方

七年级数学上册有理数的乘方有理数的乘方是数学中一个重要的概念,它在数学运算和实际问题中都有着广泛的应用。

本文将介绍有理数的乘方的定义、规则以及解答习题的方法。

一、有理数的乘方定义及性质1. 定义:对于任意的有理数a和正整数n,a的n次方记为a^n,它表示将a连乘n次的结果。

当n为0时,任何非零有理数a的0次方都等于1,即a^0 = 1。

2. 性质:a. 乘方的运算性质:对于任意的有理数a、b和正整数m、n,有以下规则:(a) a^m × a^n = a^(m + n)(b) (a^m)^n = a^(m × n)(c) a^m ÷ a^n = a^(m - n)b. 乘方的特殊性质:(a) 任何数的1次方都等于该数本身,即a^1 = a。

(b) 非零数的负次方等于该数的倒数的正次方,即a^(-m) = 1 / (a^m)。

二、有理数的乘方计算方法1. 同底数的乘方计算:当底数相同时,可以直接将指数进行运算。

例如:计算2^3 × 2^4。

解:由乘方的运算性质(a)得知,2^3 × 2^4 = 2^(3 + 4) = 2^7。

2. 乘方与乘法的关系:乘方运算可以转化为多次乘法运算。

例如:计算3^4。

解:3^4 = 3 × 3 × 3 × 3 = 81。

3. 有理数的乘方与整数指数的乘法:有理数的乘方可以转化为整数指数的乘法。

例如:计算(-5)^3。

解:(-5)^3 = (-5) × (-5) × (-5) = -125。

4. 有理数的乘方与分数指数的开方:有理数的分数指数可以转化为开方。

例如:计算4^(2/3)。

解:4^(2/3)等于将4开3次方再平方。

4开3次方得到2,再平方得到4。

三、解答习题例题:计算下列各式的值。

1. 5^2 + 3 × 4^2 - (-2)^3解:由乘方的计算方法可得,5^2 + 3 × 4^2 - (-2)^3 = 25 + 3 × 16 - (-8) = 25 + 48 + 8 = 81。

沪科版数学七年级上册 有理数的乘方

沪科版数学七年级上册 有理数的乘方
是否超过珠峰的高度(8848.86 米)?
对折次数 1 2 3 4 … 30
纸的层数 21 22 23 24 … 230
对折次数 1 2 3 4 … 30 纸的层数 21 22 23 24 … 230 解:(1) 因为厚度为 0.1 毫米的纸,将它对折一次后,厚 度为 2×0.1 毫米,所以对折 2 次的厚度是 0.1×22 毫米. (2) 对折 20 次的厚度是 0.1×220 毫米=104857.6 (毫米). (3) 对折 30 次的厚度是 0.1×230 毫米=107374.1824 米. 所以超过珠峰的高度.
第 1 章 有理数
1.6 有理数的乘方
第 1 课时 有理数的乘方
学习目标
1.理解并掌握有理数的乘方、幂、底数、指数的概 念及意义.(重点) 2.能够正确进行有理数的乘方运算.(难点)
导入新课
情境引入 珠穆朗玛峰是世界的最高峰,它的海拔高度 是 8848.86 米.把一张足够大的厚度为 0.1 毫米的纸, 连续对折 30 次的厚度能超过珠穆朗玛峰,这是真的吗?
2.有理数乘方运算的符号法则: 正数的任何次幂都是正数; 负数的偶数次幂是正数,奇数次幂是负数.
3.互为相反数的相同偶次幂相等,相同奇次幂互为相 反数.
议一议:(-3)2 与 -32 有什么不同?结果相等吗?
写法 读法
(-3)2
有括号 -3 的平方
-32 无括号 3 的平方的相反数
意义 结果
2个(-3)相乘 即 (-3)×(-3)
2
温馨提示:幂的底数是分数或负数时,
底数应该添上括号!
二 有理数乘方的运算
例1
计算:(1)
(-4)3;
(2)
(-2)4;

人教版七年级数学上《有理数的乘方》知识全解

人教版七年级数学上《有理数的乘方》知识全解

《有理数的乘方》知识全解【课标要求】理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主).能运用有理数的运算解决简单的问题.【知识结构】有理数乘方的意义及相关概念有理数乘方的符号法则有理数的混合运算【内容解析】1.有理数乘方的意义:求n个相同因数的积的运算,叫做乘方.2.底数、指数、幂:在a n中,a叫做底数,n叫做指数,a n的结果叫幂.3.a n的读法:a n读作“a的n次方”或“a的n次幂”.4.有理数乘方的书写:底数与同行中其它数字一样大小,指数写在底数的右上角,写小些.负数、分数做底数时,负数、分数要带括号.5.有理数乘方的符号法则:负数的奇数次幂是负数,负数的偶数次幂是正数;正数的任何次幂都是正数,0的任何正整数次幂都是0.注意:1的任何次幂都是1,(–1)的奇数次幂等于–1,(–1)的偶数次幂等于1.6.用计算器计算乘方时,指数的转换键是“∧”.7.有理数混合运算的运算顺序:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.加减是第一级运算,乘除是第二级运算,乘方与开方是第三级运算,运算时,先算高级运算,再算低一级的运算.【重点难点】有理数乘方的意义及运算是本节课的教学重点,本小节的另一个重点是依据运算法则和运算顺序进行有理数的混合运算,教师要精选适量的练习以提升学生的运算能力.有理数乘方中幂,指数,底数的概念及其相互间关系的理解是本节课的教学难点.可以实施通过补充一些计算问题和提高题,帮助学生突破难点.【教法导引】1.教师教学应该以学生的认知发展水平和已有的经验为基础,根据新课程标准提出的“让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的过程,从而使学生在对数学理解的同时,在思维能力、情感态度和价值观等方面得到进步和发展”的理念,力求“自主探索、动手实践、合作交流”成为学生学习的主要方式.在小学已学的正方形面积,正方体体积的基础上进一步探究棋盘、拉面、细胞分裂等实际问题,在师生的互动中生成对乘方的理解.2.在引入例1之前,创设与例题有关的问题,让学生讨论交流,教师鼓励学生积极发言,为学生提供表现的机会,使学生在这个环节中弄清底数与指数之间的相互关系,认识到“a n等于多少的问题”是可以通过转化为乘法运算来实现的,从中体会转化的思想,为引入例题的学习做好铺垫.3.教师要预设学生的易错点,应强调指出.如–32与(–3)2的区别;底数为负数或分数时的书写要明了;“–1”的幂的特征可以进行归纳;及时纠正学生在运算顺序上的错误等.4.课程标准强调“学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程”.教师在进行本节教学时,要放手学生自己去领悟、归纳、熟练.教师放手学生操作,把课堂还给学生,如在寻找“–2,4,–8,16,–32…的规律是千万让学生自主探索.【学法建议】1.“自主探索、动手实践、合作交流”为学生学习的主要方式.2.要认真观察,仔细比较,善于发现,正确归纳.像–42与(–4)2的区别要细细领悟.3.多动手计算,不能盲目依赖计算器.4.正确理解概念.乘方是一种运算,幂是乘方的结果,底数是相乘时的因数,指数是相乘时因数的个数,指数是1就是指只有一个因数,所以一个数可以看作这个数本身的一次方.5.练习时,要紧扣运算顺序与意义、法则,出现负号时千万多加小心.在进行混合运算时,可以采取多种方法来检验自己的运算结果的正确性.对于比较复杂的运算,先笔算,再用计算器进行验证.。

有理数的乘方(3种题型)-2023年新七年级数学(苏科版)(解析版)

有理数的乘方(3种题型)-2023年新七年级数学(苏科版)(解析版)

有理数的乘方(3种题型)1.掌握有理数乘方的意义,正确判断幂的底数,掌握乘方运算的符号法则;2.理解科学记数法的表示,会正确算出科学记数法表示的数的结果;一.有理数的乘方(1)有理数乘方的定义:求n个相同因数积的运算,叫做乘方.乘方的结果叫做幂,在a n中,a叫做底数,n叫做指数.a n读作a的n次方.(将a n看作是a的n次方的结果时,也可以读作a的n次幂.)(2)乘方的法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.(3)方法指引:①有理数的乘方运算与有理数的加减乘除运算一样,首先要确定幂的符号,然后再计算幂的绝对值;②由于乘方运算比乘除运算又高一级,所以有加减乘除和乘方运算,应先算乘方,再做乘除,最后做加减.二.非负数的性质:偶次方偶次方具有非负性.任意一个数的偶次方都是非负数,当几个数或式的偶次方相加和为0时,则其中的每一项都必须等于0.三.科学记数法—表示较大的数(1)科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.【科学记数法形式:a×10n,其中1≤a<10,n为正整数.】(2)规律方法总结:①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n.②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号.一.有理数的乘方(共11小题)1.(2022秋•鼓楼区校级期末)下列各组数中,相等的是()A.+32与+23B.﹣23与(﹣2)3C.﹣32与(﹣3)2D.|﹣3|3与(﹣3)3【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:∵32=9,23=8,故选项A不符合题意,∵﹣23=﹣8,(﹣2)3=﹣8,故选项B符合题意,∵﹣32=﹣9,(﹣3)2=9,故选项C不符合题意,∵|﹣3|3=27,(﹣3)3=﹣27,故选项D不符合题意.故选:B.【点评】此题考查有理数的乘法,有理数的乘方,解题关键在于掌握运算法则.2.(2022秋•盐都区期中)计算:=.【分析】根据有理数乘方法则进行计算便可.【解答】解:原式=+,故答案为:.【点评】本题考查了有理数的乘方,熟记有理数乘方法则是解题的关键.3.(2023•南京二模)与(﹣3)2的值相等的是()A.﹣32B.32C.(﹣2)3D.23【分析】将原式计算得到结果,即可作出判断.【解答】解:∵(﹣3)2=9,A.﹣32=﹣9;B.32=9;C.(﹣2)3=﹣8.D.23=8.∴与(﹣3)2的值相等的是B.故选:B.【点评】本题考查了有理数的乘方,熟练掌握乘方的意义是解题的关键.4.(2022秋•仪征市期末)若一个数的立方为﹣27,则这个数是()A.﹣3B.3C.±3D.﹣9【分析】根据有理数的乘方运算即可求出答案.【解答】解:∵(﹣3)3=﹣27,∴这个数是﹣3,故选:A.【点评】本题考查有理数的乘方运算,解题的关键是熟练运用有理数的乘方运算,本题属于基础题型.5.(2023春•泰兴市校级月考)计算:()3=.【分析】求n个相同因数积的运算,叫做乘方,由此即可计算【解答】解:()3=××=.故答案为:.【点评】本题考查有理数的乘方,关键是掌握有理数的乘方运算法则.6.(2022春•灌南县期中)已知83=a9=2b,试求b a的值.【分析】根据83=(23)3=29,即可确定a和b的值,进一步求解即可.【解答】解:∵83=a9=2b,又∵83=(23)3=29,∴a=2,b=9,∴ba=92=81.【点评】本题考查了有理数的乘方,幂的乘方等,熟练掌握这些知识是解题的关键.7.(2023•海陵区一模)﹣32的值等于()A.﹣9B.9C.6D.﹣6【分析】利用有理数的乘方判断.【解答】解:﹣32=﹣9,故选:A.【点评】本题考查了有理数的乘方,解题的关键是掌握有理数的乘方.8.(2022秋•鼓楼区校级期末)如图,A,B,C,D,E是数轴上5个点,A点表示的数为9,E点表示的数为9100,AB=BC=CD=DE,则数999所对应的点在线段上.【分析】先根据AB=BC=CD=DE,计算出每一个线段的长度,再把AB的长度与999﹣9进行比较即可.【解答】解:∵A点表示数为9,E点表示的数为9100,∴AE=9100﹣9,∵AB=BC=CD=DE,∴,∴B点表示的数为,∵=,∴>0,∴数999所对应的点在B点左侧,∴数999所对应的点在AB点之间,故答案为:AB.【点评】本题考查了数轴,掌握两点之间的距离是正确解答的前提,估算出的大小是得出正确答案的关键.9.(2023春•宿豫区期中)已知3=m5=()n,求m+n的值.【分析】根据幂的乘方、负整数指数幂解决此题.【解答】解:∵310=m5=()n,∴310=95=m5=3﹣n.∴m=9,n=﹣10.∴m+n=9+(﹣10)=﹣1.【点评】本题主要考查幂的乘方、负整数指数幂,熟练掌握幂的乘方、负整数指数幂是解决本题的关键.10.(2022秋•鼓楼区校级月考)已知|x|=5,y2=16,且x+y>0,那么x﹣y=.【分析】利用绝对值的定义,乘方运算确定x、y的可能取值,再代入数据求x﹣y的值.【解答】解:∵|x|=5,y2=16,∴x=±5,y=±4,∵x+y>0,∴x=5,y=±4,x﹣y=5﹣4=1,x﹣y=5﹣(﹣4)=9,∴x﹣y的值为1或9.故答案为:1或9.【点评】本题考查了有理数的乘方,有理数的加减,绝对值,解题的关键是掌握有理数的乘方运算,有理数的加减运算,绝对值的定义.11.(2023春•吴江区期中)规定两数a,b之间的一种运算,记作(a,b);如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,9)=,(,16)=2,(﹣2,﹣8)=;(2)有同学在研究这种运算时发现一个现象:(3n,4n)=(3,4),他给出了如下的证明:设(3n,4n)=x,∴(3n)x=4n即(3,4)=x,∴(3n,4n)=(3,4).②若(4,5)=a,(4,6)=b,(4,30)=c,请你尝试运用上述这种方法证明a+b=c;②猜想[(x﹣1)n,(y+1)n]+[(x﹣1)n,(y﹣2)n]=(,)(结果化成最简形式).【分析】(1)根据规定,利用乘方的运算解答即可;(2)①根据规定,利用同底数幂乘方的运算法则证明即可;②根据规定,利用同底数幂乘方的运算法则,以及多项式乘以多项式的运算法则解答即可.【解答】解:(1)∵32=9,∴(3,9)=2;∵42=16,∴(4,16)=2;∵(﹣2)3=﹣8,∴(﹣2,﹣8)=3.故答案为:2,4,3;(2)①∵(4,5)=a,(4,6)=b,(4,30)=c,∴4a=5,4b=6,4c=30,∴4a×4b=5×6=30=4c,∴4a+b=4c,即a+b=c;②设[(x﹣1)n,(y+1)n]=p,[(x﹣1)n,(y﹣2)n]=q,由上述结论,知(x﹣1)p=y+1,(x﹣1)q=y﹣2,且[(x﹣1)n,(y+1)n]+[(x﹣1)n,(y﹣2)n]=p+q,∵(x﹣1)p×(x﹣1)q=(y+1)(y﹣2),即(x﹣1)p+q=y2﹣y﹣2,∴[(x﹣1),(y2﹣y﹣2]=p+q,∴[(x﹣1)n,(y+1)n]+[(x﹣1)n,(y﹣2)n]=[(x﹣1),(y2﹣y﹣2].故答案为:(x﹣1),(y2﹣y﹣2).【点评】本题以阅读理解形式考查乘方、同底数幂的乘法、整式的乘法等运算,理解题意,掌握相关运算法则是解题的关键.二.非负数的性质:偶次方(共7小题)12.(2022秋•姑苏区校级期末)如果|a+3|+(b﹣2)2=0,则(a+b)2022的值是.【分析】根据绝对值和平方的非负性求出a,b,代入求值即可.【解答】解:因为|a+3|+(b﹣2)2=0,所以a+3=0,b﹣2=0,所以a=﹣3,b=2,所以(a+b)2022=(﹣3+2)2022=(﹣1)2022=1.故答案为:1.【点评】本题主要考查非负数的性质,涉及到有理数的乘方,解题的关键是掌握绝对值和平方的非负性.13.(2022秋•鼓楼区校级期末)已知|ab﹣2|+(b+1)2=0,则(a﹣b)2023=.【分析】根据绝对值和平方的非负性求出a,b,代入求值即可.【解答】解:因为|ab﹣2|+(b+1)2=0,所以ab﹣2=0,b+1=0,所以ab=2,b=﹣1,解得a=﹣2,b=﹣1,所以(a﹣b)2023=(﹣2+1)2023=(﹣1)2023=﹣1.故答案为:﹣1.【点评】本题主要考查代数式求值、有理数的乘方,解题的关键是掌握绝对值和平方的非负性.14.(2022秋•射阳县月考)已知(x﹣3)2+|2x﹣3y+6|=0,求x﹣y的值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可求解.【解答】解:∵(x﹣3)2+|2x﹣3y+6|=0,(x﹣3)2≥0,|2x﹣3y+6|≥0,∴x﹣3=0,2x﹣3y+6=0,解得x=3,y=4,∴x﹣y=3﹣4=﹣1.【点评】本题考查了绝对值和偶次方的非负性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.15.(2023春•东台市期中)若(x﹣1)2+|2y+1|=0,则x+y的值为()A.B.C.D.【分析】直接利用非负数的性质得出x,y的值,进而得出答案.【解答】解:∵(x﹣1)2+|2y+1|=0,∴x﹣1=0,2y+1=0,解得:x=1,y=﹣,则x+y的值为:1﹣=.故选:D.【点评】此题主要考查了非负数的性质,正确掌握相关定义是解题关键.16.(2022秋•仪征市期末)若|a﹣2|+(b+3)2=0,则b a=.【分析】根据绝对值和偶次方的非负性求出a、b的值即可得到答案.【解答】解:∵|a﹣2|+(b+3)2=0,|a﹣2|≥0,(b+3)2≥0,∴a﹣2=0,b+3=0,∴a=2,b=﹣3,∴ba=(﹣3)2=9,故答案为:9.【点评】本题主要考查了非负数的性质,代数式求值,熟知非负数的性质是解题的关键.17.(2023春•东台市期中)已知|x+2y+3|与(2x+y)2的值互为相反数,则x﹣y=.【分析】根据非负数的性质:几个非负数的和等于0,则每个数等于0,即可列出关于x和y的方程,求得x和y的值,进而求得代数式的值.【解答】解:根据题意得:,解得.则原式=1+2=3.故答案是3.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.18.(2022秋•江阴市期中)如果|a+2|+(b﹣1)2=0,那么代数式(a+b)2021的值是()A.1B.﹣1C.±1D.2021【分析】首先根据非负数的性质求出a、b的值,然后再代值求解.【解答】解:由题意,得:a+2=0,b﹣1=0,即a=﹣2,b=1;所以(a+b)2021=(﹣1)2021=﹣1.故选:B.【点评】本题考查了非负数的性质.解题的关键是掌握非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.三.科学记数法—表示较大的数(共4小题)19.(2023•苏州)在比例尺为1:8000000的地图上,量得A,B两地在地图上的距离为3.5厘米,即实际距离为28000000厘米.数据28000000用科学记数法可表示为.【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可得出答案.【解答】解:28000000=2.8×107,故答案为:2.8×107.【点评】本题考查科学记数法表示较大的数,科学记数法是基础且重要知识点,必须熟练掌握.20.(2023•镇江一模)2023年2月15日春运结束,春运40天,全国发送旅客约15.95亿人次,比去年同期增长50.5%,其中,数据15.95亿用科学记数法可表示为.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:15.95亿=15.95×108=1.595×109.故答案为:1.595×109.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.21.(2023春•吴江区校级期中)光在真空中的传播速度约是3×108m/s,光在真空中传播一年的距离称为光年.(1)1光年约是多少千米?(一年以3×107s计算)(2)银河系的直径达10万光年,约是多少千米?(3)如果一架飞机的飞行速度为1000km/h,那么光的速度是这架飞机速度的多少倍?(1m/s=3.6km/h)【分析】(1)根据题意列出算式,求出即可;(2)根据题意列出算式,求出即可;(3)先化单位,再根据题意列出算式,求出即可.【解答】解:(1)3×108×3×107=9×1015(米),9×1015米=9×1012千米.答:1光年约是9×1012千米;(2)10万=100000,100000×9×1012=9×1017(千米),.答:银河系的直径达10万光年,约是9×1017千米;(3)3×108m/s=1.08×109km/h,1.08×109÷1000=1.08×106,答:光的速度是这架飞机速度的1.08×106倍.【点评】本题考查了科学记数法的表示方法.解此题的关键是能根据题意列出算式.22.(2022春•仪征市校级月考)某银行去年新增加居民存款10亿元人民币.(结果用科学记数法表示)(1)经测量,100张面值为100元的新版人民币大约厚0.9厘米,如果将10亿元面值为100元的新版人民币摞起来,大约有多高?(2)一台激光点钞机的点钞速度是8×104张/时,按每天点钞5小时计算,如果让点钞机点一遍10亿元面值为100元的新版人民币,点钞机大约要点多少天?【分析】(1)先算出10亿元人民币的张数,然后再用张数乘以一张人民币的厚度即可;(2)用10亿元人民币的张数除以速度,再根据同底数幂相除,底数不变指数相减进行计算.【解答】解:(1)10亿=1 000 000 000=109,∴10亿元的总张数为109÷100=107张,107÷100×0.9=9×104(厘米);(2)107÷(5×8×104),=(1÷40)×(107÷104),=0.025×103=25=2.5×10(天).【点评】本题考查了同底数幂的除法与乘法运算、科学记数法,根据题意列出算式是解题的关键,需要注意先求出10亿元人民币的总张数.一、单选题【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:54700000用科学记数法表示为75.4710⨯;故选:C【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.【答案】A【分析】根据小于0的数是负数,对各选项计算后再计算负数的个数. 【详解】因为22−=,()2=2−−,()202311−=−所以负数有112−,()20231−,共计2个故选A【点睛】本题考查负数的概念,解题关键是利用了小于0的数是负数的概念.【答案】D【分析】根据几个非负数的和为0时,这几个非负数都为0列出算式,求出x 、y 的值,代入计算即可. 【详解】解:∵()2510x x y −+−−=,∴50x −=,10x y −−=, ∴5x =,4y =,∴()()20232023514x y −=−=,故选:D .0,则其中的每一项都为0. 4.(2022秋·江苏盐城·七年级统考期中)下列计算结果相等为( ) A .43和34B .43−和4|3|−C .25−和2(5)−D .2022(1)−和 2024(1)−【答案】D【分析】根据乘方运算法则和绝对值的意义逐项进行计算即可.【详解】解:A .∵4381=,3464=,且8164≠,∴选项A 不符合题意;B .∵4381−=−,4|3|81−=,且8181−≠,∴选项B 不符合题意;C .∵2525−=−,2(5)25−=,且2525−≠,∴选项C 不符合题意;D .∵()202211−=,2024(1)1−=,且11=,∴选项D 符合题意.故选:D .【点睛】本题主要考查了有理数的乘方运算,绝对值的意义,解题的关键是熟练掌握有理数乘方运算法则和绝对值的意义,准确进行计算.5.(2022秋·江苏扬州·七年级校联考期中)()633...33⨯⨯⨯÷−个的结果为( )A .73B .73−C .53 D .53−【答案】D【分析】根据有理数的乘方与除法运算法则计算即可得到答案.【详解】解:原式633=−÷ 53=−.故选:D .【点睛】此题考查的是有理数的乘方与除法,正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.【答案】A【分析】根据有理数的乘方运算求出x 、y 即可解答. 【详解】解:∵x 、y 、z 是三个连续的正整数, ∴y=x+1,∵x2=44944=2122, ∴x=212, ∴y=213,∴y2=2132=45 369, 故选:A .【点睛】本题考查有理数的乘方,熟练掌握有理数的乘方运算是解答的关键.二、填空题7.(2022秋·江苏苏州·七年级校考期中)倒数等于本身的数是______,相反数等于本身的数是______, 平方等于它本身的数是______,立方等于它本身的数是______. 【答案】 1± 0 1和0 1±和0【分析】根据倒数的定义、相反数的定义、平方、立方的意义,即可得到答案. 【详解】解:倒数等于它本身的数是1±, 相反数等于它本身的数是0, 平方等于它本身的数是1和0, 立方等于它本身的数是1±和0, 故答案为:1±;0;1和0;1±和0.【点睛】本题考查了倒数、相反数、平方、立方,解题的关键是掌握所学的知识进行解题. 8.(2022秋·江苏淮安·七年级淮阴中学新城校区校考期末)数字1920000000用科学记数法表示为____________. 【答案】91.9210⨯【分析】利用科学记数法的定义解决.科学记数法的表示形式为10na ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 【详解】解:91920000000 1.9210=⨯. 故答案为:91.9210⨯.【点睛】此题考查科学记数法的定义,关键是理解运用科学记数法.9.(2022春·江苏宿迁·七年级统考期中)如果ab =c ,那么我们规定[a ,c ]=b .例如:因为23=8,所以[2,8]=3.若[3,5]=n ,[9,m ]=n ;则[3,m +2]=_______. 【答案】3【分析】根据规定可得3n =5,9n =m ,从而得到m =25,然后设[3,m+2]=x ,则3x =m+2=27,再由33=27,即可求解.【详解】解:∵[3,5]=n ,[9,m]=n , ∴3n =5,9n =m , ∴9n =(3n )2=52=25, ∴m =25,即m+2=27,设[3,m+2]=x ,则3x =m+2=27,∴33=27, ∴[3,m+2]=3, 故答案为:3【点睛】本题主要考查了乘方的逆运算的应用,理解新规定是解题的关键.10.(2022秋·江苏南京·七年级统考期中)下列情景描述的结果与52相符的是________(填写所有正确选项的序号)①把一张报纸沿同一方向连续对折5次得到的后折痕条数;②把一团和好的面,揉搓成一根长条后,连续拉扣5次得到的面条根数③细胞分裂时,由1个分裂成2个,由2个分裂成4个,以此类推,一个这样的细胞分裂5次形成的细胞个数.【答案】②③/③②【分析】根据题干叙述分别计算找出对折的次数与折痕的条数,拉扣的次数和面条的根数,分裂的次数和细胞个数的规律,判断是否符合规律即可.【详解】①把一张报纸沿同一方向对折,对折一次有1条折痕,对折两次是3条折痕,以此类推,对折5次后有12481631++++=条折痕,不符合题意.②把一团和好的面,揉搓成一根长条后,拉扣一次时有两根面条,两次有4根面条,以此类推,拉扣5次有52根面条,符合题意.③由题意可得,一个这样的细胞分裂5次形成细胞个数为52个,符合题意. 故答案为②③.【点睛】本题主要考查幂的应用,清楚理解幂的含义是解决本题的关键.11.(2023春·江苏宿迁·七年级统考期中)根据全国第七次人口普查数据显示,截至2020年11月1日零时,泗阳总人口约1063000人,数据1063000用科学记数法表示____. 【答案】61.06310⨯【分析】用移动小数点的方法确定a 值,根据整数位数减一原则确定n 值,最后写成10na ⨯的形式即可. 【详解】∵61.010*******=10⨯, 故答案为:61.06310⨯.【点睛】本题考查了科学记数法表示大数,熟练掌握把小数点点在左边第一个非零数字的后面确定a ,运用整数位数减去1确定n 值是解题的关键.【答案】3【分析】根据非负数的性质列式求出m 、n 的值,再相减即可求出答案. 【详解】根据题意得,10m −=,20n +=, 解得,1m =,2n =−, 所以1(2)3m n −=−−=, 故答案为3.【点睛】本题主要考查了非负数的性质,有限个非负数的和为零,那么每一个加数必为零,熟练掌握非负数的性质是解题的关键.【答案】1−【分析】利用非负数的性质得出x y ,的值,代入计算得出答案. 【详解】解:()2130x y ++−=,10x ∴+=,30y −=,解得:=1x −,3y =, 3(1)1y x ∴=−=−,故答案为:1−.【点睛】本题考查了非负数的性质,掌握非负数的意义和性质是正确解答的关键.14.(2021秋·江苏无锡·七年级无锡市东林中学校考期中)若|2|a −与()21b +互为相反数,则a b −=___________.【答案】3【分析】由题意得知:|a-2|+(b+1)2=0,根据非负数的性质得出a 、b 的值,代入计算即可. 【详解】解:根据题意得:|a-2|+(b+1)2=0, ∵|a-2|≥0,(b+1)2≥0, ∴a-2=0,b+1=0, ∴a=2,b=-1,∴2(1)3a b −=−−=, 故答案为:3.【点睛】本题主要考查了非负数的性质.解题的关键是掌握相反数定义,利用只有符号不同的两个数互为相反数得出a 、b 的值是解题的关键.三、解答题15.(2023春·江苏泰州·七年级姜堰区实验初中校考阶段练习)记(1)2M =−,(2)(2)(2)M =−⨯−,(3)(2)(2)(2)M =−⨯−⨯−,……()2(2)(2)(2)n n M −=−⨯−⨯−个相乘,(其中n 为正整数)(1)计算:(5)(6)M M +; (2)求(2022)(2023)2M M +的值; (3)说明()2n M 与(1)n M +互为相反数. 【答案】(1)32 (2)0 (3)见解析【分析】(1(2)根据已知条件及乘方的运算,再利用同底数幂的乘法法则即可得到正确结果; (3)根据已知条件及乘方的运算,再利用同底数幂的乘法法则即可得到结论. 【详解】(1)解:∵(1)2M =−,(2)(2)(2)M =−⨯−,(3)(2)(2)(2)M =−⨯−⨯−,∴()()552M =−,()662M =−,∴(5)(6)M M +()()5622=−−+()()5212⎡⎤=−−⎣⎦+()()521=−−32=;(2)解:∵()2(2)(2)(2)n n M −=−⨯−⨯−个相乘,∴()()202220232M M +()()20222023222=−−+()()2022222=−−⎡⎤⎣⎦+0=;(3)解:∵()2(2)(2)(2)n n M −=−⨯−⨯−个相乘,∴()12n n M M ++()()1222nn =−−++()()222n=−−⎡⎤⎣⎦+0=,∴()2n M 与(1)n M +互为相反数.【点睛】本题考查了乘方的意义及同底数幂的乘法法则,理解乘方的意义是解题的关键.【答案】数轴表示见解析,()()21301232−−<<−<<−−【分析】先把各数化简,然后再数轴上表示出来,即可求解. 【详解】解:33−−=−,()211−=,()33−−=,各数在数轴上表示出来,如下:按从小到大的顺序用“<”号连接起来为()()21301232−−<<−<<−−.【点睛】本题考查了有理数的乘方、绝对值的意义、有理数的大小比较.能熟记有理数的大小比较法则是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.,一般地,把c aa a a a÷÷÷÷个(a ≠0Ⅰ.试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣【答案】(1)3,﹣27;(2)C ;(3)Ⅰ.9;(5 )4;28;Ⅱ.a ⓝ=(a )n ﹣2;Ⅲ.131−.【分析】(1)根据新定义运算的法则进行运算即可;(2)根据新定义运算对每个选项逐一分析判断,即可得到答案;(3)Ⅰ.根据新定义的运算法则进行计算即可;Ⅱ.结合前面的具体计算进行归纳总结可得答案;Ⅲ.根据新定义运算,逐一先计算除方,再转化为有理数的乘除乘方运算,再计算即可. 【详解】解:概念学习:(1)由新定义运算可得:3③=3÷3÷3=13,(13−)⑤=(13−)÷(13−)÷(13−)÷(13−)÷(13−)=﹣27. 故答案为:13,﹣27;(2)A 、任何非零数的圈2次方就是两个相同数相除,所以都等于1;所以选项A 正确; B 、因为多少个1相除都是1,所以对于任何正整数n ,1ⓝ都等于1;所以选项B 正确;C 、3④=3÷3÷3÷3=19,4③=4÷4÷4=14,则 3④≠4③;所以选项C 错误;D 、负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D 正确; 本题选择说法错误的,故选C ; 深入思考:(3)Ⅰ.(﹣3)④=(﹣3)÷(﹣3)÷(﹣3)÷(﹣3) ()1113333æöæöæöç÷ç÷ç÷=-´-´-´-ç÷ç÷ç÷èøèøèø=21319−=⎛⎫⎪⎝⎭; 5⑥=5÷5÷5÷5÷5÷511111=555555´´´´´ =(15)4; 同理得:(12−)⑩=28;故答案为:19;(15)4;28;Ⅱ:由新定义运算及(1)(2)归纳总结可得: a ⓝ=21n a −⎛⎫ ⎪⎝⎭;故答案为:a ⓝ=21n a −⎛⎫ ⎪⎝⎭Ⅲ.2112()3÷−④(2)÷−⑤1()3−−⑥33÷ =()()324311443332æöç÷¸-¸---¸ç÷èø()1144881279=´´--¸1283131=--=-故答案为:131−【点睛】本题考查的是新定义运算,有理数的除法运算,有理数的乘方运算,理解新定义运算的运算法则,并利用新定义进行计算是解题的关键.【答案】(1)351−,,(2)①122x x −−,;②2BD PC =,理由见解析【分析】(1)根据非负数的性质求出a b 、的值,再根据数轴沿点C 折叠,点A 和点B 重合即点C 为AB 的中点进行求解即可;(2)①根据数轴上两点距离公式即可求出PC ,再求出点D 表示的数即可求出BD ;②分别表示出PC 和BD 即可得到结论. 【详解】(1)解:∵()2350a b ++−=,()23050a b +≥−≥,,∴()2350a b +=−=,∴3050a b +=−=,, ∴35a b =−=,,∵数轴沿点C 折叠,点A 和点B 重合, ∴点C 为AB 的中点, ∴12a bc +==,故答案为:351−,,;(2)解:①由题意得1PC x =−,∵将数轴沿点P 折叠,数轴上与点A 重合的点记为D , ∴点P 是AD 的中点,∴点D 表示的数为()323x x x +−−=+⎡⎤⎣⎦, ∴2352222BD x x x=+−=−=−, 故答案为:122x x −−,; ②2BD PC =,理由如下:同①得1PC x =−,2221BD x x =−=−,∴2BD PC =;【点睛】本题主要考查了数轴上两点的距离,数轴上两点中点公式,非负数的性质,熟知数轴上两点距离公式是解题的关键. 19.(2022秋·江苏南京·七年级统考期中)某公司培养绿藻细胞制作绿藻粉,该公司制作1克的绿藻粉需要60亿个绿藻细胞.(1)在光照充沛的环境下,1个绿藻细胞每20小时可分裂成4个绿藻细胞,且分裂后的细胞继续分裂.现从1个绿藻细胞开始培养,经过15天后,共分裂成4k 个绿藻细胞,求k 的值.(2)已知210=1024,请判断(1)问中的4k 个绿藻细胞是否足够制作10克的绿藻粉,并说明理由.【答案】(1)18;(2)足够,理由见解析【分析】(1)由1个绿藻细胞每20小时可分裂成4个绿藻细胞,可知经过15天,即360小时,分裂成184个绿藻细胞,故k 之值为18;(2)根据每1克的绿藻粉需要60亿个绿藻细胞, 60亿介于322与332之间,可得制作10克的绿藻粉需要600亿个绿藻细胞,且352<600亿362<,又()1818236422==,即得184个绿藻细胞足够制作10克的绿藻粉. 【详解】(1)解∶15天1524=⨯小时360=小时,∴3602018÷=,根据题意得,1844k =,∴18k =;(2)解:(1)问中的4k个绿藻细胞是否足够制作10克的绿藻粉.理由如下∶∵每1克的绿藻粉需要60亿个绿藻细胞,∴制作10克的绿藻粉需要6010600⨯=亿个绿藻细胞,∵352<600亿362<,而()1818236422==,∵600亿184<,∴184个绿藻细胞足够制作10克的绿藻粉.【点睛】本题考查有理数的乘方,解题的关键是读懂题意,根据已知找到规律求出k 的值.一.选择题1.下列各组数中,相等的是( )A .(﹣3)2与﹣32B .|﹣3|2与﹣32C .(﹣3)3与﹣33D .|﹣3|3与﹣33【分析】根据有理数的乘方的定义对各选项分析判断利用排除法求解.【解答】解:A 、(﹣3)2=9,﹣32=﹣9,9≠﹣9,故本选项错误;B 、|﹣3|2=9,﹣32=﹣9,9≠﹣9,故本选项错误;C 、(﹣3)3=﹣27,﹣33=﹣27,故本选项正确;D 、|﹣3|3=27,﹣33=﹣27,27≠﹣27,故本选项错误.故选:C .【点评】本题考查了有理数的乘方,要注意(﹣3)2与﹣32的区别.2.党的十八大以来,坚持把教育扶贫作为脱贫攻坚的优先任务.中央财政累计投入“全面改善贫困地区义务教育薄弱学校基本办学条件”专项补助资金169200000000元,将169200000000用科学记数法表示应为( )A .0.1692×1012B .1.692×1011C .1.692×1012D .16.92×1010【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a|<10,n 为整数,且n 比原来的整数位数少1,据此判断即可.【解答】解:169200000000=1.692×1011.故选:B .【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a ×10n ,其中1≤|a|<10,确定a 与n 的值是解题的关键.3.在数学中为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”,如记=1+2+3+…+(n﹣1)+n,(x+k)=(x+3)+(x+4)+…+(x+n);已知([x(x+k)]=9x2+mx,则m的值是()A.45B.63C.54D.不确定【分析】根据条件和新定义列出方程,化简即可得出答案.【解答】解:根据题意得:x(x+3)+x(x+4)+…+x(x+n)=x(9x+m),∴x(x+3+x+4+…+x+n)=x(9x+m),∴x[(n﹣3+1)x+]=x(9x+m),∴n﹣2=9,m=,∴n=11,m=54.故选:C.【点评】本题考查了新定义,根据条件和新定义列出方程是解题的关键.二.填空题4.2021年5月15日,天问一号探测器成功着陆火星,迈出了我国星际探测征程的重要一步.已知火星与地球的近距离约为550055 000 000用科学记数法表示为.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:55000000=5.5×107.故答案为:5.5×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.计算:﹣(﹣)3=.【分析】根据有理数的乘方解决此题.【解答】解:﹣(﹣)3=.故答案为:.【点评】本题主要考查有理数的乘方,熟练掌握有理数的乘方是解决本题的关键.6.计算:(﹣5)2=.【分析】根据幂的意义求解即可.【解答】解:(﹣5)2=(﹣5)×(﹣5)=25,故答案为:25.【点评】本题考查了有理数的乘方,解题的关键是知道(﹣5)2表示2个(﹣5)相乘.7.若有理数x,y满足x2=64,|y|=10,且|x﹣y|=x﹣y,则x+y的值为.【分析】根据绝对值、有理数的乘方、有理数的加法法则解决本题.【解答】解:∵x2=64,|y|=10,∴x=±8,y=±10.又∵|x﹣y|=x﹣y,∴x﹣y≥0.∴x≥y.∴当x=8时,y=﹣10,此时x+y=8+(﹣10)=﹣2;当x=﹣8时,y=﹣10,此时x+y=﹣8+(﹣10)=﹣18.综上:x+y=﹣2或﹣18.故答案为:﹣2或﹣18.【点评】本题主要考查绝对值、有理数的乘方、有理数的加法,熟练掌握绝对值、有理数的乘方、有理数的加法法则是解决本题的关键.8.1根1米长的木棒,第一次截去一半,第二次截去剩下的一半,…,如此截下去,则第8次剩下的木棒的长为米.【分析】根据有理数的乘方的定义解答即可.【解答】解:第一次截去一半,剩下,第二次截去剩下的一半,剩下×=()2,如此下去,第8次后剩下的长度是()8=.故答案为:.【点评】本题考查的是有理数的乘方,是基础题,理解乘方的定义是解题的关键.三.解答题9.(2020秋•滕州市期末)如果x n=y,那么我们记为:(x,y)=n.例如32=9,则(3,9)=2.(1)根据上述规定,填空:(2,8)=,(2,)=;(2)若(4,a)=2,(b,8)=3,求(b,a)的值.【分析】(1)这个定义括号内第一个数为底数,第二个数为幂,结果为指数,根据有理数的乘方及负整数指数幂的计算即可;(2)根据定义先求出a,b的值,再求(b,a)的值.【解答】解:(1)因为23=8,所以(2,8)=3;因为2﹣2=,所以(2,)=﹣2.故答案为:3,﹣2;(2)根据题意得a=42=16,b3=8,所以b=2,所以(b,a)=(2,16),因为24=16,所以(2,16)=4.答:(b,a)的值为4.【点评】本题主要考查了有理数的乘方,负整数指数幂,考核学生的运算能力,熟悉乘方运算是解题的关键.10.若|a+1|+(b﹣2)2=0.(1)求a2﹣b2的值;(2)求a b的值.【分析】(1)根据绝对值、偶次方的非负性求得a=﹣1,b=2,再代入a2﹣b2求值.(2)由(1)得a=﹣1,b=2,根据乘方的定义,代入求值.【解答】解:(1)∵|a+1|≥0,(b﹣2)2≥0,∴当|a+1|+(b﹣2)2=0时,a+1=0,b﹣2=0.∴a=﹣1,b=2.。

冀教版七年级数学上册《有理数的乘方》PPT课件

冀教版七年级数学上册《有理数的乘方》PPT课件

(2)
2 3
2 3
2 3
2 3
2 3
4
;
底数
2 3
表示相同的因数,指数4表示相同因数的个数.
(3)
33333 55555
3 5
5
;
底数 3 表示相同的因数,指数5表示相同因数的个数.
5
总结
乘方式与乘积式的互化是理解乘方意义的关键;乘方是 一种特殊的乘法运算(因数相同);在将各个因数都相同的乘 积式改为乘方式时,当这个相同因数是负数、分数,作底数 时,要用括号括起来.
1 3
1 3
1ቤተ መጻሕፍቲ ባይዱ81
.
(3)-26=-2×2×2×2×2×2=-64.
总结
1. 两个互为相反数的数的偶次幂相等,奇次幂仍然互为相反数; 2. 任意数的偶次幂都是非负数; 3. 1的任何次幂都是 1;-1的偶次幂是 1,-1的奇次幂是-1.
1 计算:
(1)
52 ,
3 4
3

1 10
记作an,即
n个a
aaaa an.
归纳
像这种求n个相同因数的积的运算叫做乘方(power).
乘方的结果an叫 做幂(power).在 an中,a 叫做底数(base
number),n 叫做指数(exponent),an读作a的n次幂(或
a的n次方).
底数
an
指数
幂(乘方的结果)
例 1 把下列各式写成乘方的形式,并指出底数、指数表示的含义.
(1)(-2)×(-2)×(-2); (3) 3 3 3 3 3 .
55555
(2)
2 2 2 2; 3333
导引:先确定底数,再写成乘方的形式.

七年级有理数的乘方知识点

七年级有理数的乘方知识点

七年级有理数的乘方知识点有理数的乘方是初中数学中的一大难点,需要同学们认真掌握,下面我们来一起学习一下有理数的乘方知识点。

一、乘方的定义乘方是指同一个数连乘若干次,表示为数的基数和指数的乘积,如aⁿ。

其中,a 叫做底数,n 叫做指数。

二、有理数的乘方1. 正数的乘方当底数 a 为正数且指数为正整数 n 时,aⁿ 的意义是把 a 乘 n 次,如 2³=2×2×2=8,3²=3×3=9。

当底数 a 为正数且指数为 0 时,a⁰的值为 1。

如 2⁰=1,100⁰=1。

2. 负数的乘方当底数 a 为负数且指数为正整数 n 时,aⁿ 的意义是把 |a| 乘 n 次并乘上一个负号,如(-2)³=-2×-2×-2= -8, (-3)²=3×3=9。

当底数 a 为负数且指数为偶数(即 n 为偶数)时,aⁿ 的值为正数,如 (-2)⁴=2×2×2×2=16;当底数 a 为负数且指数为奇数(即 n 为奇数)时,aⁿ 的值为负数,如 (-2)³=-8。

3. 0 的乘方当底数 a 为 0 且指数为正整数 n 时,aⁿ 的值为 0,如 0⁴=0×0×0×0=0。

当底数 a 为 0 且指数为 0 时,a⁰的值为 1。

如 0⁰=1。

当底数 a 不为 0 且指数为 0 时,a⁰的值为 1。

如 5⁰=1。

三、有理数乘方的性质1. 乘方与乘法有理数的乘方满足基本的乘法分配律和结合律,如(ab)ⁿ=aⁿbⁿ。

2. 乘方的运算法则乘方运算遵循如下法则:aⁿ×aᵐ=aⁿ⁺ᵐ(aⁿ)ᵐ=aⁿᵐ(a×b)ⁿ=aⁿ×bⁿ(a÷b)ⁿ=aⁿ÷bⁿ其中,n,m 为整数,a,b 为有理数(b≠0)。

四、习题1. (-3)⁴的值是多少?解:(-3)⁴=3×3×3×3=812. (-8)³的值是多少?解:(-8)³=-8×-8×-8=-5123. 5²+(-3)²的值是多少?解:5²+(-3)²=25+9=344. (7×(-2))⁴÷(-4)³的值是多少?解:(7×(-2))⁴÷(-4)³=(-14)⁴÷(-64)=38416÷(-64)=-601总结:本节课主要讲解了有理数的乘方知识点,包括乘方的定义、有理数的乘方(正数、负数、0)及有理数乘方的性质。

七年级《有理数的乘方》教学设计

七年级《有理数的乘方》教学设计

七年级《有理数的乘方》教学设计一、教学内容本节课的教学内容选自人教版七年级数学上册第六章第三节《有理数的乘方》。

该章节主要介绍了有理数的乘方概念、性质及运算法则,旨在让学生掌握有理数乘方的基本概念,理解乘方的性质,能够熟练运用乘方法则进行计算。

二、教学目标1. 理解有理数乘方的概念,掌握有理数乘方的性质。

2. 能够运用有理数乘方法则进行计算,解决实际问题。

3. 培养学生的逻辑思维能力,提高学生分析问题、解决问题的能力。

三、教学难点与重点重点:有理数乘方的概念、性质及运算法则。

难点:理解有理数乘方的性质,熟练运用乘方法则进行计算。

四、教具与学具准备教具:黑板、粉笔、多媒体教学设备。

学具:教材、练习本、文具。

五、教学过程1. 情景引入利用多媒体展示生活中的实际问题,如:“一个正方形的边长为2米,求它的面积。

”引导学生思考如何用数学知识解决此类问题。

2. 知识讲解(1)介绍有理数乘方的概念:求n个相同因数积的运算,称为乘方。

(2)讲解有理数乘方的性质:同号得正,异号得负;绝对值相等。

3. 例题讲解出示例题:计算(2)^3 + (3)^2 + 2^0。

引导学生按照乘方法则进行计算,解答过程中强调负数的奇数次幂为负数,偶数次幂为正数;任何非零数的零次幂为1。

4. 随堂练习出示随堂练习题:计算(5)^4 (2)^2 + 3^0。

学生独立完成,教师巡回指导,及时纠正错误。

5. 课堂小结六、板书设计板书内容:有理数乘方的概念:求n个相同因数积的运算。

有理数乘方的性质:同号得正,异号得负;绝对值相等。

乘方法则:负数的奇数次幂为负数,偶数次幂为正数;任何非零数的零次幂为1。

七、作业设计作业题目:1. 计算下列各题:(1)(3)^5 (2)^3 + 4^2(2)5^0 (1)^4 + 2^3答案:(1)243 (8) + 16 = 229(2)1 1 + 8 = 8八、课后反思及拓展延伸拓展延伸:引导学生思考有理数乘方在实际生活中的应用,如计算利息、折现等问题。

2024年新沪科版七年级数学上册 1.6 有理数的乘方(课件)

2024年新沪科版七年级数学上册 1.6 有理数的乘方(课件)

感悟新知
解题秘方:利用乘方的意义确定底数和指数.
知1-练
解:(1) (- 2) 5 的底数是 - 2 ,指数是 5, 它表示(- 2) × (- 2) × (- 2) × (- 2) × (- 2) . (2) - 25 的底数是 2,指数是 5, 它表示 - 2× 2× 2× 2× 2. (3)(- 23)2的底数是 (- 23) ,指数是 2, 它表示 (- 23) × (- 23).
2. 乘方的意义 an 表示 n 个相同因数 a 的积,其中相同的因 数是底数,因数的个数是指数,因此,可以把相同因数的 乘法转化为乘方或把乘方转化为乘法 .
感悟新知
例1 填空: (1)(- 2) 5的底数是 __-__2_ ,指数是 __5___ , 知1-练 它表示 _(-__2_)_×___(_-__2_) _×__(_-__2_)_×___(-__2_)_×___(_-__2_) ; (2) - 25的底数是 __2___ ,指数是___5__ ,它表示 _-__2_×___2_×__2_×___2_×__2__ ; (3) (- 23)2的底数是 __-___23,指数是___2__ ,它表示 __(_-__23__)_×__(_-__23_)___.
其中a 叫作底数, n 叫作指数.当 an看作是 a的 n次方的结
果时,也可读作“ a 的 n 次幂” .
感悟新知
知1-讲
特别提醒 1. 有理数的乘方可以看作是一种特殊的乘法
运算 . 2. 乘方具有双重意义,它不仅表示一种运
算——求几个相同因数的积的运算,还表 示这种运算的结果——幂.
感悟新知
知1-讲
知2-练
(4) (- 23)3; (5)(- 1) 2 024; (6) (- 1 12) 4.

七年级数学《有理数的乘方》教案

七年级数学《有理数的乘方》教案

1.6有理数的乘方(一)一、教材分析“有理数的乘方”是七年级新教程第一章第6小节的内容。

它是前一部分加、减、乘、除运算知识的完结与提升,对后面学习科学记数法又具有一定的辅助意义。

特别是对于与乘方运算相关概念的理解,有利于拓宽学生的思路、锻炼学生观察、探索、总结的数学思想。

本节内容在教材中起着承上启下的作用,处于非常重要的地位。

二、学情分析七年级学生处在数学思维的一个转变期,对于有理数的相关问题,特别是符号问题是个难点。

在学习时要处理好已有知识与新知识之间的衔接。

根据初一学生好动、好问、好奇的心理特征,课堂上采取由浅入深的启发诱导,随着教学内容的深入,让学生一步一步的跟着动脑、动手、动口,在合作交流中培养了学生学习的积极性和主动性,使学习方式由“学会”变为“会学”。

三、教学目标知识与能力:(1)理解有理数乘方概念;(2)掌握育有理数乘方的运算法则。

过程与方法:(1)通过师生互动,学生观察、类比、联想、归纳等过程,让学生理解概念的形成过程;(2)经历知识的拓展过程,增强学生探究能力和动手操作的能力,体会与他人合作交流的重要性,培养合作精神。

情感态度价值观:(1)通过观察、推理,归纳出有理数乘方的符号法则,进而掌握运算法则,增进学生学好数学的自信心;(2)教师以热情、高涨的主导情绪感染学生,力求教学过程轻松愉快,使学生感受到学习数学的乐趣,感受到数学符号的简洁美,真正体会到学习数学的价值。

四、教学重难点重点:有理数的乘方的概念与运算;难点:有理数的乘方法则的归纳。

五、教与学互动过程(一)创设情景导入新课同学们,这节课我们先来做个热身活动:1.3+3=?2.3+3+3=?3.4. 5×5=?5. 5×5×5=?6.(板书课题) 设计意图:通过类比乘法定义的得来,得出乘方定义的思考。

(二)交流对话 探求新知 5×5=525×5×5=53板书:求几个相同因数的积的运算叫做乘方。

七年级数学《有理数的乘方》教案设计(最新5篇)

七年级数学《有理数的乘方》教案设计(最新5篇)

七年级数学《有理数的乘方》教案设计(最新5篇)作为一名人民教师,有必要进行细致的教案准备工作,借助教案可以更好地组织教学活动。

来参考自己需要的教案吧!以下是人见人爱的小编分享的5篇七年级数学《有理数的乘方》教案设计,希望能够满足亲的需求。

七年级数学《有理数的乘方》教案设计篇一教学目标:1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算。

2.已知一个数,会求出它的正整数指数幂,渗透转化思想。

3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力。

教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算。

教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算。

教学过程设计:(一)创设情境,导入新课提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.(二)合作交流,解读探究一般地,n个相同的因数a相乘,即,记作an,读作a的n次方。

求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂。

说明:(1)举例94来说明概念及读法。

(2)一个数可以看作这个数本身的一次方,通常省略指数1不写。

(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


第三十三课时
一、课题§有理数的乘方(1)
二、教学目标
1.理解有理数乘方的概念,掌握有理数乘方的运算;
2.培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;
3.渗透分类讨论思想.
三、教学重点和难点
重点:有理数乘方的运算.
#
难点:有理数乘方运算的符号法则.
四、教学手段
现代课堂教学手段
五、教学方法
启发式教学
六、教学过程
(一)、从学生原有认知结构提出问题
在小学我们已经学习过a·a,记作a2,读作a的平方(或a的二次方);a·a·a记作a3,读作a的立方(或a的三次方);那么,a·a·a·a
[
(n是正整数)呢
在小学对于字母a我们只能取正数.进入中学后,我们学习了有理数,那么a还可以取哪些数呢请举例说明.
(二)、讲授新课
1.求n个相同因数的积的运算叫做乘方.
2.乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数.
一般地,在a n中,a取任意有理数,n取正整数.
应当注意,乘方是一种运算,幂是乘方运算的结果.当a n看作a的n次方的结果时,也可以读作a的n次幂.
3.我们知道,乘方和加、减、乘、除一样,也是一种运算,a n就是表示n个a相乘,所以可以利用有理数的乘法运算来进行有理数乘方的运算.

例1 计算:
教师指出:2就是21,指数1通常不写.让三个学生在黑板上计算.
引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系
(1)横向观察
正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零.
(2)纵向观察
互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.
(3)任何一个数的偶次幂是什么数
'
任何一个数的偶次幂都是非负数.
你能把上述的结论用数学符号语言表示吗
当a>0时,a n>0(n是正整数);
当a=0时,a n=0(n是正整数).
(以上为有理数乘方运算的符号法则)
a2n=(-a)2n(n是正整数);
a2n-1=-(-a)2n-1(n是正整数);
a2n≥0(a是有理数,n是正整数).
>
例2 计算:
(1)(-3)2,(-3)3,[-(-3)]5;
(2)-32,-33,-(-3)5;
让三个学生在黑板上计算.
教师引导学生纵向观察第(1)题和第(2)题的形式和计算结果,让学生自己体会到,(-a)n 的底数是-a,表示n个(-a)相乘,-a n是a n的相反数,这是(-a)n与-a n的区别.教师引导学生横向观察第(3)题的形式和计算结果,让学生自己体会到,写分数的乘方时要加括号,不然就是另一种运算了.
课堂练习
计算:
;
(2)(-1)2001,3×22,-42×(-4)2,-23÷(-2)3;
(3)(-1)n-1.
(三)、小结
让学生回忆,做出小结:
1.乘方的有关概念.2.乘方的符号法则.3.括号的作用.
七、练习设计
3.当a=-3,b=-5,c=4时,求下列各代数式的值:
(1)(a+b)2; (2)a2-b2+c2;
&
(3)(-a+b-c)2; (4)a2+2ab+b2.
4.当a是负数时,判断下列各式是否成立.
(1)a2=(-a)2; (2)a3=(-a)3;
5*.平方得9的数有几个是什么有没有平方得-9的有理数为什么
6*.若(a+1)2+|b-2|=0,求a2000·b3的值.
九、教学后记
1.数学教学的重要目的是发展智力,提高能力,而发展智力、提高能力的核心是发展学生的思维能力.教学中,既要注重逻辑推理能力的培养,又重注重观察、归纳等合情推理能力的培养.因此,根据教学内容和学生的认知水平,我们再一次把培养学生的观察、归纳等能力列入了教学目标.
2.数学发展的历史告诉我们,数学的发展是从三个方面前进的:第一是不断的推广;第二是不断的精确化;第三是不断的逼近.在引入新课时,要尽可能使学生的学习方式与数学家的研究方式类似,不断进行推广.a2是由计算正方形面积得到的,a3是由计算正方体的体积得到的,而a4,a5,…,a n是学生通过类推得到的.
推广后的结果是还要有严密的定义,让学生从更高的观点看自己推广的结果.一般来说,一个概念或一个公式形成后,要对其字母的意义、相互的关系、应用的范围逐项分析.在a n 中,a取任意有理数,n取正整数的说明还是必要的,要培养学生这种良好的学习习惯.3.把学生做巩固性练习和总结运算规律放在一起进行,其效果就远远超出了巩固性练习的初衷.
我们知道,学生必须通过自己的探索才能学会数学和会学数学,与其说学习数学,不如说体验数学、做数学.始终给学生以创造发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,把重点放在教学情境的设计上.例如,通过实际计算,让学生自己体会到负数与分数的乘方要加括号.
4.有理数的乘方中反映出来的数学思想主要是分类讨论思想,在例1中,精心设计了三组计算题,引导学生从底数大于零、等于零、小于零分析、归纳、概括出有理数乘方的符号
法则,使学生在潜移默化中形成分类讨论思想.符号语言的使用,优化了表示分类讨论思想的形式,尤其是负数的奇次幂和偶次幂是大分类中的小分类,用符号语言就更加明显.在练习中让学生完成问题(-1)n-1,进一步巩固了分类讨论思想,使这种思想得以落实.。

相关文档
最新文档