七年级数学整式及其加减(去括号)专项训练(一)(北师版)(含答案)

合集下载

北师大版数学七年级上册第三章《整式及其加减》综合检测卷(含答案)

北师大版数学七年级上册第三章《整式及其加减》综合检测卷(含答案)

北师大版数学七年级上册第三章《整式及其加减》综合检测卷 班级 座号 姓名 成绩一、选择题(本大题8小题,每小题3分,共24分.)在每小题列出的四个选项中,只有一个是正确的.1.下列代数式 a ,-2ab ,x +y ,x 2+y 2,-1,2312ab c 中,单项式共有( ) A .6个 B .5 个 C .4 个 D .3个2.下列各式,符合代数式书写格式的是( )A .(a +b )÷cB .a -b cmC .113x D .43x 3.现有四种说法:①-a 表示负数;②若|x |=-x ,则x <0;③绝对值最小的有理数是0;④3×102x 2y 是5次单项式.其中正确的是( )A .①B .②C .③D .④4.计算-a 2+3a 2的结果为( )A .2a 2B .-2a 2C .4a 2D .-4a 25.下列各式中,去括号正确的是( )A .x 2-(2y -x +z )=x 2-2y -x +zB .2a +(-6x +4y -2)=2a -6x +4y -2C .3a -[6a -(4a -1)]=3a -6a -4a +1D .-(2x 2-y )+(z -1)=-2x 2-y -z -16.若-x 3y m 与x n y 是同类项,则m +n 的值为( )A .1B .2C .3D .47.如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如4如如如如如如4如如如如如如如如如如如如如如如如如如如如如如如如如如 如A .17段B .32段C .33段D .34段8.已知有理数a ,b ,c 在数轴上所对应点的位置如图所示,化简代数式a a b c a b c +++---的结果是( )A .-3aB .2c -aC .2a -2bD .b 二、填空题(本大题7小题,每小题4分,共28分.)请将下列各题的正确答案填在该题的横线上. 第8题图 第7题图9.单项式225xy -的系数是 ,次数是 . 10.买单价a 元/支的体温计n 支,付费b 元,则应找回的钱数是 .11.若x +y =4,a ,b 互为倒数,则12(x +y )+5ab 的值是 . 12.若A +(a +b 2-c )=a +c ,则A 为 .13.若合并多项式3x 2-2x +m -x -mx +1中的同类项后,得到的多项式中不含x 的一次项,则m 的值为________.14.对于有理数a ,b ,定义a *b =3a +2b ,化简:(x+y )*(x -y )= .15.一列单项式:-x 2,3x 3,-5x 4,7x 5,…,按此规律排列,则第7个单项式为________.三、解答题(本大题4小题,16、17题每小题10分,18、19题每小题14分,共48分.)解答过程应写出文字说明、推理过程及演算步骤.16.先化简,再求值:(6a 2-6ab -12b 2)-3(2a 2-4b 2),其中a =-12,b =-8.17.已知A =x -2y ,B =-x -4y +1.(1)求2(A +B )-(2A -B )的值(结果用含x ,y 的代数式表示);(2)当12x +与y 2互为相反数时,求(1)中代数式的值.18.如图,一个点从数轴上的原点开始,先向左移动 2 cm 到达A 点,再向左移动3 cm 到达B 点,然后向右移动9 cm 到达C 点.(1)用1个单位长度表示1 cm ,请你在数轴上表示出A ,B ,C 三点的位置;(2)把点C 到点A 的距离记作CA ,则CA = cm ;(3)若点B以每秒2 cm的速度向左移动,同时A,C点分别以每秒1 cm,4 cm的速度向右移动,设移动时间为t秒,试探索CA-AB的值是否会随着t的变化而改变.请说明理由.19.下图的数阵是由全体奇数排成:(1)图中平行四边形框内的九个数之和与中间的数有什么关系?(2)在数阵图中任意作一类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由;(3)这九个数之和能等于1998吗?2005,1017呢?若能,请写出这九个数中最小的一个;若不能,请说出理由.参考答案一、选择题:1.C 2.D 3.C 4.A 5.B 6.D 7.A 8.A二、填空题:9.25-,3 10.(b -na )元 11.7 12.2c -b 2 13.-3 14.5x +y 15.-13x 8三、解答题:16.原式=6a 2-6ab -12b 2-6a 2+12b 2=-6ab ,当a =-12,b =-8时,原式=-6×1()2-×(-8)=-24 17.(1)原式=2A +2B -2A +B =3B =3(-x -4y +1)=-3x -12y +3;(2)∵12x +与y 2互为相反数, ∴12x ++y 2=0, ∴x +12=0,y 2=0, ∴x =-12,y =0, ∴2(A +B )-(2A -B )=-3×1()2--12×0+3=92 18.(1)图略;(2)CA =4-(-2)=4+2=6(cm);(3)不变.理由: 当移动t 秒时,点A ,B ,C 分别表示的数为-2+t ,-5-2t ,4+4t , 则CA =(4+4t )-(-2+t )=6+3t ,AB =(-2+t )-(-5-2t )=3+3t ,∵CA -AB =(6+3t )-(3+3t )=3, ∴CA -AB 的值不会随着t 的变化而改变 19.(1)平行四边形框内的九个数之和是中间的数的9倍;(2)规律仍然成立.设框中间的数为n ,这九个数按大小顺序依次为:(n -18),(n -16),(n -14),(n -2),n ,(n +2),(n+14),(n +16),(n +18),和为9n ;(3)这九个数之和不能为1998.若和为1998,则9n =1998,n =222,是偶数,则不在数阵中.这九个数之和也不能为2005,因为2005不能被9整除;若和为1017,则中间数可能为113,最小的数为113-16-2=95.。

北师大七年级上《第3章整式及其加减》单元测试(有答案)(数学)

北师大七年级上《第3章整式及其加减》单元测试(有答案)(数学)

《第3章 整式及其加减》一、单选题1.用若干张大小相同的黑白两种颜色的正方形纸片,按下列拼图的规律拼成一列图案,则第6个图案中黑色正方形纸片的张数是( )A .22B .21C .20D .192.小明同学在上楼梯时发现:若只有一个台阶时,有一种走法;若有二个台阶时,可以一阶一阶地上,或者一步上二个台阶,共有两种走法;如果他一步只能上一个或者两个台阶,根据上述规律,有三个台阶时,他有三种走法,那么有四个台阶时,共有( )种走法. A .3 B .4C .5D .63.将1、2、3、4、5、6这六个数字分别填入每个小方格中,如果要求每行、每列及每个对角线隔成的2×3方格内部都没有重复数字,则“▲”处填入的数字是( )A .5B .4C .3D .24.一列数a 1,a 2,a 3,…,其中a 1=,a n =(n 为不小于2的整数),则a 4的值为( )A .B .C .D .5.古希腊著名的毕达哥拉斯学派把1,3,6,10 …这样的数称为“三角形数”,而把1,4,9,16 …这样的数称为“正方数”. 从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .20=6+14B .25=9+16C .36=16+20D .49=21+286.已知整式的值为6,则2x2﹣5x+6的值为()A.9 B.12 C.18 D.247.将正偶数按下表排成5列:根据上面的排列规律,则2000应在()A.第125行,第1列B.第125行,第2列C.第250行,第1列D.第250行,第2列8.请观察“杨辉三角”图,并根据数表中前五行的数字所反映的规律,推算出第九行正中间的数应是()A.58 B.70 C.84 D.1269.观察下列各式:(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=72;…请你根据观察得到的规律判断下列各式正确的是()A.1005+1006+1007+…+3016=20112B.1005+1006+1007+…+3017=20112C.1006+1007+1008+…+3016=20112D.1007+1008+1009+…+3017=2011210.计算2m2n﹣3m2n的结果为()A.﹣1 B.﹣ C.﹣m2n D.﹣6m4n2二、填空题11.一个自然数的立方,可以分裂成若干个连续奇数的和.例如:23,33和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;…;若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的奇数是.12.若a2+a=0,则2a2+2a+2013= .13.如图是与杨辉三角有类似性质的﹣三角形数垒,a、b、c、d是相邻两行的前四个数(如图所示),那么当a=8时,c= ,d= .14.已知a与l﹣2b互为相反数,则代数式2a﹣4b﹣3的值是.15.观察下列各式:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1,根据前面各式的规律可得(x﹣1)(x n+x n﹣1+…+x+1)= (其中n为正整数).16.在2001、2002、…、2010这10个数中,不能表示成两个平方数差的数有个.17.对整数按以下方法进行加密:每个数位上的数字变为与7乘积的个位数字,再把每个数位上的数字a变为10﹣a.如果一个数按照上面的方法加密后为473392,则该数为.18.若x2﹣3x+1=0,则的值为.19.有若干张如图所示的正方形A类、B类卡片和长方形C类卡片,如果要拼成一个长为(3a+b),宽为(a+2b)的大长方形,则需要C类卡片张.20.若:A32=3×2=6,A53=5×4×3=60,A54=5×4×3×2=120,A64=6×5×4×3=360,…,观察前面计算过程,寻找计算规律计算A 73= (直接写出计算结果),并比较A103A104(填“>”或“<”或“=”)三、解答题21.研究下列算式,你会发现有什么规律? ①13=12 ②13+23=32 ③13+23+33=62 ④13+23+33+43=102 ⑤13+23+33+43+53=152…(1)根据以上算式的规律,请你写出第⑥个算式; (2)用含n (n 为正整数)的式子表示第n 个算式; (3)请用上述规律计算:73+83+93+ (203)22.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和.23.如图,学校准备新建一个长度为L 的读书长廊,并准备用若干块带有花纹和没有花纹的两种规格大小相同的正方形地面砖搭配在一起,按图中所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.3m .(1)按图示规律,第一图案的长度L 1= ;第二个图案的长度L 2= ; (2)请用代数式表示带有花纹的地面砖块数n 与走廊的长度L n (m )之间的关系; (2)当走廊的长度L 为30.3m 时,请计算出所需带有花纹图案的瓷砖的块数.24.在计算1+4+7+10+13+16+19+22+25+28时,我们发现,从第一个数开始,后面的每个数与它的前面一个数的差都是一个相等的常数,具有这种规律的一列数,除了直接相加外,我们还可以用下列公式来求和S,S=(其中n表示数的个数,a1表示第一个数,an表示最后一个数),所以1+4+7+10+13+16+19+22+25+28==145.用上面的知识解答下面问题:某公司对外招商承包一分公司,符合条件的两企业A、B分别拟定上缴利润方案如下:A:每年结算一次上缴利润,第一年上缴1.5万元,以后每年比前一年增加1万元:B:每半年结算一次上缴利润,第一个半年上缴0.3万元,以后每半年比前半年增加0.3万元.(1)如果承包期限为4年,请你通过计算,判断哪家企业上缴利润的总金额多?(2)如果承包期限为n年,试用n的代数式分别表示两企业上缴利润的总金额.(单位:万元)25.2(3x2﹣2xy+4y2)﹣3(2x2﹣xy+2y2)其中x=2,y=1.26.有足够多的长方形和正方形卡片,如下图:(1)如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙),请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是.(2)小明想用类似方法解释多项式乘法(a+3b)(2a+b)=2a2+7ab+3b2,那么需用2号卡片张,3号卡片张.27.化简,求值①3(x2﹣2xy)﹣[3x2﹣2y﹣2(3xy+y)]②已知A=3a2+b2﹣5ab,B=2ab﹣3b2+4a2,先求﹣B+2A,并求当a=﹣,b=2时,﹣B+2A的值.28.某商场将进货价为30元的台灯以40元的销售价售出,平均每月能售出600个.市场调研表明:当销售价每上涨1元时,其销售量就将减少10个.若设每个台灯的销售价上涨a元.(1)试用含a的代数式填空:①涨价后,每个台灯的销售价为元;②涨价后,每个台灯的利润为元;③涨价后,商场的台灯平均每月的销售量为台.(2)如果商场要想销售利润平均每月达到10000元,商场经理甲说“在原售价每台40元的基础上再上涨40元,可以完成任务”,商场经理乙说“不用涨那么多,在原售价每台40元的基础上再上涨10元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由.29.(1)拼一拼,画一画:请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下一个洞,这个洞恰好是一个小正方形.(2)用不同方法计算中间的小正方形的面积,聪明的你能发现什么?(3)当拼成的这个大正方形边长比中间小正方形边长多3cm时,它的面积就多24cm2,求中间小正方形的边长.30.下图的数阵是由全体奇数排成:(1)图中平行四边形框内的九个数之和与中间的数有什么关系?(2)在数阵图中任意作一类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由;(3)这九个数之和能等于1998吗?2005,1017呢?若能,请写出这九个数中最小的一个;若不能,请说出理由.《第3章整式及其加减》参考答案与试题解析一、单选题1.用若干张大小相同的黑白两种颜色的正方形纸片,按下列拼图的规律拼成一列图案,则第6个图案中黑色正方形纸片的张数是()A.22 B.21 C.20 D.19【考点】规律型:图形的变化类.【专题】规律型.【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【解答】解:第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=6时,3n+1=3×6+1=19故选D.【点评】此题主要考查学生对图形的变化类的知识点的理解和掌握,此题的关键是注意发现前后图形中的数量之间的关系.2.小明同学在上楼梯时发现:若只有一个台阶时,有一种走法;若有二个台阶时,可以一阶一阶地上,或者一步上二个台阶,共有两种走法;如果他一步只能上一个或者两个台阶,根据上述规律,有三个台阶时,他有三种走法,那么有四个台阶时,共有()种走法.A.3 B.4 C.5 D.6【考点】规律型:数字的变化类.【分析】根据题意可知:当有四个台阶时,可分情况讨论:①逐级上,那么有一种走法;②上一个台阶和上二个台阶合用,那么有共三种走法;③一步走两个台阶,只有一种走法;所以可求得有五种走法.注意分类讨论思想的应用.【解答】解:当有四个台阶时,可分情况讨论:①逐级上,那么有一种走法;②上一个台阶和上二个台阶合用,那么有: 1、1、2;1、2、1;2、1、1; 共三种走法;③一步走两个台阶,只有一种走法:2、2; 综上可知:共5种走法. 故选C .【点评】本题属规律性题目,解答此题的关键是根据所给的条件,列举出可能走的方法解答.3.将1、2、3、4、5、6这六个数字分别填入每个小方格中,如果要求每行、每列及每个对角线隔成的2×3方格内部都没有重复数字,则“▲”处填入的数字是( )A .5B .4C .3D .2【考点】规律型:数字的变化类. 【专题】规律型.【分析】由第五行和第五列可以知道三角内不可以填2,6,3,4,再综合其他的即可得出答案. 【解答】解:由第五行和第五列可以知道三角内不可填2,6,3,4, 因为第六行和第六列都有一个1所以第六行和第五列都不能填1,即三角的左边应填1.第五行和第六列都有4,所以可知第六行第五列填4. 即三角内填2或5.因为三角的左边是1,第五列又有一个1,所以三角上边的那个大格的第六列就是1. 因为第四行有一个2,所以第三行,第四列填2.所以第四行,第四列 或第四行第五列有一个填5,故三角内不能 填5. 故:答案选D .【点评】此题主要考试的是同学们的逻辑思维和对图形的观察能力.4.一列数a 1,a 2,a 3,…,其中a 1=,a n =(n 为不小于2的整数),则a 4的值为( )A .B .C .D .【考点】规律型:数字的变化类. 【专题】探究型.【分析】将a 1=代入a n =得到a 2的值,将a 2的值代入,a n =得到a 3的值,将a 3的值代入,a n =得到a 4的值.【解答】解:将a 1=代入a n =得到a 2==,将a 2=代入a n =得到a 3==,将a 3=代入a n =得到a 4==.故选A .【点评】本题考查了数列的变化规律,重点强调了后项与前项的关系,能理解通项公式并根据通项公式算出具体数.5.古希腊著名的毕达哥拉斯学派把1,3,6,10 …这样的数称为“三角形数”,而把1,4,9,16 …这样的数称为“正方数”. 从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .20=6+14B .25=9+16C .36=16+20D .49=21+28 【考点】规律型:数字的变化类. 【专题】压轴题;规律型.【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n (n+1)和(n+1)(n+2),所以由正方形数可以推得n 的值,然后求得三角形数的值.【解答】解:根据规律:正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n (n+1)和(n+1)(n+2),只有D、49=21+28符合,故选D.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.6.已知整式的值为6,则2x2﹣5x+6的值为()A.9 B.12 C.18 D.24【考点】代数式求值.【专题】压轴题;整体思想.【分析】观察题中的两个代数式,可以发现,2x2﹣5x=2(),因此可整体求出式的值,然后整体代入即可求出所求的结果.【解答】解:∵ =6∴2x2﹣5x+6=2()+6=2×6+6=18,故选C.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式的值,然后利用“整体代入法”求代数式的值.7.将正偶数按下表排成5列:根据上面的排列规律,则2000应在()A.第125行,第1列B.第125行,第2列C.第250行,第1列D.第250行,第2列【考点】规律型:数字的变化类.【分析】根据题意得到每一行是4个偶数,奇数行从第2列往后排,偶数行从第4列往前排,然后用2000除以2得到2000是第1000个偶数,再用1000÷4得250,于是可判断2000在第几行第几列.【解答】解:因为2000÷2=1000,所以2000是第1000个偶数,而1000÷4=250,第1000个偶数是250行最大的一个,偶数行的数从第4列开始向前面排,所以第1000个偶数在第1列,所以2000应在第250行第一列.答:在第250行第1列.故选:C.【点评】本题考查了关于数字的变化规律:先要观察各行各列的数字的特点,得出数字排列的规律,然后确定所给数字的位置.8.请观察“杨辉三角”图,并根据数表中前五行的数字所反映的规律,推算出第九行正中间的数应是()A.58 B.70 C.84 D.126【考点】规律型:数字的变化类.【专题】规律型.【分析】第一行有1个数,第二行有2个数,那么第9行就有9个数,偶数行中间的两个数是相等的.第九行正中间的数应是第九行的第5个数.应该=第8行第4个数+第8行第5个数=2×第8行第4个数=2×(第7行第3个数+第7行第4个数)=2×[(第6行第2个数+第6行第3个数)+(第6行第3个数+第6行第4个数)]=2×(第6行第2个数+2第6行第3个数+第6行第4个数)=2×[5+2×(第5行第2个数+第5行第3个数)+(第5行第3个数+第5行第4个数)]=2×[5+2×(4+6)+6+4]=70.【解答】解:2×[5+2×(4+6)+6+4]=70.故选B.【点评】杨辉三角最本质的特征是:它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和.9.观察下列各式:(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=72;…请你根据观察得到的规律判断下列各式正确的是()A.1005+1006+1007+…+3016=20112B.1005+1006+1007+…+3017=20112C.1006+1007+1008+…+3016=20112D.1007+1008+1009+…+3017=20112【考点】规律型:数字的变化类.【专题】应用题.【分析】根据已知条件找出数字规律:第n个等式是n+(n+1)+(n+2)+…+(n+2n﹣2)=(2n﹣1)2,其中n为正整数,依次判断各个式子即可得出结果.【解答】解:根据(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=7×7可得出:n+(n+1)+(n+2)+…+(n+2n﹣2)=(2n﹣1)2,依次判断各选项,只有C符合要求,故选C.【点评】本题主要考查了根据已知条件寻找数字规律,难度适中.10.计算2m2n﹣3m2n的结果为()A.﹣1 B.﹣ C.﹣m2n D.﹣6m4n2【考点】合并同类项.【专题】计算题.【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变计算即可.【解答】解:2m2n﹣3m2n=(2﹣3)m2n=﹣m2n.故选C.【点评】本题考查了合并同类项的法则,解题时牢记法则是关键,此题比较简单,易于掌握.二、填空题11.一个自然数的立方,可以分裂成若干个连续奇数的和.例如:23,33和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;…;若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的奇数是41 .【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】首先发现奇数的个数与前面的底数相同,再得出每一组分裂中的第一个数是底数×(底数﹣1)+1,问题得以解决.【解答】解:由23=3+5,分裂中的第一个数是:3=2×1+1,33=7+9+11,分裂中的第一个数是:7=3×2+1,43=13+15+17+19,分裂中的第一个数是:13=4×3+1,53=21+23+25+27+29,分裂中的第一个数是:21=5×4+1,63=31+33+35+37+39+41,分裂中的第一个数是:31=6×5+1,所以63“分裂”出的奇数中最大的是6×5+1+2×(6﹣1)=41.故答案为:41.【点评】本题是对数字变化规律的考查,找出分裂的第一个数的变化规律是解题的关键,也是求解的突破口.12.若a2+a=0,则2a2+2a+2013= 2013 .【考点】代数式求值.【专题】计算题.【分析】把代数式化为2(a2+a)+2013,把a2+a=0代入求出即可.【解答】解:∵a2+a=0,∴2a2+2a+2013=2(a2+a)+2013=2×0+2013=2013.故答案为:2013.【点评】本题考查了求代数式的值的应用,注意:把a2+a当作一个整体进行代入,题目比较典型,难度也不大.13.如图是与杨辉三角有类似性质的﹣三角形数垒,a、b、c、d是相邻两行的前四个数(如图所示),那么当a=8时,c= 9 ,d= 37 .【考点】规律型:数字的变化类.【专题】压轴题;图表型.【分析】观察发现:第n行的第一个数和行数相等,第二个数是1+1+2+…+n﹣1=+1.所以当a=8时,则c=9,d=9×4+1=37.【解答】解:当a=8时,c=9,d=9×4+1=37.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.此题要根据已知的数据发现各行的第一个数和第二个数的规律.14.已知a与l﹣2b互为相反数,则代数式2a﹣4b﹣3的值是﹣5 .【考点】相反数;代数式求值.【专题】整体思想.【分析】根据相反数的意义得出a+1﹣2b=0,求出a﹣2b的值,变形后代入即可.【解答】解:∵a与l﹣2b互为相反数,∴a+1﹣2b=0,∴a﹣2b=﹣1,∴2a﹣4b﹣3=2(a﹣2b)﹣3=2×(﹣1)﹣3=﹣5.故答案为:﹣5.【点评】本题考查了相反数的意义和代数式求值的应用,根据相反数的意义求出a+2b的值,把a+2b当作一个整体,即整体思想的应用.15.观察下列各式:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1,根据前面各式的规律可得(x﹣1)(x n+x n﹣1+…+x+1)= x n+1﹣1 (其中n为正整数).【考点】平方差公式.【专题】压轴题;规律型.【分析】观察其右边的结果:第一个是x2﹣1;第二个是x3﹣1;…依此类推,则第n个的结果即可求得.【解答】解:(x﹣1)(x n+x n﹣1+…x+1)=x n+1﹣1.故答案为:x n+1﹣1.【点评】本题考查了平方差公式,发现规律:右边x的指数正好比前边x的最高指数大1是解题的关键.16.在2001、2002、…、2010这10个数中,不能表示成两个平方数差的数有 3 个.【考点】完全平方数.【专题】创新题型.【分析】首先将符合条件的整数分解成两整数的和与这两整数的差的积,再由整数的奇偶性,判断这个符合条件的整数,是奇数或是能被4整除的数,从而找出符合条件的整数的个数.在2001、2002、…、2010这10个数中,奇数有5个,能被4整除的有2个,所以不能表示成两个平方数差的数有10﹣5﹣2=3个.【解答】解:对x=n2﹣m2=(n+m)(n﹣m),(m<n,m,n为整数)因为n+m与n﹣m同奇同偶,所以x是奇数或是4的倍数,在2001、2002、…、2010这10个数中,奇数有5个,能被4整除的数有2个,所以能表示成两个平方数差的数有5+2=7个,则不能表示成两个平方数差的数有10﹣7=3个.故答案为:3.【点评】本题考查了平方差公式的实际运用,使学生体会到平方差公式在判断数的性质方面的作用.17.对整数按以下方法进行加密:每个数位上的数字变为与7乘积的个位数字,再把每个数位上的数字a变为10﹣a.如果一个数按照上面的方法加密后为473392,则该数为891134 .【考点】数的十进制.【专题】数字问题;新定义.【分析】根据题意算出从0到9加密后对应的数字,根据所给加密后的数字可得原数.【解答】解:对于任意一个数位数字(0﹣9),经加密后对应的数字是唯一的.规律如下:例如数字4,4与7相乘的末位数字是8,再把8变2,也就是说4对应的是2;同理可得:1对应3,2对应6,3对应9,4对应2,5对应5,6对应8,7对应1,8对应4,9对应7,0对应0;∴如果加密后的数为473392,那么原数是891134,故答案为891134.【点评】考查新定义后数字的规律;得到加密数字与原数字的对应规律是解决本题的关键.18.若x2﹣3x+1=0,则的值为.【考点】分式的化简求值.【专题】压轴题.【分析】将x2﹣3x+1=0变换成x2=3x﹣1代入逐步降低x的次数出现公因式,分子分母同时除以公因式.【解答】解:由已知x2﹣3x+1=0变换得x2=3x﹣1将x2=3x﹣1代入======故答案为.【点评】解本类题主要是将未知数的高次逐步降低,从而求解.代入时机比较灵活19.有若干张如图所示的正方形A类、B类卡片和长方形C类卡片,如果要拼成一个长为(3a+b),宽为(a+2b)的大长方形,则需要C类卡片7 张.【考点】多项式乘多项式.【分析】计算出长为(3a+b),宽为(a+2b)的大长方形的面积,再分别得出A、B、C卡片的面积,即可看出应当需要各类卡片多少张.【解答】解:长为(3a+b),宽为(a+2b)的大长方形的面积为:(3a+b)(a+2b)=3a2+2b2+7ab;A卡片的面积为:a×a=a2;B卡片的面积为:b×b=b2;C卡片的面积为:a×b=ab;因此可知,拼成一个长为(3a+b),宽为(a+2b)的大长方形,需要3块A卡片,2块B卡片和7块C卡片.故答案为:7.【点评】本题考查了多项式乘法,此题的立意较新颖,注意对此类问题的深入理解.20.若:A32=3×2=6,A53=5×4×3=60,A54=5×4×3×2=120,A64=6×5×4×3=360,…,观察前面计算过程,寻找计算规律计算A 73= 210 (直接写出计算结果),并比较A103<A104(填“>”或“<”或“=”)【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】对于Aab(b<a)来讲,等于一个乘法算式,其中最大因数是a,依次少1,最小因数是a﹣b.依此计算即可.【解答】解:A73=7×6×5=210;∵A103=10×9×8=720,A104=10×9×8×7=5040.∴A103<A104.故答案为:210;<.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.注意找到Aab(b<a)中的最大因数,最小因数.三、解答题21.研究下列算式,你会发现有什么规律?①13=12②13+23=32③13+23+33=62④13+23+33+43=102⑤13+23+33+43+53=152…(1)根据以上算式的规律,请你写出第⑥个算式;(2)用含n(n为正整数)的式子表示第n个算式;(3)请用上述规律计算:73+83+93+ (203)【考点】规律型:数字的变化类.【专题】规律型.【分析】(1)利用类比的方法得到第⑥个算式为 13+23+33+43+53+63=212;(2)同样利用类比的方法得到第n个算式为;(3)将73+83+93+…+203转化为(13+23+33+43+…+203)﹣(13+23+33+43+53+63)后代入总结的规律求解即可.【解答】解:(1)第⑥个算式为13+23+33+43+53+63=212;(2)第n个算式为;(3)73+83+93+…+203=(13+23+33+43+…+203)﹣(13+23+33+43+53+63)==44100﹣441=43659.【点评】本题考查了数字的变化类问题,仔细观察每个算式得到本题的通项公式是解决此题的关键.22.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和.【考点】规律型:数字的变化类.【专题】规律型.【分析】(1)12层时最底层最左边这个圆圈中的数是11层的数字之和再加1;(2)首先计算圆圈的个数,从而分析出23个负数后,又有多少个正数.【解答】解:(1)1+2+3+…+11+1=6×11+1=67;(2)图4中所有圆圈中共有1+2+3+…+12==78个数,其中23个负数,1个0,54个正数,所以图4中所有圆圈中各数的绝对值之和=|﹣23|+|﹣22|+…+|﹣1|+0+1+2+…+54=(1+2+3+…+23)+(1+2+3+…+54)=276+1485=1761.另解:第一层有一个数,第二层有两个数,同理第n层有n个数,故原题中1+2+.+11为11层数的个数即为第11层最后的圆圈中的数字,加上1即为12层的第一个数字.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.注意连续整数相加的时候的这种简便计算方法:1+2+3+…+n=.23.(2013秋•永州期末)如图,学校准备新建一个长度为L 的读书长廊,并准备用若干块带有花纹和没有花纹的两种规格大小相同的正方形地面砖搭配在一起,按图中所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.3m .(1)按图示规律,第一图案的长度L 1= 0.9 ;第二个图案的长度L 2= 1.5 ;(2)请用代数式表示带有花纹的地面砖块数n 与走廊的长度L n (m )之间的关系;(2)当走廊的长度L 为30.3m 时,请计算出所需带有花纹图案的瓷砖的块数.【考点】规律型:图形的变化类.【专题】计算题.【分析】(1)观察题目中的已知图形,可得前两个图案中有花纹的地面砖分别有:1,2个,第二个图案比第一个图案多1个有花纹的地面砖,所以可得第n 个图案有花纹的地面砖有n 块;第一个图案边长3×0.3=L ,第二个图案边长5×0.3=L ,(2)由(1)得出则第n 个图案边长为L=(2n+1)×0.3;(3)根据(2)中的代数式,把L 为30.3m 代入求出n 的值即可.【解答】解:(1)第一图案的长度L 1=0.3×3=0.9,第二个图案的长度L 2=0.3×5=1.5;故答案为:0.9,1.5;(2)观察可得:第1个图案中有花纹的地面砖有1块,第2个图案中有花纹的地面砖有2块,… 故第n 个图案中有花纹的地面砖有n 块;第一个图案边长L=3×0.3,第二个图案边长L=5×0.3,则第n 个图案边长为L=(2n+1)×0.3;(3)把L=30.3代入L=(2n+1)×0.3中得:30.3=(2n+1)×0.3,解得:n=50,答:需要50个有花纹的图案.【点评】此题考查了平面图形的有规律变化,以及一元一次方程的应用,要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.24.在计算1+4+7+10+13+16+19+22+25+28时,我们发现,从第一个数开始,后面的每个数与它的前面一个数的差都是一个相等的常数,具有这种规律的一列数,除了直接相加外,我们还可以用下列公式来求和S,S=(其中n表示数的个数,a1表示第一个数,an表示最后一个数),所以1+4+7+10+13+16+19+22+25+28==145.用上面的知识解答下面问题:某公司对外招商承包一分公司,符合条件的两企业A、B分别拟定上缴利润方案如下:A:每年结算一次上缴利润,第一年上缴1.5万元,以后每年比前一年增加1万元:B:每半年结算一次上缴利润,第一个半年上缴0.3万元,以后每半年比前半年增加0.3万元.(1)如果承包期限为4年,请你通过计算,判断哪家企业上缴利润的总金额多?(2)如果承包期限为n年,试用n的代数式分别表示两企业上缴利润的总金额.(单位:万元)【考点】列代数式;有理数的混合运算.【专题】应用题.【分析】(1)根据两企业的利润方案计算即可;(2)归纳总结,根据题意列出两企业上缴利润的总金额即可.【解答】解:(1)根据题意得:企业A,4年上缴的利润总金额为1.5+(1.5+1)+(1.5+2)+(1.5+3)=12(万元);企业B,4年上缴的利润总金额为0.3+(0.3+0.3)+(0.3+0.6)+(0.3+0.9)+(0.3+1.2)+(0.3+1.5)+(0.3+1.8)+(0.3+2.1)=2.4+8.4=10.8(万元),∵12>10.8,∴企业A上缴利润的总金额多;(2)根据题意得:企业A,n年上缴的利润总金额为1.5n+(1+2+…+n﹣1)=1.5n+=1.5n+=(万元);企业B,n年上缴的利润总金额为0.6n+[0.3+0.6+…+0.3(2n﹣1)]=0.6n+=0.6n+0.3n(2n﹣1)=0.6n2+0.3n(万元).【点评】此题考查了有理数加法运算的应用,属于规律型试题,弄清题意是解本题的关键.25.2(3x2﹣2xy+4y2)﹣3(2x2﹣xy+2y2)其中x=2,y=1.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=6x2﹣4xy+8y2﹣6x2+3xy﹣6y2=﹣xy+2y2,当x=2,y=1时,原式=﹣2+2=0.。

北师大版数学七年级上3.4《整式的加减》测试(含答案)

北师大版数学七年级上3.4《整式的加减》测试(含答案)

北师大版数学七年级上3.4《整式的加减》测试(含答案)整式的加减测试时间:60分钟总分:100分题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.已知某三角形的第一条边的长为(2a−b)cm,第二条边的长比第一条边的长多(a+b)cm,第三条边的长比第一条边的长的2倍少b(cm),则这个三角形的周长为( )A. (7a−4b)cmB. (7a−3b)cmC. (9a−4b)cmD. (9a−3b)cm2.(m+n)−2(m−n)的计算结果是()A. 3n−2mB. 3n+mC. 3n−mD. 3n+2m3.数x、y在数轴上对应点如图所示,则化简|x+y|−|y−x|的结果是( )A. 0B. 2xC. 2yD. 2x−2y4.一根铁丝正好围成一个长方形,一边长为2a+b,另一边比它长a−b,则长方形的周长为()A. 6aB. 10a+3bC. 10a+ 2bD. 10a+6bA. 少24B. 多24C. 少4D. 多45.若A和B都是4次多项式,则2A+3B一定是()A. 8次多项式B. 4次多项式C. 次数不高于4次的整式D. 次数不低于4的整式二、填空题(本大题共10小题,共30.0分)6.若a、b、c在数轴上的位置如图,则|a|−|b−c|+|c|=______ .7.已知5a+3b=−4,则代数式2a+2b−(4−4b−8a)+2的值为______.8.若a+2b+3c=5,3a+2b+c=7,则7a+7b+7c=______.9.一个长方形的一边长是2a+3b,另一边长是a+b,则这个长方形的周长是______.10.计算2(4a−5b)−(3a−2b)的结果为______.11.化简:a−(a−3b)=______.12.已知a,b,c为有理数,且满足−a>b> |c|,a+b+c=0,则|a+b|+|a−2b|−|a+2b|=______(结果用含a,b的代数式表示)13.七年级一班有2a−b个男生和3a+b个女生,则男生比女生少______ 人.14.计算:2(x−y)+3y=________.15.已知m−n=100,x+y=−1,则代数式(n+x)−(m−y)的值是______ .三、计算题(本大题共4小题,共24.0分)16.已知x+y=1,求代数式3x−2y+1+ 3y−2x−5的值.17.已知a2−1=b,求3(a2−b)+a2−b)的值.2(a2−1218.已知A=2x2−3x+1,B=−3x2+5x−7,(1)求A−2B;(2)求当x=−1时A−2B的值.19.先化简,后求值.2(a2b+ab2)−(2ab2−1+a2b)−2,其中(2b−1)2+|a+2|=0.四、解答题(本大题共2小题,共16.0分)20.已知A=3a2b−4ab2−3,B=−5ab2+2a2b+4,并且A+B+C=0.(1)求多项式C;(2)若a,b满足|a|=2,|b|=3,且a+b< 0,求(1)中多项式C的值.21.第一车间有x人,第二车间比第一车间人少20人,如果从第二车间调出10人数的34到第一车间,那么:(1)两个车间共有多少人?(2)调动后,第一车间的人数比第二车间多多少人?答案和解析【答案】1. C2. C3. C4. C5. C6. D7. A8. C9. A10. C11. b−a12. −1013. 2114. 6a+8b15. 5a−8b16. 3b17. −3a−b18. a+2b19. 2x+y20. −10121. 解:∵x+y=1,∴原式=x+y−4=1−4=−3.22. 解:原式=3a2−3b+a2−2a2+b=2a2−2b,∵a2−1=b,∴a2−b=1,则原式=2(a2−b)=2.23. 解:(1)∵A=2x2−3x+1,B=−3x2+ 5x−7,∴A−2B=2x2−3x+1−2(−3x2+5x−7)=2x 2−3x +1+6x 2+10x −14=8x 2+7x −13;(2)当x =−1时,原式=8−7−13=−12.24.解:∵(2b −1)2+|a +2|=0,∴b =12,a =−2,原式=2a 2b +2ab 2−2ab 2+1−a 2b −2 =a 2b −1,当a =−2,b =12,原式=(−2)2×12−1=2−1=1.25.解:(1)∵A +B +C =0,∴C =−(A +B),∵A =3a 2b −4ab 2−3,B =−5ab 2+2a 2b +4,∴C =−(3a 2b −4ab 2−3−5ab 2+2a 2b+4)=−(5a 2b −9ab 2+1)=−5a 2b +9ab 2−1;(2)∵|a|=2,|b|=3, ∴a =±2,b =±3, ∵a +b <0,∴a =2,b =−3或a =−2,b =−3. 当a =2,b =−3时,C =−5×22×(−3)+9×2×(−3)2−1=221;当a=−2,b=−3时,C=−5×(−2)2×(−3)+9×(−2)×(−3)2−1=−103.26. 解:(1)∵第一车间有x人,第二车间比第一车间人数的34少20人,∴第二车间的人数是(34x−20)人,∴x+(34x−20)=(74x−20)人.答:两个车间共有(74x−20)人;(2)∵从第二车间调出10人到第一车间,∴第一车间有(x+10)人,第二车间的人数是(34x−30)人,∴(x+10)−(34x−30)=x+10−34x+30=(14x+40)人.答:调动后,第一车间的人数比第二车间多(14x+40)人.【解析】1. 解:根据题意得:(2a−b)+(2a−b+a+b)+2(2a−b)−b=2a−b+2a−b+a+b+4a−2b−b =(9a−4b)cm,则这个三角形的周长为(9a−4b)cm.故选C根据题意表示出第二条边与第三条边,进而表示出周长即可.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.2. 解:原式=m+n−2m+2n=−m+3n,故选C.先去括号再合并同类项即可.本题考查了整式的加减,掌握去括号与合并同类项是解题的关键.3. 解:∵由图可知,y<0<x,x>|y|,∴原式=x+y−(x−y)=x+y−x+y=2y.故选C.先根据x、y在数轴上的位置判断出x、y的符号及绝对值的大小,再去括号,合并同类项即可.本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.4. 解:∵一根铁丝正好围成一个长方形,一边长为2a+b,另一边比它长a−b,∴此长方形的周长是:(2a+b+a−b+2a+ b)×2=(5a+b)×2=10a+2b,选C.根据长方形的周长等于(长+宽)×2可以解答本题.本题考查整式的加减,解答本题的关键是明确整式的加减的计算方法.5. 解:设图③中小长方形的长为x,宽为y,大长方形的宽为b,根据题意得:x+2y=a,x=2y,即y=14a,图①中阴影部分的周长为2(b−2y+a)=2b−4y+2a,图②中阴影部分的周长2b+ x+2y+a−x=a+2b+2y,则图①阴影部分周长与图②阴影部分周长之差为2b−4y+2a−a−2b−2y=a−6y=a−32a=−12a.故选C.设图③中小长方形的长为x,宽为y,表示出两图形中阴影部分的周长,求出之差即可.此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.6. 解:根据题意得:12⋅6m −(m +n)=3m −m −n =2m −n ,故选D由长方形周长=2(长+宽),求出另一边长即可.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.7. 解:|a +b +c|−|a −b −c|−|a −b +c|−|a +b −c|=(a +b +c)−(b +c −a)−(a −b +c)−(a +b −c)=a +b +c −b −c +a −a +b −c −a −b +c=0故选:A .首先根据:三角形两边之和大于第三边,去掉绝对值号,然后根据整式的加减法的运算方法,求出结果是多少即可.此题主要考查了三角形的三边的关系,以及整式加减法的运算方法,要熟练掌握,解答此题的关键是要明确:三角形两边之和大于第三边.8. 解:4(2x−1)−2(−1+10x)=8x−4+2−20x=−12x−2,故选C.由4(2x−1)−2(−1+10x),根据去括号和合并同类项的方法可以对原式进行化简,从而本题得以解决.本题考查整式的加减,解题的关键是对原式的化简要化到最简.9. 解:正确结果为4(x+8)=4x+32,则将代数式4(x+8)写成了4x+8,则结果比原来少24,故选A求出正确的结果,比较即可.此题考查了整式的加减,熟练掌握去括号法则是解本题的关键.10. 解:若A和B都是4次多项式,则A+B的结果的次数一定是次数不高于4次的整式.故选C.若A和B都是4次多项式,通过合并同类项求和时,结果的次数定小于或等于原多项式的最高次数.本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.11. 解:根据数轴上点的位置得:a<b<0< c,∴b−c<0,则原式=−a+b−c+c=b−a,故答案为:b−a根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.此题考查了整式的加减,数轴,以及绝对值,熟练掌握去括号法则与合并同类项法则是解本题的关键.12. 解:原式=2a+2b−4+4b+8a+2= 10a+6b−2=2(5a+3b)−2=−10,故答案为:−10.把5a+3b=−4,代入代数式进行计算即可.此题考查了整式的加减−化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.13. 解:由题意得:(a+2b+3c)+(3a+2b+c)=5+7,得:4a+4b+4c=12,即a+b+c=3,则7a+7b+7c=7×3=21,故答案为:21发现系数间的关系,把两个等式相加,便可求出a+b+c的值,代入原式计算即可求出值.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.14. 解:根据题意列得:2[(2a+3b)+(a+b)]=2(3a+4b)=6a+8b,则这个长方形的周长为6a+8b.故答案为:6a+8b.长方形的周长等于两邻边之和的2倍,表示出周长,去括号合并即可得到结果.此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.15. 解:原式=8a−10b−3a+2b=5a−8b,故答案为:5a−8b原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.16. 解:原式=a−a+3b=3b故答案为:3b根据整式的运算法则即可求出答案.本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.17. 解:∵−a>b>|c|,a+b+c=0,∴a<0,b>c>0,|a|>|b|>|c|,∴a+b<0,a−2b<0,a+2b>0,∴|a+b|+|a−2b|−|a+2b|=−a−b+ 2b−a−a−2b=−3a−b,故答案为:−3a−b.根据题意判断出绝对值里边式子的正负,利用绝对值的代数意义计算即可得到结果.本题考查了整式的加减求值,绝对值的性质,解答本题的关键是掌握绝对值的性质,进行绝对值的化简.18. 解:∵年级一班有2a−b个男生和3a+b个女生,∴3a+b−(2a−b)=(a+2b)人.故答案为:a+2b,用女生的人数减去男生的人数即可得出结论.本题考查的是整式的加减,根据题意列出关于a、b的式子是解答此题的关键.19. 解:原式=2x−2y+3y=2x+y,故答案为:2x+y原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.20. 解:∵m−n=100,x+y=−1,∴原式=n+x−m+y=−(m−n)+(x+ y)=−100−1=−101,故答案为:−101原式去括号整理后,将已知等式代入计算即可求出值.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.21. 原式合并同类项得到最简结果,把已知等式代入计算即可求出值.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.22. 原式去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.23. (1)把A与B代入A−2B中,去括号合并即可得到结果;(2)把x=−1代入结果中计算即可得到结果.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.24. 先利用非负数的性质求出a和b的值,再去括号、合并得到原式=a2b−1,然后把a和b的值代入计算即可.本题考查了整式的加减−化简求值:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.25. (1)先由A+B+C=0可得C=−(A+B),再将A=3a2b−4ab2−3,B=−5ab2+2a2b+4代入计算即可;(2)先由|a|=2,|b|=3,且a+b<0确定a,b的值,再代入(1)中多项式C,计算即可求解.本题考查了整式的加减、去括号法则、绝对值的定义以及代数式求值.解题的关键是熟记去括号法则,熟练运用合并同类项的法则.26. (1)用x表示出第二车间的人数,再把两式相加即可;(2)用x表示出调动后两车间的人数,再作差即可.本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.。

2020-2021学年北师大版七年级数学上册第三章 整式的加减练习题(有答案)

2020-2021学年北师大版七年级数学上册第三章 整式的加减练习题(有答案)

第三章整式的加减一.选择题1.代数式x2﹣的正确解释是()A.x与y的倒数的差的平方B.x的平方与y的倒数的差C.x的平方与y的差的倒数D.x与y的差的平方的倒数2.下列代数式中符合书写要求的是()A.ab2×4B.C.D.6xy2÷33.若代数式x﹣2y=3,则代数式2(x﹣2y)2+4y﹣2x+1的值为()A.7B.13C.19D.254.按如图的程序计算,若开始输入x的值为正整数,最后输出的结果为22,则开始输入的x值可以为()A.1B.2C.3D.45.如图,三角尺(阴影部分)的面积为()A.ab﹣2πr B.C.ab﹣πr2D.6.已知y=ax5+bx3+cx﹣5.当x=﹣3时,y=7,那么,当x=3时,y=()A.﹣3B.﹣7C.﹣17D.77.关于整式的概念,下列说法正确的是()A.的系数是B.32x3y的次数是6C.3是单项式D.﹣x2y+xy﹣7是5次三项式8.下列说法中,正确的是()A.单项式xy2的系数是x B.单项式﹣5x2的次数为﹣5C.多项式x2+2x+18是二次三项式D.多项式x2+y2﹣1的常数项是19.下列关于多项式﹣3a2b+ab﹣2的说法中,正确的是()A.最高次数是5B.最高次项是﹣3a2bC.是二次三项式D.二次项系数是010.化简:﹣[﹣(﹣a2)﹣b2]﹣[+(﹣b2)]的结果是()A.2b2﹣a2B.﹣a2C.a2D.a2﹣2b2二.填空题11.若﹣x n﹣2+4x是关于x的三次二项式,则n的值是.12.如图,用含a、b的代数式表示图中阴影部分的面积.13.把多项式2m2﹣4m4+2m﹣1按m的升幂排列.14.当k=时,多项式x2+(k﹣1)xy﹣3y2﹣2xy﹣5中不含xy项.15.把多项式2x2+3x3﹣x+5x4﹣1按字母x降幂排列是.16.若a2m b3和﹣7a2b3是同类项,则m值为.17.合并同类项﹣ab+7ab﹣9ab=.18.嘉淇准备完成题目:化简:(4x2﹣6x+7)﹣(4x2﹣口x+2)发现系数“口”印刷不清楚,妈妈告诉她:“我看到该题标准答案的结果是常数”,则题目中“口”应是.三.解答题19.已知多项式y2+xy﹣4x3+1是六次多项式,单项式x2n y5﹣m与该多项式的次数相同,求(﹣m)3+2n 的值.20.已知多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式.(1)求m的值;(2)当x=,y=﹣1时,求此多项式的值.21.多项式(a﹣2)m2+(2b+1)mn﹣m+n﹣7是关于m,n的多项式,若该多项式不含二次项,求3a+2b.22.已知:A=ax2+x﹣1,B=3x2﹣2x+1(a为常数)①若A与B的和中不含x2项,则a=;②在①的基础上化简:B﹣2A.23.已知A=3a2﹣4ab,B=a2+2ab.(1)求A﹣2B;(2)若|3a+1|+(2﹣3b)2=0,求A﹣2B的值.24.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=,b=﹣4.25.求x﹣2(x﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=.26.数学课上,老师设计了一个数学游戏:若两个多项式相减的结果等于第三个多项式,则称这三个多项式为“友好多项式”.甲、乙、丙、丁四位同学各有一张多项式卡片,下面是甲、乙、丙、丁四位同学的对话:请根据对话解答下列问题:(1)判断甲、乙、丙三位同学的多项式是否为“友好多项式”,并说明理由.(2)丁的多项式是什么?(请直接写出所有答案).27.已知A=x2﹣mx+2,B=nx2+2x﹣1,且化简2A﹣B的结果与x无关.(1)求m、n的值;(2)求式子﹣3(m2n﹣2mn2)﹣[m2n+2(mn2﹣2m2n)﹣5mn2]的值.28.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,若把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是数学解题中一种非常重要的数学思想方法,它在多项式的化简与求值中应用极为广泛.(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的值为;(2)已知x+2y=3,求代数式3x+6y﹣8的值;(3)已知xy+x=﹣6,y﹣xy=﹣2,求代数式2[x+(xy﹣y)2]﹣3[(xy﹣y)2﹣y]﹣xy的值.29.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:3(x﹣1)+▇=x2﹣5x+1(1)求所挡的二次三项式;(2)若x=﹣3,求所挡的二次三项式的值.30.如图是一个长方体纸盒的平面展开图,已知纸盒中相对两个面上的数互为相反数.(1)填空:a=,b=,c=;(2)先化简,再求值:5a2b﹣[2a2b﹣3(2abc﹣a2b)]+4abc.31.已知A=a2﹣2b2+2ab﹣3,B=2a2﹣b2﹣ab﹣.(1)求2(A+B)﹣3(2A﹣B)的值(结果用化简后的a、b的式子表示);(2)当|a+|与b2互为相反数时,求(1)中式子的值.32.已知:关于x、y的多项式x2+ax﹣y+b与多项式bx2﹣3x+6y﹣3的和的值与字母x的取值无关,求代数式3(a2﹣2ab+b2)﹣[4a2﹣2(a2+ab﹣b2)]的值.33.阅读下面材料:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1所示,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时.(1)如图2所示,点A、B都在原点右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;(2)如图3所示,点A、B都在原点左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;(3)如图4所示,点A、B在原点两边,|AB|=|OB|+|OA|=|b|+|a|=a+(﹣b)=|a﹣b|.综上所述,数轴上A、B两点之间的距离表示为|AB|=|a﹣b|.根据阅读材料回答下列问题:(1)数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣3的两点A、B之间的距离是,如果|AB|=2,则x为.(3)当代数式|x+1|+|x﹣2|取最小值时,即在数轴上,表示x的动点到表示﹣1和2的两个点之间的距离和最小,这个最小值为.相应的x的取值范围是.34.某同学做一道数学题,“已知两个多项式A、B,B=2x2+3x﹣4,试求A﹣2B”.这位同学把“A﹣2B”误看成“A+2B”,结果求出的答案为5x2+8x﹣10.请你替这位同学求出“A﹣2B”的正确答案.35.小丽放学回家后准备完成下面的题目:化简(□x2﹣6x+8)+(6x﹣5x2﹣2),发现系数“□“印刷不清楚.(1)她把“□”猜成3,请你化简(3x2﹣6x+8)+(6x﹣5x2﹣2);(2)她妈妈说:你猜错了,我看到该题的标准答案是6.通过计算说明原题中“□”是几?36.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓展探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.参考答案一.选择题1.【解答】解:代数式x2﹣的正确解释是x的平方与y的倒数的差,故选:B.2.【解答】解:A:ab2×4,正确的写法应为:4ab2,故本项错误.B:xy为正确的写法,故本项正确.C:2a2b,正确写法应为a2b,故本项错误.D:6xy2÷3,应化为最简形式,为2xy2,故本项错误.故选:B.3.【解答】解:∵x﹣2y=3,∴2(x﹣2y)2+4y﹣2x+1=2(x﹣2y)2﹣2(x﹣2y)+1=2×32﹣2×3+1=18﹣6+1=13.故选:B.4.【解答】解:当输入一个正整数,一次输出22时,3x+1=22,解得:x=7;当输入一个正整数,两次后输出22时,3x+1=7,解得:x=2,故选:B.5.【解答】解集:阴影部分的面积为:S△﹣S圆=ab﹣πr2,故选:D.6.【解答】解:把x=﹣3,y=7代入y=ax5+bx3+cx﹣5得:﹣35a﹣33b﹣3c﹣5=7,即﹣(35a+33b+3c)=12把x=3代入ax5+bx3+cx﹣5得:35a+33b+3c﹣5=﹣12﹣5=﹣17.故选C.7.【解答】解:A、﹣的系数为﹣,错误;B、32x3y的次数是4,错误;C、3是单项式,正确;D、多项式﹣x2y+xy﹣7是三次三项式,错误;故选:C.8.【解答】解:A、单项式xy2的系数是,原说法错误,故此选项不符合题意;B、单项式﹣5x2的次数为2,原说法错误,故此选项不符合题意;C、多项式x2+2x+18是二次三项式,原说法正确,故此选项符合题意;D、多项式x2+y2﹣1的常数项是﹣1,原说法错误,故此选项不符合题意,故选:C.9.【解答】解:A、多项式﹣3a2b+ab﹣2次数是3,故此选项错误;B、最高次项是﹣3a2b,故此选项正确;C、是三次三项式,故此选项错误;D、二次项系数是1,故此选项错误;故选:B.10.【解答】解:﹣[﹣(﹣a2)﹣b2]﹣[+(﹣b2)]=﹣(a2﹣b2)﹣(﹣b2)=﹣a2+b2+b2=2b2﹣a2故选:A.二.填空题11.【解答】解:∵﹣x n﹣2+4x是关于x的三次二项式,∴n﹣2=3,则n的值是:5.故答案为:5.12.【解答】解:阴影部分面积=ab﹣=ab﹣.故答案为:ab﹣πb2.13.【解答】解:多项式2m2﹣4m4+2m﹣1按m的升幂排列为﹣1+2m+2m2﹣4m4,故答案为:﹣1+2m+2m2﹣4m4.14.【解答】解:整理只含xy的项得:(k﹣3)xy,∴k﹣3=0,k=3.故答案为:3.15.【解答】解:多项式2x2+3x3﹣x+5x4﹣1的各项是2x2,3x3,﹣x,5x4,﹣1,按x降幂排列为5x4+3x3+2x2﹣x﹣1.故答案为:5x4+3x3+2x2﹣x﹣1.16.【解答】解:∵a2m b3和﹣7a2b3是同类项,∴2m=2,解得m=1.故答案为:1.17.【解答】解:原式=(﹣1+7﹣9)ab=﹣3ab.故答案为﹣3ab.18.【解答】解:设“□”为a,∴(4x2﹣6x+7)﹣(4x2﹣口x+2)=4x2﹣6x+7﹣4x2+ax﹣2=(a﹣6)x+5,∵该题标准答案的结果是常数,∴a﹣6=0,解得a=6,∴题目中“□”应是6.故答案为:6.三.解答题19.【解答】解:∵多项式y2+xy﹣4x3+1是六次多项式,单项式x2n y5﹣m与该多项式的次数相同,∴m+1+2=6,2n+5﹣m=6,解得:m=3,n=2,则(﹣m)3+2n=﹣27+4=﹣23.20.【解答】解:(1)∵多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式,∴|m|﹣2+3=4,m﹣3≠0,解得:m=﹣3,(2)当x=,y=﹣1时,此多项式的值为:﹣6××(﹣1)3+()2×(﹣1)﹣2××(﹣1)2=9﹣﹣3=.21.【解答】解:∵多项式(a﹣2)m2+(2b+1)mn﹣m+n﹣7是关于m,n的多项式,该多项式不含二次项,∴a﹣2=0,2b+1=0,解得:a=2,b=﹣,∴3a+2b=3×2+2×(﹣)=5.22.【解答】解:①A+B=ax2+x﹣1+3x2﹣2x+1=(a+3)x2﹣x∵A与B的和中不含x2项,∴a+3=0,解得a=﹣3.②B﹣2A=3x2﹣2x+1﹣2×(﹣3x2+x﹣1)=3x2﹣2x+1+6x2﹣2x+2=9x2﹣4x+3.故答案为:﹣3.23.【解答】解:(1)A﹣2B=(3a2﹣4ab)﹣2(a2+2ab)=3a2﹣4ab﹣2a2﹣4ab=a2﹣8ab (2)∵|3a+1|+(2﹣3b)2=0,∴3a+1=0,2﹣3b=0,解得a=﹣,b=,∴A﹣2B=a2﹣8ab=﹣8×(﹣)×=+=24.【解答】解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=,b=﹣4时,原式=﹣3﹣8=﹣11.25.【解答】解:x﹣2(x﹣y2)+(﹣x+y2),=x﹣2x+y2﹣x+y2,=﹣3x+y2,当x=﹣2,时,原式=﹣3×(﹣2)+()2=6+=6.26.【解答】解:(1)∵(3x2﹣x+1)﹣(2x2﹣3x﹣2),=3x2﹣x+1﹣2x2+3x+2,=x2+2x+3,∴甲、乙、丙三位同学的多项式是“友好多项式”;(2)∵甲、乙、丁三位同学的多项式是“友好多项式”,∴分两种情况:①(2x2﹣3x﹣2)﹣(3x2﹣x+1)或(3x2﹣x+1)﹣(2x2﹣3x﹣2),(2x2﹣3x﹣2)﹣(3x2﹣x+1)=2x2﹣3x﹣2﹣3x2+x﹣1=﹣x2﹣2x﹣3(3x2﹣x+1)﹣(2x2﹣3x﹣2)=3x2﹣x+1﹣2x2+3x+2=x2+2x+3,②(3x2﹣x+1)+(2x2﹣3x﹣2),=5x2﹣4x﹣1;∴丁的多项式是﹣x2﹣2x﹣3 或x2+2x+3或5x2﹣4x﹣1.27.【解答】解:(1)∵A=x2﹣mx+2,B=nx2+2x﹣1,且化简2A﹣B的结果与x无关,∴2A﹣B=2(x2﹣mx+2)﹣(nx2+2x﹣1)=2x2﹣2mx+4﹣nx2﹣2x+1=(2﹣n)x2﹣(2m+2)x+5,∴2﹣n=0,2m+2=0,解得:n=2,m=﹣1;(2)﹣3(m2n﹣2mn2)﹣[m2n+2(mn2﹣2m2n)﹣5mn2]=﹣3m2n+6mn2﹣m2n﹣2mn2+4m2n+5mn2=9mn2,当n=2,m=﹣1时,原式=9×(﹣1)×22=﹣36.28.【解答】解:(1)﹣(a﹣b)2;故答案为:﹣(a﹣b)2;(2)原式=3(x+2y)﹣8=3×3﹣8=1;(3)∵y﹣xy=﹣2,xy+x=﹣6,∴xy﹣y=2,x+y=xy+x+y﹣xy=﹣8,则原式=2x+2(xy﹣y)2﹣3(xy﹣y)2+3y﹣xy=2x+3y﹣xy﹣(xy﹣y)2=2(x+y)+(y﹣xy)﹣(xy﹣y)2=﹣16+(﹣2)﹣4=﹣22.29.【解答】解:(1)由题意,可得所挡的二次三项式为:(x2﹣5x+1)﹣3(x﹣1)=x2﹣5x+1﹣3x+3=x2﹣8x+4;(2)当x=﹣3时,x2﹣8x+4=(﹣3)2﹣8×(﹣3)+4=9+24+4=37.30.【解答】解:(1)由长方体纸盒的平面展开图知,a与﹣1、b与2、c与3是相对的两个面上的数字或字母,因为相对的两个面上的数互为相反数,所以a=1,b=﹣2,c=﹣3.故答案为:1,﹣2,﹣3.(2)5a2b﹣[2a2b﹣3(2abc﹣a2b)]+4abc=5a2b﹣(2a2b﹣6abc+3a2b)+4abc=5a2b﹣2a2b+6abc﹣3a2b+4abc=10abc.当a=1,b=﹣2,c=﹣3时,原式=10×1×(﹣2)×(﹣3)=10×6=60.31.【解答】解:(1)2(A+B)﹣3(2A﹣B)=2A+2B﹣6A+3B=﹣4A+5B=﹣4(a2﹣2b2+2ab﹣3)+5(2a2﹣b2﹣ab﹣)=﹣4a2+8b2﹣8ab+12+10a2﹣5b2﹣2ab﹣1=6a2+3b2﹣10ab+11;(2)∵|a+|与b2互为相反数,∴|a+|+b2=0,则a=﹣,b=0,6a2+3b2﹣10ab+11=6×+11=.32.【解答】解:由题意可知:x2+ax﹣y+b+bx2﹣3x+6y﹣3=(b+1)x2+(a﹣3)x+5y+b﹣3该多项式的值与x无关,所以b+1=0,a﹣3=0所以b=﹣1,a=3原式=3a2﹣6ab+3b2﹣(3a2﹣2ab+3b2)=3a2﹣6ab+3b2﹣3a2+2ab﹣3b2=﹣4ab=1233.【解答】解:(1)﹣2﹣(﹣5)=3,1﹣(﹣3)=4,;(2)|x﹣(﹣3)|=|x+3|,∵|x+3|=2,∴x+3=±2,∴x=﹣1或﹣5;(3)由题意可知:当x在﹣1与2之间时,此时,代数式|x+1|+|x﹣2|取最小值,最小值为2﹣(﹣1)=3,此时x的取值范围为:﹣1≤x≤2;故答案为:(1)3,4;(2)|x+3|,﹣1或﹣5;(3)3,﹣1≤x≤2.34.【解答】解:∵B=2x2+3x﹣4,A+2B=5x2+8x﹣10,∴A=5x2+8x﹣10﹣2(2x2+3x﹣4)=5x2+8x﹣10﹣4x2﹣6x+8=x2+2x﹣2,∴A﹣2B=x2+2x﹣2﹣2(2x2+3x﹣4)=x2+2x﹣2﹣4x2﹣6x+8=﹣3x2﹣4x+6.35.【解答】解:(1)(3x2﹣6x+8)+(6x﹣5x2﹣2)=3x2﹣6x+8+6x﹣5x2﹣2=﹣2x2+6;(2)设“□”是a,则原式=(ax2﹣6x+8)+(6x﹣5x2﹣2)=ax2﹣6x+8+6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案是6,∴a﹣5=0,解得a=5.36.【解答】解:(1)∵3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;故答案为:﹣(a﹣b)2;(2)∵x2﹣2y=4,∴原式=3(x2﹣2y)﹣21=12﹣21=﹣9;(3)∵a﹣2b=3①,2b﹣c=﹣5②,c﹣d=10③,由①+②可得a﹣c=﹣2,由②+③可得2b﹣d=5,∴原式=﹣2+5﹣(﹣5)=8.。

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(附带参考答案)

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(附带参考答案)

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(附带参考答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是()米.A.a B.60 C.60a D.a+602.十位数字是a,个位数字是b的两位数是()A.ab B.a+10b C.ba D.10a+b3.多项式23+7x+4y的次数为多少()A.5次B.3次C.2次D.1次4.在代数式﹣2x,x+1,π,2m−3m ,0,12mn中是单项式的有()个.A.1 B.2 C.3 D.45.若a2+3a=1,则代数式2a2+6a−2的值为()A.0B.1C.2D.36.下列计算正确的是()A.a2+a2=a4 B.4a﹣3a=1C.3a2b﹣4ba2=﹣a2b D.3a2+2a3=5a57.已知关于x的多项式(m+3)x3−x n+x−mn为二次三项式,则当x=−1时,这个二次三项式的值是()A.7 B.6 C.4 D.38.若4x3m-1y3与-3x5y2n+1的和是单项式,则2m+3n的值是()A.6 B.7 C.8 D.9二、填空题9.已知单项式﹣3x3y n与5x m+4y3是同类项,则m﹣n的值为.10.若多项式2x2- 3x+b与多项式x2-bx+1的和不含一次项(b为常数),则两个多项式的和为11.若关于x、y的多项式x5-m+5y2-2x2+3的次数是3,则式子m2-3m的值为.12.已知a+22ab=−8,b2+2ab=14则a2−b2=.13.如图是一组有规律的图案,它们是由大小相同的“×”图案组成的,依此规律,第10个图案中有“×”图案个.三、解答题14.计算:(1)x2+5+x2−1(2)2a2+3ab+b2−a2−ab−2b215.先化简,再求值:(x2﹣y2﹣2xy)﹣(﹣3x2+4xy)+(x2+5xy),其中x=﹣1,y=2.x m+1y2+2xy2−4x3+1是六次四项式,单项式26x2n y5−m的次数与该多项式的次数相16.已知多项式15同,求(−m)3+2n的值.17.已知关于x,y的式子(2x2+mx−y+3)−(3x−2y+1−nx2)的值与字母x的取值无关,求式子(m+ 2n)−(2m−n)的值.18.某次课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7a3−6a3b+3a2b)−(−3a3−6a3b+3a2b+10a3−3)写完后,让王红同学顺便给出一组a,b的值,老师自己说答案.当王红说完:“a= 65,b=−2022”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误,”亲爱的同学,你相信吗?请说出其中的道理.参考答案1.D2.D3.D4.D5.A6.C7.C8.B9.-410.3x2-211.-212.-2213.5114.(1)解:x2+5+x2−1=x2+x2+5−1=2x2+4(2)解:2a2+3ab+b2−a2−ab−2b2=2a2−a2+3ab−ab+b2−2b2=a2+2ab−b215.解:原式=x2﹣y2﹣2xy+3x2﹣4xy+x2+5xy=5x2﹣xy﹣y2当x=﹣1,y=2时原式=5×(﹣1)2﹣(﹣1)×2﹣22=5+2﹣4=3.16.解:由于多项式是六次四项式,所以m+1+2=6解得:m=3单项式26x2n y5−m应为26x2n y2,由题意可知:2n+2=6解得:n=2所以(−m)3+2n =(−3)3+2×2=−23.17.解:原式=2x 2+mx −y +3−3x +2y −1+nx 2=(2+n)x 2+(m −3)x +y +2由题可得,多项式的值与字母x 无关∴{2+n =0m −3=0解得{n =−2m =3∴(m +2n)−(2m −n)=m +2n −2m +n=3n −m代入n =−2,m =3可得:3×(−2)−3=−6−3=−9 故代数式(m +2n)−(2m −n)的值为:−9.18.解:(7a 3−6a 3b +3a 2b)−(−3a 3−6a 3b +3a 2b +10a 3−3) =7a 3−6a 3b +3a 2b +3a 3+6a 3b −3a 2b −10a 3+3=(7a 3+3a 3−10a 3)+(−6a 3b +6a 3b)+(3a 2b −3a 2b)+3 =3.∵结果为常数3∴原式的结果与字母a ,b 的取值无关∴李老师能够准确地说出代数式的值为3.。

七年级数学上册《第三章 整式的加减》单元测试卷-附答案(北师大版)

七年级数学上册《第三章 整式的加减》单元测试卷-附答案(北师大版)

七年级数学上册《第三章 整式的加减》单元测试卷-附答案(北师大版)一、选择题1.如果一个两位数是十位数字是a ,个位数字是b ,则这个两位数用代数式表示为( )A .abB .10abC .a b +D .10a b +2.已知12a b -=,则代数式662a b --的值是( ). A .0B .1C .-1D .53.下列代数式中,属于单项式的是( )A .a b +B .a b -C .abD .a b4.下列各选项中的两个项是同类项的是( ).A .32a b 和23a bB .35a b -和33baC .23abc 和23a bcD .2a 和2a5.“居家嗨购,网上过年”,为做好疫情防控并促进春节消费,山西省组织开展了2022年“全晋乐购”网上年货节活动,某企业采购了具有山西特色的年货慰问响应国家号召就地过年的员工,该企业选购了甲种物品()3a +件,单价是100元;乙种物品a 件,单价是240元.则该企业共花费在( )A .()140300a +元B .()200300a +元C .()300300a +元D .()340300a +元6.已知21a b -=-,则代数式124a b -+的值是( )A .-3B .-1C .2D .37.式子 2282259b x y a x m-++--,,,, 中, 单项式有( ) A .1个B .2个C .3个D .4个8.若关于 x 、 y 的多项式 2226431x ax y ax x +-+-- 中没有二次项,则 a = ( )A .3B .2C .12-D .3-9.下列运算中,正确的是( )A .325a b ab +=B .325235a a a +=C .22541a a -=D .22330a b ba -=10.图1是由3个相同小长方形拼成的图形其周长为24cm ,图2中的长方形ABCD 内放置10个相同的小长方形,则长方形ABCD 的周长为( )A .32cmB .36cmC .48cmD .60cm二、填空题11.“x 的2倍与5的和”用式子表示为 . 12.已知221a a -=-,则2362a a -+= .13.把多项式322245x y y x -+按x 的升幂排列 .14.若代数式39m a b 与22n a b -是同类项,那么m = ,n = .三、解答题15.如图是某居民小区的一块长为b 米,宽为2a 米的长方形空地,为了美化环境,准备在这个长方形的四个顶点处各修建一个半径为a 米的扇形花台,然后在花台内种花,其余部分种草.如果建造花台及种花费用每平方米需要资金100元,种草每平方米需要资金50元,那么美化这块空地共需资金多少元?16.已知:a b 、 互为相反数,c d 、 互为倒数,m 是最小的正整数,求代数式2022()32a b cd m +-+的值.17.已知式 23372m km m +-+ 是关于m 的多项式,且不含一次项,求k 的值. 18.先化简,再求值:()222233()a ab a b ab b ⎡⎤+--++⎣⎦其中6a =和13b =-.四、综合题19.列代数式。

2022-2023学年北师大版七年级数学上册第三章整式及其加减定向测试试题(解析版)

2022-2023学年北师大版七年级数学上册第三章整式及其加减定向测试试题(解析版)

七年级数学上册第三章整式及其加减定向测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若7,24m n n p +=-=,则3m n p +-=( )A .11-B .3-C .3D .112、某人骑自行车t (小时)走了()km s ,若步行()km s ,则比骑自行车多用3(小时),那么骑自行车每小时比步行多走( )()km .A .3s s t t --B .3s s t t -+C .()s t s +D .(3)s t -3、2x 与(3)x -的5倍的差( ).A .3x +B .315x --C .315x -+D .33x -+4、下列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为( )A .135B .153C .170D .1895、下列各式中,与22a b 为同类项的是( )A .22a b -B .2ab -C .22abD .22a6、m 、n 都是正整数,则多项式23m n m n x y ++-的次数是( )A .mB .m n +C .22m n +D .不能确定7、语句“比x 的15小5的数”可以表示成( ) A .155x - B .()155x - C .155x + D .155x - 8、式子x yz +,2x -,2ax bx c ++,0,21x y π-,a ,b x 中,下列结论正确的是( ) A .有4个单项式,2个多项式B .有3个单项式,3个多项式C .有5个整式D .以上答案均不对9、下列是按一定规律排列的多项式:﹣x +y ,x 2+2y ,﹣x 3+3y ,x 4+4y ,﹣x 5+5y ,x 6+6y ,…,则第n 个多项式是( )A .(﹣1)nxn +nyB .﹣1nxn +nyC .(﹣1)n +1xn +nyD .(﹣1)nxn +(﹣1)nny10、按一定规律排列的单项式:x ,3x ²,5x ³,7x 4,9x 5,……,第n 个单项式是( )A .(2n -1)n xB .(2n +1)n xC .(n -1)n xD .(n +1)n x第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、任写一个二次单项式:____________.2、一组按规律排列的式子:25811234,,,,(0)b b b b ab a a a a --≠,其中第7个式子是_______,第n 个式子是_______(n 为正整数).3132022个数是 _____. 4、有理数a ,b ,c 在数轴上表示的点如图所示,化简||||2||a b a c b c +---+=__________.5、如果某种药品降价40%后的价格为a 元,那么这种药品降价前的价格为______元.三、解答题(5小题,每小题10分,共计50分)1、代数式2323(324)(3)a a a a a a +---里的“”是“+,-,×,÷”中某一种运算符号.(1)如果“”是“+”,化简:2323(324)(3)a a a a a a +---;(2)当1a =-时,2323(324)(3)a a a a a a +---2=-,请推算“”所代表的运算符号.2、下面各行中的数都是正整数, 观察规律并解答下列问题:(1)数字12的位置在第4行,从左往右数第5个数,可以表示成(4,5),那么(5,6)表示的数是(2)第n 行有 个数(用含n 的代数式表示)(3)数字2022排在第几行?从左往右数第几个数?请简要说明理由.3、先化简再求值:()()222323x y x y x ++--,其中x 1,y 2==-.4、【做一做】列代数式(1)已知一个三位数的个位数字是a ,十位数字是b ,百位数字是c ,则这个三位数可表示为 ;(2)某地区夏季高山的温度从山脚处开始每升高100米,降低0.7℃,若山脚温度是28℃,则比山脚高x 米处的温度为 ℃;(3)已知某礼堂第1排有18个座位,往后每一排比前一排多2个座位.则第n 排共有座位数 个.【数学思考】(4)上面所列的代数式都属于我们所学习的整式中的 ;(5)请你任意写一个关于x 的这种类型的数字系数的二次式 ;(6)用字母表示系数,写一个关于x 的二次三项式,并注明字母系数应满足的条件 ;【问题解决】(7)若代数式3x |m |﹣(m ﹣2)x +4是一个关于x 的二次三项式,求m 的值.5、化简:(1)2222625x y xy x y xy --+; (2)23322352427x x x x x -+--++-;(3)22223456m mn n mn n -+--; (4)333362534x y xy xy x y -++-;(5)2222212685342ab a b ab a b ab -+++--; (6)222()3()6()5()m n n m m n m n -+-----.-参考答案-一、单选题1、D【解析】【分析】根据添括号法则,对原式变形,再代入求值,即可.【详解】3m n p +-=()+(2)m n n p +-,当724m n n p +=-=,时,原式=7+4=11. 故选D .【考点】本题主要考查代数式求值,掌握添括号法则,是解题的关键.2、B【解析】【分析】先求出两种方法各自的速度,再将速度作差即可得出所求.【详解】 骑自行车的速度为:s t 步行速度为:3s t + 骑自行车比步行每小时快出的路程:3ss t t -+.故选B【考点】本题考查代数式计算的应用,掌握速度、时间、路程之间的关系是解题关键.3、C【解析】【分析】先根据题意列出代数式,然后去括号,合并同类项,即可求解.【详解】解:根据题意得:()253x x --2515315x x x =-+=-+ .故选:C .【考点】本题主要考查了列代数式,整式的加减运算,明确题意,准确列出代数式是解题的关键.4、C【解析】【分析】由观察发现每个正方形内有:224,236,248,⨯=⨯=⨯=可求解b ,从而得到a ,再利用,,a b x 之间的关系求解x 即可.【详解】解:由观察分析:每个正方形内有:224,236,248,⨯=⨯=⨯=218,b ∴=9,b ∴=由观察发现:8,a =又每个正方形内有:2419,36220,48335,⨯+=⨯+=⨯+=18,b a x ∴+=1898170.x ∴=⨯+=故选C .【考点】本题考查的是数字类的规律题,掌握由观察,发现,总结,再利用规律是解题的关键.5、A【解析】【分析】含有相同字母,并且相同字母的指数相同的单项式为同类项,据此分析即可【详解】与22a b 是同类项的特点为含有字母,a b ,且对应a 的指数为2,b 的指数为1,只有A 选项符合;故选A .【考点】本题考查了同类项的概念,掌握同类项的概念是解题的关键.6、D【解析】【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式23m n m n x y ++-的次数是m ,n 中的较大数是该多项式的次数.【详解】单项式m x 的次数是m ,单项式2n y 的次数是n ,3m n +-是常数项,又因为未知m 和n 的大小,所以多项式的次数无法确定,【考点】此题考查多项式,解题关键在于掌握其定义.7、A【解析】【分析】根据题目中的数量关系解答即可.【详解】解:∵x 的15是15x , ∴“比x 的15小5的数”可以表示成155x -. 故选A .【考点】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解答本题的关键是仔细读题,找出题目所给的数量关系.8、A【解析】【分析】数与字母的乘积形式是单项式,单独一个数或一个字母是单项式,几个单项式的和是多项式.【详解】解:x yz +是两个单项式的和,是多项式;2x -是单项式;2ax bx c ++是3个单项式的和,是多项式:0,a 是单项式;21x y π-是单项式;b x 不是整式,综上所述,单项式共有4个,多项式共有2个,整式共有6个,【考点】本题考查多项式、单项式的定义,是基础考点,掌握相关知识是解题关键.9、A【解析】【分析】从三方面(符号、系数的绝对值、指数)总结规律,再根据规律进行解答便可.【详解】解:按一定规律排列的多项式:﹣x+y,x2+2y,﹣x3+3y,x4+4y,﹣x5+5y,x6+6y,…,则第n个多项式是:(﹣1)nxn+ny,故选:A.【考点】本题考查的是整式中的多项式的规律探究,掌握探究的方法是解题的关键.10、A【解析】【分析】系数的绝对值均为奇数,可用(2n-1)表示;字母和字母的指数可用xn表示.【详解】解:依题意,得第n项为(2n-1)xn,故选:A.【考点】本题考查的是单项式,根据题意找出规律是解答此题的关键.1、答案不唯一,如:2xy.【解析】【分析】根据单项式的定义,数与字母的积的形式的代数式是单项式,所有字母的指数和叫做这个单项式的次数,这样符合条件的单项式有多个.【详解】解:根据定义,只要字母的指数和为2即可,本题答案不唯一,如:2xy.故答案为答案不唯一,如:2xy.【考点】本题考查单项式的定义,确定单项式次数时,要记住所有字母的指数和叫做这个单项式的次数.2、207ba-31(1)nnnba--【解析】【分析】根据分子的变化得出分子变化的规律,根据分母的变化得出分母变化的规律,根据分数符号的变化规律得出分数符号的变化规律,即可得到该组式子的变化规律.【详解】分子为b,指数为2,5,8,11,...,∴分子指数的规律为3n – 1,分母为a,指数为1,2,3,4,...,∴分母指数的规律为n,分数符号为-,+,-,+,….,∴其规律为()1n-,于是,第7个式子为207b a-, 第n 个式子为31(1)n nn b a --, 故答案为:207b a -,31(1)n n n b a --. 【考点】此题考查了列代数式表示数字变化规律,先根据分子、分母的变化得出规律,再根据分式符号的变化得出规律是解题的关键.3【解析】【分析】根据前4个数归纳类推出一般规律,由此即可得.【详解】解:第1=第2=,第3个数为2613==,第424=⨯,归纳类推得:第n ,其中n 为正整数,则第2022==. 【考点】 本题考查了数字类规律探索,正确归纳类推出一般规律是解题关键.4、33b c --##33c b【解析】【分析】根据数轴得出a b +,a c -,1b -的符号,再去绝对值即可.【详解】 由数轴得0a b c b c <<<,<, ∴0a b +<,0a c -<,0b c +>,∴||||2||a b a c b c +---+()()2a b a c b c =-++--+22a b a c b c =--+---33b c =--.故答案为:33b c --.【考点】本题主要考查了数轴和绝对值,掌握数轴、绝对值以及合并同类项的法则是解题的关键.5、53a ##53a 【解析】【分析】降价40%后的价格为a 元,则降价前的价格的60%是a 元,据此即可求解.【详解】解:a ÷(1﹣40%)=53a , 故答案是:53a .【考点】本题考查了代数式的列法,正确理解:降价40%后的价格为a 元,则降价前的价格的60%是a 元,是关键.三、解答题1、(1)322a a a -++;(2)-.【解析】【分析】(1)把“+”代入原式,去括号合并即可得到结果;(2)原式去括号后,把1a =-代入计算即可求出所求.【详解】解:(1)原式23233243a a a a a a =+---+322a a a =-++.(2)由题意得,2323(324)(3)2a a a a a a +---=-2323324()32a a a a a a +--+=-23232()2a a a a a +--=-当1a =-时,代入上式得321[1(1)]2-++--=-,即[1(1)]2-=,--=,∵1(1)2∴“”所表示的运算符号是“-”.【考点】此题考查了整式的加减,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.2、 (1)22n-(2)(21)(3)45行;86个;理由见解析【解析】【分析】(1)根据图中的数据,可以发现数字的变化特点,从而写出(5,6)表示的数;(2)根据图中的数据,可以写出第n行的数字个数;(3)根据前面发现的数字的变化特点,可以写出数字2022排在第几行,从左往右数第几个,并说出理由.(1)解:由图中的数据可知,第n行的最大的一个数据是2n,奇数行的数据从左到右依次增大,偶数行的数据从左到右依次减小,第n行有(2n-1)个数,(5,6)表示数字的位置在第5行,从左往右数第6个数,∴第4行最大的一个数是2416=,∴第5行的数据从左往右依次为17,18,19,20,21,22,23,24,25,∴第5行,从左往右数第6个数是22,即 (5,6)表示的数是22,故答案为:22;(2)解:∵第1行有1个数,第2行有3个数,第3行有5个数,……∴第n 行有(2n -1)个数,故答案为:(2n -1);(3)解:数字2022排在第45行,从左往右数第86个数.理由如下:当n 为偶数时,该行第一个数为2n ,自左向右减小;当n 为奇数时,该行最后一个数为2n ,自左向右增大.∵2452025=,所以第45行最后一个数(第89个)为2025,∴数字2022排在第45行,从左往右数第86个数.【考点】本题考查数字的变化规律,解答本题的关键是明确题意,发现数字的变化特点,写出相应的数字.3、3y x +,5-.【解析】【分析】根据整式的加减运算法则化简原式,再代入求值.【详解】解:原式222623x y x y x =+--+3y x =+,当x 1,y 2==-时,原式()321615=⨯-+=-+=-.【考点】本题考查整式的化简求值,解题的关键是掌握整式的加减运算法则.4、(1)100c +10b +c ;(2)(﹣0.007x +28);(3)(2n +16);(4)多项式;(5) x 2+1;(6)ax 2+bx +c(a 、b 、c 均不为0);(7)-2.【解析】【分析】(1)根据题意,用含a 、b 、c 的代数式表示出这个三位数即可;(2)根据题意,用含x 的代数式表示出比山脚高x 米处的温度即可;(3)根据题意,用含n 的代数式表示出第n 排的座位数即可;(4)根据前三个小题的结果判断即可;(5)根据整式的相关概念按要求写出即可;(6)根据多项式的相关概念按要求写出即可;(7)根据多项式的相关概念可以得到关于m 的方程,从而可以求得m 的值.【详解】解:(1)由题意可得,这个三位数可表示为100c +10b +a ,故答案为:100c +10b +c ;(2)由题意可得,比山脚高x 米处的温度为:28﹣100x ×0.7=﹣0.007x +28, 故答案为:(﹣0.007x +28);(3)由题意可得,第n 排共有座位18+2(n ﹣1)=18+2n ﹣2=2n +16,故答案为:(2n +16);(4)上面所列的代数式都属于我们所学习的整式中的多项式,故答案为:多项式;(5)关于x 的这种类型的数字系数的二次式可以是:x 2+1,故答案为:x 2+1;(6)由题意可得,满足条件的多项式可以是:ax 2+bx +c (a 、b 、c 均不为0),故答案为:ax 2+bx +c (a 、b 、c 均不为0);(7)∵代数式3x |m |﹣(m ﹣2)x +4是一个关于x 的二次三项式,∴|m |=2且m ﹣2≠0,解得:m =﹣2,即m 的值是﹣2.【考点】本题考查整式的相关概念以及列代数式,解答本题的关键是明确题意,列出相应的代数式.5、(1)22x y xy -;(2)3412x x +-;(3)22282m mn n --;(4)3325x y xy ++;(5)22238 3.53a b ab ab +-+;(6)22()4()m n m n ----. 【解析】【分析】根据同类项的概念,合并同类项即可,其中第6小题将m n -看作一个整体进行计算即可.【详解】(1)2222625x y xy x y xy --+()()226521x y xy =-+-+22x y xy =-;(2)23322352427x x x x x -+--++-()3232(22)457x x x =-+-++--=3412x x +-;(3)22223456m mn n mn n -+--222(35)(46)m mn n =+--+-=22282m mn n --;(4)333362534x y xy xy x y -++-()()3364235x y xy =-+-++3325x y xy =++;(5)2222212685342ab a b ab a b ab -+++-- ()22212584632a b ab ab ⎛⎫=-+++-+- ⎪⎝⎭=22238 3.53a b ab ab +-+;(6)222()3()6()5()m n n m m n m n -+-----=222()3()6()5()m n m n m n m n -+-----=()()226()35()m n n m --+--=22()4()m n m n ----.【考点】本题考查了多项式的加减,掌握合并同类项的方法是解题的关键.。

去括号_1PPT课件(北师大版)

去括号_1PPT课件(北师大版)
992+2×99×1+12=(99+1)2=1002=10 000.
整合方法提升练
17.已知|m+n-2|+(mn+3)2=0,求 3(m+n)-2[mn+(m +n)]-3[2(m+n)-3mn]的值.
解:由题意得:m+n-2=0,mn+3=0, 所以 m+n=2,mn=-3. 3(m+n)-2[mn+(m+n)]-3[2(m+n)-3mn]=3(m+n)-2mn -2(m+n)-6(m+n)+9mn=-5(m+n)+7mn. 当 m+n=2,mn=-3 时,原式=-5×2+7×(-3)=-31.
【点拨】化简含有绝对值符号的式子时,首先要由字母的取值范 围确定绝对值符号内式子的正负,然后根据绝对值的性质去掉绝 对值符号,同时补上括号,避免出现符号错误.
整合方法提升练
解:由题图知,c<0<a<b.又两个正数相加仍为正数,正数减 去负数等于加上这个负数的相反数,小的正数减去大的正数结果 为负数,因此 a+b>0,a-c>0,a-b<0. 所以|a+b|+|a-c|+2|a-b|=(a+b)+(a-c)+2[-(a-b)] =a+b+a-c-2a+2b=3b-c.
探究培优拓展练
18.【2018·河北】嘉淇准备完成题目:化简:(□x2+6x+8)- (6x+5x2+2).发现系数“□”印刷不清楚.
(1)他把“□”猜成 3,请你化简:(3x2+6x+8)-(6x+5x2+2);
解:(3x2+6x+8)-(6x+5x2+2) =3x2+6x+8-6x-5x2-2 =-2x2+6;
夯实基础逐点练
4.在等式 a-( A.b-c C.-b+c
)=a+b-c 中,横线上应填的多项式是( C ) B.b+c D.-b-c
夯实基础逐点练
5.下列运算正确的是( D ) A.-2(3x-1)=-6x-1 B.-2(3x-1)=-6x+1 C.-2(3x-1)=-6x-2 D.-2(3x-1)=-6x+2

3.2整式的加减(1)+合并同类项、去括号课件2024-2025学年北师大版数学七年级上册

3.2整式的加减(1)+合并同类项、去括号课件2024-2025学年北师大版数学七年级上册

D.−2(3 − 1) = −6 + 2
和娜姐一起学数学—2.2整式的加减(1)——合并同类项、去括号
练习11、 已知
+ = 2, = −3,则多项式( + ) − [( − 2) − ] − (−)的
值是
.
( + ) − [( − 2) − ] − (−)
(4)30 − = 5 6 −
错误
和娜姐一起学数学—2.2整式的加减(1)——合并同类项、去括号
练习8、下列去括号错误的个数为
(
C
)
① + ( + ) = + ; + +
② − ( + − ) = − − + ;
③ + 2( − ) = + 2 − + 2 − 2
(1)−2 2 + 3 2
解: − 2 2 + 3 2
(2) − − 2 − 4
解: − − 2 − 4
= −2 + 3 2
= −1 − 2 − 4
= 2
= −7
和娜姐一起学数学—2.2整式的加减(1)——合并同类项、去括号
= −4 3 + −2 + 2 2 − 6
练习3、 若多项式−4
3
− 2 2 + 2 2 − 6合并同类项后是一个三次
−2 + 2 = 0
二项式,则满足的条件是 ( C )
A. = −1
B. ≠ −1
C. = 1
D. ≠ 1
和娜姐一起学数学—2.2整式的加减(1)——合并同类项、去括号
练习4、若−4

2019-2020学年第一学期北师大版七年级数学3.4整式加减计算专题(含答案)

2019-2020学年第一学期北师大版七年级数学3.4整式加减计算专题(含答案)

2019-2020整式加减计算专题(含答案)1.先化简,再求值(1)2229x 6x 3x x 3⎛⎫+--⎪⎝⎭,其中x 2=-;(2)()()()22222a b ab2a b 12ab1+---+,其中a 2=-,b 2=.2.化简求值:5xy 2-[2x 2y -(2x 2y -3xy 2)],其中(x -2)2+|y +1|=0.3.计算题(1)()()22223y x 2x y x 3y-+--+ ()()()32322x y xy 2x y 2xy +--4.化简(1)5x 2+x+3+4x ﹣8x 2﹣2(2)(2x 3﹣3x 2﹣3)﹣(﹣x 3+4x 2)(3)3(x 2﹣5x+1)﹣2(3x ﹣6+x 2)5.已知32253A x xy y =-+,322247B x y xy =+-,求1233A A A B ⎡⎤⎛⎫---⎪⎢⎥⎝⎭⎣⎦的值,其中2x =,1y =-.6.先去括号,再合并同类项(1)(4x 2y ﹣3xy 2)﹣(1+4x 2y ﹣3xy 2)(2)4y 2﹣[3y ﹣(3﹣2y )+2y 2].7.(1)计算:(﹣1)2018﹣8÷(﹣2)3+4×(﹣12)3; (2)先化简,再求值:3(a 2b ﹣2ab 2)﹣(3a 2b ﹣2ab 2),其中|a ﹣1|+(b+12)2=0.8.化简:﹣(3a 2﹣4ab )+[a 2﹣2(2a 2+2ab )].9.化简①3x-4x 2+7-3x+2x 2+1; ②22244323a b ab ab a b ab ⎡⎤⎛⎫--++ ⎪⎢⎥⎝⎭⎣⎦.10.已知(x+2)2+|y ﹣12|=0,求5x 2y ﹣[2x 2y ﹣(xy 2﹣2x 2y )﹣4]﹣2xy 2的值.11.先化简,再求值:(1)4a +3a 2-3-3a 3-(-a +4a 3),其中a =-2;(2)2x 2y -2xy 2-[(-3x 2y 2+3x 2y)+(3x 2y 2-3xy 2)],其中x =-1,y =2.12.课堂上老师给大家出了这样一道题,“当x 2016=时,求代数式的值”,小明一看()()()322323323 2x 3x y 2xy x 2xy y 2017x 3x y y ----+-+-++“x 的值太大了,又没有y 的值,怎么算呢?”你能帮小明解决这个问题吗?请写出具体过程.13.在对多项式(23x 2y+5xy 2+5)﹣[(3x 2y 2+23x 2y )﹣(3x 2y 2﹣5xy 2﹣2)]代入计算时,小明发现不论将x 、y 任意取值代入时,结果总是同一个定值,为什么?14.先化简,再求值:2211312[(2)()]2323x x x y x y --++-+,其中(2x +4)2+|4﹣6y |=0.15.化简:(1)2a -(5a -3b)+3(2a -b); (2)2a -[a +2(a -b)]+b.16.先化简,再求值:2(3a 2b ﹣2ab 2)﹣3(﹣ab 2+3a 2b ),其中|a ﹣1|+(b+2)2=0.17.先化简,再求值:(1) 224263(25)a a a a -----,其中1a =-.(2)(﹣x 2+5x+6)﹣(3x+4﹣2x 2)+2(4x ﹣1),其中x=﹣2.18.先化简,再求值()22252322x y x y xy x y xy ⎡⎤----+⎣⎦其中1x =-,2y =-;19.先化简,再求值:4a 2b-[9ab 2-(-2ab 2+5a 2b)]-2(3a 2b-ab 2),其中a=-1,b=-23.20.若|a+2|+(b ﹣3)2=0,求5a 2b ﹣[3ab 2﹣2(ab ﹣2.5a 2b )+ab]+4ab 2的值. 21.已知()2210m n -++=,求()22225322mn m n mn m n ⎡⎤---⎣⎦的值.参考答案1.(1)26x 8x +;20;(2)0;0; 【解析】 【分析】(1)把所给的整式去括号后合并同类项化为最简后,再代入求值即可;(2)把所给的整式去括号后合并同类项化为最简后,再代入求值即可. 【详解】()1原式229x 6x 3x 2x =+-+26x 8x =+,当x 2=-时,原式()2628(2)=⨯-+⨯-1232=-+ 20=;()2解:原式22222a b 2ab 2a b 22ab 2=+-+--()()()22222a b 2a b 2ab 2ab 22=-+-+-0=,当a 2=-,b 2=时,原式0=. 【点睛】本题考查了整式的化简求值,利用整式的加减运算法则把整式化为最简是解决问题的关键. 2.4. 【解析】原式利用去括号后去括号法则,合并同类项得到最简结果,由非负数之和为0两非负数分别为0求出x 与y 的值,代入计算即可求出值. 【详解】原式=2222252232.xy x y x y xy xy -+-=2(2)1021x y x y ∴-++=,=,=-,则原式=4.【点睛】本题考查的知识点是整式的加减-化简求值,解题的关键是注意合并同类项. 3.(1)22x 2x y -+-;(2)235xy x y -; 【解析】 【分析】(1)去括号后合并同类项即可求解;(2)去括号后合并同类项即可求解. 【详解】()1原式22223y x 2x y x 3y =-+---22223y 3y x x 2x y =---+- 22x 2x y =-+-;()2原式3232x y xy 2x y 4xy =+-+3322x y 2x y xy 4xy =-++ 235xy x y =-.本题考查了整式的加减运算,熟练运用去括号法则及合并同类项法则是解决问题的关键. 4.(1)﹣3x2+5x+1;(2)3x3﹣7x2﹣3;(3)x2﹣21x+15.【解析】试题分析:(1)根据整式的加减法,合并同类项即可;(2)根据整式的加减法,先去括号,再合并同类项即可;(3)根据整式的加减法,先根据乘法分配律去括号,再合并同类项即可.试题解析:(1)5x2+x+3+4x﹣8x2﹣2=(5-8)x2+(1+4)x+(3-2)=-3x2+5x+1(2)(2x3﹣3x2﹣3)﹣(﹣x3+4x2)= 2x3﹣3x2﹣3+x3-4x2=3 x3﹣7x2-3(3)3 (x2﹣5x+1)﹣2 (3x﹣6+x2)=3x2﹣15x+3-6x+12-2x2=x2-21x+155.-4.【解析】分析:先把式子1233A A A B⎡⎤⎛⎫---⎪⎢⎥⎝⎭⎣⎦化为最简,再把32253A x xy y=-+,322247B x y xy=+-代入后,去括号合并同类项化为最简,最后把x=2,y=-1代入求值即可. 详解:1233A A A B ⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦[]A A B =--+,2A B =-,32253A x xy y =-+,322247B x y xy =+-,∴原式()3223222106247x xy y x y xy =-+-+-,2232xy y =-+,把2x =,1y =-代入得:321214-⨯⨯+⨯=-.点睛:本题考查了整式的加减-化简求值,化简求值是课程标准中所规定的一个基本内容,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材. 6.(1)﹣1;(2) 2y 2﹣5y+3. 【解析】 【分析】(1)先去括号,合并同类项即可. (2)先去括号,合并同类项即可. 【详解】解:(1)原式222243143 1.x y xy x y xy =---+=(2)原式()2243322,y y y y=--++224532,y y y =-+-2253y y =-+.【点睛】考核知识点:整式运算. 去括号,合并同类项是关键.7.(1)32;(2)﹣1.【解析】【分析】(1)先乘方,再计算有理数乘除,最后计算有理数加减法,根据有理数乘方,乘除法和加减法法则进行依次计算即可,(2)先去括号,再去括号时注意两点:括号外的因数要与括号里的每个式子相乘,去括号,括号前是减号,去括号要变号.【详解】(1)(﹣1)2018﹣8÷(﹣2)3+4×(﹣)3,=1﹣8÷(﹣8)+4×(﹣18),=1+1﹣1 2 ,=3 2 ,(2)3(a2b﹣2ab2)﹣(3a2b﹣2ab2), =3a2b﹣6ab2﹣3a2b+2ab2,=﹣4ab2,∵|a﹣1|+(b+)2=0,∴a=1,b=1 2 ,原式=﹣4×1×(12 -)2,=﹣1.【点睛】本题主要考查有理数加减乘除乘方混合运算和整式的化简求值,解决本题的关键是要熟练掌握有理数相关运算法则和整式运算法则.8.﹣6a2【解析】【分析】根据整式的加减即可求出答案.【详解】原式=﹣3a2+4ab+a2﹣4 a2﹣4ab=﹣6a2【点睛】本题考查了整式的加减,注意去括号的顺序.9.(1)-2x2+8;(2)8a2b+2ab-2ab2.【解析】【分析】根据去括号的方法进行计算即可,合并同类项时,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.【详解】(1)22347321x x x x-+-++=()()()2233427+1x x x x -+-++ 2028x =-+228x =-+(2)22244323a b ab ab a b ab ⎡⎤⎛⎫--++ ⎪⎢⎥⎝⎭⎣⎦ 22244323a b ab ab a b ab ⎛⎫=-++- ⎪⎝⎭2224342a b ab ab a b ab =-++-22822.a b ab ab =+-【点睛】本题考查的知识点是整式的加减,解题关键是注意合并同类项.10.162【解析】分析:原式去括号合并得到最简结果,利用非负数的性质求出x 与y 的值,代入计算即可求出值.详解:原式=5x 2y ﹣2x 2y +xy 2﹣2x 2y +4﹣2xy 2=x 2y ﹣xy 2+4.∵(x +2)2+|y ﹣12|=0,∴x =﹣2,y =12, 当x =﹣2,y =12时,原式=2+12+4=612. 点睛:本题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解答本题的关键.11.【答案1)55;(2)-6;【分析】(1)根据去括号法则、合并同类项法则先化简,再将a=-2代入化简之后的代数式,计算即可得出答案.(2)根据去括号法则、合并同类项法则先化简,再将x=-1,y=2代入化简之后的代数式,计算即可得出答案.【详解】(1)解:原式=4a+3a2-3-3a3+a-4a3,=-7a3+3a2+5a-3,∵a=-2,∴原式=-7×(-2)3+3×(-2)2+5×(-2)-3=56+12-10-3,=55.(2)解:原式=2x2y-2xy2-(-3x2y2+3x2y+3x2y2-3xy2),=xy2-x2y,∵x=-1,y=2,∴原式=(-1)×22-(-1)2×2,=-4-2,=-6.【点睛】考查整式的化简求值,掌握合并同类项法则和去括号法则是解题的关键.12.见解析;【分析】根据去括号法则去掉括号,再合并同类项,将整式化为最简,然后再求值即可.【详解】原式3223233232x 3x y 2xy x 2xy y 2017x 3x y y =---+-+-++3332222332x x x 3x y 3x y 2xy 2xy y y 2017=--+--++-+2017=所以原式与x 、y 的值无关.【点睛】本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,熟知整式加减的实质是解决问题的关键.13.结果是定值,与x 、y 取值无关.【解析】【分析】原式去括号、合并同类项得出其结果,从而得出结论.【详解】 (23x 2y+5xy 2+5)-[(3x 2y 2+23x 2y )-(3x 2y 2-5xy 2-2)] =23x 2y+5xy 2+5-(3x 2y 2+23x 2y-3x 2y 2+5xy 2+2) =23x 2y+5xy 2+5-3x 2y 2-23x 2y+3x 2y 2-5xy 2-2 =(23x 2y-23x 2y )+(5xy 2-5xy 2)+(-3x 2y 2+3x 2y 2)+(5-2) =3,∴结果是定值,与x、y取值无关.【点睛】本题主要考查整式的加减-化简求值,解题的关键是掌握整式的加减运算顺序和运算法则.14.x+y2,11.【解析】【详解】试题分析:先去括号,然后再合并同类项,再根据非负数的性质求出x、y的值代入进行计算即可.试题解析:原式=12x﹣2x+4x+23y2+3x-23y2=112x,∵(2x+4)2+|4﹣6y|=0,∴x=﹣2,y=23,则原式=-11.【点睛】本题考查了整式的加减运算、非负数的性质等,熟练掌握运算法则是解题的关键. 15.(1) 3a;(2)-a+3b.【解析】【分析】先去括号,然后找出同类项即可.【详解】(1)原式=2a-5a+3b+6a-3b=2a-5a+6a+3b-3b=3a.(2)原式=2a-(a+2a-2b)+b=2a-3a+2b+b=-a+3b.【点睛】解答本题时,要注意去括号的时候,括号内各项符号的变化,并且不要漏乘.有多个括号时要注意去括号的顺序.16.2【解析】【分析】原式去括号合并得到最简结果,利用非负数的性质求出a 与b 的值,代入原式计算即可求出值.【详解】原式=6a 2b ﹣4ab 2+3ab 2﹣9a 2b=﹣ab 2﹣3a 2b ,由题意得:a=1,b=﹣2,则原式=﹣4+6=2.【点睛】本题考查了整式的加减﹣化简求值及非负数的性质,熟练掌握整式加减的运算法则是解本题的关键 17.(1)6;(2)-16【解析】【分析】(1)原式去括号合并同类项可得最简多项式,将1a =-代入计算即可得出结论.(2)原式去括号合并同类项可得最简多项式,将2x =﹣代入计算即可得出结论.【详解】(1)原式=224266315a a a a ---++=229a a -++当1a =-时,原式=229a a -++=()22119---+=6(2)原式=225634282x x x x x -++--++- =210x x +当2x =-时,原式=210x x +=420-=16-【点睛】本题考查了整式的加减化简求值,关键是熟练掌握去括号及合并同类项的运算技巧.18.36【解析】【分析】先化简,再将x 、y 的值代入求值.【详解】原式=-5x 2y -[2x 2y -3xy +6x 2y ]+2xy =-13x 2y +5xy ,当x =-1,y =﹣2时,原式=36,故答案为36.【点睛】本题主要考查了整式的加减,化简求值,解本题的要点在于熟练掌握运算法则.19.3a2b-9ab2,2【解析】【分析】先拆开后合并同类项,带入所给数值即可得出答案. 【详解】4a2b-[9ab2-(-2ab2+5a2b)]-2(3a2b-ab2)=4a2b-[9ab2+2ab2-5a2b]-(6a2b-2ab2)=4 a2b-11ab2+5a2b-6a2b+2ab2=3a2b-9ab2把a=-1,b=-23代入得原式=-2-(-4)=2【点睛】本题考查了合并同类项,熟悉掌握概念是解决本题的关键.20.ab2+ab,-24【解析】试题分析:先将原式去括号、合并同类项化成最简式,再根据非负数的性质得出a、b的值,最后代入计算可得.试题解析:解:原式=5a2b﹣3ab2+2(ab﹣2.5a2b)﹣ab+4ab2=5a2b﹣3ab2+2ab﹣5a2b﹣ab+4ab2=ab2+ab∵|a+2|+(b﹣3)2=0,∴a+2=0、b﹣3=0,即a=﹣2、b=3∴原式=(﹣2)×32+(﹣2)×3=﹣2×9﹣6=﹣18﹣6=﹣24.点睛:本题主要考查整式的化简求值,解题的关键是熟练掌握整式的混合运算顺序和法则及非负数的性质.21.38.【解析】【分析】由非负数的性质,求出a 、b 的值.把式子进行化简,然后把m 和n 的值代入计算即可.【详解】∵|m ﹣2|+(n +1)2=0,∴m ﹣2=0,n +1=0,解得:m =2,n =﹣1.原式=22225[342]mn m n mn m n --+=22225342mn m n mn m n -+-=2295mn m n -.当m =2,n =﹣1时,原式=2292(1)52(1)⨯⨯--⨯⨯-=18+20=38.【点睛】本题考查了整式的加减-化简求值,并考查了非负数的性质,综合能力较强.。

北师大版七年级数学上册 第二章 整式及其加减 综合测试卷(含答案)

北师大版七年级数学上册   第二章 整式及其加减    综合测试卷(含答案)

北师版数学七年级上册第二章 整式及其加减综合测试卷(时间90分钟,满分120分)第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1.下列各式:-12mn ,m ,8,1a ,x 2+2x +6,2x -y 5,x 2+4y π,y 3-5y +1y 中,整式有() A .3个 B .4个C .6个D .7个2.下列各组单项式中,不是同类项的是( )A .12a 3y 与2ya 3B.12x 3y 与-12xy 3C .23与32D .6a 2mb 与-a 2bm3.多项式x 2-2xy 3-12y -1是( )A .三次四项式B .三次三项式C .四次四项式D .四次三项式4.下列计算正确的有( )①(-2)2=4;②-2(a +2b)=-2a +4b;③-⎝⎛⎭⎫-152=125;④-(-12 020)=1;⑤-[-(-a)]=-a.A .1个B .2个C .3个D .4个5.A =x 2-2xy +y 2,B =x 2+2xy +y 2,则4xy 等于( )A .A +B B .B -AC .A -BD .2A -2B6.已知单项式2a 3b N +1与-3a M -2b 2的和仍是单项式,则2M +3N 的值为( ) A .10 B .11C .12D .137.x 是两位数,y 是一位数,若把y 置于x 的左边,那么所构成的三位数为( )A .yxB .y +xC .10y +xD .100y +x8.今年,我校成功举办了“经典诵读”比赛,其中参加比赛的男同学有a 人,女同学比男同学的56少24人,则参加“经典诵读”比赛的学生一共有( )A.⎝⎛⎭⎫56a -24人B.65(a -24)人 C.65(a +24)人 D.⎝⎛⎭⎫116a -24人 9. 如图,两个三角形的面积分别是9,6,对应阴影部分的面积分别是m ,n ,则m -n 等于( )A .2B .3C .4D .无法确定10.若|x +y +2|+(xy -1)2=0,则(3x -xy +1)-(xy -3y -2)的值为( )A .-5B .-3C .3D .11第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.已知a 与1-2b 互为相反数,则代数式2a -4b -3的值是________.12. 某商品先按批发价a 元提高10%零售,后又按零售价降低10%出售,则最后的单价是_________.13.已知多项式(M -1)x 4-x N +2x -5是三次三项式,则(M +1)N =_________.14.若多项式A满足A+(2a2-b2)=3a2-2b2,则A=________.15.对于有理数a,b,定义a⊙b=3a+2b,则[(x+y)⊙(x-y)]⊙3x化简后得________.16.若-7x m+2y与-3x3y n是同类项,则m=,n=.17.一个三角形一条边长为a+b,另一条边比这条边长2a+b,第三条边比这条边短3a-b,则这个三角形的周长为.18.观察下面的一列单项式:2x,-4x2,8x3,-16x4,…根据你发现的规律,第N个单项式为________.三.解答题(共9小题,66分)19. (6分)计算:(1)2(m2-n2+1)-2(m2+n2)+mn;(2)3a-2b-[-4a+(c+3b)].20. (6分)先化简,再求值:(1)-2mn2-m2n+4m2n-3mn2-9+5mn2,其中m=2,n=-1;(2)(5x+2x2-3-4x3)-(-x+3x3-x2),其中x=-2.21. (6分)某地电话拨号入网有两种收费方式,用户可任选其一:A.记时制:3元/时;B.包月制:50元/月(限一部个人住宅电话入网).此外,每一种上网方式都得加收通讯费1.2元/时.(1)某用户某月的上网时间为x小时,请写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月的上网时间为25小时,你认为选择哪种方式较合算?22. (6分)一个花坛的形状如图所示,它的两端是半径相等的半圆,求:(1)花坛的周长l;(2)花坛的面积S;(3)若a=8m,r=5m,求此时花坛的周长及面积(π取3.14).23. (6分)已知关于x,y的单项式-3x a y与bx2y能合并成一项,其结果为-6x2y.求多项式2(-4a2+1)-5(a2-ba)+4(3a2-ab)的值.24. (8分)已知多项式A=2x2-xy,B=x2+xy-6.求:(1)4A-B;(2)当x=1,y=-2时,求4A-B的值.25. (8分)某商场将进货价为30元的台灯以40元的销售价售出,平均每月能售出600个,市场调研表明:当销售价每上涨1元时,其销售量就将减少10个,若设每个台灯的销售价上涨a元.(1)试用含a的代数式填空:①涨价后,每个台灯的销售价为___;②涨价后,每个台灯的利润为___;③涨价后,商场的台灯平均每月的销售量为____;(2)如果商场要想销售利润平均每月达到10000元,商场经理甲说“在原售价每台40元的基础上再上涨40元,可以完成任务”,商场经理乙说“不用涨那么多,在原售价40元的基础上再上涨10元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由.26. (10分)若代数式(4x2-mx-3y+4)-(8nx2-x+2y-3)的值与字母x的取值无关,求代数式(-m2+2mn-n2)-2(mn-3m2)+3(2n2-mn)的值.27. (10分)先化简,再求值:(1)7a 2b +(-4a 2b +5ab 2)-(2a 2b -3ab 2).其中a =-1,b =2.(2) 3M 2N -⎣⎡⎦⎤MN 2-12(4MN 2-6M 2N )+M 2N +4MN 2,其中M =-2,N =3.参考答案:1-5CBCCB 6-10DDDBA11. -512. 0.99a元13. 814. a2-b215. 21x+3y16.1,117.2a+5b18. (-1)N+1·2N·x N19. 解:(1)原式=2m2-2n2+2-2m2-2n2+mn=-4n2+mn+2.(2)原式=3a-2b-[-4a+c+3b=3a-2b+4a-c-3b=7a-5b-c.20. 解:(1)原式=3m2n-9,当m=2,n=-1时,原式=3×22×(-1)-9=-12-9=-21(2)原式=5x+2x2-3-4x3+x-3x3+x2=6x+3x2-7x3-3,当x=-2时,原式6×(-2)+3×(-2)2-7×(-2)3-3=-12+12+56-3=5321. 解:(1)采用记时制应付的费用为3x+1.2x=4.2x(元),采用包月制应付的费用为(50+1.2x)元.(2)计时制应付的费用为4.2×25=105(元),包月制应付的费用为50+1.2×25=80(元).∵105>80,∴选择包月制合算.22. 解:(1)l=2πr+2a.(3分)(2)S=πr2+2ar.(6分)(3)当a=8m,r=5m时,l=2π×5+2×8=10π+16≈47.4(m),S=π×52+2×8×5=25π+80≈158.5(m2).(10分)23. 解:由题意知a =2,-3+b =-6,所以b =-3.化简多项式得:原式=-8a 2+2-5a 2+ba +12a 2-4ab=-a 2+ab +2,当a =2,b =-3时,-a 2+ab +2=-22+2×(-3)+2=-4-6+2=-824. 解:(1)∵多项式A =2x 2-xy ,B =x 2+xy -6,∴4A -B =4(2x 2-xy)-(x 2+xy -6)=8x 2-4xy -x 2-xy +6=7x 2-5xy +6.(2)∵由(1)知,4A -B =7x 2-5xy +6,∴当x =1,y =-2时,原式=7×12-5×1×(-2)+6=7+10+6=23.25. 解:(1) 40+a ,10+a ,600-10a(2)甲与乙的说法均正确,理由:该商场台灯的月销售利润为(600-10a)(10+a),当a =40时,(600-10a)(10+a)=(600-10×40)(10+40)=10000(元), 当a =10时,(600-10a)(10+a)=(600-10×10)(10+10)=10000(元). 所以甲与乙说法均正确26. 解:(4x 2-mx -3y +4)-(8nx 2-x +2y -3)=4x 2-mx -3y +4-8nx 2+x -2y +3=(4-8n)x 2+(1-m)x -5y +7.因为上式的值与字母x 的取值无关,所以4-8n =0,1-m =0,即m =1,n =12. 所以原式=-m 2+2mn -n 2-2mn +6m 2+6n 2-3mn=5m 2+5n 2-3mn当m =1,n =12时,5m 2+5n 2-3mn=5×12+5×(12)2-3×1×12=5+54-32=194. 27. 解:(1)原式=7a 2b -4a 2b +5ab 2-2a 2b +3ab 2 =(7-4-2)a 2b +(5+3)ab 2=a 2b +8ab 2.当a =-1,b =2时,原式=(-1)2×2+8×(-1)×22=2-32=-30.(2)原式=3M 2N -(MN 2-2MN 2+3M 2N +M 2N)+4MN 2 =3M 2N -MN 2+2MN 2-3M 2N -M 2N +4MN 2 =-M 2N +5MN 2.当M =-2,N =3时,原式=-(-2)2×3+5×(-2)×32=-102.。

北师大版七年级上册数学第三章整式及其加减——图形找规律专项练习60题(含答案)

北师大版七年级上册数学第三章整式及其加减——图形找规律专项练习60题(含答案)

图形找规律专项练习60题(有答案)1.按如下方式摆放餐桌和椅子:填表中缺少可坐人数_________ ;_________ .2.观察表中三角形个数的变化规律:图形0 1 2 …n横截线条数6 ??…?三角形个数若三角形的横截线有0条,则三角形的个数是6;若三角形的横截线有n条,则三角形的个数是_________ (用含n的代数式表示).3.如图,在线段AB上,画1个点,可得3条线段;画2个不同点,可得6条线段;画3个不同点,可得10条线段;…照此规律,画10个不同点,可得线段_________ 条.4.如图是由数字组成的三角形,除最顶端的1以外,以下出现的数字都按一定的规律排列.根据它的规律,则最下排数字中x的值是_________ ,y的值是_________ .5.下列图形都是由相同大小的单位正方形构成,依照图中规律,第六个图形中有_________ 个单位正方形.6.如图,用相同的火柴棒拼三角形,依此拼图规律,第7个图形中共有_________ 根火柴棒.7.图1是一个正方形,分别连接这个正方形的对边中点,得到图2;分别连接图2中右下角的小正方形对边中点,得到图3;再分别连接图3中右下角的小正方形对边中点,得到图4;按此方法继续下去,第n个图的所有正方形个数是_________ 个.8.观察下列图案:它们是按照一定规律排列的,依照此规律,第6个图案中共有_________ 个三角形.9.如图,依次连接一个边长为1的正方形各边的中点,得到第二个正方形,再依次连接第二个正方形各边的中点,得到第三个正方形,按此方法继续下去,则第二个正方形的面积是_________ ;第六个正方形的面积是_________ .10.下列各图形中的小正方形是按照一定规律排列的,根据图形所揭示的规律我们可以发现:第1个图形有1个小正方形,第2个图形有3个小正方形,第3个图形有6个小正方形,第4个图形有10个小正方形…,按照这样的规律,则第10个图形有_________ 个小正方形.11.如图,用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数为_________ .12.为庆祝“六一”儿童节,幼儿园举行用火柴棒摆“金鱼”比赛,如图所示,则摆n条“金鱼”需用火柴棒的根数为_________ .13.如图,两条直线相交只有1个交点,三条直线相交最多有3个交点,四条直线相交最多有6个交点,五条直线相交最多有10个交点,六条直线相交最多有_________ 个交点,二十条直线相交最多有_________ 个交点.14.用火柴棒按如图所示的方式搭图形,按照这样的规律搭下去,填写下表:图形编号(1)(2)(3)…n火柴根数从左到右依次为_________ _________ _________ _________ .15.图(1)是一个黑色的正三角形,顺次连接三边中点,得到如图(2)所示的第2个图形(它的中间为一个白色的正三角形);在图(2)的每个黑色的正三角形中分别重复上述的作法,得到如图(3)所示的第3个图形.如此继续作下去,则在得到的第5个图形中,白色的正三角形的个数是_________ .16.如图,一块圆形烙饼切一刀可以切成2块,若切两刀最多可以切成4块,切三刀最多可以切成7块…通过观察、计算填下表(其中S表示切n刀最多可以切成的块数)后,可探究一圆形烙饼切n刀最多能切成_________ 块(结果用n的代数式表示).n 0 1 2 3 4 5 …n17.如图,是用相同的等腰梯形拼成的等腰梯形图案.第(1)个图案只有1个等腰梯形,其两腰之和为4,上下底之和为3,周长为7;第(2)个图案由3个等腰梯形拼成,其周长为13;…第(n)个图案由(2n﹣1)个等腰梯形拼成,其周长为_________ .(用正整数n表示)18.下列各图均是用有一定规律的点组成的图案,用S表示第n个图案中点的总数,则S= _________ (用含n 的式子表示).19.如图,由若干盆花摆成图案,每个点表示一盆花,几何图形的每条边上(包括两个顶点)都摆有n(n≥3)盆花,每个图案中花盆总数为S,按照图中的规律可以推断S与n(n≥3)的关系是_________ .20.用火柴棍象如图这样搭图形,搭第n个图形需要_________ 根火柴棍.21.现有黑色三角形“”和白色三角形“”共有2011个,按照一定的规律排列如下:则黑色三角形有_________ 个.22.假设有足够多的黑白围棋子,按照一定的规律排成一行:○●●○○●○●●○○●○●●○○●○●●○○●…请问第2011个棋子是黑的还是白的?答:_________ .23.观察下列由等腰梯形组成的图形和所给表中数据的规律后填空:1 2 3 4 5 …梯形的个数图形的周5 8 11 14 17 …长当梯形个数为2007个时,这时图形的周长为_________24.如图,下面是一些小正方形组成的图案,第4个图案有_________ 个小正方形组成;第n个图案有_________个小正方形组成.25.如图所示是由火柴棒按一定规律拼出的一系列图形:依照此规律,第7个图形中火柴棒的根数是_________ .26.图中的每个图形都是由若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有n(n≥2)个棋子,每个图案的棋子总数为s,按图的排列规律推断,s与n之间的关系可用式子_________ 表示.27.观察下列图形,它是按一定规律排列的,那么第_________ 个图形中,十字星与五角星的个数和为27个.28.2条直线最多只有1个交点;3条直线最多只有3个交点;4条直线最多只有6个交点;2000条直线最多只有_________ 个交点.29.以下各图分别由一些边长为1的小正方形组成,请填写图2、图3中的周长,并以此推断出图10的周长为_________ .30.如图所示,第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案可以看作是第1个图案经过平移而得,那么设第n个图案中有白色地面砖m块,则m与n的函数关系式是_________ .31.用同样大小的黑色棋子按如图所示的规律摆放:(1)分别写出第6、7两个图形各有多少颗黑色棋子?(2)写出第n个图形黑色棋子的颗数?(3)是否存在某个图形有2012颗黑色棋子?若存在,求出是第几个图形;若不存在,请说明理由.32.如图,给出四个点阵,s表示每个点阵中点的个数,按照图形中的点的个数变化规律,(1)猜想第n个点阵中的点的个数s= _________ .(2)若已知点阵中点的个数为37,问这个点阵是第几个?33.用棋子摆出下列一组图形:(1)填写下表:图形编号 1 2 3 4 5 6图中棋子数 5 8 11 14 17 20(2)照这样的方式摆下去,写出摆第n个图形所需棋子的枚数;(3)其中某一图形可能共有2011枚棋子吗?若不可能,请说明理由;若可能,请你求出是第几个图形.34.观察图中四个顶点的数字规律:(1)数字“30”在_________ 个正方形的_________ ;(2)请你用含有n(n≥1的整数)的式子表示正方形四个顶点的数字规律;(3)数字“2011”应标在什么位置.35.如图,各图表示若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案中花盆的总数为S.问:①当每条边有2盆花时,花盆的总数S是多少?②当每条边有3盆花时,花盆的总数S是多少?③当每条边有4盆花时,花盆的总数S是多少?④当每条边有10盆花时,花盆的总数S是多少?⑤按此规律推断,当每条边有n盆花时,花盆的总数S是多少?36.如下图是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第④、第⑤个“上”字分别需用_________ 和_________ 枚棋子;(2)第n个“上”字需用_________ 枚棋子;(3)七(3)班有50名同学,把每一位同学当做一枚棋子,能否让这50枚“棋子”按照以上规律恰好站成一个“上”字?若能,请计算最下一“横”的学生数;若不能,请说明理由.37.下列表格是一张对同一线段上的个数变化及线段总条数的探究统计.线段上点的个数线段的总条数11+2=31+2+3=6……(1)请你完成探究,并把探究结果填在相应的表格里;(2)若在同一线段上有10个点,则线段的总条数为_________ ;若在同一线段上有n个点,则有_________ 条线段(用含n 的式子表示)(3)若你所在的班级有60名学生,20年后参加同学聚会,见面时每两个同学之间握一次手,共握手_________ 次.38.如图是用棋子摆成的“H”字.(1)摆成第一个“H”字需要_________ 个棋子;摆第x个“H”字需要的棋子数可用含x的代数式表示为_________ ;(2)问第几个“H”字棋子数量正好是2012个棋子?39.我们知道,两条直线相交只有一个交点.请你探究:(1)三条直线两两相交,最多有_________ 个交点;(2)四条直线两两相交,最多有_________ 个交点;(3)n条直线两两相交,最多有_________ 个交点(n为正整数,且n≥2).40.如图所示,小王玩游戏:一张纸片,第一次将其撕成四小片,手中共有4张纸片,以后每次都将其中一片撕成更小的四片.如此进行下去,当小王撕到第n次时,手张共有S张纸片.根据上述情况:(1)用含n的代数式表示S;(2)当小王撕到第几次时,他手中共有70张小纸片?41.如图①是一张长方形餐桌,四周可坐6人,2张这样的桌子按图②方式拼接,四周可坐10人.现将若干张这样的餐桌按图③方式拼接起来:(1)三张餐桌按题中的拼接方式,四周可坐_________ 人;(2)n张餐桌按上面的方式拼接,四周可坐_________ 人(用含n的代数式表示).若用餐人数为26人,则这样的餐桌需要_________ 张.42.用棋子摆出下列一组图形:(1)填写下表:图形编号 1 2 3 4 5 6图形中的棋子(2)照这样的方式摆下去,写出摆第n个图形棋子的枚数;(用含n的代数式表示)(3)如果某一图形共有99枚棋子,你知道它是第几个图形吗?43.如图①,图②,图③,图④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,(1)第5个“广”字中的棋子个数是_________ .(2)第n个“广”字需要多少枚棋子?44.如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察图形并解答有关问题:(1)在第n个图中共有_________ 块黑瓷砖,_________ 块白瓷砖;(2)是否存在黑瓷砖与白瓷砖块数相等的情形?你能通过计算说明吗?45.用火柴棒按如图的方式搭三角形.(1)搭4个这样的三角形要用_________ 根火柴棒;13根火柴棒可以搭_________ 个这样的三角形;(2)搭n个这样的三角形要用_________ 根火柴棒(用含n的代数式表示).46.观察图中的棋子:(1)按照这样的规律摆下去,第4个图形中的棋子个数是多少?(2)用含n的代数式表示第n个图形的棋子个数;(3)求第20个图形需棋子多少个?47.如图,用正方体石墩垒石梯,下图分别表示垒到一、二、三阶梯时的情况.那么照这样垒下去,请你观察规律,并完成下列问题.(1)填出下表中未填的两个空格:阶梯级数一级二级三级四级石墩块数 3 9(2)当垒到第n级阶梯时,共用正方体石墩多少块(用含n的代数式表示)?并求当n=100时,共用正方体石墩多少块?48.有一张厚度为0.05毫米的纸,将它对折1次后,厚度为2×0.05毫米.(1)对折3次后,厚度为多少毫米?(2)对折n次后,厚度为多少毫米?(3)对折n次后,可以得到多少条折痕?49.如图所示,用同样规格正方形瓷砖铺设矩形地面,请观察下图:按此规律,第n个图形,每一横行有_________ 块瓷砖,每一竖列有_________ 块瓷砖(用含n的代数式表示)按此规律,铺设了一矩形地面,共用瓷砖506块,请问这一矩形的每一横行有多少块瓷砖,每一竖列有多少瓷砖?50.找规律:观察下面的星阵图和相应的等式,探究其中的规律.(1)在④、⑤和⑥后面的横线上分别写出相应的等式:①1=12②1+3=22③1+3+5=32④_________ ;⑤_________ ;⑥_________ ;(2)通过猜想,写出第n个星阵图相对应的等式.51.将一张正方形纸片剪成四个大小一样的小正方形,然后将其中的一个正方形再剪成四个小正方形,如此循环下去,如图所示:(1)完成下表:所剪次数n 1 2 3 4 5正方形个数Sn 4(2)剪n次共有S n个正方形,请用含n的代数式表示S n= _________ ;(3)若原正方形的边长为1,则第n次所剪得的正方形边长是_________ (用含n的代数式表示).52.如图是用五角星摆成的三角形图案,每条边上有n(n>1)个点(即五角星),每个图案的总点数(即五角星总数)用S表示.(1)观察图案,当n=6时,S= _________ ;(2)分析上面的一些特例,你能得出怎样的规律?(用n表示S)(3)当n=2008时,求S.53.用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点,叫格点.观察图中每一个正方形(实线)四条边上的格点的个数,请回答下列问题:(1)由里向外第1个正方形(实线)四条边上的格点个数共有_________ 个;由里向外第2个正方形(实线)四条边上的格点个数共有_________ 个;由里向外第3个正方形(实线)四条边上的格点个数共有_________ 个;(2)由里向外第10个正方形(实线)四条边上的格点个数共有_________ 个;(3)由里向外第n个正方形(实线)四条边上的格点个数共有_________ 个.54.下列各图是由若干花盆组成的形如正方形的图案,每条边(包括两个顶点)有n(n>1)个花盆,每个图案花盆总数是S.(1)按要求填表:n 2 3 4 5 …S 4 8 12 …(2)写出当n=10时,S= _________ .(3)写出S与n的关系式:S= _________ .(4)用42个花盆能摆出类似的图案吗?55.如图,用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察下列图形,探究并解答下列问题.(1)在第1个图中,共有白色瓷砖_________ 块.(2)在第2个图中,共有白色瓷砖_________ 块.(3)在第3个图中,共有白色瓷砖_________ 块.(4)在第10个图中,共有白色瓷砖_________ 块.(5)在第n个图中,共有白色瓷砖_________ 块.56.淮北市为创建文明城市,各种颜色的菊花摆成如下三角形的图案,每条边(包括两个顶点)上有n(n>1)盆花,每个图案花盆的总数为S,当n=2时,S=3;n=3时,S=6;n=4时,S=10.(1)当n=6时,S= _________ ;n=100时,S= _________ .(2)你能得出怎样的规律?用n表示S.57.下面是按照一定规律画出的一系列“树枝”经观察,图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出4个“树枝”,图(4)比图(3)多出8个“树枝”,按此规律:图(5)比图(4)多出_________ 个树枝;图(6)比图(5)多出_________ 个树枝;图(8)比图(7)多出_________ 个树枝;…图(n+1)比图(n)多出_________ 个树枝.58.如图是用棋子成的“T”字图案.从图案中可以出,第一个“T”字图案需要5枚棋子,第二个“T”字图案需要8枚棋子,第三个“T”图案需要11枚棋子.(1)照此规律,摆成第八个图案需要几枚棋子?(2)摆成第n个图案需要几枚棋子?(3)摆成第2010个图案需要几枚棋子?59.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干图案:(1)当黑砖n=1时,白砖有_________ 块,当黑砖n=2时,白砖有_________ 块,当黑砖n=3时,白砖有_________ 块.(2)第n个图案中,白色地砖共_________ 块.60.下列图案是晋商大院窗格的一部分.其中,“o”代表窗纸上所贴的剪纸.探索并回答下列问题:(1)第6个图案中所贴剪纸“o”的个数是_________ ;(2)第n个图案中所贴剪纸“o”的个数是_________ ;(3)是否存在一个图案,其上所贴剪纸“o”的个数为2012个?若存在,指出是第几个;若不存在,请说明理由.图形找规律60题参考答案:1.结合图形和表格,不难发现:1张桌子座6人,多一张桌子多2人.4张桌子可以座10+2=12.即n张桌子时,共座6+2(n﹣1)=2n+4.2.当横截线有n条时,在6个的基础上多了n个6,即三角形的个数共有6+6n=6(n+1)个.故应填6(n+1)或6n+63.∵画1个点,可得3条线段,2+1=3;画2个点,可得6条线段,3+2+1=6;画3个点,可得10条线段,4+3+2+1=10;…;画n个点,则可得(1+2+3+…+n+n+1)=条线段.所以画10个点,可得=66条线段;4.根据图形可以发现,第七排的第一个数和第二数与第八排的第二个数相等,而第八排的第二个数就是x,所以x=61.另外,由图形可知,x右边的数是2×61=122,y左边的数是2×61+56=178,所以y=178+46=2245.根据题意分析可得:第1个图案中正方形的个数2个,第2个图案中正方形的个数比第1个图案中正方形的个数多4个,第3个图案中正方形的个数比第2个图案中正方形的个数多6个…,依照图中规律,第六个图形中有2+4+6+8+10+12=42个单位正方形6.图形从上到下可以分成几行,第n行中,斜放的火柴有2n根,下面横放的有n根,因而图形中有n排三角形时,火柴的根数是:斜放的是2+4+…+2n=2(1+2+…+n)横放的是:1+2+3+…+n,则每排放n根时总计有火柴数是:3(1+2+…+n)=21)nn3(把n=7代入就可以求出.故第7个图形中共有=84根火柴棒7.图1中,是1个正方形;图2中,是1+4=5个正方形;图3中,是1+4×2=9个正方形;依此类推,第n个图的所有正方形个数是1+4(n﹣1)=4n﹣3.8.∵第1个图案中有2×2+2×1=6个三角形;第2个图案中有2×3+2×2=10个三角形;第3个图案中有2×4+2×3=14个三角形;…∴第6个图案中有2×7+2×6=26个三角形.故答案为269.∵正方形的边长是1,所以它的斜边长是:=,所以第二个正方形的面积是:×=,第三个正方形的面积为=()2,以此类推,第n个正方形的面积为()n﹣1,所以第六个正方形的面积是()6﹣1=;故答案为:,.10.∵第一个有1个小正方形,第二个有1+2个,第三个有1+2+3个,第四个有1+2+3+4,第五个有1+2+3+4+5,∴则第10个图形有1+2+3+4+5+6+7+8+9+10=55个.故答案为:5511.依题意得:(1)摆第1个“小屋子”需要5个点;摆第2个“小屋子”需要11个点;摆第3个“小屋子”需要17个点.当n=n时,需要的点数为(6n﹣1)个.故答案为6n﹣112.由图形可知:第一个金鱼需用火柴棒的根数为:2+6=8;第二个金鱼需用火柴棒的根数为:2+2×6=14;第三个金鱼需用火柴棒的根数为:2+3×6=20;…;第n个金鱼需用火柴棒的根数为:2+n×6=2+6n.故答案为2+6n13.6条直线两两相交,最多有n(n﹣1)=×6×5=15,20条直线两两相交,最多有n(n﹣1)=×20×19=190.故答案为:15,190.14.如表格所示:(1)(2)(3)…n图形编号7 12 17 …5n+2火柴根数15.设白三角形x个,黑三角形y个,则:n=1时,x=0,y=1;n=2时,x=0+1=1,y=3;n=3时,x=3+1=4,y=9;n=4时,x=4+9=13,y=27;当n=5时,x=13+27=40,所以白的正三角形个数为:40,故答案为:4016.n=1时,S=1+1=2,n=2时,S=1+1+2=4,n=3时,S=1+1+2+3=7,n=4时,S=1+1+2+3+4=11,…所以当切n刀时,S=1+1+2+3+4+…+n=1+n(n+1)=n2+n+1.故答案为n2+n+117.根据题意得:第(1)个图案只有1个等腰梯形,周长为3×1+4=7;第(2)个图案由3个等腰梯形拼成,其周长为3×3+4=13;第(3)个图案由5个等腰梯形拼成,其周长为3×5+4=19;…第(n)个图案由(2n﹣1)个等腰梯形拼成,其周长为3(2n﹣1)+4=6n+1;故答案为:6n+118.观察发现:第1个图形有S=9×1+1=10个点,第2个图形有S=9×2+1=19个点,第3个图形有S=9×3+1=28个点,…第n个图形有S=9n+1个点.故答案为:9n+119.n=3时,S=6=3×3﹣3=3,n=4时,S=12=4×4﹣4,n=5时,S=20=5×5﹣5,…,依此类推,边数为n数,S=n•n﹣n=n(n﹣1).故答案为:n(n﹣1).20.结合图形,发现:搭第n个三角形,需要3+2(n﹣1)=2n+1(根).故答案为2n+121.因为2011÷6=335…1.余下的1个根据顺序应是黑色三角形,所以共有1+335×3=1006.故答案为:100622.从所给的图中可以看出,每六个棋子为一个循环,∵2011÷6=335…1,∴第2011个棋子是白的.故答案为:白23.依题意可求出梯形个数与图形周长的关系为3n+2=周长,当梯形个数为2007个时,这时图形的周长为3×2007+2=6023.故答案为:6023.24.观察图形知:第一个图形有1=12个小正方形;第二个图形有1+3=4=22个小正方形;第三个图形有1+3+5=9=32个小正方形;…第n个图形共有1+2+3+…+(2n﹣1)=n2个小正方形,当n=4时,有n2=42=16个小正方形.故答案为:16,n225.根据已知图形可以发现:第2个图形中,火柴棒的根数是7;第3个图形中,火柴棒的根数是10;第4个图形中,火柴棒的根数是13;∵每增加一个正方形火柴棒数增加3,∴第n个图形中应有的火柴棒数为:4+3(n﹣1)=3n+1.当n=7时,4+3(n﹣1)=4+3×6=22,故答案为:2226.观察图形发现:当n=2时,s=4,当n=3时,s=9,当n=4时,s=16,当n=5时,s=25,…当n=n时,s=n2,故答案为:s=n227.∵第1个图形中,十字星与五角星的个数和为3×2=6,第2个图形中,十字星与五角星的个数和为3×3=9,第3个图形中,十字星与五角星的个数和为3×4=12,…而27=3×9,∴第8个图形中,十字星与五角星的个数和=3×9=27.故答案为:828.2条直线最多的交点个数为1,3条直线最多的交点个数为1+2=3,4条直线最多的交点个数为1+2+3=6,5条直线最多的交点个数为1+2+3+4=10,…所以2000条直线最多的交点个数为1+2+3+4+…+1999==1999000.故答案为199900029.∵小正方形的边长是1,∴图1的周长是:1×4=4,图2的周长是:2×4=8,图3的周长是3×4=12,…第n个图的周长是4n,∴图10的周长是10×4=40;故答案为:8,12,4030.首先发现:第一个图案中,有白色的是6个,后边是依次多4个.所以第n个图案中,是6+4(n﹣1)=4n+2.∴m与n的函数关系式是m=4n+2.故答案为:4n+2.31.第一个图需棋子6,第二个图需棋子9,第三个图需棋子12,第四个图需棋子15,第五个图需棋子18,…第n个图需棋子3(n+1)枚.(1)当n=6时,3×(6+1)=21;当n=7时,3×(7+1)=24;(2)第n个图需棋子3(n+1)枚.(3)设第n个图形有2012颗黑色棋子,根据(1)得3(n+1)=2012解得n=,所以不存在某个图形有2012颗黑色棋子32.(1)由点阵图形可得它们的点的个数分别为:1,5,9,13,…,并得出以下规律:第一个点数:1=1+4×(1﹣1)第二个点数:5=1+4×(2﹣1)第三个点数:9=1+4×(3﹣1)第四个点数:13=1+4×(4﹣1)…因此可得:第n个点数:1+4×(n﹣1)=4n﹣3.故答案为:4n﹣3;(2)设这个点阵是x个,根据(1)得:1+4×(x﹣1)=37解得:x=10.答:这个点阵是10个33.(1)观察图形,得出枚数分别是,5,8,11,…,每个比前一个多3个,所以图形编号为5,6的棋字子数分别为17,20.故答案为:17和20.(2)由(1)得,图中棋子数是首项为5,公差为3的等差数列,所以摆第n个图形所需棋子的枚数为:5+3(n﹣1)=3n+2.(3)不可能由3n+2=2010,解得:n=669,∵n为整数,∴n=669不合题意故其中某一图形不可能共有2011枚棋子34.(1)由图可知,每个正方形标4个数字,∵30÷4=7…2,∴数字30在第8个正方形的第2个位置,即右上角;故答案为:8,右上角;(2)左下角是4的倍数,按照逆时针顺序依次减1,即正方形左下角顶点数字:4n,正方形左上角顶点数字:4n﹣1,正方形右上角顶点数字:4n﹣2,正方形右下角顶点数字:4n﹣3;(3)2011÷4=502…3,所以,数字“2011”应标第503个正方形的左上角顶点处35.依题意得:①n=2,S=3=3×2﹣3.②n=3,S=6=3×3﹣3.③n=4,S=9=3×4﹣3④n=10,S=27=3×10﹣3.…⑤按此规律推断,当每条边有n盆花时,S=3n﹣336.(1)第①个图形中有6个棋子;第②个图形中有6+4=10个棋子;第③个图形中有6+2×4=14个棋子;∴第⑤个图形中有6+3×4=18个棋子;第⑥个图形中有6+4×4=22个棋子.故答案为18、22;(3分)(2)第n个图形中有6+(n﹣1)×4=4n+2.故答案为4n+2.(3分)(3)4n+2=50,解得n=12.最下一横人数为2n+1=25.(4分)37.(1)5个点时,线段的条数:1+2+3+4=10,6个点时,线段的条数:1+2+3+4+5=15;(2)10个点时,线段的条数:1+2+3+4+5+6+7+8+9=45,n个点时,线段的条数:1+2+3+…+(n﹣1)=;(3)60人握手次数==1770.故答案为:(2)45,;(3)1770.38.(1)摆成第一个“H”字需要7个棋子,第二个“H”字需要棋子12个;第三个“H”字需要棋子17个;…第x个图中,有7+5(x﹣1)=5x+2(个).(2)当5x+2=2012时,解得:x=402,故第402个“H”字棋子数量正好是2012个棋子39.(1)如图(1),可得三条直线两两相交,最多有3个交点;(2)如图(2),可得三条直线两两相交,最多有6个交点;(3)由(1)得,=3,由(2)得,=6;∴可得,n 条直线两两相交,最多有个交点(n为正整数,且n≥2).故答案为3;6;.40.(1)由题目中的“每次都将其中﹣片撕成更小的四片”,可知:小王每撕一次,比上一次多增加3张小纸片.∴s=4+3(n﹣1)=3n+1;(2)当s=70时,有3n+1=70,n=23.即小王撕纸23次41.(1)结合图形,发现:每个图中,两端都是坐2人,剩下的两边则是每一张桌子是4人.则三张餐桌按题中的拼接方式,四周可坐3×4+2=14(人);(2)n张餐桌按上面的方式拼接,四周可坐(4n+2)人;若用餐人数为26人,则4n+2=26,解得n=6.故答案为:14;(4n+2),642.(1)如图所示:图形编号1 2 3 4 5 6图形中的棋子6 912 15 18 21(2)依题意可得当摆到第n个图形时棋子的枚数应为:6+3(n﹣1)=6+3n﹣3=3n+3;(3)由上题可知此时3n+3=99,∴n=32.答:第32个图形共有99枚棋子13.由题目得:第1个“广”字中的棋子个数是7;第2个“广”字中的棋子个数是7+(2﹣1)×2=9;第3个“广”字中的棋子个数是7+(3﹣1)×2=11;第4个“广”字中的棋子个数是7+(4﹣1)×2=13;发现第5个“广”字中的棋子个数是7+(5﹣1)×2=15…进一步发现规律:第n个“广”字中的棋子个数是7+(n﹣1)×2=2n+5.故答案为:1544.(1)在第n个图形中,需用黑瓷砖4n+6块,白瓷砖n(n+1)块;(2)根据题意得n(n+1)=4n+6,n2﹣3n﹣6=0,此时没有整数解,所以不存在.故答案为:4n+6;n(n+1)45.(1)结合图形,发现:后边每多一个三角形,则需要多2根火柴.则搭4个这样的三角形要用3+2×3=9根火柴棒;13根火柴棒可以搭(13﹣3)÷2+1=6个这样的三角形;(2)根据(1)中的规律,得搭n个这样的三角形要用3+2(n﹣1)=2n+1根火柴棒.故答案为9;6;2n+146.(1)第4个图形中的棋子个数是13;(2)第n个图形的棋子个数是3n+1;(3)当n=20时,3n+1=3×20+1=61∴第20个图形需棋子61个47.(1)第一级台阶中正方体石墩的块数为:=3;第一级台阶中正方体石墩的块数为:=9;第一级台阶中正方体石墩的块数为:;…依此类推,可以发现:第几级台阶中正方体石墩的块数为:3与几的乘积乘以几加1,然后除以2.阶梯级一级二级三级四级数3 9 18 30石墩块数(2)按照(1)中总结的规律可得:当垒到第n级阶梯时,共用正方体石墩块;当n=100时,∴当n=100时,共用正方体石墩15150块.答:当垒到第n级阶梯时,共用正方体石墩块;当n=100时,共用正方体石墩15150块48.由题意可知:第一次对折后,纸的厚度为2×0.05;可以得到折痕为1条;第二次对折后,纸的厚度为2×2×0.05=22×0.05;可以得到折痕为3=22﹣1条;第三次对折后,纸的厚度为2×2×2×0.05=23×0.05;可以得到折痕为7=23﹣1条;…;第n次对折后,纸的厚度为2×2×2×2×…×2×0.05=2n×0.05.可以得到折痕为2n﹣1条.故:(1)对折3次后,厚度为0.4毫米;(2)对折n次后,厚度为2n×0.05毫米;(3)对折n次后,可以得到2n﹣1条折痕49.由图形我们不难看出横行砖数量为n+3,竖行砖数量为n+2,总数量为n2+5n+6;若用瓷砖506块,可以求n2+5n+6=506;所以答案为:(1)n+3,n+2;(2)每一行有23块,每一列有22块50.等号左边是从1开始,连续奇数相加,等号右边是奇数个数也就是n的平方.(1)①1+3+5+7=42;②1+3+5+7+9=52;③1+3+5+7+9+11=62.(2)1+3+5+…+(2n﹣1)=n2(n≥1的正整数)51.(1)依题意得:所剪次数n 1 2 3 4 54 7 10 13 16正方形个数Sn(2)可知剪n次时,S n=3n+1.(3)n=1时,边长=;n=2时,边长=;n=3时,边长=;…;剪n次时,边长=.52.(1)S=15(2)∵n=2时,S=3×(2﹣1)=3;n=3时,S=3×(3﹣1)=6;n=4时,S=3×(4﹣1)=9;…∴S=3×(n﹣1)=3n﹣3.(3)当n=2008时,S=3×2008﹣3=6021.53.第1个正方形四条边上的格点共有4个第2个正方形四条边上的格点个数共有(4+4×1)个第3个正方形四条边上的格点个数共有(4+4×2)个…第10个正方形四条边上的格点个数共有(4+4×9)=40个第n个正方形四条边上的格点个数共有[4+4×(n﹣1)]=4n个54.由图可知,每个图形为边长是n的正方形,因此四条边的花盆数为4n,再减去重复的四个角的花盆数,即S=4n﹣4;(1)将n=5代入S=4n﹣4,得S=16;(2)将n=10入S=4n﹣4,得S=36;(3)S=4n﹣4;(4)将S=42代入S=4n﹣4得,4n﹣4=42解得n=11.5所以用42个花盆不能摆出类似的图案。

北师大版七年级数学上册第三章 整式及其加减练习(含答案)

北师大版七年级数学上册第三章 整式及其加减练习(含答案)

第三章 整式及其加减一、单选题1.m 与2的差的平方可以表示为( )A .m -22B .m 2-22C .(m -2)2D .2(m -2) 2.已知23a b -=,则924a b -+的值是( )A .0B .3C .6D .93.下列式子:①abc ;①x 2﹣2xy+1y ;①1a ;①2212x x x ++-;①﹣23x+y ;①5π;①12x +.中单项式的个数( )A .2B .3C .4D .54.下列说法中,正确的是( )A .24m n 不是整式 B .32abc -的系数是﹣3,次数是3 C .3是单项式 D .多项式2x 2y ﹣xy 是五次二项式 5.下列每组中的两个代数式,属于同类项的是( ).A .212x y 与223xyB .20.5a b 与20.5a cC .3abc 与3abD .312m n 与38nm - 6.化简22(2x +3x-2)-(-x +2)正确的是( )A .2-x +3xB .2-x +3x-4C .23x +3x-4D .2-3x 3x + 7.若514n x y 和31231m x y -的和是单项式,则式子12m −2n 的值是( )A.−3B.−5C.−4D.−68.如图,王老师在黑板上书写了一个正确的整式加减运算等式,随后用手盖住了一个二次三项式,则所盖住的部分是()A.281x x--B.283x x-+C.223x x-+D.221x x--9.将一列有理数-1,2,-3,4,-5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中C 的位置是有理数,2008应排在A、B、C、D、E中的位置.其中两个填空依次为()A.-28 ,C B.-29 ,B C.-30,D D.-31 ,E10.有若干个数,第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n,若a1=﹣12,从第二个数起,每个数都等于1与它前面那个数的差的倒数,则a2019值为()A.﹣12B.32C.3D.23二、填空题11.某地对居民用电的收费标准为:每月如果不超过100度,那么每度电价按a元收费,。

七年级数学上册整式计算题专项练习(含答案)

七年级数学上册整式计算题专项练习(含答案)

整式的乘除计算训练(1)1.(a b) (2a b) 2. (x+2)(y+3)-(x+1)(y-2)3. (2x y)(2x y) 2y24.x(x ---5)2) (x+5)(x5. 4x y x y6.(3x 2 y)( 2 y 3x)(4y 29x2 )227.2a1 2 2 21`38.x 12a x 1 x 29. (x-3y)(x+3y) -(x-3y)210. 3( x 1)(x1) (2 x1)211.(3x 2 y) 2 (3x 2 y)212.(x y)2(xy)213. 0.125 100×810014.224 5 (x )1 (2)35 4215. (1 )2 (2006( 2 11 3 12 4 1) 3 ) ( 2 )16—19 题用乘法公式计算16.999 ×100117.18. 98219.99212009 22008 201020. 化简求值:( 2a1) 2(2a 1)( a 4) ,其中a 2 。

21. 化简求值(x 2 y)22( x y)( x y) 2 y( x 3 y) ,其中 x2, y1。

2 22. 5(x-1)(x+3)-2(x-5)(x-2)23. (a-b)(a2+ab+b2)24. (3y+2)(y-4)-3(y-2)(y-3) 26. (-2mn2)2-4mn3(mn+1) 28. (-x-2)(x+2)30. (x-3y)(x+3y)-(x- 3y)225.a(b-c)+b(c-a)+c(a-b)27.3xy(-2x)3·(-1y2)2429. 5 10×8·(3 ×102)31. (a+b-c)(a-b-c)答案1. 2. 3. 4.5. 6.7. 8.9. 10.11. 12.13. 14. 15.16. 原式 =(1000-1) (1000+1)17. 原式 =(99+1) (99-1)=1000000-1 =100 98=999999=980018. 原式 =(900-2)219. 原式 =20092-(2009+1)(2009-1)=10000-400+4 =20092-20092+1=9604=120.原式 = ,当时,原式 =21.原式 = ,当 , 时,原式 =22. 23. 24. 25. 026. 27.28. 29.30. 31.2014 年北师大七年级数学上册《整式及其加减》计算题专项练习一一.解答题(共 12 小题)1.计算题① 12﹣(﹣ 8)+(﹣ 7)﹣ 15; 23②﹣1+2 ×(﹣ 5)﹣(﹣ 3) ÷ ;③ (2x ﹣ 3y ) +( 5x+4y );2 2).④ ( 5a +2a ﹣ 1)﹣ 4( 3﹣ 8a+2a2.( 1)计算: 4+(﹣ 2) 2×2﹣(﹣ 36)÷4;(2)化简: 3( 3a ﹣2b )﹣ 2(a ﹣ 3b ).3.计算:22 ); 2 2 2 2 2)] ;( 1) 7x+4 (x ﹣ 2)﹣ 2( 2x ﹣ x+3 ( 2) 4ab ﹣3b ﹣ [( a +b )﹣( a ﹣ b( 3)( 3mn ﹣ 5m 2)﹣( 3m 2﹣ 5mn );( 4) 2a+2(a+1)﹣ 3( a ﹣ 1).4.化简2 23 2 3 2( 1) 2( 2a +9b ) +3 (﹣ 5a ﹣ 4b ) ( 2) 3(x +2x ﹣ 1)﹣( 3x +4x ﹣ 2)5.( 2009?柳州)先化简,再求值: 3(x ﹣ 1)﹣( x ﹣ 5),其中 x=2.6.已知 x=5, y=3,求代数式 3( x+y ) +4( x+y )﹣ 6( x+y )的值.7.已知 A=x 2﹣ 3y 2, B=x 2﹣ y 2,求解 2A ﹣ B .2 28.若已知 M=x +3x ﹣ 5,N=3x +5,并且 6M=2N ﹣ 4,求 x .9.已知 A=5a 2﹣ 2ab, B=﹣ 4a2+4ab,求:( 1) A+B ;(2) 2A ﹣ B ;( 3)先化简,再求值:3( A+B )﹣ 2(2A ﹣ B),其中 A= ﹣ 2, B=1.10.设 a=14x﹣ 6, b=﹣ 7x+3 ,c=21x ﹣ 1.( 1)求 a﹣( b﹣ c)的值;( 2)当 x=时,求a﹣(b﹣c)的值.211.化简求值:已知a、 b 满足: |a﹣2|+( b+1 ) =0,求代数式2( 2a﹣ 3b)﹣( a﹣ 4b)+2 (﹣ 3a+2b)的值.12.已知( x+1 )2+|y﹣ 1|=0,求 2(xy ﹣ 5xy2)﹣( 3xy2﹣ xy )的值.2014 年北师大七年级数学上册《整式及其加减》计算题专项练习一参考答案与试题解析一.解答题(共 12 小题)1.计算题① 12﹣(﹣ 8)+(﹣ 7)﹣ 15; 2 3②﹣1+2 ×(﹣ 5)﹣(﹣ 3) ÷ ;③ (2x ﹣ 3y ) +( 5x+4y );22 ).④ ( 5a +2a ﹣ 1)﹣ 4( 3﹣ 8a+2a考点 : 整式的加减;有理数的混合运算.专题 : 计算题.分析: ( 1)直接进行有理数的加减即可得出答案.( 2)先进行幂的运算,然后根据先乘除后加减的法则进行计算. ( 3)先去括号,然后合并同类项即可得出结果.( 4)先去括号,然后合并同类项即可得出结果.解答: 解: ① 原式 =12+8 ﹣ 7﹣ 15= ﹣ 2;② 原式 =﹣ 1﹣ 10+27 ÷ =﹣ 11+81=70;③ 原式 =2x ﹣3y+5x+4y=7x+y ;222④ 原式 =5a +2a ﹣ 1﹣ 12+32a ﹣ 8a =﹣ 3a +34a ﹣ 13.点评: 本题考查了整式的加减及有理数的混合运算,属于基础题,解答本题的关键熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.2.( 1)计算: 4+(﹣ 2) 2×2﹣(﹣ 36)÷4;( 2)化简: 3( 3a ﹣2b )﹣ 2( a ﹣ 3b ).考点 : 整式的加减;有理数的混合运算.分析: ( 1)按照有理数混合运算的顺序,先乘方后乘除最后算加减;( 2)运用整式的加减运算顺序计算:先去括号,再合并同类项. 解答: 解:( 1)原式 =4+4 ×2﹣(﹣ 9)=4+8+9 =17 ;( 2)原式 =9a ﹣ 6b ﹣2a+6b=( 9﹣ 2)a+(﹣ 6+6) b=7a .点评: 在混合运算中要特别注意运算顺序:先三级,后二级,再一级;熟记去括号法则:﹣﹣得+,﹣ +得﹣,++得 +, +﹣得﹣;及熟练运用合并同类项的法则:字母和字母的指数不变,只把系数相加减.3.计算:( 1) 7x+4 (x 2﹣ 2)﹣ 2( 2x 2﹣ x+3);( 2) 4ab ﹣3b 22 22 2)] ; ﹣ [( a +b )﹣( a ﹣ b 22( 3)( 3mn ﹣ 5m )﹣( 3m ﹣ 5mn );考点 : 整式的加减.分析: ( 1)先去括号,再合并同类项即可;( 2)先去括号,再合并同类项即可;( 3)先去括号,再合并同类项即可;( 4)先去括号,再合并同类项即可.解答: 解:( 1) 7x+4( x 2﹣2)﹣ 2( 2x 2﹣ x+3 )=7x+4x 2﹣ 8﹣ 4x 2+2x ﹣6 =9x ﹣ 14;( 2) 4ab ﹣3b 2 2 2 2 2 )]﹣ [( a +b )﹣( a ﹣ b =4ab ﹣ 3b 2 2 2 2 2﹣ [a +b ﹣ a +b ]=4ab ﹣ 3b 2﹣ 2b 2 =4ab ﹣ 5b 2;( 3)( 3mn ﹣ 5m 2 )﹣( 3m 2﹣ 5mn )22=3mn ﹣ 5m ﹣3m +5mn=8mn ﹣ 8m 2;( 4) 2a+2(a+1)﹣ 3( a ﹣ 1)=2a+2a+2 ﹣ 3a+3 =a+5 .点评: 本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.4.化简2 2( 1) 2( 2a +9b ) +3 (﹣ 5a ﹣ 4b )32 3 2﹣2)( 2) 3( x +2x ﹣ 1)﹣( 3x +4x考点 : 整式的加减.专题 : 计算题.分析: ( 1)原式利用去括号法则去括号后,合并同类项即可得到结果;( 2)原式利用去括号法则去括号后,合并同类项即可得到结果.解答: 解:( 1)原式 =4a 2 2+18b ﹣ 15a ﹣ 12b=﹣ 211a +6b ;( 2)原式 =3x 3232+6x ﹣3﹣ 3x ﹣ 4x +2=2x 2﹣ 1.点评: 此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.5.( 2009?柳州)先化简,再求值: 3(x ﹣ 1)﹣( x ﹣ 5),其中 x=2.考点 : 整式的加减 —化简求值.分析: 本题应对方程去括号,合并同类项,将整式化为最简式,然后把 x 的值代入即可.解答: 解:原式 =3x ﹣ 3﹣ x+5=2x+2 ,当 x=2 时,原式 =2×2+2=6.点评: 本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.6.已知 x=5, y=3,求代数式 3( x+y ) +4( x+y )﹣ 6( x+y )的值.考点 : 整式的加减 —化简求值.分析: 先把 x+y 当作一个整体来合并同类项,再代入求出即可. 解答: 解:∵ x=5, y=3 ,∴ 3( x+y ) +4( x+y )﹣ 6( x+y ) =x+y =5+3 =8 .点评: 本题考查了整式的加减的应用,主要考查学生的计算能力,用了整体思想.7.已知 A=x 2﹣ 3y 2, B=x 2﹣ y 2,求解 2A ﹣ B .考点 : 整式的加减.分析: 直接把 A 、 B 代入式子,进一步去括号,合并得出答案即可.解答: 解: 2A ﹣ B=2 ( x 2﹣ 3y 2)﹣( x 2 ﹣y 2)22 2 2=2x﹣ 6y ﹣ x +y=x 2﹣ 5y 2.点评: 此题考查整式的加减混合运算,掌握去括号法则和运算的方法是解决问题的关键.228.若已知 M=x +3x ﹣ 5,N=3x +5,并且 6M=2N ﹣ 4,求 x .考点 : 整式的加减;解一元一次方程. 专题 : 计算题.分析: 把 M 与 N 代入计算即可求出x 的值. 22解答: 解:∵ M=x +3x ﹣ 5, N=3x+5,∴代入得: 6x 2+18x ﹣ 30=6x 2 +10﹣ 4, 解得: x=2.点评: 此题考查了整式的加减,熟练掌握运算法则是解本题的关键.9.已知 A=5a 2﹣ 2ab , B=﹣ 4a 2+4ab ,求:( 1) A+B ;( 2)2A ﹣B ;( 3)先化简,再求值: 3( A+B )﹣ 2( 2A ﹣ B ),其中 A= ﹣2, B=1 .考点 : 整式的加减;整式的加减 —化简求值.专题 : 计算题.分析: ( 1)把 A 与 B 代入 A+B 中计算即可得到结果;( 2)把 A 与 B 代入 2A ﹣B 中计算即可得到结果;( 3)原式去括号合并得到最简结果,把A 与B 的值代入计算即可求出值.解答: 22解:( 1)∵ A=5a ﹣ 2ab ,B= ﹣ 4a +4ab ,2 2 2∴ A+B=5a ﹣ 2ab ﹣ 4a +4ab=a +2ab ;2 2( 2)∵ A=5a ﹣ 2ab , B= ﹣ 4a +4ab , ∴ 2A ﹣B=10a 2﹣ 4ab+4a 2﹣4ab=14a 2﹣ 8ab ;( 3)原式 =3A+3B ﹣ 4A+2B= ﹣ A+5B ,把 A= ﹣ 2, B=1 代入得:原式 =2+5=7 .点评: 此题考查了整式的加减,熟练掌握运算法则是解本题的关键.10.设 a=14x ﹣ 6, b=﹣ 7x+3 ,c=21x ﹣ 1.( 1)求 a ﹣( b ﹣ c )的值;( 2)当 x= 时,求 a ﹣( b ﹣ c )的值.考点 : 整式的加减;代数式求值.专题 : 计算题.分析: ( 1)把 a , b , c 代入 a ﹣( b ﹣ c )中计算即可得到结果;( 2)把 x 的值代入( 1)的结果计算即可得到结果.解答: 解:( 1)把 a=14x ﹣ 6,b=﹣ 7x+3 ,c=21x ﹣ 1 代入得: a ﹣( b ﹣c )=a ﹣ b+c=14x ﹣6+7x ﹣ 3+21x ﹣ 1=42x ﹣ 10;( 2)把 x= 代入得:原式 =42× ﹣ 10=10.5﹣ 10=0.5.点评: 此题考查了整式的加减,以及代数式求值,熟练掌握运算法则是解本题的关键.11.化简求值:已知 a 、 b 满足: |a ﹣2|+( b+1 )2=0,求代数式 2( 2a ﹣ 3b )﹣( a ﹣ 4b )+2 (﹣ 3a+2b )的值.考点 : 整式的加减 —化简求值;非负数的性质:绝对值;非负数的性质:偶次方.专题 : 计算题.分析: 原式去括号合并得到最简结果,利用非负数的性质求出 a 与 b 的值,代入计算即可求出值.解答: 解:原式 =4a ﹣ 6b ﹣ a+4b ﹣ 6a+4b=﹣ 3a+2b ,2∵ |a ﹣ 2|+( b+1) =0 ,∴ a=2, b= ﹣1,则原式 =﹣6﹣ 2= ﹣ 8.点评: 此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.12.已知( x+1 ) 2 +|y ﹣ 1|=0,求 2(xy ﹣ 5xy 2)﹣( 3xy 2﹣ xy )的值.考点 : 整式的加减 —化简求值;非负数的性质:绝对值;非负数的性质:偶次方.分析: 因为平方与绝对值都是非负数,且(2, y ﹣ 1=0 ,解得 x , y 的值.再运用整式 x+1 ) +|y ﹣ 1|=0,所以 x+1=0 的加减运算,去括号、合并同类项,然后代入求值即可.解答: 解: 2( xy ﹣ 5xy 2)﹣( 3xy 2﹣ xy )=( 2xy ﹣ 10xy 2)﹣( 3xy 2﹣ xy )=2xy ﹣ 10xy 2﹣ 3xy 2+xy 2﹣ 10xy 2)=( 2xy+xy ) +(﹣ 3xy=3xy ﹣ 13xy 2,2∵( x+1 )+|y ﹣ 1|=0∴( x+1 )=0, y ﹣1=0 ∴ x= ﹣ 1,y=1. ∴当 x= ﹣1, y=1 时,223xy ﹣ 13xy =3×(﹣ 1) ×1﹣ 13×(﹣ 1)×1 =﹣ 3+13 =10 .答: 2( xy ﹣ 5xy 2)﹣( 3xy 2﹣ xy )的值为 10.点评: 整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.代入求值时要化简.。

北师大版七年级上册数学第三章整式及其加减单元测试卷(Word版,含答案)

北师大版七年级上册数学第三章整式及其加减单元测试卷(Word版,含答案)

第 1 页 共 6 页北师大版七年级上册数学第三章整式及其加减单元测试卷一、单选题(本大题共12小题,每小题3分,共36分)1.单项式334xy -的系数是( ) A .3 B .4 C .3- D .34- 2.下列去括号或添括号的变形中,正确的是( )A .2a -(3b -c )=2a -3b -cB .3a +2(2b -1)=3a +4b -1C .a +2b -3c =a +(2b -3c )D .m -n +a -b =m -(n +a -b )3.已知单项式13m a b +与13n b a --可以合并同类项,则m ,n 分别为( )A .2,2B .3,2C .2,0D .3,04.用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第①个图案中有9个正方形,第①个图案中有13个正方形,第①个图案中有17个正方形,此规律排列下去,则第①个图案中正方形的个数为( )A .32B .34C .37D .415.为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x 本,则购买乙种读本的费用为( )A .8x 元B .10(100)x -元C .8(100)x -元D .(1008)x -元6.若 P 和 Q 都是关于 x 的五次多项式,则 P Q + 是( )A .关于 x 的五次多项式B .关于 x 的十次多项式C .关于 x 的四次多项式D .关于 x第 2 页 共 6 页 的不超过五次的多项式或单项式7.下列关于“代数式42x y +”的意义叙述正确的有( )个.①x 的4倍与y 的2倍的和是42x y +;①小明以x 米/分钟的速度跑了4分钟,再以y 米/分钟的速度步行了2分钟,小明一共走了()42x y +米; ①苹果每千克x 元,橘子每千克y 元,买4千克橘子、2千克苹果一共花费()42x y +元.A .3B .2C .1D .08.下列说法正确的是( )A . 3xy π的系数是3B .3xy π的次数是3C . 223xy -的系数是23-D .223xy -的次数是2 9.乐乐在数学学习中遇到了神奇的“数值转换机”,按如图所示的程序运算,若输入一个有理数x ,则可相应的输出一个结果y .若输入x 的值为1-,则输出的结果y 为( )A .6B .7C .10D .1210.两个形状大小完全相同的长方形中放入4个相同的小长方形后,得到图①和图①的阴影部分,如果大长方形的长为m ,则图①与图①的阴影部分周长之差是( )A .2m -B .2mC .3m D .3m -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生做题前请先回答以下问题
问题1:什么是同类项?合并同类项法则是什么?
问题2:去括号法则是什么?
问题3:若关于的多项式合并同类项后不含项,则常数.
整式及其加减(去括号)专项训练(一)(北师
版)
一、单选题(共12道,每道8分)
1.化简的结果为( )
A. B.
C. D.
答案:C
解题思路:
先去括号,再画线合并同类项;
去括号时根据去括号法则:
括号前面是“+”,把括号和它前面的“+”去掉,括号里的各项符号都不改变;
括号前面是“-”,把括号和它前面的“-”去掉,括号里各项符号都要改变.
故选C.
试题难度:三颗星知识点:整式的加减
2.化简的结果为( )
A. B.
C. D.
答案:B
解题思路:
故选B.
试题难度:三颗星知识点:整式的加减
3.化简的结果为( )
A. B.
C. D.
答案:B
解题思路:
故选B.
试题难度:三颗星知识点:整式的加减
4.化简的结果为( )
A. B.
C. D.
答案:C
解题思路:
故选C.
试题难度:三颗星知识点:整式的加减
5.化简的结果为( )
A. B.
C. D.
答案:A
解题思路:
故选A.
试题难度:三颗星知识点:整式的加减
6.化简的结果为( )
A. B.
C. D.
答案:D
解题思路:
故选D.
试题难度:三颗星知识点:整式的加减
7.化简的结果为( )
A. B.
C. D.
答案:A
解题思路:
故选A.
试题难度:三颗星知识点:整式的加减
8.化简的结果为( )
A. B.
C. D.
答案:B
解题思路:
若括号前面既有系数,又是负号的时候,先根据乘法分配律把系数分配给括号里的每一项,再根据去括号法则去括号.
故选B.
试题难度:三颗星知识点:整式的加减
9.化简的结果为( )
A. B.
C. D.
答案:D
解题思路:
故选D.
试题难度:三颗星知识点:整式的加减
10.化简的结果为( )
A. B.
C. D.
答案:C
解题思路:
故选C.
试题难度:三颗星知识点:整式的加减
11.化简的结果为( )
A. B.
C. D.
答案:A
解题思路:
故选A.
试题难度:三颗星知识点:整式的加减
12.化简的结果为( )
A. B.
C. D.0
答案:C
解题思路:
故选C.
试题难度:三颗星知识点:整式的加减。

相关文档
最新文档