2021年专升本高数公式大全

合集下载

专升本高数公式大全

专升本高数公式大全

专升本高数公式大全1.二次函数的图像方程:f(x)=a(x-h)²+k2.平面直角坐标方程:Ax+By+C=03.二次曲线方程:Ax² + By² + Cxy + Dx + Ey + F = 04.圆的标准方程:(x-a)²+(y-b)²=r²5.椭圆的标准方程:(x-a)²/b²+(y-b)²/a²=16.双曲线的标准方程:(x-a)²/b²-(y-b)²/a²=17.抛物线的标准方程:(x-a)²=4p(y-b)8.三角函数的正余弦和差公式:(1) sin(A ± B)= sinAcosB ± cosAsinB(2) cos(A ± B) = cosAcosB ∓ sinAsinB(3) tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)9.三角函数的倍角公式:(1) sin2A = 2sinAcosA(2) cos2A = cos²A - sin²A(3) tan2A = (2tanA) / (1 - tan²A)10.三角函数的半角公式:(1) sin(A/2) = ±√[(1 - cosA) / 2](2) c os(A/2) = ±√[(1 + cosA) / 2](3) tan(A/2) = ±√[(1 - cosA) / (1 + cosA)]注:±的选取根据A的象限确定。

11.三角方程的化简公式:(1) sin²x + cos²x = 1(2) 1 + tan²x = sec²x(3) 1 + cot²x = csc²x12.导数的基本公式:(1) (cf(x))' = cf'(x)(2)(f(x)±g(x))'=f'(x)±g'(x)(3)(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)(4)(f(x)/g(x))'=[f'(x)g(x)-f(x)g'(x)]/[g(x)]²(5)(f(g(x)))'=f'(g(x))g'(x)(6)(f(x)⋅g(x)⋅h(x))'=f'(x)g(x)h(x)+f(x)g'(x)h(x)+f(x)g(x)h'( x)13.微分的基本公式:(1) dy = f'(x)dx(2) dy = dx/g'(y)(3) dy = p(x)dx + q(x)dx² + r(x)f'(x)14.积分的基本公式:(1) ∫cf(x)dx = c∫f(x)dx(2) ∫[f(x) ± g(x)]dx = ∫f(x)dx ± ∫g(x)dx(3) ∫f'(x)dx = f(x) + C(4) ∫f'(g(x))g'(x)dx = f(g(x)) + C15.牛顿-莱布尼兹公式:∫[a, b]f(x)dx = F(b) - F(a)注:其中F(x)为f(x)的一个原函数。

专升本高等数学公式定理大全

专升本高等数学公式定理大全

专升本高等数学公式定理大全一、导数相关公式和定理:1.基本导数公式:-常数函数导数为零:(k)'=0-幂函数导数:(x^n)'=n*x^(n-1)- 指数函数导数:(a^x)' = a^x * ln(a)- 对数函数导数:(log_a(x))' = 1 / (x * ln(a)) 2.常用导数公式:- sin(x)' = cos(x)- cos(x)' = -sin(x)- tan(x)' = sec^2(x)- cot(x)' = -csc^2(x)- sec(x)' = sec(x) * tan(x)- csc(x)' = -csc(x) * cot(x)- arcsin(x)' = 1 / sqrt(1 - x^2)- arccos(x)' = -1 / sqrt(1 - x^2)- arctan(x)' = 1 / (1 + x^2)3.高阶导数公式:-(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)-(f(g(x)))'=f'(g(x))*g'(x)-(f(x)/g(x))'=(f'(x)g(x)-f(x)g'(x))/g^2(x)4.微分中值定理:-罗尔定理:若函数在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则存在c∈(a,b),使得f'(c)=0。

-拉格朗日定理:若函数在[a,b]上连续,在(a,b)内可导,那么存在c∈(a,b),使得[f(b)-f(a)]/[b-a]=f'(c)。

-柯西中值定理:若函数u(x)和v(x)在[a,b]上连续,在(a,b)内可导,并且v'(x)≠0,那么存在c∈(a,b),使得[u(b)-u(a)]/[v(b)-v(a)]=u'(c)/v'(c)。

专升本高等数学公式全集

专升本高等数学公式全集

专升本高等数学公式(全)常数项级数:是发散的调和级数:等差数列:等比数列:nnn n qqq qq nn 1312112)1(32111112+++++=++++--=++++-级数审敛法:散。

存在,则收敛;否则发、定义法:时,不确定时,级数发散时,级数收敛,则设:、比值审敛法:时,不确定时,级数发散时,级数收敛,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n nn n nn n s u u u s U U u ∞→+∞→∞→+++=⎪⎩⎪⎨⎧=><=⎪⎩⎪⎨⎧=><=lim ;3111lim2111lim1211 ρρρρρρρρ。

的绝对值其余项,那么级数收敛且其和如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim )0,(+∞→+≤≤⎪⎩⎪⎨⎧=≥>+-+-+-+-n n n nn n n n u r r u s u u u u u u u u u u u绝对收敛与条件收敛:∑∑∑∑>≤-+++++++++时收敛1时发散p 级数: 收敛; 级数:收敛;发散,而调和级数:为条件收敛级数。

收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中111)1(1)1()1()2()1()2()2()1(232121p np nnn u u u u u u u u pnn n n幂级数:010)3(lim)3(1111111221032=+∞=+∞===≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x xx x x x x n n nn n nn n时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。

,其中时不定时发散时收敛,使在数轴上都收敛,则必存收敛,也不是在全,如果它不是仅在原点 对于级数时,发散时,收敛于 ρρρρρ函数展开成幂级数:+++''+'+===-+=+-++-''+-=∞→++nn n n n n n nn x n fx f x f f x f x R x f x x n fR x x n x fx x x f x x x f x f !)0(!2)0()0()0()(00lim )(,)()!1()()(!)()(!2)())(()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ一些函数展开成幂级数:)()!12()1(!5!3sin )11(!)1()1(!2)1(1)1(121532+∞<<-∞+--+-+-=<<-++--++-++=+--x n xxxx x x xn n m m m xm m mx x n n nm可降阶的高阶微分方程类型一:()()n y f x =解法(多次积分法):(1)()()n du u yf x f x dx-=⇒=⇒令多次积分求类型二:''(,')y f x y = 解法:'(,)dp p y f x p dx=⇒=⇒令一阶微分方程类型三:''(,')y f y y =解法:'(,)dp dp dy dp p y pf y p dxdy dxdy=⇒==⇒⇒令类型二类型四:)()('x Q y x p y =+若Q(X)等于0,则通解为⎰=-dxx p Ce y)((一阶齐次线性)。

高等数学专升本公式集合

高等数学专升本公式集合

高等数学专升本公式集合以下是高等数学专升本常用公式集合:1.导数公式:1)反函数求导:如果y=f(x) (x在某区间上连续、可导),f'(x)≠0,且存在f'(x)的逆函数,则y=f^(-1)(x)在对应的区间上可导,且有(f^(-1))'(x) = 1 / f'(f^(-1)(x));2)乘积法则:(uv)' = u'v + uv';3)商法则:(u/v)' = (u'v - uv') / v^2;4)链式法则:(F(g(x)))' = F'(g(x)) * g'(x),其中F(u)是u的原函数。

2.积分公式:1)基本积分公式:∫x^n dx = x^(n+1) / (n+1) + C (这里C是常数);2)分部积分法:∫u dv = uv - ∫v du;3)替换法:设x=g(t),则dx=g'(t) dt,将dx替换为g'(t) dt 来进行积分。

3.泰勒级数公式:1)常用泰勒级数展开:- e^x = 1 + x + x^2 / 2! + x^3 / 3! + ...;- sin x = x - x^3 / 3! + x^5 / 5! - ...;- cos x = 1 - x^2 / 2! + x^4 / 4! - ...;- ln(1+x) = x - x^2 / 2 + x^3 / 3 - ...。

4.极限公式:1)常用极限:- lim(x→0) (sin x / x) = 1;- lim(x→∞) (1 + 1/x)^x = e;- lim(x→a) (f(x))^g(x) = lim(x→a) e^(g(x) * ln(f(x)))。

5.级数公式:1)常用级数:-等比数列求和:∑(n=0)^(∞) ar^n = a / (1-r),其中|r|<1;-幂级数求和:∑(n=0)^(∞) a(n)x^n,其中a(n)是常数。

专升本数学公式总结

专升本数学公式总结

专升本数学公式总结数学是一门基础学科,为各个学科提供了坚实的数学基础。

在专升本考试中,数学是必考科目之一、为了帮助大家更好地备考数学,下面是一些常用的数学公式总结。

1.三角函数公式:-三角函数的关系:- $\sin^2x + \cos^2x = 1$- $\tan x = \frac{\sin x}{\cos x}$- $\cot x = \frac{\cos x}{\sin x}$- $\sec x = \frac{1}{\cos x}$- $\csc x = \frac{1}{\sin x}$-三角函数的和差化积公式:- $\sin(x \pm y) = \sin x\cos y \pm \cos x\sin y$- $\cos(x \pm y) = \cos x\cos y \mp \sin x\sin y$- $\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x\tan y}$2.平面几何公式:-点到直线距离:- $d = \frac{,Ax + By + C,}{\sqrt{A^2 + B^2}}$-点到平面距离:- $d = \frac{,Ax + By + Cz + D,}{\sqrt{A^2 + B^2 + C^2}}$ -直线的斜率:- $k = \frac{y_2 - y_1}{x_2 - x_1}$-圆的面积和周长:- 面积: $S = \pi r^2$- 周长: $C = 2\pi r$3.解析几何公式:-两点间距离公式:- $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$-点到直线距离公式:- $d = \frac{,Ax + By + C,}{\sqrt{A^2 + B^2}}$-直线的斜率公式:- $k = \frac{y_2 - y_1}{x_2 - x_1}$-两条直线的夹角公式:- $\tan \theta = \frac{k_2 - k_1}{1 + k_1k_2}$-圆的标准方程:-$(x-h)^2+(y-k)^2=r^2$4.概率与统计公式:-排列公式:- $A_n^m = \frac{n!}{(n-m)!}$-组合公式:- $C_n^m = \binom{n}{m} = \frac{n!}{m!(n-m)!}$-随机事件的概率:- $P(A \cap B) = P(A)P(B,A)$- $P(A \cup B) = P(A) + P(B) - P(A \cap B)$-$P(A')=1-P(A)$-期望与方差:- 期望: $E(X) = \sum_{i=1}^n x_iP(X=x_i)$- 方差: $Var(X) = \sum_{i=1}^n (x_i - E(X))^2P(X=x_i)$5.解方程公式:-一元一次方程:- $ax + b = 0$,解为$x = -\frac{b}{a}$-一元二次方程:- $ax^2 + bx + c = 0$,解为$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$-二元一次方程组:- $ax + by = c$- $dx + ey = f$- 解为$x = \frac{ce - bf}{ae - bd}$,$y = \frac{af - cd}{ae - bd}$6.数列与数列极限:-等差数列通项公式:-$a_n=a_1+(n-1)d$-等比数列通项公式:- $a_n = a_1 \cdot q^{n-1}$-数列极限:- 如果$\displaystyle\lim_{n\to\infty}a_n = a$,则称数列$\{a_n\}$收敛于$a$。

专升本高数公式大全总结

专升本高数公式大全总结

专升本高数公式大全总结以下是一些常用的高数公式总结:1. 导数公式:- 基本公式:$(c)^n = ncx^{n-1}$,其中c为常数,n为指数,x为变量。

- 基本函数的导数:$sinx' = cosx, cosx' = -sinx, tanx' = sec^2x, cotx' = -csc^2x, secx' = secxtanx, cscx' = -cscxcotx$。

2. 积分公式:- 基本公式:$\int f'(x)dx = f(x) + C$,其中C为常数。

- 基本函数的不定积分:$\int sinxdx = -cosx + C, \int cosxdx = sinx + C, \int tanxdx = -ln|cosx| + C$。

3. 三角函数公式:- 正弦定理:$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2R$,其中a、b、c为三角形的边长,A、B、C为对应角,R为外接圆半径。

- 余弦定理:$c^2=a^2+b^2-2abcosC$。

- 正弦二倍角公式:$sin2x=2sinxcosx$。

- 余弦二倍角公式:$cos2x=cos^2x-sin^2x=2cos^2x-1=1-2sin^2x$。

4. 极限公式:- 基本公式:$\lim_{x\to c}f(x) = f(c)$,其中c为常数。

- 乘法法则:$\lim_{x\to c}[f(x)g(x)] = \lim_{x\to c}f(x) \cdot\lim_{x\to c}g(x)$。

- 除法法则:$\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{\lim_{x\to c}f(x)}{\lim_{x\to c}g(x)}$,其中$\lim_{x\to c}g(x) \neq 0$。

5. 级数公式:- 等比数列求和公式:$S_n = \frac{a(1-q^n)}{1-q}$,其中S_n为前n项和,a为首项,q为公比。

专升本数学公式汇总

专升本数学公式汇总

专升本数学公式汇总在专升本的数学学习中,掌握各类公式是解题的关键。

下面为大家汇总了一些重要的数学公式,希望能对大家的学习有所帮助。

一、函数部分1、幂函数:$y = x^a$ ($a$为常数)2、指数函数:$y = a^x$ ($a > 0$且$a ≠ 1$)指数运算法则:$a^m × a^n = a^{m + n}$$(a^m)^n = a^{mn}$$a^{m} =\frac{1}{a^m}$3、对数函数:$y =\log_a x$ ($a > 0$且$a ≠ 1$)对数运算法则:$\log_a (MN) =\log_a M +\log_a N$$\log_a \frac{M}{N} =\log_a M \log_a N$$\log_a M^n = n\log_a M$换底公式:$\log_a b =\frac{\log_c b}{\log_c a}$二、三角函数部分1、基本关系$\sin^2\alpha +\cos^2\alpha = 1$$\tan\alpha =\frac{\sin\alpha}{\cos\alpha}$2、诱导公式$\sin (\alpha) =\sin\alpha$$\cos (\alpha) =\cos\alpha$$\sin (\pi \alpha) =\sin\alpha$$\cos (\pi \alpha) =\cos\alpha$$\sin (\pi +\alpha) =\sin\alpha$$\cos (\pi +\alpha) =\cos\alpha$3、和差公式$\sin (\alpha +\beta) =\sin\alpha\cos\beta +\cos\alpha\sin\beta$$\sin (\alpha \beta) =\sin\alpha\cos\beta \cos\alpha\sin\beta$$\cos (\alpha +\beta) =\cos\alpha\cos\beta \sin\alpha\sin\beta$$\cos (\alpha \beta) =\cos\alpha\cos\beta +\sin\alpha\sin\beta$4、二倍角公式$\sin 2\alpha = 2\sin\alpha\cos\alpha$$\cos 2\alpha =\cos^2\alpha \sin^2\alpha = 2\cos^2\alpha 1 = 1 2\sin^2\alpha$$\tan 2\alpha =\frac{2\tan\alpha}{1 \tan^2\alpha}$5、半角公式$\sin^2\frac{\alpha}{2} =\frac{1 \cos\alpha}{2}$$\cos^2\frac{\alpha}{2} =\frac{1 +\cos\alpha}{2}$$\tan\frac{\alpha}{2} =\frac{1 \cos\alpha}{\sin\alpha} =\frac{\sin\alpha}{1 +\cos\alpha}$三、导数部分1、基本导数公式$(x^n)'= nx^{n 1}$$(\sin x)'=\cos x$$(\cos x)'=\sin x$$(\ln x)'=\frac{1}{x}$$(e^x)'= e^x$2、导数的四则运算$(u ± v)'= u' ± v'$$(uv)'= u'v + uv'$$\left(\frac{u}{v}\right)'=\frac{u'v uv'}{v^2}$($v ≠ 0$)3、复合函数求导法则设$y = f(u)$,$u = g(x)$,则复合函数$y = fg(x)$的导数为:$y' = f'g(x) \cdot g'(x)$四、积分部分1、基本积分公式$\int x^n dx =\frac{1}{n + 1}x^{n + 1} + C$ ($n ≠ -1$)$\int \sin x dx =\cos x + C$$\int \cos x dx =\sin x + C$$\int \frac{1}{x} dx =\ln |x| + C$$\int e^x dx = e^x + C$2、定积分的性质$\int_a^b kf(x) dx = k\int_a^b f(x) dx$ ($k$为常数)$\int_a^b f(x) ± g(x) dx =\int_a^b f(x) dx ±\int_a^b g(x) dx$$\int_a^b f(x) dx =\int_a^c f(x) dx +\int_c^b f(x) dx$五、向量部分1、向量的加减法:$\overrightarrow{a} ±\overrightarrow{b} =(x_1 ± x_2, y_1 ± y_2)$($\overrightarrow{a} =(x_1, y_1)$,$\overrightarrow{b} =(x_2, y_2)$)2、向量的数量积:$\overrightarrow{a} \cdot \overrightarrow{b} =|\overrightarrow{a}||\overrightarrow{b}|\cos\theta = x_1x_2 + y_1y_2$ ($\theta$为两向量的夹角)六、立体几何部分1、长方体体积:$V = abc$ ($a$、$b$、$c$分别为长方体的长、宽、高)2、正方体体积:$V = a^3$ ($a$为正方体的棱长)3、圆柱体体积:$V =\pi r^2h$ ($r$为底面半径,$h$为高)4、圆锥体体积:$V =\frac{1}{3}\pi r^2h$ ($r$为底面半径,$h$为高)七、概率部分1、古典概型概率:$P(A) =\frac{m}{n}$($A$为事件,$m$为事件$A$包含的基本事件个数,$n$为基本事件总数)2、条件概率:$P(B|A) =\frac{P(AB)}{P(A)}$($P(AB)$为事件$A$和事件$B$同时发生的概率)以上只是专升本数学中的一部分重要公式,大家在学习过程中要理解公式的推导过程,多做练习,熟练掌握这些公式的应用。

专升本数学必考公式大全

专升本数学必考公式大全

专升本数学必考公式大全
以下是一些专升本数学考试中常用的公式:
1. 平方差公式:(a±b)² = a² ± 2ab + b²
2. 二次方程的根公式:对于 ax² + bx + c = 0,根的公式为 x = [-b ± √(b² - 4ac)] / 2a
3. 三角函数和三角恒等式:
- 正弦定理:a/sinA = b/sinB = c/sinC
- 余弦定理:c² = a² + b² - 2abcosC
- 正弦恒等式:sin(A ± B) = sinAcosB ± cosAsinB
- 余弦恒等式:cos(A ± B) = cosAcosB ∓ sinAsinB
4. 指数与对数运算:
- a^x = b,则x = log(a, b)。

其中,log(a, x)表示以a为底,x
的对数。

- 对数公式:log(a*b) = loga + logb;log(a/b) = loga - logb
5. 概率公式:
- 事件A的概率:P(A) = n(A) / n(S),其中n(A)表示事件A
的样本点个数,n(S)表示样本空间的样本点个数。

- 事件A和事件B同时发生的概率:P(A∩B) = P(A) * P(B|A),其中P(B|A)表示在事件A发生的条件下,事件B发生的概率。

- 事件A和事件B至少一个发生的概率:P(A∪B) = P(A) +
P(B) - P(A∩B)
这只是一些常用的数学公式,专升本数学考试还涵盖其他各个分支的知识,建议针对具体考试大纲进行深入学习和准备。

专升本高等数学公式大全

专升本高等数学公式大全

专升本高等数学公式大全1.极限公式:- $\lim\limits_{x\to a}(c)=c$,常数函数的极限等于常数c- $\lim\limits_{x\to a}(x)=a$,自变量x的极限等于自变量x的值a- $\lim\limits_{x\to a}(x^n)=a^n$,幂函数的极限等于它的自变量的值的n次幂- $\lim\limits_{x\to a}(c\cdot f(x))=c\cdot\lim\limits_{x\to a}(f(x))$,常数与函数的乘积的极限等于常数与函数极限的乘积- $\lim\limits_{x\to a}(f(x)+g(x))=\lim\limits_{x\toa}(f(x))+\lim\limits_{x\to a}(g(x))$,函数和的极限等于函数极限的和- $\lim\limits_{x\to a}(f(x)-g(x))=\lim\limits_{x\toa}(f(x))-\lim\limits_{x\to a}(g(x))$,函数差的极限等于函数极限的差- $\lim\limits_{x\to a}(f(x)\cdot g(x))=\lim\limits_{x\to a}(f(x))\cdot \lim\limits_{x\to a}(g(x))$,函数积的极限等于函数极限的积- $\lim\limits_{x\toa}(\frac{f(x)}{g(x)})=\frac{\lim\limits_{x\toa}(f(x))}{\lim\limits_{x\to a}(g(x))}$,函数商的极限等于函数极限的商(如果分母函数不等于0)2.微分和导数公式:- $y=f(x)$,则$dy=f'(x)\cdot dx$,微分形式为微分=导数乘以微小增量-$(c)'=0$,常数的导数等于0- $(x^n)'=nx^{n-1}$,幂函数的导数等于自变量的幂次减1再乘以原来的幂次-$(e^x)'=e^x$,指数函数的导数等于指数函数本身- $(\ln x)'=\frac{1}{x}$,自然对数函数的导数等于1除以自变量3.积分公式:- $\int c\,dx=cx$- $\int x^n\,dx=\frac{x^{n+1}}{n+1}+C$,幂函数的不定积分等于自变量的幂次加1再除以幂次加1再加上常数C- $\int e^x\,dx=e^x+C$,指数函数的不定积分等于自身再加上常数C- $\int \frac{1}{x}\,dx=\ln,x,+C$,自然对数函数的不定积分等于自然对数绝对值再加上常数C。

专升本高数公式大全

专升本高数公式大全

专升本高数公式大全1.初等函数的性质- 一次函数的表达式:y = kx + b,其中k为斜率,b为截距。

- 二次函数的表达式:y = ax² + bx + c,其中a、b、c为常数。

-绝对值函数的表达式:y=,x。

2.导数与微分的基本公式- 函数极限的定义:lim(x→a) f(x) = L。

- 导数的定义:f'(x) = lim(Δx→0) [f(x+Δx) - f(x)] / Δx。

-基本导数公式:- (1) 若f(x) = xⁿ,则f'(x) = nxⁿ⁻¹。

-(2)若f(x)=eˣ,则f'(x)=eˣ。

- (3) 若f(x) = sin(x),则f'(x) = cos(x)。

- (4) 若f(x) = cos(x),则f'(x) = -sin(x)。

- (5) 若f(x) = ln(x),则f'(x) = 1/x。

3.极限的基本性质-极限的四则运算:- (1) 若lim(x→a) f(x) = A,lim(x→a) g(x) = B,则lim(x→a) [f(x)±g(x)] = A±B。

- (2) 若lim(x→a) f(x) = A,lim(x→a) g(x) = B,则lim(x→a) [f(x)g(x)] = AB。

- (3) 若lim(x→a) f(x) = A,lim(x→a) g(x) = B(B≠0),则lim(x→a) [f(x)/g(x)] = A/B。

- (4) 若lim(x→a) f(x) = A,则lim(x→a) [c·f(x)] = c·A。

4.函数的极值与最值-函数的极值:设f(x)在x₀处有定义,称f(x)在x₀处有极小值,如果存在εₒ>0,使得当0<,x-x₀,<εₒ时,恒有f(x)≥f(x₀)。

-函数的最值:设f(x)在区间I上有定义,x₀∈I,如果对于任意x∈I,恒有f(x)≥f(x₀),则称f(x)在x₀处有最小值。

专升本高等数学公式全集

专升本高等数学公式全集

专升本高等数学公式(全)常数项级数:2)1(32111112nn n q q q q q nn +=++++--=++++- 等差数列:等比数列: 常见数列的前n 项和:)1(21321+=++++n n n2)12(531n n =-++++ )14(31)12(53122222-=-++++n n n)12)(1(613212222++=++++n n n n )2)(1(31)1(433221++=+++⋅+⋅+⋅n n n n n111)1(1431321211+-=+++⋅+⋅+⋅n n n'''0y py q ++=(二阶线性常系数齐次微分方程)解法(特征方程法):21,20p q λλλ++=⇒=(一)122121240x x p q y c e c e λλλλ∆=->⇒≠⇒=+(二)12120()x y c c x e λλλλ∆=⇒==⇒=+(三)12120,(cos sin )x i i y e c x c x αλαβλαβββ∆<⇒=+=-⇒=+1.导数公式:x x 2sec )(tan ='x x 2c s c )(c o t -=' x x x c o t c s c )(c s c -=' x x x t a n s e c )(s e c =' x x a a a ∙='ln )( x x e e =')( a x x a ln 1)(log ='211)(a r c s i n x x -=' 211)(a r c c o s x x --=' 211)(arctan x x +=' 211)c o t (x x a r c +-=' x x f x x f x f x ∆'-∆+'=''→)()(l i m)(0基本积分表:三角函数的有理式积分:两个重要极限:常用三角函数公式:x x 22sec tan 1=+x x 22c s c c o t 1=+x xx 2tan 1tan 22tan -=2cos 12sin 2x x -=2c o s 12c o s 2x x +=x x x s i n c o s 12t a n -=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ...590457182818284.2)11(lim 1sin lim==+=∞→→e xx xx x x·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ中值定理与导数应用:拉格朗日中值定理。

专升本高数公式大全

专升本高数公式大全

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xx x x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

专升本高等数学必备公式(修订版)

专升本高等数学必备公式(修订版)

(3)
1 x2
dx
1 x
C
(5)
1dx x
ln
x
C
指数函数:(6)
a
x dx
ax ln a
C
1)
(4) x 1 2x
(6) (e x ) e x (8) (ln x) 1
x (10) (cos x) sin x
(12) (cot x) csc2 x
(14) (csc x) csc x cot x
(6)1 tan 2 x sec2 x
(7) 1 cot 2 x csc2 x
(8) sin x 1 csc x
(10) tan x 1 cot x
(9) cos x 1 sec x
4、等价无穷小(11 个):
当 0时: sin~
arcsin~
tan~
e 1 ~
ln(1) ~
1 cos~ 2 2
(16) sec xdx ln sec x tan x C
(17) csc xdx ln csc x cot x C
(18) 1 dx arcsin x C
1 x2
(20)
1
1 x
2
dx
arctan
x
C
(19)
1 dx arcsin x C
a2 x2
a
(21)
a2
1
x2 dx
1 a
arctan
x a
C
(22)
1 dx ln x x2 a2 C x2 a2
(23)
1 dx ln x x2 a2 C x2 a2
(24)
x2
1
a2
dx
1 ln 2a

专升本数学公式汇总

专升本数学公式汇总

专升本高等数学公式一、求极限方法:1、当x 趋于常数0x 时的极限:02200x x lim(ax bx c)ax bx c →++=++;00000ax bcx d ax b limcx d cx d x x ++≠+−−−−−−→++→当; 00000cx d ,ax b ax b lim cx dx x +=+≠+−−−−−−−−−−−→∞+→当但; 2220020ax bx f cx dx e ,ax bx f lim x x cx dx e++++=++=−−−−−−−−−−−−−−→→++当且可以约去公因式后再求解。

2、当x 趋于常数∞时的极限:3、可以使用洛必达发则:0f (x)f (x)x f (x)g(x)lim lim g(x)g (x)x x '→∞→∞−−−−−−−−−−−−−−−→'→∞→∞当时,与都或;对0x →也同样成立。

而且,只要满足条件,洛必达发则可以多次使用。

二、求导公式:1、0c '=;2、1n n (x )nx -'=;3、x x (a )a lnx '=;4、x x (e )e '=;5、1(log x)a xlna'=6、1(ln x)x '=;7、(sin x)cos x '=;8、(cos x)sin x '=-;9、2(tan x)sec x '=10、2(cot x)csc x '=-;11、(sec x)sec xtan x '=;12、(cscx)cscxcot x '=- 13、(arcsin x)'=;14、(arccos x)'=;15、211(arctan x)x '=+;16、211(arccot x)x'=-+;17、(shx)chx '=;18、(chx)shx '=;19、2(thx)ch x -'=;20、(arshx)'=;21、(archx)'=;22、211(arthx)x'=-; 三、求导法则:(以下的5、7、8三点供高等数学本科的学员参阅) 1、(u(x)v(x))u (x)v (x)'''±=±;2、(kv(x))kv (x)''=; 3、(u(x)v(x))v(x)u (x)v (x)u(x)'''⋅=+;4、2u(x)u (x)v(x)v (x)u(x)()v(x)v (x)''-'=4、复合函数y f[]ϕ=(x )的求导:f []=f (u)u (x),u=(x)ϕϕ'''(x )其中。

专升本高等数学公式全集

专升本高等数学公式全集

专升本高等数学公式全集1.极限与连续- 极限的定义:对于函数f(x),当x趋于无穷大时,如果存在常数L,使得对于任意给定的正数ε,总存在正数δ,当,x-a,<δ时,有,f(x)-L,<ε,则称函数f(x)在点a处极限为L,记为lim(x→a)f(x)=L。

- 极限运算法则:设lim(x→a)f(x)=A,lim(x→a)g(x)=B,则lim(x→a)(f(x)±g(x))=A±B,lim(x→a)f(x)g(x)=A·B,lim(x→a)f(x)/g(x)=A/B(其中B≠0)。

- 无穷小量:若lim(x→∞)f(x)=0,则称函数f(x)为当x趋于无穷大时的无穷小量。

- 利用洛必达法则可以求解极限:“若lim(x→a)f(x)=0,lim(x→a)g(x)=0,且lim(x→a)f'(x)/g'(x)存在(或为∞),则lim(x→a)f(x)/g(x)=lim(x→a)f'(x)/g'(x)”。

2.微分学- 导数定义:函数f(x)在点x=a处的导数定义为:lim(h→0)(f(a+h)-f(a))/h,记为f'(a),也可表示为dy/dx或y'。

- 基本导数法则:(1)(c)'=0,其中c为常数;(2)(x^n)'=nx^(n-1),其中n为任意实数;(3)(e^x)'=e^x,(a^x)'=a^xlna,其中a>0且a≠1;(4)(lnx)'=1/x,(log_a(x))'=1/(xlna),其中a>0且a≠1-高阶导数:函数f(x)的n阶导数记作f^(n)(x),其中n为正整数,可从一阶导数f'(x)重复求导得到。

- 隐函数求导:对于方程F(x,y)=0,若能求出y',则有dy/dx=-F_x/F_y(其中F_x和F_y分别表示F关于x、y的偏导数)。

2021年专升本高等数学公式全集

2021年专升本高等数学公式全集

专升本高等数学公式(全)常数项级数:等比数列A + c/ + q2+…+ =口11一9等差数列1 + 2 + 3 +…+料=("+ 1加2调和级数』+ ] + ;丄是发散的2 3 n级数审敛法:1、正项级数的审敛------- 根植审敛法(柯西为别法):上<1时,级数收敛设:° =辄皿贝ijJ p > ml,级数发散P = 1时,不确定2、比值审敛法:|><1时,级数收敛设:贝Ijj p > in寸,级数发散"TOO U91p = 1H寸 > 不确定3、定义法:»=//, +“2 + •…+ "jlim »存在,则收敛:否则易枚。

交错级麴“ -“2 +心-”4 +••(或-+“2一均+…上/! >0)的审敛法------ 莱布尼兹定理:U… > U...如果交错级数满足^爲;0'那么级数收敛且其和5,其余项渊绝对值Jl-W n绝对收敛与条件收敛: ⑴%+”2 +…+ "” +…,其中"“为任意实数;(2)|州 + |“2| + 附+…+ |"”| +…如果(2)收敛,则(1)肯定收敛,且称为绝対I攵敛级数; 如果(2)发散,而(1)收敛,贝IJ称(1)为条件收敛级数。

调和级数込+发散,而为字收敛:级数艺十收敛:/p<l时发散>1时收敛祸级数:,I ”/ \x\ < 1 时,收敛,----1 + X + JC + JT + …+ X + … I 1 1 1 -X\|x| > 1时,发散对丁•级数(3)q)+ a t x + a2x2 + ■ • ■ + a n x n+…,如果它不是仅在原点I攵敛,也不是在全/|x| < R时收敛数轴上都收敛,则必冇在尺,使I |A-|>R时发散,其中尺称为收敛半径。

\卜| =尺时不定/pHOH寸,R =丄求收敛半径的方法:设加| = ° 其中坷,是(3)的系数,则(;p = 0H寸,R = +oo ” T 爲1 \ p = +8时,R = o函数展开成幕级数:函数展开成泰勒级数:f(x) = f(x0)(x-x0)+ ^ ^°\x-x0)2+ …+ _ (x-xj + …2! n\£(n+l)/>x余项:R”=一(x-x o r\/(x)可以展开成泰勒级数航要条件是dim亿=0(/? + !)! 心00心=011寸即为麦克劳林公式:.f(X)= f(0) + .厂(0)x + +…+ / 1丫))対+…2! 77!某些函数展开成胳级数:八、卿 , ni(m— 1) ■>加("2-1)…(“2 —刃+ 1).. 彳■(l + x)m=\ + mx+------ ----- JT + …+ ---- ------------------------ + …(一1 vx vl)2! /?!V3 *5 r2n-lsin x = x--—+ —------- + (一1)"7 —----- + … (-co v x v+8)3! 5! (2,?-!)!可降阶高阶微分方程类型一:y(,,)=fM解法(多次积分法):令"=厂"=> 半= /(x)=>多次积分求/(x) dx类型二:y" = /(x,y')解法:令“ =y1 => — = f(x. p)=>—阶微分方程dx类型三:y" = /(y,y‘)解法:令卩=)』=>字=字斗=卩半■n/(),,〃)=>类型二dx dy dx ay类型四: y + pWy = Q(x)若Q(X)等于0,则通解为y = (一阶齐次线性)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数公式:基本积分表:三角函数有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ某些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ中值定理与导数应用:拉格朗日中值定理。

时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。

:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:ααααααααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==空间解析几何和向量代数:..sin ,cos ,,cos )()()(222222221221221221r w v b a c b b b a a a kj ib ac b b b a a a b a b a b a b a b a b a b a b a z z y y x x M Md zyxz y xzy x z y x zz y y x x z z y y x x⨯=⋅==⨯=++⋅++++=++=⋅=⋅-+-+-==例:线速度:两向量之间的夹角:是一个数量点的距离:空间θθθ(马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,,22211};,,{,1302),,(},,,{0)()()(1222222222222222222220000002220000000000=+-=-+=+=++⎪⎩⎪⎨⎧+=+=+===-=-=-+++++==++=+++==-+-+-cz b y a x c z b y a x q p z q yp x c z b y a x ptz z nty y mtx x p n m s t p z z n y y m x x C B A DCz By Ax d cz b y a x D Cz By Ax z y x M C B A n z z C y y B x x A多元函数微分法及应用zy z x y x y x y x y x F F y zF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zu dy y u dx x u du dy y z dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22微分法在几何上应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ重积分及其应用:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰++-=++=++==>======⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+==='Dz Dy Dx z y x Dy Dx DDy Dx DD Da y x xd y x fa F a y x yd y x f F a y x xd y x f F F F F F a a M z xoy d y x x I y d y x y I x d y x d y x y MM y d y x d y x x MMx dxdy y z x z A y x f z rdrd r r f dxdy y x f 23222232222322222D22)(),()(),()(),(},,{)0(),,0,0(),(,),(),(),(,),(),(1),()sin ,cos (),(σρσρσρσρσρσρσρσρσρθθθ, , ,其中:的引力:轴上质点平面)对平面薄片(位于轴 对于轴对于平面薄片的转动惯量: 平面薄片的重心:的面积曲面常数项级数:是发散的调和级数:等差数列:等比数列:nn n n q q q q q nn 1312112)1(32111112+++++=++++--=++++-级数审敛法:散。

存在,则收敛;否则发、定义法:时,不确定时,级数发散时,级数收敛,则设:、比值审敛法:时,不确定时,级数发散时,级数收敛,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n n n n n n n s u u u s U U u ∞→+∞→∞→+++=⎪⎩⎪⎨⎧=><=⎪⎩⎪⎨⎧=><=lim ;3111lim 2111lim 1211 ρρρρρρρρ。

相关文档
最新文档