角平分线性质的应用练习题(含答案)

合集下载

角平分线专项练习30题(有答案)ok

角平分线专项练习30题(有答案)ok

角平分线专项练习30题(有答案)1.如图,在△ABC中,∠C=90°,AB=2AC,AD平分∠BAC,求证:点D在AB的垂直平分线上.2.如图,在△ABC中,PD⊥AC,PE⊥AB,PF⊥BC,PD=PE=PF,求证:∠BPC=90°+∠BAC.3.如图已知:BD⊥AC,CE⊥AB,垂足分别是D、E,BD、CE交于F,且CF=FB,求证:AF平分∠BAC.4.如图,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若AB=AC.求证:AD平分∠BAC.5.如图,在△ABC中,∠BAC=90°,BE平分∠ABC,DE⊥BC于D,DE=DC.求证:BC=AB+AE.6.已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠BAD;(2)试说明线段DM与AM有怎样的位置关系?(3)线段CD、AB、AD间有怎样的关系?直接写出结果.7.如图,CD是Rt△ABC斜边上的高,∠BAC的平分线分别交BC、CD于点E、F.(1)求证:△ACF∽△ABE;(2)若AC=6cm,AF=3cm,AB=10cm,求出AE的长度.8.如图,CD∥AB,∠ABC,∠BCD的角平分线交于E点,且E在AD上,CE交BA的延长线于F点.(1)BE与CF互相垂直吗?若垂直,请说明理由;(2)若CD=3,AB=4,求BC的长.9.如图,直线MN分别交直线AB,CD于点E,F,EG平分∠BEF,若∠1=50°,∠2=65°,(1)求证:AB∥CD;(2)在(1)的条件下,求∠AEM的度数.10.如图,AD平分∠MAN,BD⊥AM,CD⊥AN,垂足分别为B、C,E为线段AB上一点,(1)用尺规在射线AN上找一点F,使△CDF与△BDE全等(保留作图痕迹);(2)若BE=3,请写出此时线段AE与AF的数量关系,并说明理由.11.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,(1)分别作出D到BA、BC的距离DE、DF;(2)求证:∠A+∠C=180°.12.已知:如图,△ABC中,∠ABC=90°,BD⊥AC于D,AE平分∠BAC,EF∥DC,交BC于F,求证:BE=FC.13.如图,四边形AOBC中,AC=BC,∠A+∠OBC=180°,CD⊥OA于D.(1)求证:OC平分∠AOB;(2)若OD=3DA=6,求OB的长.14.如图,点D、B分别在∠A的两边上,C是∠DAB内一点,AB=AD,BC=CD,CE⊥AD于E,CF⊥AF于F,求证:CE=CF.15.如图,已知:在四边形ABCD中,过C作CE⊥AB于E,并且CD=CB,∠ABC+∠ADC=180°,(1)求证:AC平分∠BAD;(2)若AE=3BE=9,求AD的长;(3)△ABC和△ACD的面积分别为36和24,求△BCE的面积.16.如图,在△ABC中,AB>AC,E为BC边的中点,AD为∠BAC的平分线,过E作AD的平行线,交AB于F,交CA的延长线于G.求证:BF=CG.17.如图,AE平分∠BAC,BD=DC,DE⊥BC,EM⊥AB,EN⊥AC.求证:BM=CN.18.如图,△ABC中,∠B的平分线与∠C的外角的平分线交于P点,PD⊥AC于D,PH⊥BA于H,求证:AP平分∠HAD.19.如图,△ABC中,若AD平分∠BAC,过D点作DE⊥AB,DF⊥AC,分别交AB、AC于E、F两点.求证:AD⊥EF.(2)若∠MON=80°,求∠PAB的度数.21.如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC.(1)求证:∠PCB+∠BAP=180°;(2)若BC=12cm,AB=6cm,PA=5cm,求BP的长.22.如图,△ABC中,AD是它的角平分线,P是AD上的一点,PE∥AB交BC与E,PF∥AC交BC与F.求证:D 到PE的距离与D到PF的距离相等.23.如图,在△ABC中,AD平分∠BAC,DG⊥BC且平分BC于点G,DE⊥AB于E,DF⊥AC于F.证明:BE=CF;(提示:连接线段BD、CD)25.如图,已知∠ABC=40°,∠ACB=60°,BO,CO平分∠ABC和∠ACB,DE过O点,且DE∥BC,求∠BOC的度数.26.四边形ABCD中,AC平分∠BAD,CE⊥AB于E,∠ADC+∠B=180°求证:2AE=AB+AD.27.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长.(2)ED=BC+BD.29.如图,在△ABC中,∠C=90°,M为AB的中点,DM⊥AB,CD平分∠ACB,求证:MD=AM.30.如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,M为OP上任一点,连接CM、DM,则有CM与DM相等,试说明你的理由.参考答案:1.证明:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴CD=DE,在△ADC和△ADE中,,∴△ADC≌△ADE(HL),∴AE=AC,∵AB=2AC,∴BE=AB﹣AE=2AC﹣AE=AE,∴点D在AB的垂直平分线上.2.证明:连接AP,且延长至G,∵PD⊥AC,PE⊥AB,PF⊥BC,PD=PE=PF,∴点P是△ABC三角平分线的交点,∴AP平分∠BAC,∴∠CAG=∠BAG=∠BAC,∵CP平分∠ACB,BP平分∠ABC,∴∠ACP=∠ACB,∠ABP=∠ABC,∴∠CPG=∠BAG+∠ABP=(∠BAC+∠ACB),∠BPG=∠BAG+∠ABP=(∠BAC+∠BC),∴∠BPC=∠CPG+∠BPG=(∠BAC+∠ACB)+(∠BAC+∠ABC)=∠BAC+(180°﹣∠BAC)=90°+∠BAC.3.证明:∵BD⊥AC,CE⊥AB,∠CDF=∠BEF=90°,在△CDF与△BEF中,,∴DF=EF,又∵BD⊥AC,CE⊥AB,∴AF平分∠BAC(到角的两边距离相等的点在角的平分线上)4.解:方法一:连接BC,∵BE⊥AC于E,CF⊥AB于F,∴∠CFB=∠BEC=90°,∵AB=AC,∴∠ABC=∠ACB,在△BCF和△CBE中∵∴△BCF≌△CBE(AAS),∴BF=CE,在△BFD和△CED中∵,∴△BFD≌△CED(AAS),∴DF=DE,∴AD平分∠BAC.方法二:先证△AFC≌△AEB,得到AE=AF,再用(HL)证△AFD≌△三AED,得到∠FAD=∠EAD,所以AD平分∠BAC.5.解:∵∠BAC=90°,BE平分∠ABC,DE⊥BC于D,∴AE=DE,∵BE是公共边,∴△BDE≌△BAE(HL),∴BD=BA,AE=DE=DC,∴BC=BD+DC=AB+AE6.(1)证明:作ME⊥AD于E,∵MC⊥DC,ME⊥DA,MD平分∠ADC,∴ME=MC,∵M为BC中点,∴MB=MC,又∵ME=MC,∴ME=MB,又∵ME⊥AD,MB⊥AB,∴AM平分∠DAB.(2)解:DM⊥AM,理由是:∵DM平分∠CDA,AM平分∠DAB,∴∠1=∠2,∠3=∠4,∴∠1+∠3=90°,∴∠DMA=180°﹣(∠1+∠3)=90°,即DM⊥AM.(3)解:CD+AB=AD,理由是:∵ME⊥AD,MC⊥CD,∴∠C=∠DEM=90°,在Rt△DCM和Rt△DEM中∴Rt△DCM≌Rt△DEM(HL),∴CD=DE,同理AE=AB,∵AE+DE=AD,∴CD+AB=AD.7.(1)证明:∵∠ACB=90°,∠CDB=90°,∴∠ACD=90°﹣∠DCB,∠B=90°﹣∠DCB,∴∠ACD=∠B,(2分)∵AE平分∠CAB,∴∠CAE=∠EAB,(3分)∴△ACF∽△ABE;(7分)(2)解:∵△ACF∽△ABE,∴,(9分)∴AE===5cm8.解:(1)垂直.∵CD∥AB,∴∠ABC+∠BCD=180°,∵∠ABC,∠BCD的角平分线交于E点,∴∠ABE=∠EBC,∠DCE=∠ECB,∴∠EBC+∠ECB=∠ABC+∠BCD=(∠ABC+∠BCD)=90°,∴∠CEB=90°,∴BE与CF互相垂直.(2)∵∠CEB=90°,∴∠FEB=90°,在△FBE和△CBE中,∵,∴△FBE≌△CBE(ASA),∴BF=BC,EF=EC,∵CD∥AB,∴∠DCE=∠AFE,∵∠FEA=∠CED,∴△DCE≌△AFE,∴DC=AF,∵CD=3,AB=4,BF=AF+AB,∴BF=BC=7.9.(1)证明:∵∠1+∠2+∠FEG=180°,∵∠1=50°,∠2=65°,∴∠FEG=65°,∵EG平分∠BEF,∴∠BEF=2∠FEG=130°,∴∠BEF+∠1=180°,∴AB∥CD.(2)∵∠AEM=∠BEF,∵∠BEF=130°,∴∠AEM=130°,答:∠AEM的度数是130°10.解:(1)以D为圆心,DE为半径交AN于F1或F2,如图,∵AD平分∠MAN,BD⊥AM,CD⊥AN,∴DB=DC,∵DE=DF,∴Rt△CDF≌Rt△BDE(HL);(2)∵DB=DC,DA=DA,∴Rt△DBA≌Rt△DCA(HL);∴AB=AC,∵Rt△CDF≌Rt△BDE,∴BE=CF,∴当F点在F1时,AF=AE;当F点在F2时,AF2=AC+CF2=AB+CF2=AE+BE+BE,∴AF﹣AE=2BE=6.11.解:(1)如图所示:.(2)证明:∵BD平分∠ABC,DE⊥BA,DF⊥BC,∴DE=DF,∠E=∠DFC=90°,∴在Rt△DEA和Rt△DFC中∴Rt△DEA≌Rt△DFC(HL),∴∠C=∠EAD,∵∠BAD+∠EAD=180°,∴∠BAD+∠C=180°12.证明:过点E作EG⊥AB于点G,过F点作FH⊥AC于点H,∵△ABC中,∠ABC=90°,∴∠C+∠BAC=90°,∵BD⊥AC于D,∴∠ADB=90°,∴∠BAC+∠ABD=90°,∴∠C=∠ABD,∵点E在∠BAC的平分线上,∴GE=DE,∵EF∥DC且BD⊥AC于D,FH⊥AC于D∴ED=FH,∴GE=FH,在△BEG与△CFH中,,∴△BEG≌△CFH(AAS),∴BE=CF.13.证:(1)作CE⊥OB于E,∵∠A+∠OBC=180°,∠OBC+∠CBE=180°∴∠A=∠CBE,在△ACD和△BCE中,,∴△ACD≌△BCE(AAS),∴CD=CE,∴OC平分∠AOB.(2)∵OD=3DA=6,∴AD=BE=2,在Rt△ODC和Rt△OEC中∵∴Rt△ODC≌Rt△OEC(HL),∴OE=OD=6,∴OB=OE﹣BE=4.14.证明:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,∵CE⊥AD于E,CF⊥AF于F,∴CE=CF15.解:(1)作CF⊥AD的延长线于F,∴∠F=90°.∵CE⊥AB,∴∠CEA=∠CEB=90°,∴∠F=∠CEA=∠CEB.∵∠ADC+∠CDF=180°,且∠ABC+∠ADC=180°∴∠CDF=∠B.在△CDF和△CEB中,∴△CDF≌△CEB(AAS),∴CF=CE.∵CF⊥AD,CE⊥AB,∴AC平分∠BAD;(2)在Rt△CAF和Rt△CAE中,∴Rt△CAF≌Rt△CAE(HL),∴AF=AE.∵△CDF≌△CEB,∴DF=EB.∵3BE=9,∴BE=3,∴DF=3.∵AD=AF﹣DF,∴AD=AE﹣DF.∵AE=9,∴AD=9﹣3=6;(3)∵△CAF≌△CAE,△CDF≌△CEB,∴S△CAF=S△CAE,S△CDF=S△CEB..设△BCE的面积为x,则△CDF的面积为x,由题意,得24+x=36﹣x,∴x=6,答:△BCE的面积为6.16.证明:延长FE至Q,使EQ=EF,连接CQ,∵E为BC边的中点,∴BE=CE,∵在△BEF和CEQ中,∴△BEF≌△CEQ,∴BF=CQ,∠BFE=∠Q,∵AD平分∠BAC,∴∠CAD=∠BAD,∵EF∥AD,∴∠CAD=∠G,∠BAD=∠GFA,∴∠G=∠GFA,∴∠GFA=∠BFE,∵∠BFE=∠Q(已证),∴∠G=∠Q,∴CQ=CG,∵CQ=BF,∴BF=CG.17.证明:连接BE、EC,∵BD=DC,DE⊥BC∵BE=EC.∵AE平分∠BAC,EM⊥AB,EN⊥AC,EM=EN,∠EMB=∠ENC=90°.在Rt△BME和Rt△CNE中,∵BE=EC,EM=EN,∴Rt△BME≌Rt△CNE(HL)∴BM=CN.18.证明:过P作PF⊥BE于F,∵BP平分∠ABC,PH⊥BA于H,PF⊥BE于F,∴PH=PF(角平分线上的点到角的两边距离相等).又∵CP平分∠ACE,PD⊥AC于D,PF⊥BE于F,∴PF=PD(角平分线上的点到角的两边距离相等).∴PD=PH(等量代换).∴AP平分∠HAD(到角的两边距离相等的点在这个角的平分线上).19.证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠EAD=∠FAD,∠AED=∠AFD=90°,∵∠AED+∠EAD+∠EDA=180°,∠FAD+∠AFD+∠ADF=180°,∴∠EDA=∠FDA,∵DE=DF,∴AD⊥EF三线合一)20.(1)证明:∵∠PAB=∠PBA,∴PA=PB,∵PA⊥OM于A,PB⊥ON于B,∴OP平分∠MON(到角的两边距离相等的点在角的平分线上);(2)解:∵∠MON=80°,PA⊥OM于A,PB⊥ON于B,∴∠APB=360°﹣90°×2﹣80°=100°,∵∠PAB=∠PBA,∴∠PAB=(180°﹣100°)=40°21.证明:(1)如图,过点P作PE⊥AB于E,∵∠1=∠2,PF⊥BC,∴PE=PF,在△APE和△CPF中,,∴△APE≌△CPF(HL),∴∠PAE=∠PCB,∵∠PAE+∠PAB=180°,∴∠PCB+∠BAP=180°;(2)∵△APE≌△CPF,∴AE=FC,∵BC=12cm,AB=6cm,∴AE=×(12﹣6)=3cm,BE=AB+AE=6+3=9cm,在Rt△PAE中,PE==4cm,在Rt△PBE中,PB==cm.22.证明:∵PE∥AB,PF∥AC,∴∠EPD=∠BAD,∠DPF=∠CAD,∵△ABC中,AD是它的角平分线,∴∠BAD=∠CAD,∴∠EPD=∠DPF,即DP平分∠EPF,∴D到PE的距离与D到PF的距离相等23.证明:连接BD,CD,∵AD平分∠BAC,且DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF.24.证明:∵DE⊥AB的延长线于点E,DF⊥AC于点F,∴∠BED=∠CFD,∴△BDE与△CDE是直角三角形,∵,∴Rt△BDE≌Rt△CDF,∴DE=DF,∴AD是∠BAC的平分线25.解:∵∠ABC=40°,∠ACB=60°,BO,CO平分∠ABC和∠ACB,∴∠OBC+∠OCB=(∠ACB+∠ABC)=50°;∴∠BOC=180°﹣50°=130°26.证明:过C作CF⊥AD于F,∵AC平分∠BAD,∴∠FAC=∠EAC,∵CE⊥AB,CF⊥AD,∴∠DFC=∠CEB=90°,∴△AFC≌△AEC,∴AF=AE,CF=CE,∵∠ADC+∠B=180°∴∠FDC=∠EBC,∴△FDC≌△EBC∴DF=EB,∴AB+AD=AE+EB+AD=AE+DF+AD=AF+AE=2AE∴2AE=AB+AD27.(1)证明:连接BD,CD,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)解:在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,设BE=x,则CF=x,∵AB=5,AC=3,AE=AB﹣BE,AF=AC+CF,∴5﹣x=3+x,解得:x=1,∴BE=1,AE=AB﹣BE=5﹣1=4.28.证明:(1)由三角形的外角性质,∠BAD+∠ABD=∠1+∠EDC,∵∠1=90°﹣∠EDC,∴∠BAD+90°=90°﹣∠EDC,∴∠BAD=∠EDC,延长DB至F,使BF=BD,则AB垂直平分DF,∴∠BAD=∠DAF,AD=AF,∴∠DAF=∠EDC,∠2=∠F,在△ADF中,∠F+∠DAF=∠1+∠EDC,∴∠1=∠F,∴∠1=∠2;(2)在△AED和△ACF中,,∴△AED≌△ACF(ASA),∴ED=CF,∵CF=BC+BF=BC+DB,∴ED=BC+BD.29.证明:如图,连接CM,设AB、CD相交于点E,则CM是斜边上的中线,MC=MB=AM,∴∠MCB=∠B,∵CD平分∠ACB,∠C=90°,∴∠BCD=×90°=45°,∴∠MCD=∠MCB﹣45°=∠B﹣45°,又∵∠DEM=∠BEC=180°﹣∠B﹣45°=135°﹣∠B,∴∠D=90°﹣∠DEM=∠B﹣45°,∴∠D=∠MCD,∴MD=MC,∴MD=AM.30.解:∵OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,∴PC=PD,∵OM是公共边,∴△POC≌△POD(HL),∴OC=OD,∴△COM≌△DOM(SAS),∴CM=DM。

利用角平分线性质解决问题练习题

利用角平分线性质解决问题练习题

利用角平分线性质解决问题练习题角平分线是初中数学中一个重要的概念,它有着广泛的应用。

在解决一些几何问题时,我们可以利用角平分线的性质来简化计算,提高解题效率。

下面我将给出一些角平分线的问题练习题并逐一解答。

1. 题目:在三角形ABC中,角A的角平分线交BC边于点D,若AB=AC,AD=5cm,BD=3cm,求BC的长度。

解析:根据角平分线的性质,我们知道BD/DC = AB/AC。

代入已知条件,可得3/DC = 1,解得DC=3cm。

由此可以知道,BC = BD+DC = 3+3 = 6cm。

2. 题目:在平行四边形ABCD中,角A的角平分线交BC边于点E,若AB=8cm,AD=10cm,BE=6cm,求CE的长度。

解析:由于平行四边形的特性,我们可以得知AE=AD=10cm。

根据角平分线的性质,可以得到BE/EC = AB/AC,代入已知条件可得6/EC = 8/(10+AC),解得EC=16cm。

因此,CE的长度为16cm。

3. 题目:在正方形ABCD中,角A的角平分线交BC边于点E,知AE=5cm,求BE的长度。

解析:由于正方形的特性,我们知道BE=BC。

根据角平分线的性质,我们可以得到AE/EC = AB/AC,即5/EC = 1。

解得EC=5cm,因此BE也等于5cm。

4. 题目:在三角形ABC中,角A的角平分线交BC边于点D,且AD=BD,若AC=6cm,BD=2cm,求AB的长度。

解析:根据角平分线的性质,我们知道BD/DC = AB/AC。

代入已知条件可得2/DC = AB/6。

由于AD=BD,即DC=2cm。

代入可得2/2 = AB/6,解得AB=6cm。

5. 题目:在梯形ABCD中,AB∥DC,角BAD的角平分线交BC边于点E,若BE=6cm,ED=9cm,求CD的长度。

解析:根据梯形的特性,我们可以得知AD∥BC。

根据角平分线的性质,可以得到BE/EC = BA/AD。

代入已知条件可得6/EC =AB/(AD+ED),即6/EC = BA/CD。

角的平分线的性质(含例题)

角的平分线的性质(含例题)

1.作已知角的平分线用尺规作已知角的平分线.已知:∠AOB,求作:∠AOB的平分线.作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M,N为圆心,大于__________的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC.射线OC即为所求.如图所示:★作图依据:构造△OMC≌△ONC(SSS).2.角的平分线的性质内容:角的平分线上的点到角的两边的距离__________.【提示】(1)这里的距离指的是点到角的两边垂线段的长;(2)该性质可以独立作为证明两条线段相等的依据,不需要再用全等三角形;(3)使用该结论的前提条件是图中有角平分线、有垂直;(4)运用角的平分线时常添加的辅助线:由角的平分线上的已知点向两边作垂线段,利用其相等来推导其他结论.3.证明几何命题的一般步骤一般情况下,我们要证明一个几何命题时,可以按照以下的步骤进行:(1)明确命题中的已知和求证;(2)根据题意,画出图形,并用符号表示已知和求证;(3)经过分析,找出由已知推出要证的结论的途径,写出证明过程.4.角的平分线的判定(1)内容:角的内部到角的两边的距离__________的点在角的平分线上.(2)角的平分线的判定的前提条件是指在角的内部的点到角两边的距离相等时,它才是在角的平分线上,角的外部的点不会在角的平分线上.K知识参考答案:1.(2)12MN 2.相等3.相等K—重点尺规作图作角的平分线,角的平分线的性质和判定K—难点证明几何命题的一般步骤K—易错角的平分线的判定一、角的平分线的性质遇到已知一个点在某个角的平分线上时,一般过该点向角的两边作垂线,运用角的平分线上的点到角两边的距离相等寻找线段的相等关系,有时可结合全等三角形建立未知线段与已知线段的关系,从而求出待求线段.【例1】如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3 cm,则点D到AB的距离DE是A.5 cm B.4 cmC.3 cm D.2 cm【答案】C【解析】如图,过D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,DE⊥AB,∴DE=CD,∵CD=3 cm,∴DE=3 cm.故选C.【例2】如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是A.PA=PB B.PO平分∠AOBC.OA=OB D.AB垂直平分OP【答案】D二、角的平分线的判定1.当题目中出现角内的一点到角两边的距离相等时,可以考虑应用角的平分线的判定方法证明两个角相等.2.角的平分线的性质和判定恰好是条件和结论互换,即点在角平分线上的一点到角两边的距离相等.【例3】如图,PA=PB,∠1+∠2=180°.求证:OP平分∠AOB.三、角的平分线的性质的应用证明角平分线的方法:只需从要证的线上的某一点向角的两边作垂线段,再证明垂线段相等即可.这样把证“某线是角的平分线”的问题转化为证“垂线段相等”的问题,体现了转化思想.【例4】如图,直线l1,l2,l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有A.1处B.2处C.3处D.4处【答案】D【解析】如图,A、B、C、D为三条直线组成的三角形内角和外角的角平分线的交点,由角平分线上的点到角两边距离相等可得在这四点处,货物中转站到三条公路距离相等.故选D.【例5】如图,两条笔直的公路l1、l2相交于点O,公路的旁边建三个加工厂A、B、D,已知AB=AD=5.2 km,CB=CD=5 km,村庄C到公路l1的距离为4 km,则C村到公路l2的距离是A.3 km B.4 km C.5 km D.5.2 km【答案】B。

8年级数学人教版上册同步练习角的平分线的性质(含答案解析)

8年级数学人教版上册同步练习角的平分线的性质(含答案解析)

8年级数学人教版上册同步练习角的平分线的性质(含答案解析)专题一利用角的平分线的性质解题1.如图,在△ABC中,AC=AB,D在BC上,若DF⊥AB,垂足为F,DG⊥AC,垂足为G,且DF=DG.求证:AD⊥BC.2.如图,已知CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC.求证:OB=OC.3.如图,在Rt△ABC中,∠C=90°,21∠∠,AD是∠BAC的角平分线,DE⊥ABBAC B∶∶于点E,AC=3 cm,求BE的长.专题二角平分线的性质在实际生活中的应用4.如图,三条公路把A﹨B﹨C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在()A.在AC﹨BC两边高线的交点处B.在AC﹨BC两边中线的交点处C.在∠A﹨∠B两内角平分线的交点处D.在AC﹨BC两边垂直平分线的交点处5.如图,要在河流的南边,公路的左侧M区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A处的距离为1cm(指图上距离),则图中工厂的位置应在__________,理由是__________.6.已知:有一块三角形空地,若想在空地中找到一个点,使这个点到三边的距离相等,试找出该点.(保留作图痕迹)状元笔记【知识要点】1.角的平分线的性质角的平分线上的点到角的两边的距离相等.2.角的平分线的判定角的内部到角的两边的距离相等的点在角的平分线上.【温馨提示】1.到三角形三边距离相等的点是三角形三条角平分线的交点,不是其他线段的交点.2.到三角形三边距离相等的点不仅有内角的平分线的交点,还有相邻两外角的平分线的交点,这样的点共有4个.【方法技巧】1.利用角的平分线的性质解决问题的关键是:挖掘角的平分线上的一点到角两边的垂线段.若已知条件存在两条垂线段——直接考虑垂线段相等,若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段.2.利用角平分线的判定解决问题的策略是:挖掘已知图形中一点到角两边的垂线段.若已知条件存在两条垂线段——先证明两条垂线段相等,然后说明角平分线或角的关系;若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,再证明两条垂线段相等;若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段后,证明两条垂线段相等.参考答案:1.证明:∵DF AB DG AC DF DG ⊥⊥=,,,∴AD 是BAC ∠的平分线,∴BAD CAD =∠∠.在ABD △和ACD △中,⎪⎩⎪⎨⎧=∠=∠=(公共边)(已求)已知)AD AD DAC DAB AC AB (∴SAS)ABD ACD (△≌△.∴ADB ADC =∠∠.又∵180BDA CDA +=︒∠∠,∴90BDA =︒∠,∴AD BC ⊥.2.证明:∵AO 平分∠BAC ,OD ⊥AB ,OE ⊥AC ,∴OD =OE ,在Rt △BDO 和Rt △CEO 中,⎪⎩⎪⎨⎧∠=∠=∠=∠,,COE DOB OEOD CEO BDO ∴(ASA)BDO CEO △≌△.∴OB =OC .3.解:∵∠C =90°,∴∠BAC +∠B =90°,又DE ⊥AB ,∴∠C =∠AED =90°,又21BAC B =∶∶∠∠,∴∠A =60°,∠B =30°, 又∵AD 平分∠BAC ,DC ⊥AC ,DE ⊥AB ,∴DC =DE ,∴3AE AC ==cm .在Rt △DAE 和Rt △DBE 中,⎪⎩⎪⎨⎧=∠=∠∠=∠.DE DE BEDAED B DAE∴△DAE ≌△DBE (AAS ),∴3BE AE == cm . 4.C 解析:根据角平分线的性质,集贸市场应建在∠A ﹨∠B 两内角平分线的交点处.故选C .5.∠A 的角平分线上,且距A1cm 处 角平分线上的点到角两边的距离相等6.解:作两个角的平分线,交点P 就是所求作的点.。

角的平分线的性质同步练习含答案解析

角的平分线的性质同步练习含答案解析

角的平分线的性质同步练习含答案解析一、填空题1.如图,∠B=∠D=90゜,依照角平分线性质填空:(1)若∠1=∠2,则______=______.(2)若∠3=∠4,则______=______.2.如图,BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,AB=12,BC=15,S△ABD =36,则S△BCD=______.3.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于______.4.如图,AD是△ABC的角平分线,若AB=2AC.则S△ABD :S△ACD=______.二、选择题5.如图,已知点P、D、E分别在OC、OA、OB上,下列推理:①∵OC平分∠AOB,∴PD=PE;②∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE;③∵PD⊥OA,PE⊥OB,∴PD=PE;其中正确的个数有()A.0个B.1个C.2个D.3个6.如图△ABC中,∠ACB=90゜,AD平分∠BAC交BC于D,DE垂直AB于E,若DE=1.5cm,BD=3cm,则BC=()A.3cm B.7.5cm C.6cm D.4.5cm7.在△ABC中,∠C=90゜,AD平分∠BAC交BC于D,BD:DC=3:2,点D到AB的距离为6,则BC 长为()A.10 B.20 C.15 D.258.如图,在△ABC中,∠B、∠C的角平分线交于点0,OD⊥AB于D,OE⊥AC于E,则OD与OE的大小关系是()A.OD>OE B.OD<OE C.OD=OE D.不能确定三、解答题9.如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.10.如图,四边形ABCD中,AB=AD,CB=CD,点P是AC上一点,PE⊥BC于E,PF⊥CD于F,求证:PE=PF.11.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.12.如图,BD是∠ABC的平分线,DE⊥AB于E,S=90,AB=18,BC=12,求DE的长.△ABC13.如图.已知在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR ⊥AB于R,AB=7,BC=8,AC=9.(1)求BP、CQ、AR的长.(2)若BO的延长线交AC于E,CO的延长线交AB于F,若∠A=60゜,求证:OE=OF.《12.3 角的平分线的性质》参考答案与试题解析一、填空题1.如图,∠B=∠D=90゜,依照角平分线性质填空:(1)若∠1=∠2,则BC = DC .(2)若∠3=∠4,则AB = AD .【考点】角平分线的性质.【分析】(1)依照角平分线性质推出即可;(2)依照角平分线性质推出即可.【解答】解:(1)∵∠B=∠D=90°,∴AB⊥BC,AD⊥DC,∵∠1=∠2,∴BC=CD,故答案为:BC,DC.(2)∵AB⊥BC,AD⊥DC,∵∠3=∠4,∴AB=AD,故答案为:AB,AD.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边距离相等.2.如图,BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,AB=12,BC=15,S△ABD =36,则S△BCD= 45 .【考点】角平分线的性质.【分析】第一依照△ABD的面积运算出DE的长,再依照角平分线上的点到角两边的距离相等可得DE=DF,然后运算出DF的长,再利用三角形的面积公式运算出△BCD的面积即可.【解答】解:∵S△ABD=36,∴•AB•ED=36,×12×ED=36,解得:DE=6,∵BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,∴DE=DF,∴DF=6,∵BC=15,∴S△BCD=•CB•DF=×15×6=45,故答案为:45.【点评】此题要紧考查了角平分线的性质,关键是把握角平分线上的点到角两边的距离相等.3.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于2:3:4 .【考点】角平分线的性质;三角形的面积.【专题】常规题型.【分析】由角平分线的性质可得,点O到三角形三边的距离相等,即三个三角形的AB、BC、CA的高相等,利用面积公式即可求解.【解答】解:过点O 作OD ⊥AC 于D ,OE ⊥AB 于E ,OF ⊥BC 于F ,∵O 是三角形三条角平分线的交点,∴OD=OE=OF ,∵AB=20,BC=30,AC=40,∴S △ABO :S △BCO :S △CAO =2:3:4.故答案为:2:3:4.【点评】此题要紧考查角平分线的性质和三角形面积的求法,难度不大,作辅助线专门关键.4.如图,AD 是△ABC 的角平分线,若AB=2AC .则S △ABD :S △ACD = 2 .【考点】角平分线的性质.【分析】过D 作DM ⊥AC 于M ,DN ⊥AB 于N ,依照角平分线性质得出DM=DN ,依照三角形面积公式求出即可.【解答】解:过D 作DM ⊥AC 于M ,DN ⊥AB 于N ,∵AD 是△ABC 的角平分线,∴DM=DN ,∴S △ABD :S △ACD =(AB ×DN ):(AC ×DM )=AB :AC=2AC :AC=2,故答案为:2.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.二、选择题5.如图,已知点P、D、E分别在OC、OA、OB上,下列推理:①∵OC平分∠AOB,∴PD=PE;②∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE;③∵PD⊥OA,PE⊥OB,∴PD=PE;其中正确的个数有()A.0个B.1个C.2个D.3个【考点】角平分线的性质.【分析】直截了当依照角平分线的性质进行解答即可.【解答】解:∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE.故选B.【点评】本题考查的是角平分线的性质,即角平分线上的点到角两边的距离相等.6.如图△ABC中,∠ACB=90゜,AD平分∠BAC交BC于D,DE垂直AB于E,若DE=1.5cm,BD=3cm,则BC=()A.3cm B.7.5cm C.6cm D.4.5cm【考点】角平分线的性质.【分析】依照角平分线的性质得出CD长,代入BC=BD+DC求出即可.【解答】解:∵∠ACB=90°,∴AC⊥BC,∵DE⊥AB,AD平分∠BAC,∴DE=DC=1.5cm,∵BD=3cm,∴BC=BD+DC=3cm+1.5cm=4.5cm,故选D.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.7.在△ABC中,∠C=90゜,AD平分∠BAC交BC于D,BD:DC=3:2,点D到AB的距离为6,则BC 长为()A.10 B.20 C.15 D.25【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,依照角平分线上的点到角的两边的距离相等可得DC=DE,然后求出BD的长,再依照BC=BD+DE代入数据进行运算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵点D到AB的距离为6,∴DE=6,∵∠C=90°,AD平分∠BAC交BC于D,∴DC=DE=6,∵BD:DC=3:2,∴BD=×3=9,∴BC=BD+DE=9+6=15.故选C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.8.如图,在△ABC中,∠B、∠C的角平分线交于点0,OD⊥AB于D,OE⊥AC于E,则OD与OE的大小关系是()A.OD>OE B.OD<OE C.OD=OE D.不能确定【考点】角平分线的性质.【分析】依照三角形的角平分线相交于一点,连接AO,则AO平分∠BAC,然后依照角平分线上的点到角的两边的距离相等解答.【解答】解:如图,连接AO,∵∠B、∠C的角平分线交于点0,∴AO平分∠BAC,∵OD⊥AB,OE⊥AC,∴OD=OE.故选C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,依照三角形的角平分线相交于一点作辅助线并判定出AO平分∠BAC是解题的关键.三、解答题9.如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)依照角平分线上的点到角的两边的距离相等证明即可;(2)利用“边角边”证明△BDE和△FDC全等,再依照全等三角形对应边相等证明即可.【解答】证明:(1)∵∠C=90°,AD是∠BAC的平分线,DE⊥AB,∴DE=DC;(2)在△BDE和△FDC中,,∴△BDE≌△FDC(SAS),∴BD=DF.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,是基础题,熟记性质是解题的关键.10.如图,四边形ABCD中,AB=AD,CB=CD,点P是AC上一点,PE⊥BC于E,PF⊥CD于F,求证:PE=PF.【考点】全等三角形的判定与性质;角平分线的性质.【专题】证明题.【分析】依照“SSS”可得到△ABC≌△ADC,则∠BCA=∠DCA,再利用角平分线的性质即可得到结论.【解答】证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,∵PE⊥BC于E,PF⊥CD于F,∴PE=PF.【点评】本题考查了全等三角形的判定与性质:三边都对应相等的两三角形全等;全等三角形的对应边相等,对应角相等.角平分线的性质:角的平分线上的点到角的两边的距离相等.11.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】依照角平分线的性质以及已知条件证得△ABD≌△CBD(SAS),然后由全等三角形的对应角相等推知∠ADB=∠CDB;再由垂直的性质和全等三角形的判定定理AAS判定△PMD≌△PND,最后依照全等三角形的对应边相等推知PM=PN.【解答】证明:在△ABD和△CBD中,AB=BC(已知),∠ABD=∠CBD(角平分线的性质),BD=BD(公共边),∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB(全等三角形的对应角相等);∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°;又∵PD=PD(公共边),∴△PMD≌△PND(AAS),∴PM=PN(全等三角形的对应边相等).【点评】本题考查了角平分线的性质、全等三角形的判定与性质.由已知证明△ABD≌△CBD是解决的关键.12.如图,BD是∠ABC的平分线,DE⊥AB于E,S=90,AB=18,BC=12,求DE的长.△ABC【考点】角平分线的性质.【分析】过点D作DF⊥BC于F,依照角平分线上的点到角的两边的距离相等可得DE=DF,然后依照三角形的面积列出方程求解即可.【解答】解:如图,过点D作DF⊥BC于F,∵BD是∠ABC的平分线,DE⊥AB,∴DE=DF,=AB•DE+BC•DF=90,∴S△ABC即×18•DE+×12•DE=90,解得DE=6.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,三角形的面积,熟记性质并作出辅助线是解题的关键.13.如图.已知在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR ⊥AB于R,AB=7,BC=8,AC=9.(1)求BP、CQ、AR的长.(2)若BO的延长线交AC于E,CO的延长线交AB于F,若∠A=60゜,求证:OE=OF.【考点】角平分线的性质;全等三角形的判定与性质.【分析】(1)依照角平分线性质得出OR=OQ=OP,依照勾股定理起床AR=AQ,CQ=CP,BR=BP,得出方程组,求出即可;(2)过O作OM⊥AC于肘,ON⊥AB于N,求出OM=ON,证出△FON≌△EOM即可.【解答】解:连接AO,OB,OC,∵OP⊥BC,OQ⊥AC,OR⊥AB,∠A、∠B的角平分线交于点O,∴OR=OQ,OR=OP,∴由勾股定理得:AR2=OA2﹣OR2,AQ2=AO2﹣OQ2,∴AR=AQ,同理BR=BP,CQ=CP,即O在∠ACB角平分线上,设BP=BR=x,CP=CQ=y,AQ=AR=z,则x=3,y=5,z=4,∴BP=3,CQ=5,AR=4.(2)过O作OM⊥AC于M,ON⊥AB于N,∵O在∠A的平分线,∴OM=ON,∠ANO=∠AMO=90°,∵∠A=60°,∴∠NOM=120°,∵O在∠ACB、∠ABC的角平分线上,∴∠EBC+∠FCB=(∠ABC+∠ACB)=×(180°﹣∠A)=60°,∴∠FON=∠EOM,在△FON和△EOM中∴△FON≌△EOM,∴OE=OF.【点评】本题考查了角平分线性质和全等三角形的性质和判定的应用,注意:角平分线上的点到角两边的距离相等.。

角的平分线的性质重难点题型(含答案)

角的平分线的性质重难点题型(含答案)

角的平分线的性质重难点题型①以O 为圆心,适当长为半径画弧,交OA 于D ,交OB 于E.②分别以D 、E 为圆心,大于DE 的长为半径画弧,两弧在∠AOB 内部交于点C. ③画射线OC.即射线OC 即为所求.【题型1 角平分线的作法及应用】【例1】(2020秋•曲靖校级月考)如图所示,已知∠AOB ,求作射线OC ,使OC 平分∠AOB ,作法的合理顺序是 .(将①②③重新排列)①作射线OC ;②以O 为圆心,任意长为半径画弧交OA 、OB 于D 、E ;③分别以D 、E 为圆心,大于12DE 的长为半径作弧,在∠AOB 内,两弧交于点C .12【解题思路】根据角平分线的作法进行解答.【解答过程】解:作法:(1)以O 为圆心,任意长为半径画弧交OA 、OB 于D 、E ;(2)分别以D 、E 为圆心,大于12DE 的长为半径作弧,在∠AOB 内,两弧交于点C , (3)作射线OC ,所以OC 就是所求作的∠AOB 的平分线.故题中的作法应重新排列为:②③①.故答案为:②③①.【变式1-1】(2020•连城县模拟)如图,已知∠MON ,点B ,C 分别在射线OM ,ON 上,且OB =OC .(1)用直尺和圆规作出∠MON 的角平分线OP ,在射线OP 上取一点A ,分别连接AB 、AC (只需保留作图痕迹,不要求写作法).(2)在(1)的条件下求证:AB =AC .【解题思路】(1)根据作角平分线的方法画图即可;(2)先判断出∠POB =∠POC ,进而根据全等三角形的判定定理和性质即可得到结论.【解答过程】解:(1)如图所示:射线OP 即为所求;(2)由(1)知,OP 是∠MON 的角平分线,∴∠POB =∠POC ,在△ABO 与△ACO 中{OB =OC∠AOB =∠AOC OA =OA,∴△ABO ≌△ACO (SAS ),∴AB =AC .【变式1-2】(2020秋•沛县期中)如图,已知点D在△ABC的边AB上,且AD=CD,(1)用直尺和圆规作∠BDC的平分线DE,交BC于点E(不写作法,保留作图痕迹);(2)在(1)的条件下,判断DE与AC的位置关系,并写出证明过程.【解题思路】(1)根据角平分线的尺规作图可得;(2)先由AD=CD知∠A=∠DCA,继而得∠BDC=∠A+∠DCA=2∠A,再由DE平分∠BDC知∠BDC =2∠BDE,从而得∠BDE=∠A,从而得证.【解答过程】解:(1)如图所示,DE即为所求.(2)DE∥AC.理由如下:因为AD=CD,所以∠A=∠DCA,所以∠BDC=∠A+∠DCA=2∠A,因为DE平分∠BDC,所以∠BDC=2∠BDE,所以∠BDE=∠A,所以DE∥AC.【变式1-3】(2021秋•孟州市校级期中)数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:根据以上情境,解决下列问题:作法:(如图1)①在OA 和OB 上分别截取OD 、OE ,使OD =OE .②分别以D 、E 为圆心,以大于12DE 的长为半径作弧,两弧在∠AOB 内交于点C .③作射线OC ,则OC 就是∠AOB 的平分线.小聪只带来直角三角板,他发现利用三角板也可以作角平分线(如图2),方法如下:步骤:①利用三角板上的刻度,在OA 和OB 上分别截取OM 、ON ,使OM =ON .②分别过M 、N 作OM 、ON 的垂线,交于点P .③作射线OP ,则OP 为∠AOB 的平分线.小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.①李老师用尺规作角平分线时,用到的三角形全等的判定方法是 .②小聪的作法正确吗?请说明理由.③请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)【解题思路】①根据全等三角形的判定即可求解;②根据HL 可证Rt △OMP ≌Rt △ONP ,再根据全等三角形的性质即可作出判断;③根据用刻度尺作角平分线的方法作出图形,写出作图步骤即可.【解答过程】解:①李老师用尺规作角平分线时,用到的三角形全等的判定方法SSS ;故答案为SSS ;②小聪的作法正确.理由:∵PM ⊥OM ,PN ⊥ON∴∠OMP =∠ONP =90°,在Rt △OMP 和Rt △ONP 中,∵{OP =OP OM =ON, ∴Rt △OMP ≌Rt △ONP (HL ),∴∠MOP =∠NOP ,∴OP 平分∠AOB .③如图所示:步骤:①利用刻度尺在OA 、OB 上分别截取OG =OH ,②连接GH ,利用刻度尺作出GH 的中点Q ,③作射线OQ ,则OQ 为∠AOB 的平分线.【题型2 角平分线的性质的应用】【例2】(2021春•毕节市期末)如图,已知△ABC中,∠C=90o,AC=BC,AD平分∠CAB,交BC于点D,DE⊥AB于点E,且AB=10,则△DEB的周长为()A.9B.5C.10D.不能确定【解题思路】先利用角平分线的性质得到DE=DC,再证明Rt△ACD≌Rt△AED得到AC=AE,然后利用等线段代换得到△DEB的周长=AB.【解答过程】解:∵AD平分∠CAB,DE⊥AB,DC⊥AC,∴DE=DC,在Rt△ACD和Rt△AED中,{AD=ADDC=DE,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∵AC=BC,∴BC=AE,∴△DEB的周长=BD+DE+BE=BD+CD+BE=BC+BE=AE+BE=AB=10.故选:C.【变式2-1】(2021春•汉寿县期中)如图,四边形ABCD中,∠A=90°,AD=3,连接BD,BD⊥CD,垂足是D且∠ADB=∠C,点P是边BC上的一动点,则DP的最小值是()A.1B.2C.3D.4【解题思路】根据等角的余角相等求出∠ABD=∠CBD,再根据垂线段最短可知DP⊥BC时DP最小,然后根据角平分线上的点到角的两边距离相等可得DP=AD.【解答过程】解:∵BD⊥CD,∠A=90°∴∠ABD+∠ADB=90°,∠CBD+∠C=90°,∴∠ABD=∠CBD,由垂线段最短得,DP⊥BC时DP最小,此时,DP=AD=3.故选:C.【变式2-2】(2020秋•增城区期末)如图,已知△ABC的周长是18cm,∠ABC和∠ACB的角平分线交于点O,OD⊥BC于点D,若OD=3cm,则△ABC的面积是()cm2.A.24B.27C.30D.33【解题思路】过O点作OE⊥AB于E,OF⊥AC于F,连接OA,如图,根据角平分线的性质得OE=OD =3,OF=OD=3,由于S△ABC=S△OAB+S△OBC+S△OAC,所以根据三角形的面积公式可计算出△ABC的面积.【解答过程】解:过O点作OE⊥AB于E,OF⊥AC于F,连接OA,如图,∵OB平分∠ABC,OD⊥BC,OE⊥AB,∴OE=OD=3,同理可得OF=OD=3,∴S△ABC=S△OAB+S△OBC+S△OAC=12×OE×AB+12×OD×BC+12×OF×AC=32(AB+BC+AC),∵△ABC的周长是18,∴S△ABC=32×18=27(cm2).故选:B.【变式2-3】(2021春•武侯区校级期中)如图,AD是△ABC的角平分线,DF⊥AB于点F,且DE=DG,S△ADG=24,S△AED=18,则△DEF的面积为()A.2B.3C.4D.6【解题思路】过点D作DH⊥AC于H,根据角平分线的性质得到DH=DF,进而证明Rt△DEF≌Rt△DGH,根据全等三角形的性质得到△DEF的面积=△DGH的面积,根据题意列出方程,解方程得到答案.【解答过程】解:过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,DH⊥AC,∴DH=DF,在Rt△DEF和Rt△DGH中,{DF=DHDE=DG,∴Rt△DEF≌Rt△DGH(HL),∴△DEF的面积=△DGH的面积,设△DEF的面积=△DGH的面积=S,同理可证,Rt△ADF≌Rt△ADH,∴△ADF的面积=△ADH的面积,∴24﹣S=18+S,解得,S=3,故选:B.【题型3 角平分线的性质与等积法】【例3】(2020秋•云南期末)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是152cm2,AB=20cm,AC=18cm,求DE的长.【解题思路】根据S△ABC=S△ABD+S△ACD,再利用角平分线的性质即可解决问题.【解答过程】解:∵AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∵S△ABC=S△ABD+S△ACD,∴S△ABC=12×AB×DE+12×AC×DF,∵△ABC面积是152cm2,AB=20cm,AC=18cm,∴152=12×20×DE+12×18×DF,∴10DE+9DF=152,∵DE=DF,∴19DE=152,∴DE=8.【变式3-1】(2021春•浦江县期末)如图,在△ABC中,∠BAC=90°,AB=6,AC=8,BC=10,若AD 平分∠BAC交BC于点D,求BD的长.【解题思路】过A 点作AH ⊥BC 于H ,过D 点作DE ⊥AB 于E ,DF ⊥AC 于F ,如图,利用面积法先求出AH =245,再根据角平分线的性质得到DE =DF ,接着利用面积法得到12AB •DE +12AC •DF =12AB •AC ,则可求出DE =247,然后利用12AH •BD =12AB •DE 可求出BD 的长. 【解答过程】解:过A 点作AH ⊥BC 于H ,过D 点作DE ⊥AB 于E ,DF ⊥AC 于F ,如图,∵12AH •BC =12AC •AB , ∴AH =6×810=245, ∵AD 平分∠BAC ,∴DE =DF ,∵12AB •DE +12AC •DF =12AB •AC , ∴3DE +4DF =24,∴DE =247, ∵S △ABD =12AH •BD =12AB •DE ,∴BD =6×247245=307.【变式3-2】(2020春•番禺区校级期中)点P 为△ABC 三内角平分线的交点,∠ACB =90°,AB =10cm ,AC =6cm ,BC =8cm ,求:点P 到三边的距离.【解题思路】根据点P 为三角形三个内角平分线的交点,作PD ⊥BC 于D ,PE ⊥AC 于E ,PF ⊥AB 于F ,连接P A ,PB ,PC ,可得PD =PE =PF ,根据三角形的面积公式即可求出点P 到三边的距离.【解答过程】解:∵点P 为三角形三个内角平分线的交点,作PD ⊥BC 于D ,PE ⊥AC 于E ,PF ⊥AB 于F ,连接P A ,PB ,PC ,如图,∴PD =PE =PF ,设PD =PE =PF =R ,由三角形的面积公式得:S △ACB =S △APC +S △APB +S △BPC ,∴12×AC ×BC =12×AC ×R +12×BC ×R +12×AB ×R , 6×8=6R +8R +10R ,R =2,即PD =2cm .答:点P 到三边的距离为2cm .【变式3-3】(2020秋•渝水区校级期中)知识储备:(1)如图1,AD 是△ABC 的高,则△ABC 的面积S △ABC =12BC •AD .比例的性质:若b a =d c =⋯=n m ,则b+d+⋯+n a+c+⋯+m =b a =d c =n m .知识运用:(2)如图2,BE 是△ABC 的角平分线,运用上述知识,求证:AB BC =AE CE ;知识延展:(3)如图3,△ABC 的角平分线BE 平分△ABC 的周长,求证:△ABC 是等腰三角形.【解题思路】2.作EF ⊥AB ,EG ⊥BC ,BH ⊥AC ,垂足分别是F ,G ,H ,根据角平分线的性质得到EF =EG ,根据三角形的面积公式即可得到结论;3.由(1)得到AB BC =AE CE ,根据等腰三角形的判定定理即可得到结论.【解答过程】2.证明:作EF ⊥AB ,EG ⊥BC ,BH ⊥AC ,垂足分别是F ,G ,H ,∵BE 平分∠ABC ,∴EF =EG ,∵S △ABE =12AB ⋅EF ,S △BCE =12BC ⋅EG ,∴S △ABES △BCE =AB BC ,∵S △ABE =12AE ⋅BH ,S △BCE =12CE ⋅BH ,∴S △ABE S △BCE =AE CE , ∴AB BC =AE CE ,3.证明:由(1)知AB BC =AE CE , ∴AB BC =AE+AB CE+BC ,∵AB +AE =BC +CE ,∴AB BC =1,∴AB =BC ,∴△ABC 是等腰三角形.【题型4 角平分线的性质与全等】【例4】(2020秋•肇源县期末)如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,DE ⊥AB 于点E ,点F 在AC 上,BE =FC .求证:BD =DF .【解题思路】因为∠C =90°,DE ⊥AB ,所以∠C =∠DEB ,又因为AD 平分∠BAC ,所以CD =DE ,已知BE =FC ,则可根据SAS 判定△CDF ≌△EDB ,根据全等三角形的性质即可得到结论.【解答过程】证明:∵AD 平分∠BAC ,DE ⊥AB ,∠C =90°,∴DC =DE ,在△DCF 和△DEB 中,{DC =DE∠C =∠BED CF =BE,∴△DCF ≌△DEB ,(SAS ),∴BD =DF .【变式4-1】(2020秋•平山县期中)如图,∠AOB =90°,OM 平分∠AOB ,将直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA 、OB 相交于点C 、D ,问PC 与PD 相等吗?试说明理由.【解题思路】先过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点F ,构造全等三角形:Rt △PCE 和Rt △PDF ,这两个三角形已具备两个条件:90°的角以及PE =PF ,只需再证∠EPC =∠FPD ,根据已知,两个角都等于90°减去∠CPF ,那么三角形全等就可证.【解答过程】解:PC 与PD 相等.理由如下:过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点F .∵OM 平分∠AOB ,点P 在OM 上,PE ⊥OA ,PF ⊥OB ,∴PE =PF (角平分线上的点到角两边的距离相等)又∵∠AOB =90°,∠PEO =∠PFO =90°,∴四边形OEPF 为矩形,∴∠EPC +∠CPF =90°,又∵∠CPD =90°,∴∠CPF +∠FPD =90°,∴∠EPC =∠FPD =90°﹣∠CPF .在△PCE 与△PDF 中,∵{∠PEC =∠PFDPE =PF ∠EPC =∠FPD,∴△PCE ≌△PDF (ASA ),∴PC =PD .【变式4-2】(2021春•盐田区校级期中)已知:如图,OC 是∠AOB 的平分线,P 是OC 上的一点,PD ⊥OA ,PE ⊥OB ,垂足分别为D 、E ,点F 是OC 上的另一点,连接DF ,EF .求证:DF =EF .【解题思路】根据角平分线上的点到角的两边距离相等可得PD =PE ,利用“HL ”证明Rt △OPD 和Rt △OPE 全等,根据全等三角形对应边相等可得OD =OE ,再利用“边角边”证明△ODF 和△OEF 全等,然后利用全等三角形对应边相等证明即可.【解答过程】证明:∵OC 是∠AOB 的平分线,PD ⊥OA ,PE ⊥OB ,∴PD =PE ,在Rt △OPD 和Rt △OPE 中,{OP =OP PD =PE, ∴Rt △OPD ≌Rt △OPE (HL ),∴OD =OE ,∵OC 是∠AOB 的平分线,在△ODF和△OEF中,{OD=OE∠DOF=∠EOF OF=OF,∴△ODF≌△OEF(SAS),∴DF=EF.【变式4-3】如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于12EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M(1)求证:AP平分∠CAB;(2)若∠ACD=114°,求∠MAB的度数;(3)若CN⊥AM,垂足为N,求证:△CAN≌△CMN.【解题思路】(1)利用基本作图得到AE=AF,PE=PF,则可根据“SSS“判断△AEP≌△AFP,从而得到∠EAP=∠F AP;(2)利用平行线的性质可计算出∠BAC=66°,然后利用角平分线的定义可计算出∠MAB的度数;(3)利用CD∥AB得到∠BAM=∠CMA,加上∠CAM=∠BAM,所以∠CAM=∠CMA,则CA=CM,则可利用“AAS”判断△CAN≌△CMN.【解答过程】(1)证明:连接PE、PF,如图,由作法得AE=AF,PE=PF,而AP=AP,∴△AEP≌△AFP(SSS),∴∠EAP=∠F AP,即AP平分∠CAB;(2)解:∵CD∥AB,∴∠BAC+∠ACD=180°,∴∠BAC=180°﹣114°=66°,∵AP平分∠CAB,∴∠MAB =12∠BAC =33°;(3)解:∵CD ∥AB ,∴∠BAM =∠CMA ,∵∠CAM =∠BAM ,∴∠CAM =∠CMA ,∴CA =CM ,∵CN ⊥AM ,∴∠CNA =∠CNM ,在△CAN 和△CMN 中{∠CAN =∠CMN ∠ANC =∠MNC AC =CM∴△CAN ≌△CMN (AAS ).【题型5 角平分线的判定】【例5】(2020秋•鼓楼区校级期中)如图,l3与两条平行公路l1,l2三条公路相交,若要在l1上确定某个位置,使其到另两条公路的距离相等,这样的位置有()A.1个B.2个C.3个D.无数个【解题思路】根据角平分线的性质可作直线l2与l3夹角的平分线与直线l1的交点即为符合条件的点.【解答过程】解:作直线l2与l3夹角的平分线OA,OB,交直线l1于A,B两点,则在l1上到另两条公路的距离相等的位置有点A和点B两个位置.故选:B.【变式5-1】(2020秋•长垣市月考)如图为三条两两相交的公路,某石化公司拟建立一个加油站,计划使得该加油站到三条公路的距离相等,则加油站的可选位置有()A.1个B.2个C.3个D.4个【解题思路】从已知提供的条件结合角平分线的性质进行思考,在三角形内部三条角平分线相交于同一点,三外角平分线有三交点,除去深水湖泊那里的交点,共有三个;【解答过程】解:在三角形内部三条角平分线相交于同一点,三外角平分线有三交点,除去深水湖泊那里的交点,共有三个,故选:C.【变式5-2】(2020秋•夏津县期末)小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确【解题思路】过两把直尺的交点P作PE⊥AO,PF⊥BO,根据题意可得PE=PF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB;【解答过程】解:如图所示:过两把直尺的交点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A.【变式5-3】(2021春•道县期末)如图,已知点P到AE、AD、BC的距离相等,下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P在∠BAC,∠CBE,∠BCD的平分线的交点上.其中正确的是()A.①②③④B.①②③C.④D.②③【解题思路】根据在角的内部到角的两边距离相等的点在角的平分线上对各小题分析判断即可得解.【解答过程】解:∵点P到AE、AD、BC的距离相等,∴点P在∠BAC的平分线上,故①正确;点P在∠CBE的平分线上,故②正确;点P在∠BCD的平分线上,故③正确;点P在∠BAC,∠CBE,∠BCD的平分线的交点上,故④正确,综上所述,正确的是①②③④.故选:A.【题型6 角平分线的性质与判定综合】【例6】(2020秋•朝阳区校级期中)如图,OD 平分∠AOB ,OA =OB ,P 是OD 上一点,PM ⊥BD 于点M ,PN ⊥AD 于点N .求证:PM =PN .【解题思路】由已知容易求证△OBD ≌△OAD (SAS ),可得∠3=∠4,再根据角平分线性质的逆定理,可证PM =PN .【解答过程】证明:∵OD 平分∠AOB ,∴∠1=∠2.在△OBD 和△OAD 中,{OB =OA ∠1=∠2OD =OD,∴△OBD ≌△OAD (SAS ).∴∠3=∠4.∵PM ⊥BD ,PN ⊥AD ,∴PM =PN .【变式6-1】(2020秋•临西县期末)已知:如图,BP 、CP 分别是△ABC 的外角平分线,PM ⊥AB 于点M ,PN ⊥AC 于点N .求证:P A 平分∠MAN .【解题思路】作PD⊥BC于点D,根据角平分线的性质得到PM=PD,PN=PD,得到PM=PN,根据角平分线的判定定理证明即可.【解答过程】证明:作PD⊥BC于点D,∵BP是△ABC的外角平分线,PM⊥AB,PD⊥BC,∴PM=PD,同理,PN=PD,∴PM=PN,又PM⊥AB,PN⊥AC,∴P A平分∠MAN.【变式6-2】(2020秋•常熟市期中)如图,△ABC中,点D在BC边上,∠BAD=100°,∠ABC的平分线交AC于点E,过点E作EF⊥AB,垂足为F,且∠AEF=50°,连接DE.(1)求∠CAD的度数;(2)求证:DE平分∠ADC;(3)若AB=7,AD=4,CD=8,且S△ACD=15,求△ABE的面积.【解题思路】(1)根据直角三角形的性质求出∠F AE,根据补角的定义计算,得到答案;(2)过点E作EG⊥AD于G,EH⊥BC于H,根据角平分线的性质得到EF=EG,EF=EH,等量代换得到EG=EH,根据角平分线的判定定理证明结论;(3)根据三角形的面积公式求出EG,再根据三角形的面积公式计算,得到答案.【解答过程】(1)解:∵EF⊥AB,∠AEF=50°,∴∠F AE=90°﹣50°=40°,∵∠BAD=100°,∴∠CAD=180°﹣100°﹣40°=40°;(2)证明:过点E 作EG ⊥AD 于G ,EH ⊥BC 于H ,∵∠F AE =∠DAE =40°,EF ⊥BF ,EG ⊥AD ,∴EF =EG ,∵BE 平分∠ABC ,EF ⊥BF ,EH ⊥BC ,∴EF =EH ,∴EG =EH ,∵EG ⊥AD ,EH ⊥BC ,∴DE 平分∠ADC ;(3)解:∵S △ACD =15,∴12×AD ×EG +12×CD ×EH =15,即12×4×EG +12×8×EG =15, 解得,EG =EH =52,∴EF =EH =52,∴△ABE 的面积=12×AB ×EF =12×7×52=354.【变式6-3】(2020秋•庆阳期中)如图,在△ABC 中,∠ABC 的平分线与∠ACB 的外角平分线交于点P ,PD ⊥AC 于点D ,PH ⊥BA 于点H .(1)若PH =8cm ,求点P 到直线BC 的距离;(2)求证:点P 在∠HAC 的平分线上.【解题思路】(1)作PQ ⊥BE 于Q ,如图,利用角平分线的性质得到PH =PQ =8cm ;(2)根据角平分线的性质得到PD =PQ ,PH =PQ ,则PD =PH ,然后根据角平分线的性质定理的逆定理得到结论.【解答过程】(1)解:作PQ⊥BE于Q,如图,∵BP平分∠ABC,∴PH=PQ=8,即点P到直线BC的距离为8cm;(2)证明:∵PC平分∠ACE,∴PD=PQ,而PH=PQ,∴PD=PH,∴点P在∠HAC的平分线上.。

《角平分线的性质》拓展练习(含答案)

《角平分线的性质》拓展练习(含答案)

《角平分线的性质》拓展练习(含答案)
1.(中)已知点A (m 2-5,2m +3)在第三象限角平分线上,则m =( )
A .4
B .-2
C .4或-2
D .-1
2.(中)在直角△ABC 中,∠B =30°,∠CAE =∠BAE ,ED ⊥AB 于D ,则下列结论⑴AC =AD ;⑵AE =BE ;⑶AD =BD ;⑷CE =DE 其中正确的有( )
A
C B
E D
A .⑴⑵⑶⑷
B .⑴⑵⑷
C .⑵⑶⑷
D .⑴⑵⑶
3.(中)如图,在正方形ABCD 中,点E ,F 分别在CD ,BC 上,且BF =CE ,连结BE 、AF 相交于点G ,则下列结论:(1)BE =AF (2)∠DAF =∠BEC (3)∠AFB +∠BEC =90 (4)AG ⊥BE ,正确的个数是( )
G
E
F C B
A

A .1
B .2 D .4 4.(中)如图,已知△AB
C ,求作一点P ,使P 到∠A 的两边的距离相等,且PA=PB .下列确定P 点的方法正确的是( )
A .P 为∠A 、∠
B 两角平分线的交点;
B .P 为∠A 的角平分线与AB 的垂直平分线的交点;
C .P 为AC 、AB 两边上的高的交点;
D .P 为AC 、AB 两边的垂直平分线的交点;
参考答案:
1.B 2.A 3.C 4.B。

人教版 初中数学八年级上册 12.3角平分线的性质 同步练习(含答案)

人教版 初中数学八年级上册 12.3角平分线的性质 同步练习(含答案)

人教版初中数学八年级上册12.3角平分线的性质同步练习(含答案)一、选择题(本大题共7道小题)1. 如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D.若PD=2,则点P到边OA的距离是()A. 1B. 2C. 3D. 42. 用直尺和圆规作一个角的平分线,示意图如图,则能说明OC是∠AOB的平分线的依据是()A.SSS B.SAS C.AAS D.ASA3. 如图,AO是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N.若ON=8 cm,则OM的长为()A.4 cm B.5 cm C.8 cm D.20 cm4. 如图,P是∠AOB的平分线OC上一点,PD⊥OA,垂足为D.若PD=2,则点P到边OB的距离是()A.4 B. 3 C.2 D.15. 下面是黑板上给出的尺规作图题,需要回答横线上符号代表的内容.已知∠AOB.求作:∠AOB的平分线.作法如下:①以点O为圆心,适当长为半径画弧,交OA于点M,交__○__于点N;②分别以点__⊕__为圆心,大于__△__的长为半径画弧,两弧在__⊗__的内部交于点C;③画射线OC,OC即为所求.则下列回答正确的是()A.○表示OA B.⊕表示M,CC.△表示MN D.⊗表示∠AOB6. 如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和35,则△EDF的面积为()A.25 B.5.5 C.7.5 D.12.57. 如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D.若CD=4,AB=16,则△ABD的面积是()A.14 B.32 C.42 D.56二、填空题(本大题共5道小题)8. 如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为________.9. 如图,∠B=∠D=90°,根据角平分线的性质填空:(1)若∠1=∠2,则________=________.(2)若∠3=∠4,则________=________.10. 如图,已知∠C=90°,AD平分∠BAC交BC于点D,BD=2CD,DE⊥AB于点E.若DE=5 cm,则BC=________cm.11. 将两块大小一样的含30°角的三角尺ABD和ABC如图所示叠放在一起,使它们的斜边AB重合,直角边不重合,当OD=4 cm时,点O到AB的距离为________ cm.12. 如图,请用符号语言表示“角的平分线上的点到角的两边的距离相等”.条件:____________________________________.结论:PC=PD.三、解答题(本大题共2道小题)13. 探究题如图,P为∠ABC的平分线上的一点,点D和点E分别在AB和BC 上(BD<BE),且PD=PE,试探究∠BDP与∠BEP的数量关系,并给予证明.14. 如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,点F在AC 上,BE=FC.求证:BD=FD.人教版 初中数学八年级上册 12.3角平分线的性质 同步练习-答案一、选择题(本大题共7道小题)1. 【答案】B【解析】如解图,过点P 作PG ⊥OA 于点G ,根据角平分线上的点到角的两边距离相等可得,PG =PD =2.2. 【答案】A3. 【答案】C4. 【答案】C[解析] 如图,过点P 作PE ⊥OB 于点E.∵P 是∠AOB 的平分线OC 上一点,PD ⊥OA ,PE ⊥OB ,∴PE =PD =2.5. 【答案】D6. 【答案】D[解析] 如图,过点D 作DH ⊥AC 于点H.又∵AD 是△ABC 的角平分线,DF ⊥AB , ∴DF =DH.在Rt △ADF 和Rt △ADH 中,⎩⎨⎧AD =AD ,DF =DH ,∴Rt △ADF ≌Rt △ADH(HL). ∴S Rt △ADF =S Rt △ADH .在Rt △DEF 和Rt △DGH 中,⎩⎨⎧DE =DG ,DF =DH ,∴Rt △DEF ≌Rt △DGH(HL). ∴S Rt △DEF =S Rt △DGH .∵△ADG 和△AED 的面积分别为60和35, ∴35+S Rt △DEF =60-S Rt △DGH .∴S Rt △DEF =12.5.7. 【答案】B [解析] 如图,过点D 作DH ⊥AB 于点H.由作法得AP 平分∠BAC.∵DC ⊥AC ,DH ⊥AB ,∴DH =DC =4. ∴S △ABD =12×16×4=32.5道小题)8. 【答案】3 【解析】如解图,过点P 作PD ⊥OA 于点D ,∵OP 为∠AOB 的平分线,PC ⊥OB 于点C ,∴PD =PC ,∵PC =3,∴PD =3,即点P 到点OA 的距离为3.9. 【答案】(1)BC CD (2)AB AD10. 【答案】15[解析] ∵AD 平分∠BAC ,∠C =90°,DE ⊥AB ,∴DC =DE =5cm.∴BD =2CD =10 cm ,则BC =CD +BD =15 cm.11. 【答案】4[解析] 过点O 作OH ⊥AB 于点H.∵∠DAB =60°,∠CAB =30°,∴∠OAD =∠OAH =30°. ∵∠ODA =90°,∴OD ⊥AD.又∵OH∵AB ,∵OH =OD =4 cm.12. 【答案】∵AOP =∵BOP ,PC∵OA 于点C ,PD∵OB 于点D 三、解答题(本大题共2道小题)13. 【答案】解:∠BDP +∠BEP =180°.证明:过点P 作PM ⊥AB 于点M ,PN ⊥BC 于点N. ∵BP 是∠ABC 的平分线, ∴PM =PN.在Rt △DPM 和Rt △EPN 中, ⎩⎨⎧PD =PE ,PM =PN ,∴Rt △DPM ≌Rt △EPN(HL). ∴∠ADP =∠BEP.∵∠BDP +∠ADP =180°, ∵∵BDP +∵BEP =180°.14. 【答案】证明:∵AD 平分∠BAC ,DE ⊥AB ,∠C =90°, ∴DC =DE.在△DCF 和△DEB 中,⎩⎨⎧DC =DE ,∠C =∠BED =90°,FC =BE ,∵∵DCF∵∵DEB(SAS).∵BD =FD.。

角的平分线的性质练习题及答案精选

角的平分线的性质练习题及答案精选

同步习题及讲解一、选择题.1.如图6,AC⊥BC,DE⊥AB,AD平分∠BAC,下面结论错误的是().A.BD+ED=BC B.DE平分∠ADB C.AD平分∠EDC D.ED+AC>AD2.如图7:△ABC中,∠C=90°,E是AB中点,D在∠B的平分线上,DE⊥AB,则(). A.BC>AE B.BC=AE C.BC<AE D.以上全不对3.下列命题正确的是().A.三角形的一个外角等于两个内角和 B.三角形的一个外角大于任何一个内角C.有两边和一角对应相等的两个三角形全等 D.有两边对应相等的两个直角三角形全等二、证明题.4.如图,AD是∠BAC的角的平分线,DB⊥AB,DC⊥AC,B、C是垂足,那么EB与EC•的关系是怎样的呢?请证明你的结论.5.如图,在△ABC中,外角∠CBD和∠BCE的平分线交于F,那么点F是否在∠DAE的平分线上?请证明你的结论.三、探索题:6.△ABC中,∠C=90°,AC=BC,AD是角的平分线,探索:在AB上是否存在点E,DE•不与AB垂直,而△BDE之周长等于AB的长.若点E存在,请你出证明;若点E不存在,请说明理由.四、聚焦中考:7.下面是一个正确的命题:在下图中,如果BD⊥AC,CE⊥AB,CE与BD相交于点O,并且BO=CO,那么∠1=∠2,如果把上面的命题中的“BO=CO”改为结论,把“∠1=∠2”移入条件,所得到的命题是正确的命题,还是不正确的命题?请给出证明:如果是不正确的命题,则举出反例.答案:一、1.B 2.B 3.D二、4.提示:∵∠BAD=∠CAD,AD=AD,∠DBA=∠DCA,∴△ABD≌△ACD,∴∠ADB=∠ADC,BD=DC,又∵DE=DE,∴△BDE≌△CDE,∴BE=EC5.过F作FM⊥AD于M,作FN⊥AE于N,作FP⊥BC于P,∵BF是∠DBC平分线,•∴FM=FP,同理FN=FP,∴FM=FN,∴F在∠DAE平分线上.三、6.不存在,作DH⊥AB于H,设点F在AB上,且AF=BD,点E是HB上任一点,有FE=FH+HE,又可证得DH=DC,△BDE的周长等于AB的长,由三角形三边关系得FE=•EH+•DH>DE,所以“周长”BD+DE+EB<EB+AF+DH+HE=AB,同样可证:AH•上任一点也不满足题目要求.四、7.是正确命题,可先用“AAS”证△AOE≌△AOD,再证△DEG≌△DFH.。

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质习题(含答案) (64)

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质习题(含答案) (64)

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质考试复习题(含答案)如图,OC平分∠AOB,点D,E分别在OA,OB上,点P在OC上且有PD=PE.求证:∠PDO =∠PEB.【答案】证明见解析;【解析】试题分析:过点P作AO、BO的垂线,利用直角三角形全等的判定可证出结论.试题解析:过P做PM垂直OA于M PN垂直OB于N因为OC平分∠AOB所以PM="PN" (角平分线上的点到2边的距离相等)因为PD=PE所以∠PDM全等于∠PEN(HL)所以∠PDO=∠PEB考点:1.角平分线的性质;2.直角三角形全等的判定与性质.32.已知:如图,CD∠AB于D,BE∠AC于E,∠1=∠2.求证:OB=OC.【答案】证明见解析【解析】试题分析:又CD∠AB,BE∠AC,∠1=∠2,可得OE=OD,∠BDO=∠CEO=90°,再由∠BOD=∠COE,可得∠BOD∠∠COE,从而OB=OC.试题解析:∠CD∠AB,BE∠AC,∠1=∠2,∠OE=OD,∠BDO=∠CEO=90°,又∠∠BOD=∠COE,∠∠BOD∠∠COE,∠OB=OC.考点:1.角平分线的性质;2.三角形全等的判定与性质.33.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,AB=16,BC=12.(1)△ABD与△CBD的面积之比为;(2)若△ABC的面积为70,求DE的长.【答案】4:3;5.【解析】AB求出BC两个三角形的面积之比等于底的比求出△ABD与△CBD的面积之比;根据(1)求出的△ABD与△CBD的面积之比,得到△ABD的面积,根据三角形的面积公式求出DE.试题解析:(1)、∵BD是△ABC的角平分线,ABBC =43,∴△ABD与△CBD的面积之比为4:3;(2)、∵△ABC的面积为70,△ABD与△CBD的面积之比为4:3,∴△ABD的面积为40,又AB=16,则DE=5.考点:角平分线的性质34.根据图中尺规作图的痕迹,先判断得出结论:.然后证明你的结论(不要求写出已知、求证).【答案】OM平分∠BOA.【解析】试题分析:根据角作图的画法得出三角形全等,从而说明角平分线.试题解析:OM是∠AOB的角平分线连接CM、DM∠OC=OD,CM=DM,OM=OM,∠∠OCM∠∠OCD,∠∠BOM=∠AOM,∠OM是∠AOB的角平分线.考点:(1)、尺规作图;(2)、三角形全等35.(8分)已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠BAD;(2)试说明线段DM与AM有怎样的位置关系?(3)线段CD、AB、AD间有怎样的关系?直接写出结果.【答案】(1)见解析(2)DM⊥AM,(3)CD+AB=AD【解析】试题分析:(1)首先要作辅助线,ME⊥AD则利用角的平分线上的点到角的两边的距离相等可知ME=MC,再利用中点的条件可知ME=MB,再利用到角两边距离相等的点在角的平分线上的逆定理证明AM平分∠DAB.(2)根据平行线性质得出∠CDA+∠BAD=180°,求出∠1+∠3=90°,根据三角形内角和定理求出即可.(3)证Rt△DCM≌Rt△DEM,推出CD=DE,同理得出AE=AB,即可得出答案.试题解析:(1)证明:作ME⊥AD于E,∵MC⊥DC,ME⊥DA,MD平分∠ADC,∴ME=MC,∵M为BC中点,∴MB=MC,又∵ME=MC,∴ME=MB,又∵ME⊥AD,MB⊥AB,∴AM平分∠DAB.(2)解:DM⊥AM,理由是:∵DM平分∠CDA,AM平分∠DAB,∴∠1=∠2,∠3=∠4,∵DC∥AB,∴∠CDA+∠BAD=180°,∴∠1+∠3=90°,∴∠DMA=180°﹣(∠1+∠3)=90°,即DM⊥AM.(3)解:CD+AB=AD,理由是:∵ME⊥AD,MC⊥CD,∴∠C=∠DEM=90°,在Rt△DCM和Rt△DEM中DM DM EM CM=⎧⎨=⎩ ∴Rt △DCM ≌Rt △DEM (HL ),∴CD=DE ,同理AE=AB ,∵AE+DE=AD ,∴CD+AB=AD .考点:角平分线的性质;全等三角形的判定与性质36.如图,在∠ABC 中,∠ACB=90°,AC=BC=AD(1)作∠A 的平分线交CD 于E ;(2)过B 作CD 的垂线,垂足为F ;(3)请写出图中两对全等三角形(不添加任何字母),并选择其中一对加以证明.【答案】(1)作图见试题解析;(2)作图见试题解析;(3)∠ACE ∠∠ADE ,∠ACE ∠∠CFB .【解析】试题分析:(1)利用角平分线的作法得出∠A的平分线;(2)利用钝角三角形高线的作法得出BF;(3)利用等腰三角形的性质及全等三角形的判定得出答案.试题解析:(1)如图所示:AE即为所求;(2)如图所示:BF即为所求;(3)如图所示:∠ACE∠∠ADE,∠ACE∠∠CFB,∠AC=AD,AE平分∠CAD,∠AE∠CD,EC=DE,在∠ACE和∠ADE中,∠AE=AE,∠AEC=∠AED,EC=ED,∠∠ACE∠∠ADE(SAS).考点:1.作图—复杂作图;2.全等三角形的判定.37.(8分)如图,在∠ABC中,∠B=90°,AB=BC=4,点E在BC上,将∠ABC沿AE折叠,使点B落在AC边上的点F处.(1)求BE的长;(2)判断∠CEF是什么特殊三角形.【答案】BE=4√2-4【解析】试题分析:(1)先由勾股定理求出AC的长,由折叠可得∠CEF为直角三角形,BE="EF," 设BE=,根据勾股定理可得;(2)由(1)可得EF=FC=,所以直角三角形CEF是等腰直角三角形.试题解析:在∠ABC中,∠B=90°,AB=BC=4,∠AC=42分将∠ABC沿AE折叠,使点B落在AC边上的点F处.所以BE=EF,∠∠CEF为直角三角形EC2=EF2+FC2 4分设BE=,(4-)2=2+(4-4)24分∠6分EF=FC=7分∠∠CEF是等腰直角三角形8分考点:1.勾股定理;2. 图形折叠的性质;3.等腰直角三角形的判定.38.如图,AD⊥BC于点D,EG⊥BC于点G,⊥E=⊥3.请问:AD平分⊥BAC吗?若平分,请说明理由.【答案】平分,理由见解析.【解析】【分析】先利用平面内垂直于同一条直线的两条直线互相平行,得到AD∥EG,再利用平行线的性质和已知条件求出∥1=∥2即可.【详解】解:平分.证明:∥AD∥BC于D,EG∥BC于G,(已知)∥∥ADC=∥EGC=90°,(垂直的定义)∥AD∥EG,(同位角相等,两直线平行)∥∥2=∥3,(两直线平行,内错角相等)∥E=∥1,(两直线平行,同位角相等)又∥∥E=∥3(已知)∥∥1=∥2(等量代换)∥AD平分∥BAC(角平分线的定义).【点睛】本题考查平行线的判定与性质;角平分线的定义.39.画图说明题,试用几何方法说明你所得结果的正确性.(1)作∠AOB=90°;(2)在∠AOB的内部任意画一条射线OP;(3)画∠AOP的平分线OM以及∠BOP的平分线ON;(4)用量角器量得∠MON= 度.【答案】45,理由见解析【解析】【分析】首先根据题意画出图形,再根据角平分线的性质可得∠POM=1∠POB,2∠PON=12∠POA,然后可得∠POM+∠PON=12(∠POB+∠POA),进而可得答案.【详解】如图所示:∥OM是∥AOP的平分线,ON是∥BOP的平分线,∥∥POM=12∥POA,∥PON=12∥POB,∥∥POB+∥POA=∥AOB=90°,∥∥POM+∥PON=12(∥POB+∥POA)=12∥AOB=12×90°=45°.【点睛】考查了基本作图,以及角平分线的作法,关键是掌握角平分线的画法.40.(本题满分10分)如图,把∠EFP按图所示的方式放置在菱形ABCD 中,使得顶点E、F、P分别在线段AB、AD、AC上.已知EP=FP=,EF=,∠BAD=60°,且AB.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值;(3)若∠EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.【答案】(1)∠EPF=120°;(2)AE+AF=;(3)AP的最大值为8,AP 的最小值为4.【解析】试题分析:(1)过点P作PG∠EF,垂足为G,在RtFPG中,利用锐角三角函数求得∠FPG=60°,即可得∠EPF的度数.(2)作PM∠AB,PN∠ND,垂足分别为M、N,可证RtPME∠RtPNF,可得FN=EM;在RtPMA中,利用锐角三角函数求得AM的长,同样的方法求得AN的长,根据AE+AF=(AM-EM)+(AN+NF)=AM+AN即可求得AE+AF的值.(3)当PE∠AB,PF∠AD时,AP的值最大为8,当点A与点E(或点F)重合时,PA的值最小为4.试题解析:解:(1)过点P作PG∠EF,垂足为G,∠PE=PF,PG∠EF,∠FG=EG=,∠FPG=∠EPG=∠EPF.在RtFPG中,,∠∠FPG=60°∠∠EPF=2∠FPG=120°.作PM∠AB,PN∠ND,垂足分别为M、N,在菱形ABCD中,∠AD=AB,,DC=BC,AC=AC,∠∠ABC∠∠ADC,∠∠DAC=∠BAC∠点P到AB、CD两边的距离相等,即PM=PN.在RtPME和RtPNF中,∠PM=PN,PE=PF,∠RtPME∠RtPNF∠FN=EM在RtPMA中,∠PMA=90°,∠PAM=∠DAB=30°,∠AM=同理,AN=∠AE+AF=(AM-EM)+(AN+NF)=AM+AN=.(3)AP的最大值为8,AP的最小值为4.考点:菱形的性质;角平分线的性质;全等三角形的判定及性质.。

《角平分线》练习题(含答案)

《角平分线》练习题(含答案)

1题D C B A P O 2题D C B A E O 3题D C B A 4题D C B A O 5题C B A O 6题CB A E7题D C B A 3218题10题D C B A γβα9题11题DC B A 角平分线练习题1.如图,已知∠CDA =∠CBA=90°,且CD=CB ,则点C 一定在 上,点A 在 上.2.如图,点P 为∠AOB 的角平分线上一点,PC ⊥AO 于点C ,PD ⊥OB 于点D ,请写出图中所有的相等线段 。

3.如图,AB ∥CD ,AO 、CO 分别平分∠BAC 、∠ACD ,OE ⊥AC 于点E ,且OE=2,则AB 、CD 间的距离为 。

4.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将△ABC 沿直线AD 折叠,使AC 落在斜边AB 上,且与AB 重合,则CD 的长度为 。

5.如图,△ABC 中,∠C=80°,∠BAC 、∠ABC 的角平分线交于点O,则∠OAC+∠OBC= °,∠BOA= °6.如图,△ABC 中,AB =AC, ∠A=40°,O 为△ABC 内一点,且∠OBC=∠ACO ,则∠BOC 的度数为 。

7.如图,Rt △ABC 中,AC=BC,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E ,CD=2,则DE= ,BD= ,AC= ,AB= 。

8.如图,∠1=∠2,若∠3=30°,为了使台球反弹后将黑球直接撞入袋中,那么击打白球时必须保证∠1的度数为 。

9.光线以如图所示的角度α照到平面镜Ⅰ上,然后在平面镜Ⅰ、Ⅱ间反射,已知∠α=60°, ∠β=50°,则∠γ的度数为 。

10.如图,△ABC 中,∠C=90°,AD 平分∠BAC ,CD ∶BD=3∶5,BC=24cm,AB=30cm,则S △ABD = 。

11.如图,△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于点D ,BC=4,CD=1.5,则AC= 。

部编数学八年级上册专题06角的平分线性质问题(解析版)含答案

部编数学八年级上册专题06角的平分线性质问题(解析版)含答案

2023--2024学年度人教版数学八年级上册期末复习核心考点三种题型精炼专题06 角的平分线性质问题一、选择题1. (2023湖南张家界)如图,已知直线AB CD P ,EG 平分BEF Ð,140Ð=︒,则2Ð的度数是( )A. 70︒B. 50︒C. 40︒D. 140︒【答案】A 【解析】根据平行线的性质可得140EFG ︒Ð=Ð=, 180EFG BEF Ð+Ð=︒,EGF BEG Ð=Ð,推得140BEF Ð=︒,根据角平分线的性质可求出BEG Ð的度数,即可求得2Ð的度数.∵AB CD P ,∴140EFG ︒Ð=Ð=,180EFG BEF Ð+Ð=︒,EGF BEG Ð=Ð,∴18040140BEF Ð=︒-︒=︒,又∵EG 平分BEF Ð,∴1702BEG BEF Ð=Ð=︒,∴027BEG =Ð=︒Ð故选:A .【点睛】考查平行线的性质和角平分线的性质.掌握平行线的性质和角平分线的性质是解决本题的关键.2.如图,CE 是△ABC 的外角∠ACD 的平分线,若∠B=35°,∠ACE=60°,则∠A=( )A .35°B .95°C .85°D .75°【答案】C .【解析】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.根据三角形角平分线的性质求出∠ACD ,根据三角形外角性质求出∠A 即可.∵CE 是△ABC 的外角∠ACD 的平分线,∠ACE=60°∴∠ACD=2∠ACE=120°∵∠ACD=∠B+∠A∴∠A=∠ACD ﹣∠B=120°﹣35°=85°3.如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( )A.59°B.60°C.56°D.22°【答案】A .【解析】本题考查了三角形的内角和定理,角平分线的定义,高线的定义,熟记概念与定理并准确识图是解题的关键.根据高线的定义可得∠AEC=90°,然后根据∠C=70°,∠ABC=48°求出∠CAB ,再根据角平分线的定义求出∠1,然后利用三角形的内角和等于180°列式计算即可得解。

角平分线性质练习题

角平分线性质练习题

一、选择题1. 在三角形ABC中,AD是∠BAC的角平分线,若∠BAD = 30°,则∠CAD的度数是()A. 30°B. 60°C. 45°D. 90°A. BD=CDB. BD=BCC. AD=BDD. AD=CD3. 在三角形ABC中,AD是∠BAC的角平分线,若AB=6cm,AC=8cm,BD=4cm,则CD的长度是()A. 3cmB. 4cmC. 5cmD. 6cm二、填空题1. 在三角形ABC中,AD是∠BAC的角平分线,若∠B=50°,∠C=60°,则∠BAD=______°。

2. 在等边三角形ABC中,AD是∠BAC的角平分线,则∠ADB=______°。

3. 在三角形ABC中,AD是∠BAC的角平分线,若AB=5cm,AC=7cm,BD=3cm,则CD=______cm。

三、解答题1. 在三角形ABC中,AD是∠BAC的角平分线,已知∠B=40°,∠C=60°,求∠BAD和∠CAD的度数。

2. 在等腰三角形ABC中,AB=AC,AD是∠BAC的角平分线,已知BD=6cm,求AD的长度。

3. 在三角形ABC中,AD是∠BAC的角平分线,已知AB=8cm,AC=12cm,BD=5cm,求CD的长度。

4. 在三角形ABC中,AD是∠BAC的角平分线,已知∠B=30°,∠C=45°,求∠BAD和∠CAD的度数。

5. 在等边三角形ABC中,AD是∠BAC的角平分线,求∠ADB的度数。

四、判断题1. 在三角形ABC中,如果AD是∠BAC的角平分线,那么AB和AC的长度一定相等。

()2. 在三角形ABC中,AD是∠BAC的角平分线,若∠BAD = ∠CAD,则三角形ABC一定是等腰三角形。

()3. 在三角形ABC中,AD是∠BAC的角平分线,若BD=CD,则∠B=∠C。

人教八上:专题三--角平分线的性质与判定(含解析)

人教八上:专题三--角平分线的性质与判定(含解析)

专题三角平分线的性质与判定一、单选题1.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若BC=15,且BD:CD=3:2,则点D到AB的距离为()2345.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,AB+BC+CA=18,过O作OD⊥BC于点D,且OD=3,则△ABC的面积是.6.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE7得8910.如图,△ABC中,∠ABC,∠ACB的角平分线交于点O,过O点作MN∥BC分别交AB,AC于M,N 两点,AB=6,ΔAMN的周长是15.则AC的长为.三、解答题11.如图1,△ABC的两条外角平分线AO,BO相交于点O,∠ACB=50°.(1)直接写出∠AOB的大小;(2)如图2,连接OC交AB于K.①求∠BCK的大小;②如图3,作AF⊥OC于F,若∠BAC=105°,求证:AB=2CF.12.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠CDA,若∠ABC=60°,FD=10,求DC的长.13.如图,四边形ABCD中,∠B=90°,AB∥CD,M是BC边上的一点,且AM平分∠BAD,DM平分∠ADC,求证:(1)BM=MC;(2)AM⊥MD.14.定义:如果一个三角形的一个内角等于另一个内角的两倍,则称这样的三角形为“倍角三角形”.(1)如图1,△ABC中,AB=AC,∠A=36°,求证:△ABC是倍角三角形;(2)如图2,△ABC的外角平分线AD与CB的延长线相交于点D,延长CA到点E,使得AE=AB,若AB+AC=BD,请你找出图中的倍角三角形,并进行证明.15.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠CDA,设∠ABC=α.(1)α=50°时,求∠DFC的度数;(2)证明:BE∥DF.16.在△ABC中,AO、BO分别平分∠BAC、∠ABC.(1)如图1,若∠C=32°,则∠AOB=________;(2)如图2,连结OC,求证:OC平分∠ACB;(3)如图3,若∠ABC=2∠ACB,AB=4,AC=7,求OB的长.17.如图,在△ABC中,D在BC边的延长线上,∠ACD的平分线CE交BA的延长线于点E,已知∠B=30°,∠E=40°,求证:AE=CE.18.如图,在四边形ABCD中,AB∥CD,∠C=90°,点E为BC的中点,DE平分∠CDA.(1)求证:AD=AB+CD;(2)若S△CDE=3,S△ABE=4,则四边形ABCD的面积为______.(直接写出结果)19.如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,MN经过点O与AB,AC分别相交于点M,N,且MN∥BC.(2)已知AB=7,AC=6,求△AMN的周长.参考答案题号12答案B B1.B【分析】本题考查的是角平分线的性质,作DE⊥AB于E,根据角平分线的性质得到CD=DE,根据题意求出CD的长即可.∵∴∵∴2∴3【详解】试题分析:本题需要分两种情况进行讨论:如图1所示:根据∠B=40°,∠C=70°可得:∠BAC=70°,根据高线以及角平分线的性质可得:∠DAC=20°,∠EAC=35°,则∠DAE=35°-20°=15°;如图2所示:根据∠B=40°,∠ACD=70°可得:∠BAC=30°,根据高线以及角平分线的性质可得:∠DAC=20°,∠EAC=15°,则∠DAE=15°+20°=35°.点睛:对于这种在三角形中求角度问题的时候,如果题目中没有给出图形,我们首先一定要根据题意画出图形,然后根据图形求出角的度数.特别要注意分类讨论的思想,在画图时一定要注意锐角三角形和钝角三角形两种情况.在画垂线的时候要注意高线在三角形内部和三角形外部两种情况.4.3:2【分析】过点D作DE⊥AB于点E,由角平分线的性质得到DE=CD,再根据三角形面积公式解答即可.【详解】解:过点D作DE⊥AB于点E,∵AD是Rt△ABC的角平分线,CD⊥AC,DE⊥AB∴DE=CDS△ABD S△ACD =12AB⋅DE12AC⋅CD=ABAC=128=32故答案为:3:2.【点睛】本题考查角平分线的性质、三角形面积公式等知识,是基础考点,掌握相关知识是解题关键.5.27【分析】作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线的性质求出OE=OD=3和OF=OD=3,根据三角形面积公式计算即可.【详解】解:作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB是∠ABC的平分线,OD⊥BC,OE⊥AB,∴OE=OD=3,同理OF=OD=3,∵AB+BC+CA=18.∴△ABC的面积=12×AB×3+12×AC×3+12×BC×3=27.故答案为:27.【点睛】本题主要考查角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.4【分析】根据角平分线的性质以及平行线的性质即可得出PM =PE =2,PE =PN =2,即可得出答案.【详解】解:过点P 作MN ⊥AD ,∵AD ∥BC ,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P ,PE ⊥AB 于点E ,∴AP ⊥BP ,PN ⊥BC ,∴PM =PE =2,PE =PN =2,∴MN =2+2=4.故答案为:4.7.2【分析】连接PC 、PB 、PA ,作PD ⊥AB 于D ,PE ⊥AC 于E ,PF ⊥BC 于F ,根据三角形的面积公式计算即可.【详解】连接PC 、PB 、PA ,作PD ⊥AB 于D ,PE ⊥AC 于E ,PF ⊥BC 于F ,由题意得,PE=PD=PF , S △APC +S △APB +S △BPC =S △ACB ,∴12AC·PE+12AB·PD+12BC·PF=12AC·BC ,即12×12·PD+12×13•PD+12×5•PD=12×5×12,解得,PD=2,故答案为:2.【点睛】本题考查的是三角形的面积计算,掌握三角形的面积公式是解题的关键.8.60【分析】根据五边形的内角和求出∠BCD和∠CDE的和,再根据角平分线及三角形内角和求出∠CPD.【详解】解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,(∠BCD+∠CDE)=120°,∴∠PDC+∠PCD=12∴∠CPD=180°﹣120°=60°.故答案是:60.【点睛】本题解题的关键是知道多边形内角和定理以及角平分线的性质.9.5【分析】本题考查角平分线的性质定理,过点P作PE⊥OB,垂足为E,过点P作PF⊥MN,垂足为F,过点P作PG⊥OA,垂足为G,连接OP,利用角平分线的性质可得PF=PG=PE,然后根据三角形的面积求出PF=PE=PG=2,再利用△OMP的面积+△ONP的面积−△PMN的面积=4,进行计算即可解答.根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.【详解】解:过点P作PE⊥OB,垂足为E,过点P作PF⊥MN,垂足为F,过点P作PG⊥OA,垂足为G,连接OP,∵MP平分∠AMN,NP平分∠MNB,∴PF=PG=PE,∵MN=1,△PMN的面积是1,∴ 12MN ⋅PF =1,∴PF =2,∴PG =PE =2,∵△OMN 的面积是4,∴△OMP 的面积+△ONP 的面积−△PMN 的面积=4,∴ 12OM ⋅PG +12ON ⋅PE−1=4,∴OM +ON =5.故答案为:5.10.9【分析】本题考查了等腰三角形的判定与性质,平行线的性质,根据角平分线的定义和平行线的性质可得△MOB 和△NOC 是等腰三角形,从而可得MO =MB ,NO =NC ,然后利用等量代换可得ΔAMN 的周长=AB +AC ,从而进行计算即可解答.【详解】解:∵BO 平分∠ABC ,CO 平分∠ACB ,∴∠ABO =∠OBC ,∠ACO =∠OCB ,∵MN ∥BC ,∴∠MON =∠OBC ,∠NOC =∠OCB ,∴∠ABO =∠MON ,∠ACO =∠NOC ,∴MO =MB ,NO =NC ,∵△AMN 的周长是15,∴AM +MN +AN =15,∴AM +MO +ON +AN =15∴AM +MB +NC +AN =15,∴AB +AC =15,∵AB =6,∴AC =15−6=9,故答案为:9.11.(1)65°;(2)①25°;②证明见解析.【分析】(1)根据三角形内角和定理求得∠CBA +∠CAB =130°,则∠EBA +∠BAD =230°,再由角平分线的定义求出∠OBA +∠OAB =115°,根据四边形内角和求出∠AOB 即可;(2)①过点O作OM⊥AD于点M,ON⊥BE于点N,OP⊥AB于点P,根据角平分线的性质求解即可;②先求出KB=KC,过点A作AH∥BC交CO于点H,再求出KA=KH,则AB=CH,分别求出AH=AC,HF=CF,即可得出结论.【详解】(1)解:∵AO平分∠BAD,∴∠DAO=∠OAB,∵BO平分∠EOA,∴∠EBO=∠OBA,∵∠ACB=50°,∴∠CBA+∠CAB=130°,∴∠EBA+∠BAD=360°−130°=230°,∴∠OBA+∠OAB=115°,∴∠AOB=360°−50°−115°−130°=65°;(2)解:如图2,①过点O作OM⊥AD于点M,ON⊥BE于点N,OP⊥AB于点P,∵AO、BO分别平分∠DAB、∠EBA,∴OM=OP,OP=ON,∴OM=ON,∴CO平分∠ACB,∵∠ACB=50°,∴∠BCK=∠ACK=25°;②证明:∵∠BAC=105°,∠ACB=50°,∴∠ABC=25°,∵∠KCB=25°,∴∠KBC=∠KCE,∴KB=KC,如图3,过点A作AH∥BC交CO于点H,∴∠AHK=∠KCB,∠HAK=∠KBC,∴∠AHK=∠HAK,∴KA=KH,∴AB=CH,∵∠AHK=∠ACH,∴AH=AC,∵AF⊥CO,∴HF=CF,∴CH=2CF,∴AB=CH=2CF.12∴∵∴∴∵∴∴故DC=5.【点睛】此题主要考查了角平分线的定义,四边形内角和定理,含30°角的直角三角形的性质等知识,解题关键是熟练掌握各性质与定理.13.(1)见详解(2)见详解【分析】(1)作NM⊥AD,根据角平分线的性质得到BM=MN,MN=CM,等量代换得到答案.(2)根据平行线的性质得到∠BAD+∠ADC=180°,根据角平分线的定义得到∠MAD+∠ADM=90°,根据垂直的定义得到答案;【详解】(1)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM;(2)证明:∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;【点睛】本题考查的是角平分线的性质,掌握平行线的性质和角的平分线上的点到角的两边的距离相等是解题的关键.14.(1)见解析(2)△ADC和△ABC是倍角三角形,见解析【分析】(1)利用等边对等角及三角形的内角和求出∠B=∠C=72°,得到2∠A=∠C即可;(2)根据SAS证明△ABD≌△AED,得到∠ADE=∠ADB,BD=DE,证明CE=DE,得出∠C=∠BDE=2∠ADC,可得出∠ABC=2∠C.则结论得证.【详解】(1)证明:∵AB=AC,∴∠B=∠C,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=∠C=72°,∴2∠A=∠C,即△ABC是倍角三角形;(2)解:△ADC和△ABC是倍角三角形,证明如下:∵AD平分∠BAE,∴∠BAD=∠EAD,∵AB=AE,AD=AD,∴∴又∴∴∴∴∵15(2)∠EBC=∠DFC即可得出结论.【详解】(1)解:在四边形ABCD中,∠A=∠C=90°,∠ABC=α,α=50°,∴∠ADC=360°−∠A−∠C−∠ABC=130°,∵DF平分∠CDA,∠ADC=65°,∴∠FDC=12∴∠DFC =90°−65°=25°;(2)证明:在四边形ABCD 中,∠A =∠C =90°,∠ABC =α,∴∠ADC =360°−∠A−∠C−∠ABC =180°−α,∵DF 平分∠CDA ,∴∠FDC =12∠ADC =12(180°−α),∴∠DFC =90°−12(180°−α)=12α,∵BE 平分∠ABC ,∴∠EBC =12α,∴∠EBC =∠DFC ,∴BE ∥DF .16.(1)106°;(2)见解析;(3)3;【分析】(1)本题考查与角平分线有关的三角形内角和关系,根据∠C =32°得到∠CAB +∠CBA ,再结合角平分线求出∠CAO +∠CBO ,即可得到答案;(2)本题考查角平分线判定与性质,过O 作OD ⊥AC ,OE ⊥AB ,OF ⊥BC ,根据角平分线性质得到OD =OF =OE ,结合角平分线的判定即可证明;(3)本题主要考查三角形全等的性质与判定,解题的关键是根据截长补短作出辅助线,在AC 上截取一点D ,使AD =AB ,连OD ,证明△ABO≌△ADO ,即可得到答案;【详解】(1)解:∵∠C =32°,∴∠CAB +∠CBA =180°−32°=148°,∵AO 、BO 分别平分∠BAC 、∠ABC ,∴∠CAO +∠CBO =148°2=74°,∴∠AOB =180°−74°=106°;(2)证明:过O 作OD ⊥AC ,OE ⊥AB ,OF ⊥BC ,∵AO 、BO 分别平分∠BAC 、∠ABC ,∴OD =OF ,OD =OE ,∴OC 平分∠ACB ;(3)解:在AC 上截取一点D ,使AD =AB ,连OD ,设∠ACO =∠BCO =α,∵∠ABC =2∠ACB ,∴∠ABC =4α,∵BO 平分∠ABC ,∴∠ABO =∠CBO =2α,∵AO 平分∠BAC ,∴∠BAO =∠DAO ,在△ABO 与△ADO 中,AO =AO ∠BAO =∠DAO AB =AD,∴△ABO≌△ADO(SAS),∴∠ABO =∠ADO =2α,OB =OD,AB =AD =4,又∵∠ACO =α,∴∠ACO =∠DCO =α,∴OD =OC =AC−AD =7−4=3,∴OB =3.17.证明见解析【分析】本题主要考查了角平分线的定义,三角形外角的性质以及等腰三角形的判定和三角形内角和定理的应用,根据外角的性质求出∠ECD=702,由角平分线的定义得∠ACE=∠ECD=70°,根据三角形内角和定理求出∠CAE=70°,可得∠ACE=∠CAE,从而可得结论.【详解】证明:∠B=30°,∠E=40°,∴∠ECD=∠B+∠E=70°,∵CE平分∠ACD,∴∠ACE=∠ECD=70°,在△ABE中,∠ACE+∠E+∠CAE=180°,∴∠CAE=180°−∠ACE−∠E=180°−70°−40°=70°,∴∠ACE=∠CAE,∴AE=CE.18.(1)见解析(2)14【分析】本题考查角平分线的性质,全等三角形的判定与性质.(1)过点E作EF⊥AD于F,根据角平分线的性质得出CE=EF,再证明△ABE≌△AFE,△CED≌△FED,根据全等三角形的性质得出AB=AF,DC=DF,进而得出结论;(2)由△ABE≌△AFE,△CED≌△FED,推出S△CED=S△FED,S△ABE=S△AFE,据此求解即可.【详解】(1)证明:如图,过点E作EF⊥AD于F,∵∠C=90°,AB∥CD,∴∠B=90°,∵DE平分∠CDA,∴CE=EF,∴Rt△CED≌Rt△FED(HL),∴DC=DF,∵E是BC的中点,∴BE=CE,∴BE=EF,∵AE=AE,∴Rt△ABE≌Rt△AFE(HL),∴AD=AF+FD=AB+CD;(2)解:∵△CED≌△FED,△ABE≌△AFE,∴S△CED=S△FED,S△ABE=S△AFE,∵S∴19(2)((∴∴∴(∴∵∴∴∠BOM=∠ABO,∴BM=OM,同理可得:CN=ON,∴MN=OM+ON=BM+CN,∵AB=7,AC=6,∴△AMN的周长是AM+MN+AN=AM+BM+CN+AN=AB+AC=13.。

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质习题(含答案) (41)

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质习题(含答案) (41)

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质考试复习题(含答案)一、单选题1.如图,在△ABC中,∠C=90 ,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB于点E,且AB=6cm,则△DEB的周长是( )A.6cm B.4cm C.10cm D.以上都不对【答案】A【解析】试题分析:∵CA=CB,∵C=90°,AD平分∵CAB,∵∵ACB为等腰直角三角形,BC=AC=AE,∵∵ACD∵∵AED,∵CD=DE,又∵DE∵AB于点E,∵∵EDB为等腰直角三角形,DE=DB=CD,∵∵DEB的周长=DE+EB+DB=CD+DB+EB=CB+EB=AE+EB=AB=6,∵周长为6.故选A.考点:1.全等三角形的判定与性质;2.等腰直角三角形.2.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=8,DE=4,则△BCE的面积等于()A.32 B.16 C.8 D.4【答案】B【解析】【分析】根据角平分线的性质可得:点E到BC的距离为4,则三角形的面积=8×4÷2=16.【详解】解:如图:过E作EF⊥BC于F,∵CD是AB边上的高,BE平分∠ABC,交CD于点E,DE=8,∴DE=EF=4,∵BC=8,∴12×BC×EF=12×8×4=16,故选B.3.在△ABC中,AD是角平分线,DE⊥AB于点E,⊥ABC的面积为15,AB=6,DE=3,则AC的长是()A.8 B.6 C.5 D.4【答案】D试题分析:根据角平分线的性质可得:点D到AB和AC的距离相等,根据题意可得:∵ABD的面积为9,∵ADC的面积为6,则AC的长度=6×2÷3=4.考点:角平分线的性质4.如图,在△ABC中,AD为△BAC的平分线,DE△AB于E,DF△AC于F,△ABC的面积是28cm2,AB=20cm,AC=8cm,则DE的长是()A.4cm B.3cm C.2cm D.1cm【答案】C【解析】试题分析:根据角平分线的性质求出DE=DF,根据三角形的面积公式列式计算即可.∵AD是∵BAC的平分线,DE∵AB于点E,DF∵AC于点F,∵DE=DF,∵×AB×DE+AC×DF=S∵ABC=28,即×20DE+×8DE=28,解得DE=2.考点:角平分线的性质.5.下列说法正确的是()A.三角形三条高的交点都在三角形内B.三角形的角平分线是射线C.三角形三边的垂直平分线不一定交于一点D.三角形三条中线的交点在三角形内【解析】试题分析:根据三角形的角平分线、中线和高的定义及性质进行判断即可.A、锐角三角形的三条高都在三角形内部;直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部.说法错误;B、三角形的角平分线是线段,错误;C、三角形三边的垂直平分线一定交于一点,错误;D、三角形三条中线的交点在三角形内,正确;考点:三角形的角平分线、中线和高.6.如图,OC是△AOB的平分线,PD△DA于点D,PD=2,则P点到OB 的距离是()A.1 B.2 C.3 D.4【答案】B【解析】试题分析:可过点P作PE∵OB,由角平分线的性质可得,PD=PE,进而可得出结论.如图,过点P作PE∵OB,∵OC是∵AOB的平分线,点P在OC上,且PD∵OA,PE∵OB,∵PE=PD,又PD=2,∵PE=PD=2.考点:角平分线的性质.7.如图,OC平分△AOB,点P是射线OC上的一点,PD△OB于点D,且PD=3,动点Q在射线OA上运动,则线段PQ的长度不可能是()A.2 B.3 C.4 D.5【答案】A【解析】试题分析:过点P作PE∵OA于E,根据角平分线上的点到脚的两边距离相等可得PE=PD,再根据垂线段最短解答.解:如图,过点P作PE∵OA于E,∵OC平分∵AOB,PD∵OB,∵PE=PD=3,∵动点Q在射线OA上运动,∵PQ≥3,∵线段PQ的长度不可能是2.故选A.点评:本题考查了角平分线上的点到脚的两边距离相等的性质,垂线段最短的性质,是基础题,熟记性质是解题的关键.8.如图,AB⊥CD,BP和CP分别平分⊥ABC和⊥DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.2【答案】C【解析】过点P作PE⊥BC于E,⊥AB⊥CD,PA⊥AB,⊥PD⊥CD,⊥BP和CP分别平分∠ABC和∠DCB,⊥PA=PE,PD=PE,⊥PE=PA=PD,⊥PA+PD=AD=8,⊥PA=PD=4,⊥PE=4.故选C.9.已知∠AOB,求作射线OC,使OC平分∠AOB,那么作法的合理顺序是()①作射线OC;②在射线OA和OB上分别截取OD、OE,使OD=OE;③分别以D、E为圆心,大于12DE的长为半径在∠AOB内作弧,两弧交于点C.A.⊥⊥⊥B.⊥⊥⊥C.⊥⊥⊥D.⊥⊥⊥【答案】C【解析】由题意可知其作图法依据的是,切线的性质,故必须先选择圆心,再求半径,最后作出OC,故其顺序为②③①.故选C.10.如图,在△ABC中,∠C=90°,按以下步骤作图:①以点A为圆心、适当长为半径作圆弧,分别交边AC、AB于点M、N;②分别以点M和点N 为圆心、大于12MN的长为半径作圆弧,在∠BAC内,两弧交于点P;③作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60【答案】B【解析】解:作DE⊥AB于E,由基本作图可知,AP平分∠CAB.⊥AP平分∠CAB,∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=12×AB×DE=30.故选B.。

【中考数学】《角的平分线》专项练习题2套含答案

【中考数学】《角的平分线》专项练习题2套含答案

角的平分线第1课时角的平分线的性质01基础题知识点1角的平分线的作法1.如果要作已知∠AOB的平分线OC,合理的顺序是(C)①作射线OC;②在OA、OB上分别截取OD、OE,使OD=OE;③分别以D、E为圆心,大于12DE长为半径作弧,两弧在∠AOB内交于点C. A.①②③B.②①③C.②③①D.③②①2.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是(A)A.SSSB.ASAC.AASD.角平分线上的点到角两边距离相等3.已知△ABC,用尺规作图作出∠ABC的角平分线,保留作图痕迹,不写作法.解:作图略.知识点2角的平分线的性质4.(茂名中考)如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P 到边OB的距离为(A)A .6B .5C .4D .35.(怀化中考)如图,OP 为∠AOB 的角平分线,PC ⊥OA ,PD ⊥OB ,垂足分别是C ,D ,则下列结论错误的是(B )A .PC =PDB .∠CPD =∠DOPC .∠CPO =∠DPOD .OC =OD6.已知:如图所示,点O 在∠BAC 的平分线上,BO ⊥AC ,CO ⊥AB ,垂足分别为D ,E ,求证:OB =OC.证明:∵点O 在∠BAC 的平分线上,BO ⊥AC ,CO ⊥AB , ∴OE =OD ,∠BEO =∠CDO =90°. 在△BEO 和△CDO 中,⎩⎨⎧∠BEO =∠CDO ,OE =OD ,∠EOB =∠DOC ,∴△BEO ≌△CDO(ASA ). ∴OB =OC.知识点3 文字命题的证明7.命题“全等三角形对应边上的高相等”的已知是两个三角形全等,结论是这两个三角形对应边上的高相等.8.(咸宁中考)证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC =∠BOC ,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E . 求证:PD =PE .请你补全已知和求证,并写出证明过程.证明:∵PD ⊥OA ,PE ⊥OB , ∴∠PDO =∠PEO =90°. 在△PDO 和△PEO 中,⎩⎨⎧∠PDO =∠PEO ,∠AOC =∠BOC ,OP =OP ,∴△PDO ≌△PEO(AAS ). ∴PD =PE. 02 中档题9.(淮安中考)如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交边AC ,AB 于点M ,N ,再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积为(B )A .15B .30C .45D .6010.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是(A) A.M点B.N点C.P点D.Q点11.(湖州中考)如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是(C)A.8 B.6 C.4 D.212.已知,如图,△ABC的角平分线AD交BC于D,BD∶DC=2∶1,若AC=3 cm,则AB=6_cm.13.如图,△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB,垂足为E,且AB=10 cm,求△DEB的周长.解:∵AD平分∠BAC交BC于D,DE⊥AB,∠C=90°,∴CD=DE.又∵AD=AD,∴Rt△ACD≌Rt△AED.∴AE=AC.∴△DEB 的周长为DE +DB +EB =CD +DB +BE =BC +BE =AC +BE =AE +BE =AB =10 cm .14.求证:有两个角及其中一个角的角平分线对应相等的两个三角形全等.已知:如图,在△ABC 和△A′B′C′中,∠B =∠B′,∠BAC =∠B′A′C′,AD ,A ′D ′分别是∠BAC ,∠B ′A ′C ′的平分线,且AD =A′D′.求证:△ABC ≌△A′B′C′.证明:∵∠BAC =∠B′A′C′,AD ,A ′D ′分别是∠BAC ,∠B ′A ′C ′的角平分线, ∴∠BAD =∠B′A′D′. ∵∠B =∠B′,AD =A′D′, ∴△ABD ≌△A ′B ′D ′(AAS ). ∴AB =A′B′.在△ABC 和△A′B′C′中,⎩⎨⎧∠B =∠B′,AB =A′B′,∠BAC =∠B′A′C′,∴△ABC ≌△A ′B ′C ′(ASA ). 03 综合题15.(长春中考)感知:如图1,AD 平分∠BAC ,∠B +∠C =180°,∠B =90°.易知:DB =DC.探究:如图2,AD 平分∠BAC ,∠ABD +∠ACD =180°,∠ABD <90°.求证:DB =DC.证明:过点D 分别作DE ⊥AB 于E ,DF ⊥AC 于F. ∵DA 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴DE =DF.∵∠B +∠ACD =180°, ∠ACD +∠FCD =180°, ∴∠B =∠FCD. 在△DFC 和△DEB 中,⎩⎨⎧∠F =∠DEB ,∠FCD =∠B ,DF =DE ,∴△DFC ≌△DEB. ∴DC =DB.第2课时 角的平分线的判定01 基础题知识点1 角的平分线的判定1.如图,OC 是∠AOB 内部的一条射线,P 是射线OC 上任意点,PD ⊥OA ,PE ⊥OB.下列条件中:①∠AOC =∠BOC ;②PD =PE ;③OD =OE ;④∠DPO =∠EPO ,能判定OC 是∠AOB 的角平分线的有(D )A .1个B .2个C .3个D .4个2.如图,∠AOB =70°,QC ⊥OA 于点C ,QD ⊥OB 于点D ,若QC =QD ,则∠AOQ =35°.3.如图,BE =CF ,DE ⊥AB 的延长线于点E ,DF ⊥AC 于点F ,且DB =DC ,求证:AD 是∠BAC 的平分线.证明:∵DE ⊥AB ,DF ⊥AC , ∴∠BED =∠DFC =90°.在Rt △DEB 和Rt △DFC 中,⎩⎨⎧BE =CF ,DB =DC ,∴Rt △DEB ≌Rt △DFC.∴DE =DF. ∴AD 是∠BAC 的平分线.4.如图,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE ,CD 相交于点O.求证:(1)当∠1=∠2时,OB =OC ; (2)当OB =OC 时,∠1=∠2.证明:(1)∵∠1=∠2,OD ⊥AB ,OE ⊥AC , ∴OE =OD ,∠ODB =∠OEC =90°. 在△BOD 和△COE 中,⎩⎨⎧∠BOD =∠COE ,OD =OE ,∠ODB =∠OEC ,∴△BOD ≌△COE(ASA ). ∴OB =OC.(2)在△BOD 和△COE 中,⎩⎨⎧∠ODB =∠OEC ,∠BOD =∠COE ,OB =OC ,∴△BOD ≌△COE(AAS ). ∴OD =OE.又∵OD ⊥AB ,OE ⊥AC , ∴AO 平分∠BAC ,即∠1=∠2.知识点2 三角形的角平分线5.到△ABC 的三条边距离相等的点是△ABC 的(B )A .三条中线的交点B .三条角平分线的交点C .三条高的交点D .以上均不对6.如图,△ABC 的三边AB ,BC ,CA 的长分别为40,50,60,其三条角平分线交于点O ,则S △ABO ∶S △BCO ∶S △CAO =4∶5∶6.知识点3角的平分线的性质与判定的实际应用7.如图,铁路OA和铁路OB交于O处,河道AB与铁路分别交于A处和B处,试在河岸上建一座水厂M,要求M到铁路OA,OB的距离相等,则该水厂M应建在图中什么位置?请在图中标出M点的位置.解:图略.提示:∠AOB的平分线与AB的交点即为点M的位置.8.如图,某市有一块由三条公路围成的三角形绿地,现准备在其中建一小亭子,供人们休息,而且要使小亭中心到三条公路的距离相等,试确定小亭的中心位置.解:△ABC的角平分线的交点就是小亭的中心位置,图略.02中档题9.(永州中考)如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△=S△PCD,则满足此条件的点P(D)PABA.有且只有1个B.有且只有2个C.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)10.如图,已知△ABC的周长是20 cm,BO,CO分别平分∠ABC和∠ACB,OD⊥BC于点D,若OD=3 cm,则△ABC的面积为30_cm2.11.如图,∠ABC的平分线与∠ACB的外角平分线相交于点D,连接AD.求证:AD是∠BAC的外角平分线.证明:过点D分别作DE⊥AB,DG⊥AC,DF⊥BC,垂足分别为E,G,F.又∵BD平分∠ABC,CD平分∠ACF,∴DE=DF,DG=DF.∴DE=DG.∴AD平分∠EAC,即AD是∠BAC的外角平分线.12.如图所示,△ABC中,∠B=∠C,D是BC边上一动点,过D作DE⊥AB,DF⊥AC,E,F分别为垂足,则当D移动到什么位置时,AD恰好平分∠BAC,请说明理由.解:当D移动到BC的中点时,AD恰好平分∠BAC.理由:∵D是BC的中点,∴BD=CD.∵DE⊥AB,DF⊥AC,∴∠DEB =∠DFC =90°.又∵∠B =∠C ,∴△DEB ≌△DFC(AAS ).∴DE =DF.又∵DE ⊥AB ,DF ⊥AC ,∴AD 平分∠BAC.03 综合题13.如图,在四边形ABDC 中,∠D =∠B =90°,O 为BD 的中点,且AO 平分∠BAC.求证:(1)CO 平分∠ACD ;(2)OA ⊥OC ;(3)AB +CD =AC.证明:(1)过点O 作OE ⊥AC 于点E ,∵∠B =90°,AO 平分∠BAC ,∴OB =OE.∵点O 为BD 的中点,∴OB =OD.∴OE =OD.又∵∠D =90°,∠OEC =90°.∴CO 平分∠ACD.(2)在Rt △ABO 和Rt △AEO 中,⎩⎨⎧AO =AO ,OB =OE ,∴Rt △ABO ≌Rt △AEO(HL ).∴∠AOB =∠AOE =12∠BOE. 同理,∠COD =∠COE =12∠DOE.∵∠AOC =∠AOE +∠COE ,∴∠AOC =12∠BOE +12∠DOE =12×180° =90°.∴OA ⊥OC.(3)∵Rt △ABO ≌Rt △AEO ,∴AB =AE.同理可得CD =CE.∵AC =AE +CE ,∴AB +CD =AC.。

角平分线练习题(答案)

角平分线练习题(答案)

角平分线练习题①如图,OM是∠AOB的角平分线,ON是∠BOC的角平分线,若∠AOC=120°,∠CON=38°,求∠AOM的度数。

答案:22°解析:根据OM与ON是角分线,所以∠AOC=2∠MON,∠MON=120°÷2=60°∠BON=∠CON=38°,所以∠AOM=∠BOM=60°-38°=22°②如图,O是直线AB上一点,∠BOC=36°,OD平分∠AOC,∠DOE=90°,求∠AOE的度数。

答案:18°解析:因为AB是直线,所以∠AOB=180°。

∠AOC=∠AOB-∠BOC=180°-36°=144°。

所以∠AOD=144°÷2=72°∠AOE=∠DOE-∠AOD=90°-72°=18°③如图OM是∠AOB的角平分线,ON是∠COD的角平分线,已知∠MON=90°,∠AOD=140°,求∠BOC的度数。

答案:40°解析:根据OM与ON是角分线,可知∠AOD=2∠MON-∠BOC(推导过程略)所以∠BOC=2∠MON-∠AOD=90°×2 - 140°= 40°④已知∠AOB=80°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC,求∠MON的度数。

答案:25°或55°解析:由于没有给出具体图形,所以需要分类讨论。

当OC在OA与OB之间时,∠MON=∠MOB-∠NOB=40°-15°=25°当OB在OA与OC之间时,∠MON=∠MOB+∠NOB=40°+15°=55°⑤如图OM是∠AOC的角平分线,ON是∠BOD的角平分线,已知∠BOC=26°,∠AOD=150°,求∠MON的度数。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题5:角平分线性质的应用【典例引领】例:在等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,∠EMF=135°.将∠EMF绕点M旋转,使∠EMF的两边交直线AB于点E,交直线AC于点F,请解答下列问题:(1)当∠EMF绕点M旋转到如图①的位置时,求证:BE+CF=BM;(2)当∠EMF绕点M旋转到如图②,图③的位置时,请分别写出线段BE,CF,BM之间的数量关系,不需要证明;(3)在(1)和(2)的条件下,tan∠BEM=√3,AN=√2+1,则BM=,CF=.【强化训练】1.(2017辽宁省葫芦岛市)如图,∠MAN=60°,AP平分∠MAN,点B是射线AP上一定点,点C在直线AN上运动,连接BC,将∠ABC(0°<∠ABC<120°)的两边射线BC和BA分别绕点B顺时针旋转120°,旋转后角的两边分别与射线AM交于点D和点E.(1)如图1,当点C在射线AN上时,①请判断线段BC与BD的数量关系,直接写出结论;②请探究线段AC,AD和BE之间的数量关系,写出结论并证明;(2)如图2,当点C在射线AN的反向延长线上时,BC交射线AM于点F,若AB=4,AC=√3,请直接写出线段AD和DF的长.2.(2017辽宁省抚顺市,第25题,12分)如图,OF是∠MON的平分线,点A在射线OM上,P,Q是直线ON上的两动点,点Q在点P的右侧,且PQ=OA,作线段OQ的垂直平分线,分别交直线OF、ON交于点B、点C,连接AB、PB.(1)如图1,当P、Q两点都在射线ON上时,请直接写出线段AB与PB的数量关系;(2)如图2,当P、Q两点都在射线ON的反向延长线上时,线段AB,PB是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由;(3)如图3,∠MON=60°,连接AP,设APOQ=k,当P和Q两点都在射线ON上移动时,k是否存在最小值?若存在,请直接写出k的最小值;若不存在,请说明理由.3.如图,已知正方形ABCD的边长为√2,连接AC、BD交于点O,CE平分∠ACD交BD于点E,(1)求DE的长;(2)过点EF作EF⊥CE,交AB于点F,求BF的长;(3)过点E作EG⊥CE,交CD于点G,求DG的长.4.已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA,OB(或它们的反向延长线)相交于点D,E.当三角板绕点C旋转到CD与OA垂直时(如图①),易证:OD+OE=√2OC;当三角板绕点C旋转到CD与OA不垂直时,即在图②,图③这两种情况下,上述结论是否仍然成立?若成立,请给予证明:若不成立,线段OD,OE,OC之间又有怎样的数量关系?请写出你的猜想,不需证明.①②③专题5:角平分线性质的应用【典例引领】例: 在等腰△ABC 中,∠B=90°,AM 是△ABC 的角平分线,过点M 作MN ⊥AC 于点N ,∠EMF=135°.将∠EMF 绕点M 旋转,使∠EMF 的两边交直线AB 于点E ,交直线AC 于点F ,请解答下列问题: (1)当∠EMF 绕点M 旋转到如图①的位置时,求证:BE+CF=BM ;(2)当∠EMF 绕点M 旋转到如图②,图③的位置时,请分别写出线段BE ,CF ,BM 之间的数量关系,不需要证明;(3)在(1)和(2)的条件下,tan ∠BEM=√3,AN=√2+1,则BM= ,CF= .【答案】(1)证明见解析(2)见解析(3)1,1+√33或1﹣√33【分析】(1)由等腰△ABC 中,∠B=90°,AM 是△ABC 的角平分线,过点M 作MN ⊥AC 于点N ,可得BM=MN ,∠BMN=135°,又∠EMF=135°,可证明的△BME ≌△NMF ,可得BE=NF ,NC=NM=BM 进而得出结论; (2)①如图②时,同(1)可证△BME ≌△NMF ,可得BE ﹣CF=BM , ②如图③时,同(1)可证△BME ≌△NMF ,可得CF ﹣BE=BM ; (3) 在Rt △ABM 和Rt △ANM 中,,可得Rt △ABM ≌Rt △ANM ,后分别求出AB 、 AC 、 CN 、BM 、 BE 的长,结合(1)(2)的结论对图①②③进行讨论可得CF 的长. 【解答】(1)证明:∵△ABC 是等腰直角三角形, ∴∠BAC=∠C=45°,∵AM 是∠BAC 的平分线,MN ⊥AC , ∴BM=MN ,在四边形ABMN 中,∠,BMN=360°﹣90°﹣90°﹣45°=135°, ∵∠ENF=135°,, ∴∠BME=∠NMF , ∴△BME ≌△NMF , ∴BE=NF ,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵CN=CF+NF,∴BE+CF=BM;(2)针对图2,同(1)的方法得,△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵NC=NF﹣CF,∴BE﹣CF=BM;针对图3,同(1)的方法得,△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵NC=CF﹣NF,∴CF﹣BE=BM;(3)在Rt△ABM和Rt△ANM中,,∴Rt△ABM≌Rt△ANM(HL),∴AB=AN=+1,在Rt△ABC中,AC=AB=+1,∴AC=AB=2+,∴CN=AC﹣AN=2+﹣(+1)=1,在Rt△CMN中,CM=CN=,∴BM=BC﹣CM=+1﹣=1,在Rt△BME中,tan∠BEM===,∴BE=,∴①由(1)知,如图1,BE+CF=BM,∴CF=BM﹣BE=1﹣②由(2)知,如图2,由tan∠BEM=,∴此种情况不成立;③由(2)知,如图3,CF﹣BE=BM,∴CF=BM+BE=1+,故答案为1,1+或1﹣.【强化训练】1.(2017辽宁省葫芦岛市)如图,∠MAN=60°,AP平分∠MAN,点B是射线AP上一定点,点C在直线AN上运动,连接BC,将∠ABC(0°<∠ABC<120°)的两边射线BC和BA分别绕点B顺时针旋转120°,旋转后角的两边分别与射线AM交于点D和点E.(1)如图1,当点C在射线AN上时,①请判断线段BC与BD的数量关系,直接写出结论;②请探究线段AC,AD和BE之间的数量关系,写出结论并证明;(2)如图2,当点C在射线AN的反向延长线上时,BC交射线AM于点F,若AB=4,AC=√3,请直接写出线段AD和DF的长.【答案】(1)①BC=BD;②AD+AC=√3BE;(2)AD=5√3,DF=31√37.【分析】(1)①结论:BC=BD.只要证明△BGD≌△BHC即可.②结论:AD+AC=√3BE.只要证明AD+AC=2AG=2EG,再证明EB=√32BE即可解决问题;(2)如图2中,作BG⊥AM于G,BH⊥AN于H,AK⊥CF于K.由(1)可知,△ABG≌△ABH,△BGD≌△BHC,易知BH,AH,BC,CH,AD的长,由sin∠ACH=AKAC =BHBC,推出AK的长,设FG=y,则AF=2√3﹣y,BF=√4+y2,由△AFK∽△BFG,可得AFBF =AKBG,可得关于y的方程,求出y即可解决问题.【解答】(1)①结论:BC=BD,理由:如图1中,作BG⊥AM于G,BH⊥AN于H,∵∠MAN=60°,PA平分∠MAN,BG⊥AM于G,BH⊥AN于H,∴BG=BH,∠GBH=∠CBD=120°,∴∠CBH=∠GBD,∵∠BGD=∠BHC=90°,∴△BGD≌△BHC,∴BD=BC;②结论:AD+AC=√3BE,∵∠ABE=120°,∠BAE=30°,∴∠BEA=∠BAE=30°,∴BA=BE,∵BG⊥AE,∴AG=GE,EG=BE•cos30°=√32BE,∵△BGD≌△BHC,∴DG=CH,∵AB=AB,BG=BH,∴Rt△ABG≌Rt△ABH,∴AG=AH,∴AD+AC=AG+DG+AH ﹣CH=2AG=√3BE,∴AD+AC=√3BE;(2)如图2中,作BG⊥AM于G,BH⊥AN于H,AK⊥CF于K,由(1)可知,△ABG≌△ABH,△BGD≌△BHC,易知BH=GB=2,AH=AG=EG=2√3,BC=BD=√BH2+CH2=√31,CH=DG=3√3,∴AD=5√3,∵sin∠ACH=AKAC =BHBC,∴√3=√31,∴AK=√3√31,设FG=y,则AF=2√3﹣y,BF=√4+y2,∵∠AFK=∠BFG,∠AKF=∠BGF=90°,∴△AFK∽△BFG,∴AFBF =AKBG,∴√3−y√4+y2=2√3√312,解得y=10√37或3√10(舍弃),∴DF=GF+DG=10√37+3√3,即DF=31√37.2.(2017辽宁省抚顺市,第25题,12分)如图,OF是∠MON的平分线,点A在射线OM上,P,Q是直线ON上的两动点,点Q在点P的右侧,且PQ=OA,作线段OQ的垂直平分线,分别交直线OF、ON交于点B、点C,连接AB、PB.(1)如图1,当P、Q两点都在射线ON上时,请直接写出线段AB与PB的数量关系;(2)如图2,当P、Q两点都在射线ON的反向延长线上时,线段AB,PB是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由;(3)如图3,∠MON=60°,连接AP,设APOQ=k,当P和Q两点都在射线ON上移动时,k是否存在最小值?若存在,请直接写出k的最小值;若不存在,请说明理由.【答案】(1)AB=PB;(2)存在;(3)k=0.5.【分析】试题分析:(1)结论:AB=PB.连接BQ,只要证明△AOB≌△PQB即可解决问题;(2)存在.证明方法类似(1);(3)连接BQ.只要证明△ABP∽△OBQ,即可推出APOQ=ABOB,由∠AOB=30°,推出当BA⊥OM时,ABOB的值最小,最小值为0.5,由此即可解决问题;【解答】解:(1)连接:AB=PB.理由:如图1中,连接BQ.∵BC垂直平分OQ,∴BO=BQ,∴∠BOQ=∠BQO,∵OF平分∠MON,∴∠AOB=∠BQO,∵OA=PQ,∴△AOB≌△PQB,∴AB=PB.(2)存在,理由:如图2中,连接BQ.∵BC垂直平分OQ,∴BO=BQ,∴∠BOQ=∠BQO,∵OF平分∠MON,∠BOQ=∠FON,∴∠AOF=∠FON=∠BQC,∴∠BQP=∠AOB,∵OA=PQ,∴△AOB≌△PQB,∴AB=PB.(3)连接BQ.易证△ABO≌△PBQ,∴∠OAB=∠BPQ,AB=PB,∵∠OPB+∠BPQ=180°,∴∠OAB+∠OPB=180°,∠AOP+∠ABP=180°,∵∠MON=60°,∴∠ABP=120°,∵BA=BP,∴∠BAP=∠BPA=30°,∵BO=BQ,∴∠BOQ=∠BQO=30°,∴△ABP∽△OBQ,∴APOQ=ABOB,∵∠AOB=30°,∴当BA⊥OM时,ABOB的值最小,最小值为0.5,∴k=0.5.3.如图,已知正方形ABCD的边长为√2,连接AC、BD交于点O,CE平分∠ACD交BD于点E,(1)求DE的长;(2)过点EF作EF⊥CE,交AB于点F,求BF的长;(3)过点E作EG⊥CE,交CD于点G,求DG的长.【答案】(1)2-√2;(2)2-√2;(3)3√2-4.【分析】(1)求出BC=BE,根据勾股定理求出BD,即可求出DE;(2)求出△FEB≅△ECD,根据全等三角形的性质得出BF=DE即可;(3)延长GE交AB于F,证△GDE∼△FBE,得出比例式,代入即可求出答案.【解答】解:(1)∵四边形ABCD是正方形,∴∠ABC=∠ADC=90°,∠DBC=∠BCA=∠ACD=45°,∵CE平分∠DCA,∴∠ACE=∠DCE=∠ACD=22.5°,∴∠BCE=∠BCA+∠ACE=45°+22.5°=67.5°,∵∠DBC=45°,∴∠BEC=180°﹣67.5°﹣45°=67.5°=∠BCE,∴BE=BC=,在Rt△ACD中,由勾股定理得:BD==2,∴DE=BD﹣BE=2﹣;(2)∵FE⊥CE,∴∠CEF=90°,∴∠FEB=∠CEF﹣∠CEB=90°﹣67.5°=22.5°=∠DCE,∵∠FBE=∠CDE=45°,BE=BC=CD,∴△FEB≌△ECD,∴BF=DE=2﹣;(3)延长GE交AB于F,由(2)知:DE=BF=2﹣,由(1)知:BE=BC=,∵四边形ABCD是正方形,∴AB∥DC,∴△DGE∽△BFE,∴=,∴=,解得:DG=3﹣4.4.已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA,OB(或它们的反向延长线)相交于点D,E.当三角板绕点C旋转到CD与OA垂直时(如图①),易证:OD+OE=√2OC;当三角板绕点C旋转到CD与OA不垂直时,即在图②,图③这两种情况下,上述结论是否仍然成立?若成立,请给予证明:若不成立,线段OD,OE,OC之间又有怎样的数量关系?请写出你的猜想,不需证明.①②③【答案】图②中OD+OE=√2OC成立.证明见解析;图③不成立,有数量关系:OE-OD=√2OC【分析】当三角板绕点C旋转到CD与OA不垂直时,易得△CKD≌△CHE,进而可得出证明;判断出结果.解此题的关键是根据题意找到全等三角形或等价关系,进而得出OC与OD、OE的关系;最后转化得到结论.【解答】图②中OD+OE=√2OC成立.证明:过点C分别作OA,OB的垂线,垂足分别为P,Q.有△CPD≌△CQE,∴DP=EQ,∵OP=OD+DP,OQ=OE-EQ,又∵OP+OQ=√2OC,即OD+DP+OE-EQ=√2OC,∴OD+OE=√2OC.图③不成立,有数量关系:OE-OD=√2OC过点C分别作CK⊥OA,CH⊥OB,∵OC为∠AOB的角平分线,且CK⊥OA,CH⊥OB,∴CK=CH,∠CKD=∠CHE=90°,又∵∠KCD与∠HCE都为旋转角,∴∠KCD=∠HCE,∴△CKD≌△CHE,∴DK=EH,∴OE-OD=OH+EH-OD=OH+DK-OD=OH+OK,由(1)知:OH+OK=√2OC,∴OD,OE,OC满足OE-OD=√2OC.。

相关文档
最新文档