《菱形的性质与判定》教学设计

合集下载

《菱形的性质与判定(2)》优教教案

《菱形的性质与判定(2)》优教教案

第一章特殊平行四边形1. 菱形的性质与判定(2)一、学情与教材分析1.学情分析上节课,学生已经经历了独立探索发现菱形性质的过程,通过折纸等活动学生体会了“实验—猜想—证明—应用”的科学探索过程,认识了菱形与平行四边形的关系,这些都为本节课进一步探索和发现菱形的判定定理提供了较好的知识基础和活动经验基础。

2.教材分析本节课,学生将探究菱形的判定定理,应该说,有了上节课的铺垫,本节课可以更多地让学生自主探索。

第一个定理的证明中,需要首先明确判定定理与性质定理的关系,这样为后面一系列定理的证明打下基础;第二个定理教科书中是通过设置一个尺规作图的问题引入的,在学生自行完成尺规作图并明确了作法的可行性后,引导学生自主完成证明过程。

本节课中将通过学生的自主证明过程,提升学生的逻辑推理能力,通过经历尺规作菱形提升学生的动手操作能力和规范的语言表达能力.二、教学目标1.经历菱形的判定定理的探究及证明过程及其运用;2.掌握用尺规作菱形的方法;3.经历“探索——猜想——证明”的学习过程,进一步提高推理论证的能力.三、教学重难点重点:菱形判定定理的证明和应用.难点:通过尺规作图法作菱形.四、教法建议采用“展示交流——合作论证——知识运用(训练提升)”的教学模式,引导学生观察、思考、讨论、总结并形成结论,让学生在探究中体会所学知识.五、教学过程(一)课前设计1.预习任务:任务1:制作菱形①在一张纸上用尺规作图做出边长为10cm的菱形;②想办法用一张长方形纸剪折出一个菱形.③利用长方形纸你还能想到哪些制作菱形的方法.任务2:怎样去判定一个四边形是菱形呢菱形性质定理的逆命题是不是可以作为判定定理呢请回答下列问题:①:菱形的四条边相等的逆命题是什么②:①中的两个逆命题是否正确请尝试证明!对于不正确的命题请添加适当的条件,使它成立.2.预习自测:一、填空题1.如图,如果要是平行四边形是一个菱形,需要添加一个条件,那么你添加的条件是________________.B答案:AB=BC,或AC⊥BD(答案不唯一)解析:由定义知,当AB=BC时,平行四边形ABCD是一个菱形;由判定定理知道,当AC⊥BD时,平行四边形ABCD是一个菱形,所以两个答案都可以.点拨:熟练掌握菱形的判定方法即可解答此题.2.如图,等边△ABC中,点D,E,F分别是AB,BC,AC边上的中点,则图中有________个菱形.CB答案:3解析:∵△ABC是等边三角形,∴AB=AC=BC ,∵D 、E 、F 分别是AB 、BC 、CA 边上的中点,∴DF=12BC ,DE=12AC ,EF=12AB , ∴DF=EF=ED=AD=AF=CF=CE=BE=BD ,∴有3个菱形:菱形ADEF ,菱形BDFE ,菱形CFDE .故答案为3.B点拨:根据等边三角形和中位线的性质可得DF=EF=ED=AD=AF=CF=CE=BE=BD . 再根据菱形的判定定理即可解答此题3.如图,在等腰梯形ABCD 中,AB 添加一个你认为合适的条件_______________,使四边形AECD 为菱形.E A 答案:AD ∵AD=CD ,∴四边形AECD 为菱形.当AD=AE ,∵AD=CD ,∴AE=CD. 又∵AB ∴四边形AECD 为菱形.当∠CEB=∠B ; ∵等腰梯形中,∠A=∠B ,∴∠A=∠CEB.∴AD 又∵AB ∴四边形AECD 为菱形.点拨:利用平行四边形和菱形的判定定理,先证平行四边形,再证菱形.(二)课堂设计1、知识回顾C 图1—1内容:通过练习复习上节课所探究的菱形的性质.1)菱形ABCD中,AC=8,BD=6,则菱形的周长是______2)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC与点F,垂足为点E,连接DF,则∠CDF等于________设计意图:通过课件中的问题回顾上节课探究过的菱形的性质定理,从而为本节课的继续探究,尤其是理论证明做铺垫。

菱形的性质与判定教案

菱形的性质与判定教案

菱形的性质与判定教案一、菱形的定义菱形是指四边形的四条边都相等的图形,同时对角线互相垂直且长度相等。

二、菱形的性质1.菱形的对角线互相垂直且长度相等。

2.菱形的对边平行。

3.菱形的内角和为360度,每个内角为90度。

4.菱形的内切圆和外接圆均存在。

5.菱形的对角线平分内角。

6.菱形的对角线交点是菱形的中心,也是内切圆和外接圆的圆心。

7.菱形的面积等于对角线长度之积的一半。

三、菱形的判定方法1.判定四边形的四条边相等。

2.判定四边形的对角线互相垂直。

3.判定四边形的对角线长度相等。

4.判定四边形的对边平行。

5.判定四边形的内角和为360度,每个内角为90度。

四、菱形的应用1.菱形常用于制作菱形形状的物品,如菱形钻石、菱形标志等。

2.菱形也常用于数学中的几何问题,如计算菱形的面积、判定是否为菱形等。

3.菱形还可以用于设计中,如在平面设计中使用菱形来表达某种意义或情感。

五、菱形的例题1.已知菱形ABCD,AC=8cm,BD=6cm,求菱形ABCD的面积。

解:菱形ABCD的面积等于对角线长度之积的一半,即S=AC×BD÷2=8×6÷2=24cm²。

2.已知四边形EFGH,EF=GH=5cm,EG=FH=12cm,判断四边形EFGH是否为菱形。

解:由于EF=GH,EG=FH,且对角线EG和FH互相垂直,因此四边形EFGH是菱形。

六、总结菱形是一种四边形,其四条边相等,对角线互相垂直且长度相等。

菱形具有对边平行、内角和为360度、对角线平分内角等性质。

判定菱形的方法包括判定四边形的四条边相等、对角线互相垂直、对角线长度相等、对边平行、内角和为360度等。

菱形常用于制作物品、数学中的几何问题、设计中的表达等方面。

北师大特殊的平行四边形1.1.3 菱形的性质与判定 教学设计

北师大特殊的平行四边形1.1.3 菱形的性质与判定 教学设计

1.1.3菱形的性质与判定教学设计师提问:菱形的相关知识有哪些?教师出示表格。

教师带领学生回忆:菱形的定义:一组邻边相等的平行四边形叫做菱形。

菱形的性质:①具有平行四边形的所有性质②菱形的四条边都相等③对角线互相垂直且平分每一组对角④轴对称图形菱形的判定:①一组邻边相等的平行四边形是菱形②四边都相等的四边形是菱形③对角线互相垂直的平行四边形是菱形师:思考:王大爷家有一块菱形的菜地,怎样求出这块菜地的面积呢?想一想:菱形的面积怎么求?菱形是特殊的平行四边形,那么能否利用平行四边形的面积公式计算菱形ABCD 的面积呢?教师总结:过点A 作AE ⊥BC 于点E S 菱形ABCD =底×高=BC ·AE如果我们不知道菱形的高怎样求面积呢?有没有别的方法?因为菱形的对角线互相垂直,能否利用对角线来计算菱形ABCD 的面积呢?小组讨论:怎样利用对角线求菱形的面积? 教师课件出示解题过程。

解:∵四边形ABCD 是菱形, ∴AC ⊥BD,∴S 菱形ABCD=S △ABC +S △ADCABCDE=12AC ·BO+ 12 AC ·DO = 12 AC(BO+DO)= 12AC ·BD.师提问:你有什么发现?教师课件出示例题:【例】如图,四边形ABCD 是边长为13 cm 的菱形,其中对角线BD 长10 cm ,求: (1)对角线AC 的长度; (2)菱形ABCD 的面积。

做一做如图两张等宽的纸条交叉重叠在一起,重叠的部分ABCD 是什么图形?为什么?分析:画辅助线构建三角形,通过证明三角形全等得出相等的线段。

ABCD1.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是( B )A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍2.如图,菱形的两条对角线长分别为10cm和24cm,则菱形的边长是( C )A.10cmB.24cmC. 13cmD.17cm3.如图,菱形ABCD的对角线相交于点O,AC=6 cm,BD=8 cm,则菱形的高AE为__4.8 cm.4.如果菱形的两条对角线的长为a和b,且a,b满足(a﹣1)2+√b−4 =0,那么菱形的面积等于2 .5.如图所示,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为 2√3,∴菱形的面积为4×2√3=8√3。

1.1菱形的性质与判定教学设计-2024-2025学年北师大版数学九年级上册

1.1菱形的性质与判定教学设计-2024-2025学年北师大版数学九年级上册
2. 评价方式单一:当前的评价方式过于注重考试成绩,忽视了学生的过程表现和创新能力,需要多元化评价学生的学习成果。
3. 教学内容与实际应用脱节:部分学生反映菱形的性质与判定知识与实际生活应用关联不大,需要加强与实际应用的结合,提高学生的学习动机。
(三)改进措施
1. 增加课堂互动:通过提问、小组讨论等方式,增加学生的参与度,鼓励学生积极思考和表达自己的观点。
(三)新课呈现(预计用时:25分钟)
知识讲解:
清晰、准确地讲解菱形的性质与判定知识点,结合实例帮助学生理解。
突出重点,强调难点,通过对比、归纳等方法帮助学生加深记忆。
互动探究:
设计小组讨论环节,让学生围绕菱形的性质与判定问题展开讨论,培养学生的合作精神和沟通能力。
鼓励学生提出自己的观点和疑问,引导学生深入思考,拓展思维。
知识拓展:
介绍与菱形的性质与判定内容相关的拓展知识,拓宽学生的知识视野。
引导学生关注学科前沿动态,培养学生的创新意识和探索精神。
情感升华:
结合菱形的性质与判定内容,引导学生思考学科与生活的联系,培养学生的社会责任感。
鼓励学生分享学习菱形的性质与判定的心得和体会,增进师生之间的情感交流。
(六)课堂小结(预计用时:2分钟)
3. 相邻角互补
4. 菱形中心对称
判定:
1. 四边相等的四边形
2. 对角线互相垂直平分的四边形
3. 相邻角互补的四边形
4. 中心对称的四边形
```
板书设计应根据实际教学情况和学生需求进行调整和优化,以达到最佳教学效果。
八、反思改进措施
(一)教学特色创新
1. 实践教学:在菱形的性质与判定教学中,通过实际操作和实验,让学生亲身体验菱形的性质和判定方法,提高学生的实践能力和解决问题的能力。

菱形的性质与判定 第1课时 (教案)

菱形的性质与判定 第1课时 (教案)

北师大版九年级上第一章《特殊平行四边形》《菱形的性质与判定》(第1课时)教案【教学目标】1.知识与技能(1).理解菱形的概念,了解它与平行四边形之间的关系.(2).经历菱形概念的抽象过程,以及它的性质的探索、猜测与证明的过程,丰富数学活动经验,进一步发展合情推理能力和演绎推理能力.2.过程与方法在探究活动中,学会与人合作并能与他人交流思维的过程和探究结果。

3.情感态度和价值观体会探索与证明过程中所蕴含的抽象、推理等数学思想.【教学重点】菱形的性质定理的证明【教学难点】菱形的性质定理的证明【教学方法】合作、探究【课前准备】多媒体课件【教学过程】一、导入新课导语:面几幅图片中都含有一些平行四边形。

观察这些平行四边形,你能发现它们有什么样的共同特征?与下图相比较,这些平行四边形特殊在哪里?这些平行四边形的邻边相等,像这样的平行四边形叫菱形。

二、探究新知1.菱形的定义:有一组邻边相等的平行四边形叫做菱形。

菱形在生活中随处可见,你能举出一些生活中菱形的例子吗?与同伴交流。

(1)菱形是特殊的平行四边形,它具有一般平行四边形的所有性质。

你能列举一些这样的性质吗?(菱形的对边平行且相等,对角相等,对角线互相平分。

中心对称图形)(2)你认为菱形还具有哪些特殊的性质?与同伴交流。

2.活动内容1:请同学们用你手中的菱形纸片折一折,回答下列问题:(1)菱形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系?菱形是轴对称图形,有两条对称轴,分别是两条对角线所在的直线,两条对称轴互相垂直。

(2)结合手中的折纸得到的菱形ABCD,找出图中相等的角和线段。

由折纸过程和对称轴的性质可得相等的角有:∠1=∠2;∠3=∠4;∠5=∠6;∠7=∠8;相等的线段有:AB=BC=CD=DA.处理方式:让学生利用课前准备的菱形纸片进行折叠,折叠的过程中,让学生回顾轴对称图形的意义及轴对称图形的性质,从而发现菱形的“特殊”性质,感受折纸过程对性质的初步验证.设计意图:通过折纸这一过程,引导学生发现菱形的对称性,即菱形不只是中心对称图形,还是轴对称图形,在操作过程中验证菱形的特殊性质,鼓励学生通过多种方法验证发现的结论.活动内容2:菱形性质定理的证明如何推理证明“菱形的四条边相等,对角线互相垂直”这两个性质呢? 已知:如图,在菱形ABCD 中, AB =AD ,对角线AC 与BD 相交于点O .求证:(1)AB =BC =CD =AD ;(2)AC ⊥BD .处理方式:让学生从平行四边形的性质出发,独立思考、分析证明思路.第(2)题多数学生可能会应用全等三角形的性质,想不到利用“等腰三角形的三线合一”性质,教师引导学生互相交流、确定证明思路,最后找一名学生板书证明过程,教师规范解题过程的书写.证明:(1)∵ 四边形ABCD 是菱形, ∴AB=CD ,AD=BC (菱形的对边相等). 又∵AB=AD , ∴ AB=BC=CD=AD . (2)∵AB=AD , ∴△ABD 是等腰三角形. 又∵ 四边形ABCD 是菱形,∴OB=OD (菱形的对角线互相平分). 在等腰三角形ABD 中, ∵OB=OD , ∴ AO ⊥BD . 即 AC ⊥BD .设计意图:通过对性质的分析与证明,一方面让学生养成独立思考问题的习惯,对于不能独立解决的问题,引导学生发挥小组合作的作用,提高学生的交流能力;另一方面通过解题过程的板书提高学生的书写能力,养成规范书写的习惯.教师强调:菱形的性质定理1、对角线互相垂直且平分,并且每条对角线平分一组对角;2、四条边都相等,对边平行且相等;3、对角相等,邻角互补;ACDBO4、菱形既是轴对称图形,对称轴是两条对角线所在直线,也是中心对称图形,5、菱形是特殊的平行四边形,它具备平行四边形的一切性质. 三、例题讲解例1.如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,下列说法错误的是( B ) A .AB//DC B .AC =BD C .AC ⊥BD D .OA =OC解析:根据菱形的性质:对角线互相垂直且平分得到C ,D 是正确的,再根据菱形的对边平行得到A 是正确的,故选B 。

菱形的性质和判定教案

菱形的性质和判定教案

菱形的性质和判定教案第一章:菱形的定义和性质1.1 菱形的定义引导学生回顾四边形的定义,引入菱形的概念。

通过图形展示,让学生理解菱形是由四条边相等的四边形。

1.2 菱形的性质介绍菱形的四条边相等的性质。

引导学生观察菱形的对角线性质,得出对角线互相垂直且平分的性质。

引导学生探索菱形的对角线与边的夹角,得出均为直角的性质。

第二章:菱形的判定2.1 判定一个四边形为菱形的条件引导学生运用菱形的性质,判断一个四边形是否为菱形。

强调四条边相等是判定的关键条件。

2.2 对角线互相垂直且平分的四边形为菱形通过图形展示,让学生理解对角线互相垂直且平分的四边形必定是菱形。

引导学生运用这个判定条件,解决相关问题。

第三章:菱形的面积3.1 菱形的面积计算公式引导学生回顾三角形和矩形的面积计算公式。

引入菱形的面积计算公式,即对角线乘积的一半。

3.2 应用菱形的面积公式解决问题通过例题,让学生运用菱形的面积公式解决问题。

引导学生注意对角线长度和角度的关系,以便准确计算面积。

第四章:菱形的对角线4.1 菱形的对角线长度引导学生观察菱形的对角线长度,得出对角线长度相等的性质。

通过几何证明,引导学生理解对角线长度相等的证明方法。

4.2 菱形的对角线与边的夹角引导学生观察菱形的对角线与边的夹角,得出均为直角的性质。

通过几何证明,引导学生理解对角线与边的夹角为直角的证明方法。

第五章:菱形的对称性5.1 菱形的轴对称性引导学生观察菱形的对称性,得出菱形具有轴对称性的性质。

通过图形展示,让学生理解菱形有两组对称轴。

5.2 菱形的中心对称性引导学生观察菱形的对称性,得出菱形具有中心对称性的性质。

通过图形展示,让学生理解菱形的中心对称性。

第六章:菱形的画法6.1 菱形的画法步骤介绍菱形的画法步骤,包括确定边长、画对角线、分割四边形等。

通过示例,引导学生逐步完成菱形的绘制。

6.2 应用菱形的画法解决问题通过例题,让学生运用菱形的画法解决问题,如绘制特定的菱形图案。

菱形的性质与判定教学设计与导学案

菱形的性质与判定教学设计与导学案

教学设计1.1 菱形的性质与判定1.1.1《菱形的性质与判定》教学设计教材分析:本节课是菱形的第1课时,主要内容是菱形的性质,为了体现新课标的要求,在性质的教学方面,采用直观操作和几何论证相结合的探究式的教学方法,即关注学生学习的结果,更关注他们学习的过程,进一步培养学生的形象思维和逻辑推理能力.在学生的学习方式上,采用动手实验、自主探索与合作交流相结合的方式,使学习过程直观化、形象化。

此外,生活中菱形的广泛应用反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值。

一、教学目标:1.了解菱形的概念及其与平行四边形的关系,体会菱形的轴对称性,掌握菱形的性质;2.经历利用折纸等活动探索菱形的性质的过程,发展合情推理的能力。

3.进一步体会证明的必要性以及计算与证明在解决问题中的作用。

教学重点:掌握菱形的性质和定理,以及证明方法。

教学难点:运用综合法证明菱形的性质定理。

二、温故知新:1.平行四边形的定义:。

2.平行四边形的性质?3.什么是轴对称图形?三、自主探究:阅读课本p2—41、菱形的定义:叫做菱形。

菱形是________的平行四边形。

2、菱形的性质(1)些这样的性质吗?(2)请同学们用菱形纸片折一折,回答下列问题:A①菱形是轴对称图形吗?②如果是,它有几条对称轴?③对称轴之间有什么位置关系?④菱形中有哪些相等的线段?【归纳】:菱形与平行四边形比较,又有其特殊的性质:特殊在“边”上的性质是_____________________________________________. 特殊在“对角线”上的性质是:_______________________________________.四、合作探究:请独立证明菱形的性质定理:1.菱形的四条边都相等已知:求证:证明:2.菱形的对角线互相垂直,并且每条对角线平分一组对角.已知:求证:证明:五、例题解析【例1】如图1-2,在菱形ABCD中,对角线AC与BD相交于点O, ∠BAD=60°,BD=6,求菱形的边长AB和对角线AC的长。

菱形的性质和判定定理教案

菱形的性质和判定定理教案

课题菱形的性质和判定定理时间教学目标1.掌握菱形的性质判定,并能用定义判定一个四边形是菱形使学生能够灵活运用菱形知识解决有关问题,提高能力。

2.通过教具的演示培养学生的观察能力并提高学生的学习兴趣。

3.通过把矩形和菱形的定义、性质、判定相互对比,将易混淆的知识点分清楚,并以此培养学生的辨正观点。

重难点重点:菱形的性质定理和判定定理的了解和运用难点:平行四边形,矩形,菱形的性质定理,判定定理的综合应用。

教学方法教学方法观察分析讨论相结合的方法。

(做一个短边可以运动的平行四边形)投影仪、透影胶片角色教师活动学生活动备注教学过程(一)引入新课我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,这时可将事先按课本中做成的一个短边也可以活动的教具进行演示,如,改变平行四边形的边,使之一组邻边相等,引出菱形概念。

(二)讲解新课1.1.菱形定义:有一组邻边相等的平行四边形叫做菱形定义:有一组邻边相等的平行四边形叫做菱形。

2.2.菱形的性质菱形的性质教师强调,菱形既然是特殊的平行四边形,因此它就具有平行四边形的一切性质,此外由于它比平行四边形多了“一组邻边相等”的条件,和矩形类似,也比平行四边形增加了一些特殊的性质。

菱形性质定理1:菱形的四条边都相等菱形性质定理2:菱形的对角线互相垂直并且每一条对角线平分一组对角师1:菱形ABCD被对角线分成的四个直角三角形有什么关系?师2:它们的底和高和两条对角线有什么关系?师3:如果设菱形的两条对角线分别为a、b,则菱形的面积是什么?S=1/2ab1/2ab。

教师指出当不易求出对角线长时,就用平行四边形面积的一般计算方法计算菱形面积。

讲解这个定义时,要抓住概念的本质,应突出两条:(1)强调菱形是平行四边形。

(2)一组邻边相等。

教学过程例1已知:如图4-41,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F。

求证:四边形AEDF是菱形。

菱形的性质和判定教案

菱形的性质和判定教案

菱形的性质和判定教案一、教学目标1. 知识与技能:(1)理解菱形的定义和性质;(2)学会菱形的判定方法;(3)能够运用菱形的性质和判定方法解决实际问题。

2. 过程与方法:(1)通过观察、操作、推理等过程,发现菱形的性质;(2)利用菱形的性质和判定方法,解决几何问题。

3. 情感态度与价值观:(1)培养学生的观察能力、推理能力;(2)激发学生对几何图形的兴趣,培养学生的审美观念。

二、教学重点与难点1. 教学重点:(1)菱形的性质;(2)菱形的判定方法。

2. 教学难点:(1)菱形性质的推导;(2)菱形判定方法的灵活运用。

三、教学准备1. 教具:菱形模型、直尺、量角器、多媒体设备。

2. 学具:菱形纸片、彩笔、剪刀、胶水。

1. 导入新课(1)利用多媒体展示各种菱形图案,引导学生观察菱形的特征;(2)提问:什么是菱形?请大家尝试画出一个菱形。

2. 探究菱形的性质(1)学生分组讨论,总结菱形的性质;(2)教师引导学生得出菱形的性质:四条边相等,对角线互相垂直平分。

3. 推导菱形性质(1)利用菱形模型,引导学生观察、操作,推导菱形的性质;(2)学生动手操作,验证菱形性质。

4. 学习菱形的判定方法(1)引导学生思考:如何判断一个四边形是菱形?;(2)学生分组讨论,总结菱形的判定方法:四条边相等或对角线互相垂直平分。

5. 练习与应用(1)教师出示练习题,学生独立完成;(2)利用菱形的性质和判定方法,解决实际问题。

五、课堂小结1. 师生共同总结本节课所学的菱形的性质和判定方法;2. 强调菱形性质和判定方法在几何中的应用。

六、课后作业1. 完成练习册的相关题目;2. 收集生活中的菱形图案,下节课分享。

1. 对比正方形和菱形,分析它们的异同点;2. 引导学生思考:还有其他判定菱形的方法吗?七、课堂练习1. 教师出示练习题,学生独立完成;2. 学生之间互相讲解,交流解题思路。

八、教学反思1. 教师总结本节课的教学效果;2. 学生反馈学习过程中的困惑和问题;3. 针对问题,教师进行教学调整。

北师大版九年级数学上册《菱形的性质与判定》第3课时示范公开课教学设计

北师大版九年级数学上册《菱形的性质与判定》第3课时示范公开课教学设计

第一章特殊的平行四边形1 菱形的性质与判定第3课时一、教学目标1.能灵活运用菱形的性质定理及判定定理解决一些相关问题,并掌握菱形面积的求法.2.运用菱形知识解决具体问题,培养逻辑推理能力和演绎能力.3.经历菱形性质定理及判定定理的应用过程,体会数形结合、转化等思想方法.4.体验数学活动来源于生活又服务于生活,体会菱形的图形美,提高学生的学习兴趣.二、教学重难点重点:理解并掌握菱形的面积公式.难点:运用菱形的性质定理与判定定理解决具体问题..三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【复习回顾】教师活动:先提出问题让学生自由说一说,并填写表格,动画出示图形和符号语言.问题1:什么是菱形,菱形的性质有哪些?预设答案:菱形的定义:一组邻边相等的平行四边形叫做菱形.菱形的性质:①具有平行四边形的所有性质,是轴对称图形②菱形的四条边都相等③菱形的对角线互相垂直且平分追问:菱形的判定方法有哪些?预设答案:菱形的判定:①一组邻边相等的平行四边形是菱形②四边都相等的四边形是菱形③对角线互相垂直的平行四边形是菱形【试一试】如图所示:在 ABCD中添加一个条件使其成为菱形:添加方式1:_________________ .添加方式2:_________________ .预设答案:方式1:一组邻边相等;方式2:AC⊥BD【合作探究】预设答案:求菜地的面积实际上是求菱形的面积.想一想:菱形的面积怎么求?预设答案:菱形是特殊的平行四边形,可以根据求平行四边形的面积方法来求.教师引导学生作出菱形另一边上的高,并交流反馈.预设答案:过点A作AE⊥BC于点ES菱形ABCD=底×高=BC·AE追问:你还有别的方法吗?教师提示学生,菱形的对角线具有什么样的关系,能否从对角线的角度进行探究.【思考】菱形的对角线互相垂直,能否利用对角线来计算菱形的面积呢?预设答案:每一条对角线将菱形分成两个全等的三角形.解:⊥四边形ABCD是菱形,⊥AC⊥BD,⊥S菱形ABCD=S⊥ABC+S⊥ADC=1122AC BO AC DO ⋅+⋅()1=21=2AC BO DO AC BD +⋅追问:你发现了什么? 【归纳】求菱形面积的方法:菱形的面积=底×高菱形的面积=对角线乘积的一半.【典型例题】预设答案:重叠的部分ABCD是菱形.思考:说一说你的理由?预设答案:根据纸条的两长边互相平行得ABCD是平行四边形;再由纸条等宽得两条邻边上的高相等,进而利用平行四边形的面积得两邻边相等;从而可证ABCD是菱形.教师给出练习,随时观察学生完成情况并相应思维导图的形式呈现本节课的主要内容:教科书第9页。

菱形的性质和判定教案

菱形的性质和判定教案

菱形的性质和判定教案一、教学目标知识与技能目标:使学生掌握菱形的定义、性质和判定方法,能够运用菱形的性质解决实际问题。

过程与方法目标:通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。

情感态度与价值观目标:激发学生对几何图形的兴趣,培养学生的审美观念,提高学生解决问题的自信心。

二、教学内容1. 菱形的定义:菱形是四条边相等的四边形。

2. 菱形的性质:(1)菱形的对角线互相垂直,且平分对方。

(2)菱形的对边平行且相等。

(3)菱形的对角相等。

(4)菱形的四条边相等。

3. 菱形的判定方法:(1)四条边相等的四边形是菱形。

(2)对角线互相垂直,且平分对方的四边形是菱形。

三、教学重点与难点重点:掌握菱形的性质和判定方法。

难点:理解菱形性质之间的内在联系,以及如何运用判定方法判断一个四边形是否为菱形。

1. 教学PPT或黑板。

2. 几何画图工具。

3. 相关几何图形示例。

五、教学过程1. 导入:通过展示一些生活中的菱形图形,如蜂巢、骰子等,引导学生观察并思考这些图形的共同特点。

2. 新课导入:介绍菱形的定义,引导学生通过观察、操作、推理等方法,发现菱形的性质。

3. 讲解与演示:利用PPT或黑板,展示菱形的性质,如对角线互相垂直、平分对方,对边平行且相等等。

通过几何画图工具,演示菱形的性质,帮助学生理解。

4. 练习与巩固:给出一些四边形,让学生判断它们是否为菱形,并说明理由。

引导学生运用菱形的性质和判定方法进行判断。

5. 拓展与应用:引导学生运用菱形的性质解决实际问题,如在设计图案、构造模型等方面应用菱形。

7. 布置作业:设计一些有关菱形的练习题,巩固学生对菱形性质和判定方法的理解。

六、教学评价1. 课堂讲解:评价学生在课堂上的参与程度、提问回答的正确性和完整性。

2. 练习与巩固:评价学生在练习中应用菱形性质和判定方法的正确性。

3. 拓展与应用:评价学生在实际问题中运用菱形性质的创造性和解决问题的能力。

菱形的性质与判定教学设计

菱形的性质与判定教学设计

§菱形的性质与判定邵爱平沈阳市博才中学菱形的性质与判定第一课时教学设计沈阳市博才中学邵爱平教学目标:1.理解菱形的概念,了解它与平行四边形之间的关系.2.探索并证明菱形的性质定理.3.应用菱形的性质定理解决相关问题.教学重点:菱形性质的探究与应用.教学难点:利用菱形的性质解决问题.教学环境: 一对一数字化教室,包括学生人手一个终端及教师一体机.教学过程:一、课前展示小组同学合作选题和全体同学共同复习平行四边形性质的相关习题 .1.平行四边形的性质有哪些?(利用终端全体答题)对称性:平行四边形是 ______ 对称图形边:平行四边形的______ 相等角:平行四边形的______ 相等对角线:平行四边形的对角线______2.已知平行四边形ABCD的周长为40m,△ABC的周长为25cm,则对角线AC的长为______cm.(利用终端全体抢答)3.在平行四边形ABCD中,AC、BD相交于O,AC=10,BD=8,则AD的长度的取值范围是().(全体答题统测)A.AD>1 B.1<AD<9 C.AD<9 D.AD>9设计意图:通过利用终端作答,能一目了然的了解学生对平行四边形相关知识的掌握情况,同时为本节课做铺垫.(利用一对一数字化评测系统进行测试.)二、激情引趣1.教师引导学生想一想:你在什么地方见过菱形?学生寻找身边的实例,并将在课前下载到终点的照片资源与同学们分享,同学分享后教师也利用用课件展示生活中的菱形图案,学生在欣赏的同时初步感知菱形的魅力,通过身边的事物引入,使学生感受到菱形为我们的衣食住行增添了色彩.2.在平行四边形的基础上进行动画演示,使之变成一个菱形,得菱形的定义:一组邻边相等的平行四边形是菱形.小结:由定义可知,菱形是强化了“边”的特殊性的平行四边形,那么菱形具有什么样的特殊性质呢?让我们带着这个问题进入菱形性质的探究之旅.设计意图:营造一种轻松愉快的学习氛围,拉进学生与数学的距离,学生在观察与实践后得出菱形的定义.三、合作探究1.教师介绍菱形性质的研究方向与平行四边形相同为:边、角、对角线、对称性. 做一做:将菱形纸片折一折,回答下列问题:(1)菱形是轴对称图形吗?如果是有几条对称轴?对称轴之间有什么关系?(2)菱形中有哪些相等线段?通过折叠并引导学生类比平行四边形性质的探究方法来探究菱形的性质. 小组交流进行探究,得菱形的特殊性:(1)菱形是轴对称图形,有两条对称轴,分别是两对角线所在的直线;菱形是中心对称图形,对角线的交点是对称中心..(2)四条边都相等.(3)菱形的对角线互相垂直,并且每条对角线平分一组对角.2.验证猜想:以上菱形的特殊性是通过观察、实验操作、猜想得到的,还需要进一步从数学的角度加以验证. 概括出两条性质之后,引导学生把两条性质作为命题加以演绎证明.菱形的性质1:菱形的四条边相等.已知:四边形ABCD 是菱形,AB=BC.求证:AB=BC=CD=AD.菱形的性质2:菱形的两条对角线互相垂直,每一条对角线平分一组对角.已知:四边形ABCD 是菱形对角线相交于O 点求证:(1)AC ⊥BD.(2)AC 平分∠DAB 和∠DCB ,BD 平分∠ADC 和∠ABC.(学生在讲解性质推理过程中利用一对一设备直接将讲解过程录制成微课,课下A B CD传给学生,学生根据需要来看视频讲解.)设计意图: 学生动手操作、合作交流,通过观察、实验、猜想、验证、推理、交流……并让学生明白这个过程也是以后我们研究几何图形的性质所要经历的一般过程.得出性质后,还要进一步会应用性质来解决一些相关的数学问题.四、新知应用例1.菱形ABCD 中,对角线AC 与BD 相交于点O, ∠BAD =60度,BD =6,求菱形的边长AB 和对角线AC 的长.(此题是学生的课前作业,课上学生通过进一步小组交流后将答案以照片的形式上传,教师进行板书推送,缩小学生的个体差异.)(利用一对一教学终端进行讲解)设计意图:例题是学习菱形性质的应用,通过例题的分析,学生之间的分享,使学生进一步体会菱形的相关问题要进行转化,转化到直角三角形和等腰三角形中. 五、巩固提升1.下列说法错误的是( )A.菱形的对角线相等B.菱形的对角线互相垂直C.菱形的一条对角线平分一组对角D.菱形的四条边相等2.如上图,菱形ABCD 中,AB=5,AO=4, 则AC= _______,BD=_______,菱形周长是_______.3.菱形ABCD 两条对角线BD 、AC 长分别是6cm 和8cm ,求菱形的面积.第二题:引导学生理清思路,明白题中用到了菱形的哪些性质,并且探究出不同的方法,例如可把∠ABD 放在△ABD 中求,也可放在△ABO 中求,还可放在△ABC 中求,不只让学生理解一题多解的思路,还应该让学生初步体会菱形的相关知识可转化为直角三角形或等腰三角形的问题来解决.第三题:引导学生回顾平行四边形面积公式:S =底×高.在这个题中没有边长和对应的高,该如何解决呢?引导学生思考,体会把一个图形的面积转化为几个图形的面积之和的解题思路,进而引导学生探索不同的分割方法.在学生探究的基础之上,课件展示几种不同的分割方法:A B CD通过探究,让学生明白割补法是求图形面积常用的方法,尤其是一些特殊图形和不规则的图形,让学生在本节课学习过程中学到一些新的数学思想和方法.之后引导学生得菱形的面积公式:S 菱形=底×高=对角线乘积的一半.小结:菱形的问题可以转化为直角三角形或等腰三角形的问题来解决.六、知识小结引导学生尝试理一理:到目前为止,我们学到了哪些知识,并以思维导图的形式呈现. 学生梳理本节重点知识:一个定义:有一组邻边相等的平行四边形是菱形.两个公式:S 菱形=底×高=对角线乘积的一半三个特性:特在“边、对角线、对称性”七、布置作业完成本节课的测试题(分为)两个等级,将完成后的作业上传到教师终端.设计意图:等级作业满足了不同层次学生的需要,使各层次同学得到不同的发展.八、教学反思本节课的教学流程体现了知识发生,形成和发展过程,让学生体会到观察,猜想,归纳,验证的思想.本节课最大的亮点是:始终把学生的探索与验证活动放在首位,整个教学过程我通过一对一数字化教学环境,师生、生生利用一对一终端进行互动,通过网络查找并下载菱形的图片,利用教师一体机的照相功能、评测功能、抢答功能、推送笔记、实时点评等多种互动功能形式引导学生主动参与课堂活动,以丰富学生的感性认识,增强直观效果,提高课堂教学效率,建立平等、民主、和谐的师生关系,意在创设一种学生乐学的课堂气氛,让学生真正成为课堂的主体,最终实现知识的建构。

八年级数学下册《菱形的性质和判定定理》教案、教学设计

八年级数学下册《菱形的性质和判定定理》教案、教学设计
三、教学重难点和教学设想
(一)教学重难点
1.重点:菱形的性质和判定定理的理解与应用。
难点:如何引导学生运用判定定理判断一个四边形是否为菱形,以及在实际问题中灵活运用菱形的性质。
2.重点:培养学生观察、猜想、验证的能力。
难点:如何激发学生的探究兴趣,引导学生主动参与学习过程,培养其几何思维。
3.重点:菱形与平行四边形、矩形、三角形等几何图形的联系与区别。
3.演示与讲解:教师通过直观的演示和详细的讲解,帮助学生理解菱形的性质和判定定理。
4.练习巩固:设计不同难度的练习题,让学生在实际操作中运用所学知识,提高解决问题的能力。
(三)情感态度与价值观
1.培养学生的观察能力和空间想象力,激发学生对几何学习的兴趣。
2.培养学生合作交流、积极参与的学习态度,提高学生的团队协作能力。
2.提出问题
提问:“我们已经学过很多四边形,如矩形、平行四边形等,那么菱形与这些四边形有什么联系和区别呢?”通过这个问题,激发学生对菱形的探究欲望,为新课的学习打下基础。
3.导入新课
在学生初步感知菱形的特点后,顺势导入新课:“今天我们将学习一种新的四边形——菱形,了解它的性质和判定定理。”
(二)讲授新知,500字
难点:帮助学生建立几何图形之间的联系,提高学生的综合运用能力。
(二)教学设想
1.创设情境,引入新课
通过展示生活中的菱形实例,如菱形装饰、建筑图案等,激发学生对菱形的兴趣,为新课的学习打下基础。
2.自主探究,发现性质
将学生分成小组,引导他们运用手中学具,观察、猜想、验证菱形的性质。在此过程中,教师适时给予指导,帮助学生总结出菱形的性质。
4.能够运用菱形的性质和判定定理解决实际问题,如求菱形的面积、周长等。

菱形的性质与判定教学设计

菱形的性质与判定教学设计

§1.1 菱形的性质与判定邵爱平市博才中学菱形的性质与判定第一课时教学设计市博才中学邵爱平教学目标:1.理解菱形的概念,了解它与平行四边形之间的关系.2.探索并证明菱形的性质定理.3.应用菱形的性质定理解决相关问题.教学重点:菱形性质的探究与应用.教学难点:利用菱形的性质解决问题.教学环境: 一对一数字化教室,包括学生人手一个终端及教师一体机.教学过程:一、课前展示小组同学合作选题和全体同学共同复习平行四边形性质的相关习题 .1.平行四边形的性质有哪些?(利用终端全体答题)对称性:平行四边形是 ______ 对称图形边:平行四边形的______ 相等角:平行四边形的______ 相等对角线:平行四边形的对角线______2.已知平行四边形ABCD的周长为40m,△ABC的周长为25cm,则对角线AC的长为______cm.(利用终端全体抢答)3.在平行四边形ABCD中,AC、BD相交于O,AC=10,BD=8,则AD的长度的取值围是().(全体答题统测)A.AD>1 B.1<AD<9 C.AD<9 D.AD>9设计意图:通过利用终端作答,能一目了然的了解学生对平行四边形相关知识的掌握情况,同时为本节课做铺垫.(利用一对一数字化评测系统进行测试.)二、激情引趣1.教师引导学生想一想:你在什么地方见过菱形?学生寻找身边的实例,并将在课前下载到终点的照片资源与同学们分享,同学分享后教师也利用用课件展示生活中的菱形图案,学生在欣赏的同时初步感知菱形的魅力,通过身边的事物引入,使学生感受到菱形为我们的衣食住行增添了色彩.2.在平行四边形的基础上进行动画演示,使之变成一个菱形,得菱形的定义:一组邻边相等的平行四边形是菱形.小结:由定义可知,菱形是强化了“边”的特殊性的平行四边形,那么菱形具有什么样的特殊性质呢?让我们带着这个问题进入菱形性质的探究之旅.设计意图:营造一种轻松愉快的学习氛围,拉进学生与数学的距离,学生在观察与实践后得出菱形的定义.三、合作探究1.教师介绍菱形性质的研究方向与平行四边形相同为:边、角、对角线、对称性. 做一做:将菱形纸片折一折,回答下列问题:(1)菱形是轴对称图形吗?如果是有几条对称轴?对称轴之间有什么关系?(2)菱形中有哪些相等线段?通过折叠并引导学生类比平行四边形性质的探究方法来探究菱形的性质. 小组交流进行探究,得菱形的特殊性:(1)菱形是轴对称图形,有两条对称轴,分别是两对角线所在的直线;菱形是中心对称图形,对角线的交点是对称中心..(2)四条边都相等.(3)菱形的对角线互相垂直,并且每条对角线平分一组对角.2.验证猜想:以上菱形的特殊性是通过观察、实验操作、猜想得到的,还需要进一步从数学的角度加以验证. 概括出两条性质之后,引导学生把两条性质作为命题加以演绎证明.菱形的性质1:菱形的四条边相等.已知:四边形ABCD 是菱形,AB=BC.求证:AB=BC=CD=AD.菱形的性质2:菱形的两条对角线互相垂直,每一条对角线平分一组对角.已知:四边形ABCD 是菱形对角线相交于O 点求证:(1)AC ⊥BD.B CD(2)AC 平分∠DAB 和∠DCB ,BD 平分∠ADC 和∠ABC.(学生在讲解性质推理过程中利用一对一设备直接将讲解过程录制成微课,课下传给学生,学生根据需要来看视频讲解.)设计意图: 学生动手操作、合作交流,通过观察、实验、猜想、验证、推理、交流……并让学生明白这个过程也是以后我们研究几何图形的性质所要经历的一般过程.得出性质后,还要进一步会应用性质来解决一些相关的数学问题.四、新知应用例1.菱形ABCD 中,对角线AC 与BD 相交于点O, ∠BAD =60度,BD =6, 求菱形的边长AB 和对角线AC 的长.(此题是学生的课前作业,课上学生通过进一步小组交流后将答案以照片的形式上传,教师进行板书推送,缩小学生的个体差异.)(利用一对一教学终端进行讲解)设计意图:例题是学习菱形性质的应用,通过例题的分析,学生之间的分享,使学生进一步体会菱形的相关问题要进行转化,转化到直角三角形和等腰三角形中. 五、巩固提升1.下列说法错误的是( )A.菱形的对角线相等B.菱形的对角线互相垂直C.菱形的一条对角线平分一组对角D.菱形的四条边相等2.如上图,菱形ABCD 中,AB=5,AO=4, 则AC= _______,BD=_______, 菱形周长是_______.3.菱形ABCD 两条对角线BD 、AC 长分别是6cm 和8cm ,求菱形的面积.第二题:引导学生理清思路,明白题中用到了菱形的哪些性质,并且探究出不同的方法,例如可把∠ABD 放在△ABD 中求,也可放在△ABO 中求,还可放在△ABC 中求,不只让学生理解一题多解的思路,还应该让学生初步体会菱形的相关知识可转化为直角三角形或等腰三角形的问题来解决.第三题:引导学生回顾平行四边形面积公式:S =底×高.在这个题中没有边长和对应的高,该如何解决呢?引导学生思考,体会把一个图形的面积转化为几个图形的面积之B CD和的解题思路,进而引导学生探索不同的分割方法.在学生探究的基础之上,课件展示几种不同的分割方法:通过探究,让学生明白割补法是求图形面积常用的方法,尤其是一些特殊图形和不规则的图形,让学生在本节课学习过程中学到一些新的数学思想和方法.之后引导学生得菱形的面积公式:S 菱形=底×高=对角线乘积的一半.小结:菱形的问题可以转化为直角三角形或等腰三角形的问题来解决.六、知识小结引导学生尝试理一理:到目前为止,我们学到了哪些知识,并以思维导图的形式呈现. 学生梳理本节重点知识:一个定义:有一组邻边相等的平行四边形是菱形.两个公式:S 菱形=底×高=对角线乘积的一半三个特性:特在“边、对角线、对称性”七、布置作业完成本节课的测试题(分为A.B )两个等级,将完成后的作业上传到教师终端.设计意图:等级作业满足了不同层次学生的需要,使各层次同学得到不同的发展.八、教学反思本节课的教学流程体现了知识发生,形成和发展过程,让学生体会到观察,猜想,归纳,验证的思想.本节课最大的亮点是:始终把学生的探索与验证活动放在首位,整个教学过程我通过一对一数字化教学环境,师生、生生利用一对一终端进行互动,通过网络查找并下载菱形的图片,利用教师一体机的照相功能、评测功能、抢答功能、推送笔记、实时点评等多种互动功能形式引导学生主动参与课堂活动,以丰富学生的感性认识,增强直观BB CB C BC效果,提高课堂教学效率,建立平等、、和谐的师生关系,意在创设一种学生乐学的课堂气氛,让学生真正成为课堂的主体,最终实现知识的建构。

1.1.1菱形的性质与判定教案

1.1.1菱形的性质与判定教案

1.1.1菱形的性质与判定教学目标:1、经历菱形的性质的探究过程,了解菱形的概念及其与平行四边形的关系;2、掌握菱形的性质并能灵活运用3、经历折纸、说理等活动,发展合情推理能力和逻辑推理能力教学重点:掌握菱形的性质,并能灵活运用性质进行计算教学难点:菱形性质定理的证明及性质的运用课前准备:师:课件,导学案,平行四边形教具生:制作平行四边形纸片教学方法:先学后教,学案导学,合作达标教学过程一、创设情境,引入新课请同学们观察下列图片例题解析师提出问题:你知道这些图片中所出现的四边形是什么四边形吗?生:观察图片,有的认为是平行四边形,有的说出是菱形.师:给出肯定答复,“这是更为特殊的平行四边形——菱形”,提出问题,我们如何可以得到菱形呢?师:展示活动平行四边形教具,演示菱形的得出过程.根据刚才的演示,请给菱形下个定义.生竞相回答,相互补充,得出结论有一组邻边相等的平行四边形叫做菱形【设计意图】通过这个环节,培养了学生的观察和对比分析能力。

上课时让学生观察图形,从直观上把握菱形的特点,从而给出菱形的定义,让学生明确菱形不但是平行四边形,而且有其特点“一组邻边相等”。

同时,要让学生体会数学来源于生活,让学生去发现生活中因为有了数学而变得更精彩,从而提高学生学习数学的兴趣。

二、自主学习,合作探究(一)自主学习师:展示自主探究问题【处理方法】学生在规定的时间内独立完成,然后借助投影展示学习结果.【设计意图】这个环节设计目的是让学生进行独立思考,静心回顾平行四边形的性质,理清平行四边形与菱形的联系与区别,教师巡视,观察学生的学习状况,鼓励学生大胆猜想,勇于探索.(二)合作交流师:展示需要讨论的问题.生:以小组为单位,共同讨论菱形三条特有性质的证明.师深入小组活动,适时点拨.大约6分钟后,小组内派代表在黑板上板演四边相等,对角线互相垂直的证明过程.各小组间互相点评.师:补充提示:你发现菱形的内角被对角线分成的两个角有怎样的关系?生:相等师:于是你又有怎样的意外收获?生:对角线平分每一组对角.【设计意图】学生通过折纸可以猜想到菱形的相关性质,教师在参与学生的活动过程中,应该关注学生的口述论证过程,并根据学生的认知水平加以引导,尽量减少学生推理论证过程中的困难.学生经过了折纸这一操作活动后,再经过逻辑证明,把操作层面的感知上升到了理性认识,充分了解了菱形的本质特征.本环节让学生进行猜想探究和证明,符合学生的认知规律.同时,操作活动得到的结论与逻辑推理相结合,是对数学知识进行探索活动的自然延续,实现了从感性认识到理性认识的升华. (三)归纳总结,提升认知 生:借助图形,叙述菱形的性质. 师:板书菱形性质.∵四边形ABCD 是菱形∴AB ∥CD ,AD ∥BC ,AB =BC =CD =AD∠BAD =∠BCD , ∠ABC =∠ADC , ∠BAC +∠ADC =1800 (∠ABD =∠CBD =∠ADB =∠CDB , ∠BAC =∠DAC =∠BCA =∠DCA ) AC ⊥BD ,AO =CO ,BO =DO (四)性质运用师:(展示例题)通过刚才的严格论证,我们已经认识了菱形的特殊性质,下面我们利用这些性质来解决一些问题。

1.1菱形的性质与判定(教案)

1.1菱形的性质与判定(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了菱形的基本概念、性质与判定方法,以及它在实际生活中的应用。同时,我们也通过实践活动和小组讨论加深了对菱形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在本次《菱形的性质与判定》的教学过程中,我注意到了几个值得反思的地方。首先,我发现学生在理解菱形对角线垂直平分的性质时遇到了一些困难。在讲授这一部分时,我应该更加注重直观演示和实际操作,例如使用动态教具或者让学生自己动手折叠,这样能更直观地帮助他们理解和记忆这一性质。
1.培养学生的几何直观与空间想象能力:通过观察、分析菱形的特征,掌握菱形的性质与判定方法,提高对几何图形的认知和理解。
-能够识别并描述菱形的基本性质。
-能够运用判定方法判断给定图形是否为菱形。
2.培养学生严密的逻辑思维和推理能力。
-能够运用已知性质和判定方法进行几何证明。
2.教学难点
-理解并证明菱形对角线互相垂直平分的性质,以及这一性质在解题中的应用。
-掌握判定方法中的逻辑推理过程,特别是在处理较为复杂的图形时。
-将理论知识与实际应用有效结合,灵活运用菱形的性质和判定方法。
举例解释:
-难点一:通过动态演示或实际折叠,帮助学生理解菱形对角线垂直平分的性质,并提供多个例子说明这一性质在解题时的应用。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解菱形的基本概念。菱形是四边相等的平面图形,它在几何图形中有着特殊的地位。它是平面几何中的基本图形之一,具有重要的性质和应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示菱形在实际中的应用,以及它如何帮助我们解决问题。

菱形的性质与判定(3课时)教案

菱形的性质与判定(3课时)教案

1 菱形的性质与判定第1课时菱形的性质教学目标一、基本目标1.认识菱形,理解菱形的基本概念.2.理解菱形的性质,并能对菱形的性质进行证明.二、重难点目标【教学重点】理解并掌握菱形的性质.【教学难点】用菱形的性质解决问题.教学过程展示目标环节1 自学学案、提出问题,教师引导【5 min阅读】阅读教材P2~P4的内容,完成下面练习.【3 min反馈】1.有一组邻边相等的平行四边形叫做菱形.2.菱形具有平行四边形的一切性质.3.菱形是轴对称图形,它的对角线所在的直线就是它的对称轴,它有2条对称轴,两条对称轴互相垂直.4.菱形的四条边都相等.5.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】如图,已知菱形ABCD的周长为12,∠A=60°,则BD 的长为________.【互动探索】(引发学生思考)已知菱形ABCD的周长,结合菱形的性质可以得到哪些结论?【分析】∵菱形ABCD的周长为12,∴菱形ABCD的边长为12÷4=3.∵∠A=60°,AD=AB,∴△ABD是等边三角形,∴AB=BD,∴BD=3.【答案】3【互动总结】(学生总结,老师点评)菱形是特殊的平行四边形,具有平行四边形的一切性质,且四条边都相等是菱形特有的性质,该性质经常用来构造等腰三角形解题.【例2】如图,菱形ABCD的两条对角线相交于点O,若AC=8,BD=6,求菱形的周长.【互动探索】(引发学生思考)由菱形的性质,要求周长,需要得到什么量?结合菱形对角线的性质,能得到△AOD是什么特殊三角形?【解答】∵四边形ABCD是菱形,AC=8,BD=6,∴AO=OC=4,BO=OD=3,AC⊥BD,AD=DC=BC=AB,∴∠AOD=90°,∴AD=AO2+DO2=42+32=5,∴菱形ABCD的周长为5×4=20.【互动总结】(学生总结,老师点评)菱形的对角线互相垂直,把菱形分成四个全等的直角三角形,所以菱形的有关计算问题常转化到直角三角形中求解.活动2 巩固练习(学生独学)1.如图,在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是( B )A.AB∥DC B.AC=BDC.AC⊥BD D.OA=OC2.如图,在菱形ABCD中,AC=12,BD=16,则菱形的边长为10.3.已知菱形的边长和一条对角线的长均为2 cm,则菱形的面积为23cm2.活动3 拓展延伸(学生对学)【例3】如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是-1,则顶点A坐标是________.【互动探索】观察发现OC为一条对角线,连结AB能得另一条对角线.要确定点A的坐标,需要确定横坐标和纵坐标.【分析】连结AB交OC于点D.∵四边形OACB是菱形,∴AB⊥OC,OD=CD,AD=BD.∵点C的坐标是(4,0),点B的纵坐标是-1,∴OC=4,BD=AD=1,∴OD=CD=2,∴点A的坐标为(2,1).【答案】(2,1)【互动总结】(学生总结,老师点评)菱形的对角线互相垂直,在平面坐标系问题中,如果其中一条对角线在坐标轴上,作出另一条对角线,那么它与坐标轴垂直,这为我们求点的坐标提供了重要条件.环节3 课堂小结,当堂达标(学生总结,老师点评)练习设计:请完成本课时对应训练!第2课时菱形的判定教学目标一、基本目标1.掌握菱形的判定方法;会用这些判定方法进行有关的论证和计算.2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.二、重难点目标【教学重点】探索证明菱形的两个判定方法,掌握证明的基本要求和方法.【教学难点】明确推理证明的条件和结论,能用数学语言正确表达.学习过程环节1 自学提纲、生成问题【5 min阅读】阅读教材P5~P7的内容,完成下面练习.【3 min反馈】1.有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四边相等的四边形是菱形.4.判断下列说法是否正确:(1)对角线互相垂直的四边形是菱形.( )(2)对角线互相垂直平分的四边形是菱形.( )(3)对角线互相垂直,且有一组邻边相等的四边形是菱形.( )(4)两条邻边相等,且一条对角线平分一组对角的四边形是菱形.( )环节2 合作探究,解决问题活动1 小组讨论(师生对学)【例1】下列条件中,不能判定四边形ABCD为菱形的是( ) A.AC⊥BD,AC与BD互相平分B.AB=BC=CD=DAC.AB=BC,AD=CD,AC⊥BDD.AB=CD,AD=BC,AC⊥BD【互动探索】(引发学生思考)迄今学过的菱形判定方法有哪些?【分析】选项分析A ∵AC与BD互相平分,∴四边形ABCD为平行四边形.∵AC⊥BD,∴四边形ABCD为菱形,故正确B∵AB=BC=CD=DA,∴四边形ABCD为菱形,故正确C AB=BC,AD=CD,AC⊥BD,不能判定四边形ABCD是平行四边形,故错误D∵AB=CD,AD=BC,∴四边形ABCD为平行四边形.∵AC⊥BD,∴四边形ABCD为菱形,故正确【互动总结】(学生总结,老师点评)菱形的判定方法有多种,可以从边、对角线、对角等多角度进行判断.活动2 巩固练习(学生独学)1.如图,在□ABCD中,添加下列条件不能判定□ABCD是菱形的是( D )A .AB =BCB .AC ⊥BD C .BD 平分∠ABC D .AC =BD2.如图,在□ABCD 中,AC ⊥BD ,E 为AB 中点,若OE =3,则□ABCD 的周长是24.3.如图,已知四边形ABCD 是平行四边形,DE ⊥AB ,DF ⊥BC ,垂足分别是E 、F ,并且DE =DF .求证:(1)△ADE ≌△CDF ;(2)四边形ABCD 是菱形.证明:(1)∵DE ⊥AB ,DF ⊥BC ,∴∠AED =∠CFD =90°.∵四边形ABCD 是平行四边形,∴∠A =∠C .∵在△AED 和△CFD 中,⎩⎪⎨⎪⎧ ∠AED =∠CFD ,∠A =∠C ,DE =DF ,∴△AED ≌△CFD (AAS).(2)∵△AED ≌△CFD ,∴AD =CD .∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形.活动3 拓展延伸(学生对学)【例2】如图,在△ABC 中,AD 是∠BAC 的平分线,EF 垂直平分AD 交AB 于点E ,交AC 于点F .求证:四边形AEDF 是菱形.【互动探索】要证明四边形AEDF 是菱形,结合已知条件“EF 垂直平分AD 交AB 于点E ”,因此需先证明四边形AEDF 是平行四边形,从而可证得结论.【证明】∵AD 平分∠BAC ,∴∠BAD =∠CAD .又∵EF ⊥AD ,∴∠AOE =∠AOF =90°.∵在△AEO 和△AFO 中,⎩⎪⎨⎪⎧ ∠EAO =∠FAO ,AO =AO ,∠AOE =∠AOF ,∴△AEO ≌△AFO (ASA),∴EO =FO .∵EF 垂直平分AD ,∴EF 、AD 相互平分,∴四边形AEDF 是平行四边形.又∵EF ⊥AD ,∴平行四边形AEDF 为菱形.【互动总结】(学生总结,老师点评)在几何题中,如果垂直平分线段恰为四边形的对角线,那么应考虑先证这个四边形是平行四边形,再利用对角线互相垂直得菱形.环节3 课堂小结,当堂达标(学生总结,老师点评)练习设计:请完成本课时对应训练!第3课时菱形的性质与判定的应用教学目标:一、基本目标1.掌握菱形面积的两种计算方法.2.经历菱形性质定理及判定定理的应用过程,体会数形结合、转化等思想方法.二、重难点目标【教学重点】菱形面积计算的特殊方法——对角线计算法.【教学难点】理解菱形面积计算的特殊方法的推导.教学过程:环节1 自学提纲、生成问题【5 min阅读】阅读教材P8~P9的内容,完成下面练习.【3 min反馈】如图,在菱形ABCD中,∠ADC=120°,AB=6.(1)AD=6,DC=6,BC=6.(2)对角线AC与BD的位置关系是互相垂直平分.(3)AC=63,S菱形ABCD=18 3.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】已知菱形两条对角线的长分别为5 cm 和12 cm ,则这个菱形的面积是________cm 2.【互动探索】(引发学生思考)菱形面积的计算方法有哪些? 【分析】菱形的面积为12×12×5=30(cm 2). 【答案】30【互动总结】(学生总结,老师点评)菱形面积的常用两种计算方法:(方法一)S 菱形=底×高;(方法二)S 菱形=12×两条对角线的乘积. 活动2 巩固练习(学生独学)1.如图,菱形ABCD 的周长为40 cm ,它的一条对角线BD 长10 cm ,则∠ABC =120°,AC =103cm.2.如图,四边形ABCD 是菱形,对角线AC 和BD 相交于点O ,AC =4 cm ,BD =8 cm ,则这个菱形的面积是16cm 2.活动3 拓展延伸(学生对学)【例2】如图,在菱形ABCD 中,点O 为对角线AC 与BD 的交点,且在△AOB 中,OA =12,OB =5,求菱形ABCD 两对边的距离h .【互动探索】求菱形ABCD 两对边的距离实际上是求菱形的高,已知菱形对角线的相关长,怎样建立等式解决问题?【解答】∵菱形的对角线互相垂直,∴AC ⊥BD .在Rt △AOB 中,OA =12,OB =5,由勾股定理,得AB =13.∴S △AOB =12OA ·OB =12×12×5=30,∴S 菱形ABCD =4S △AOB =4×30=120.又∵菱形两组对边的距离相等,∴S菱形ABCD =AB ·h =13h ,∴13h =120,解得h =12013. 【互动总结】(学生总结,老师点评)菱形的面积计算有如下方法:(1)一边长与两对边之间的距离(即菱形的高)的积;(2)四个小直角三角形的面积之和(或一个小直角三角形面积的4倍);(3)两条对角线长乘积的一半.环节3 课堂小结,当堂达标(学生总结,老师点评)S 菱形=底×高=12×两条对角线的乘积 练习设计:请完成本课时对应训练!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

菱形的性质与判定》
《菱形的性质与判定》一课是继八年级下册“第三章图形的平移与旋转”和“第六章平
行四边形” 之后的一个学习内容。

九年级的学生在学习菱形之前,已经掌握了简单图形平移旋转和平行四边形的性质和判定,学生完全能够借助图形的旋转平移和轴对称直观的理解菱形的定义和性质。

教科书基于学生在平行四边形相关知识的基础上,提出了本课的具体学习任务:①掌握菱形的定义;②探索并掌握菱形是轴对称图形;③探索并证明菱形“四条边相等”、“对角线互相垂直”等性质,并能应用这些性质计算线段的长度。

在教学过程中,要利用学生对图形的直观感知、已掌握的平行四边形的相关知识和已有的逻辑推理能力为基础,探索菱形的定义和性质,又要尝试利用它们解题。

所以在本节课的教学中,要帮助学生学会运用观察,分析,比较,归纳,概括等方法,得出解决问题的方法,使传授知识与培养能力融为一体,使学生不仅学到科学的探究方法,而且体验到探究的乐趣,体会到成功的喜悦。

【知识与能力目标】
1、掌握菱形的的定义,理解菱形与平行四边形的关系。

2、理解并掌握菱形的性质定理;在证明性质和运用性质解决问题的过程中进一步发展
学生的逻辑推理能力。

【过程与方法目标】
1、经历探索菱形的概念和性质的过程,发展学生合情推理的意识;
2、通过灵活运用菱形的性质解决有关问题,掌握几何思维方法。

【情感态度价值观目标】
1、在观察、操作、猜想、归纳、推理的过程中,体验数学活动充满探索性和创造性,感受证明的必要性,培养严谨的推理能力,体会逻辑推理的思维价值。

2、通过小组合作展示活动,培养学生的合作精神和学习自信心。

教学重点】
菱形的性质定理证明及运用。

教学难点】
菱形的性质定理证明、运用,生活数学与理论数学的相互转化。

课前布置学生复习平行四边形的性质,并每人准备好草稿纸、铅笔、直尺、菱形纸片;
教师准备课件,搜集好菱形的相关图片,三角板等。

、情景导入
1.复习回顾:什么样的四边形叫平行四边形?它有哪些性质?
2.观察发现:观察下列图中的这些平行四边形,你能发现它们有什么样的共同特征?
3.与一般的平行四边形相比较,这种平行四边形特殊在哪里?你能给菱形下定义吗?通过平行四边形演变为菱形的动态演示过程,引出本课题及矩形定义。

菱形:有一组邻边相等的平行四边形叫做菱形。

菱形是特殊的平行四边形,它具有平行四边形的所有性质。

但平行四边形不一定是菱形。

二、合作探究
1. 既然菱形是平行四边形,那么它具有平行四边形的哪些性质?
对边平行对角相等,对角线互相中心

邻角互补平分对称图形形
且相等
2.但菱形是特殊的平行四边形,它还具有一些特殊性质。

请与同伴进行交流。

做一做:请同学们用菱形纸片折一折,回答下列问题:
1)菱形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系?
2)菱形中有哪些相等的线段?
教师在学生口答的基础上,引导学生得出(板书)
①菱形是轴对称图形,有两条对称轴。

②定理:菱形四条边相等。

③定理:菱形的对角线互相垂直。

④菱形的对角线平分每组对角。

3.提问:怎样证明你的猜想?(教师写出两个定理的已知、求证,请同学分析思路写出证明过程)订正完毕后,请同学说出性质的推理形式,教师板书。

已知:如图,在菱形ABCD 中,AB=AD ,对角线AC 与BD 相交于点O。

求证:(1)AB = BC = CD =AD ;
(2)AC ⊥BD。

证明:
(1)∵四边形ABCD 是菱形,
∴ AB = CD ,AD = BC (菱形的对边相等)。

又∵ AB=AD ;
∴ AB = BC = CD =AD 。

(2)∵ AB=AD ,
∴△ ABD 是等腰三角形。

又∵四边形ABCD 是菱形,
∴ OB=OD 。

在等腰三角形ABD 中,
∵OB=OD ,
∴ AO⊥BD ,即AC ⊥BD 。

4. 思考:试证明AC 平分∠ BAD 和∠ BCD,BD 平分∠ ABC 和∠ ADC。

5. 请你总结一下菱形有哪些性质?
归纳概括菱形的性质:从对称性来说,菱形既是轴对称图形,又是中心对称图形。

从边来说,菱形的四边都相等,对边平行;从角来说,菱形的对角相等,邻角互补;从对角线来说,菱形的对角线互相垂直平分,且对角线平分每组对角;
6. 口答:
(1)如图,在菱形ABCD 中,两条对角线AC 与BD 相交于点O,图中的等腰三角形有,
直角三角形有 __________________________________________ ,
而且它们是_____________(“全等”或“不全等” )。

(2)菱形具有而平行四边形不一定具有的性质是()
三.典例精析
例1:已知菱形ABCD 中,对角线AC、BD 相交于点O,AB=5cm ,BD=6cm 。

则:(1)BO= _______________ ;(2)AC= _______________ 。

A. 内角和为360°
B.对角线互相垂直
C.对边平行
D.对角线互相平分
归纳:菱形中已知边长或对角线,求相关长度问题,一般利用菱形的对角线垂直平分,再结合勾股定理解题。

例2:在菱形ABCD 中,对角线AC 与BD 相交于点O,∠ BAD=60 °,BD =6,求菱形的边长AB 和对角线AC 的长。

归纳:若菱形有一个内角为60°,那么60°角的两边与较短的对角线可构成等边三角形,且两条对角线把菱形分成四个全等的含30°角的直角三角形。

四.当堂练习
1.如图,菱形的两条对角线长分别是 6 和8,则此菱形的周长是()
A.40
B.32
C.24
D.20
2.在菱形ABCD 中,AE⊥ BC,AF⊥CD,E、F分别为BC,CD 的中点,那么∠ EAF
的度数是()
A.75 °
B.60°
C.45°
D.30°
3. 已知:如图,四边形ABCD 是菱形,F 是AB 上一点,DF 交AC 于E.求证:∠ AFD=
∠CBE。

五.课堂小结
1.本节课你学到了什么?
1)菱形的定义:有一组邻边相等的平行四边形是菱形。

2)菱形的性质:
①菱形是轴对称图形,对称轴是两条对角线所在的直线;
②菱形的四条边都相等;
③菱形的对角线互相垂直平分;
④菱形的对角线平分每组对角。

◆ 教学反思
略。

相关文档
最新文档