超经典几何画板教程

合集下载

最好的几何画板教程

最好的几何画板教程

最好的⼏何画板教程第⼀篇画板⼊门第⼀章⽤⼯具框作图........................................ 3)(第⼆章⽤构造菜单作图.. (19)第三章⽤变换菜单作图 (33)第四章动作按钮的制作 (51)第五章智能化菜单详解 (58)第六章认识奇妙的参数 (64)第⼆篇例赏析例1 眩⽬的动画彩轮 (69)例2 漂亮的勾股树 (70)例3 ⼀个梦幻万花筒 (72)例4闪烁效果的制作 (75)第三篇精选附录附录⼀迭代帮助⽂件 (79)附录⼆平⾯⼏何著名定理 (87)附录三圆锥曲线教材培训 (93)页脚「回⽬录第⼀章:⽤⼯具框作图通过本章,你应1、熟练使⽤绘图⼯具作“点”、“线”、“圆”2、学会在⼏何对象上画“点”、“线”、“圆”3、学会⽤绘图⼯具构造交点、等圆、直⾓等的构造技巧4、学会“点”、“线”、“圆”的标签的显⽰和隐藏5、理解⽤⼏何画板绘图应⾸先考虑对象间的⼏何关系第⼀节⼏何画板的启动和绘图⼯具的介绍1、启动⼏何画板:单击 Windows98桌⾯左下⾓的“开始”按钮,依次:选择“程序”⼧选择“⼏何画板4.03”,单击即可启动⼏何画板。

进⼊⼏何画板系统后的屏幕画⾯如下图所⽰⼏何画板的窗⼝是不是和其他 Windows 应⽤程序窗⼝⼗分类似?有控制菜单、最⼤及标题栏,画板窗⼝的左侧是画板⼯具栏,画板的右边和下边可以有滚动条可以使⼩画板处理更⼤的图形。

画板的左侧是画板⼯具箱,把光标移动到⼯具的上⾯,⼀会⼉就会显⽰⼯具的名称,看看它们分别是什么?它们分别是【选择箭头⼯具】、【点⼯具】、【圆规⼯具】、【直尺⼯具】、【⽂本⼯具】、【⾃定义画图⼯具】。

和⼀般的绘图软件相⽐,你会不会感觉它的⼯具是不是少了点?⼏何画板的主要⽤途之⼀是⽤来绘制⼏何图形。

⽽⼏何图形的绘制,我们通常是⽤直尺和圆规,它们的配合⼏乎可以画出所有的欧⽒⼏何图形。

因为任何欧⽒⼏何图形最后都可归结为“点”、“线”、“圆”。

几何画板教程

几何画板教程

4.03几何画板实例教程南县一中数学教研组实例1.动画按钮的产生内容:一条线段的一个端点在一个定圆上运动(按钮控制),演示线段中点的轨迹.操作步骤:1.画圆;2.画线段CD,其一端点C在圆上.只选取点C,再击编辑/动作类按钮/动画;3.只选CD,单击[作图]中点E;4.选择点E,单击/显示/追踪中点;5.点击运动点按钮,动画显示点E的踪迹实例2.几何对象的轨迹内容:线段CD的一个端点在圆A 上运动,线段CD的垂直平分线与直线AC的交点的轨迹. 操作步骤:1.画圆A,隐藏B;2.画线段CD,C点在圆上,点D在圆内;3.选择CD,单击/作图/中点/E;4.作CD的垂直平分线,作直线AC,两直线交点F;5.同时选择C,F,/作图/轨迹.此时出现椭圆.思考:你能动态显示椭圆踪迹?实例3.椭圆定义画椭圆内容:平面内到两定点距离为定值的点的集合. 制作步骤:1.画直线AB;2.在直线上画点C,D,E;3.在直线AB下方画线段FG(FG<CE);4.作线段CD和DE;5.以F为圆心,CD 为半径,画圆,以G为圆心,DE为半径画.两圆的交点H,I,连接HF,HG;6.选择H,I,/显示/追踪交点;7.拖动点D,观察踪迹.思考:如何作出双曲线?FEABDC12实例4.定义在区间上的函数图象 内容:画出函数212y x =的一段图象制作步骤:1. 建立直角坐标系;2. 在x 轴上取点C,D,连接线段CD,点击/构造/对象上的点/E,3. 度量E 点的横坐标,/计算/0.5x 2值,4. /图表/绘制点,出现点F.5. 选择E,F/作图/轨迹. 实例5.画函数图象内容:建立直角坐标系,画函数3sin 23y x π⎛⎫=+ ⎪⎝⎭的图象制作步骤:1./图表/画新函数图象/2.在编辑栏内,依次键入3sin 23x π⎛⎫**+⎪⎝⎭,点击/确定; 3.在屏幕上出现函数图象,并把原点改为O,思考:画出下列函数图象:()()221log ;2|23|.y x y x x ==--实例6.随图象移动而改变颜色内容:制作函数()2y x t =-的图象,当t 变化图形移动时,图形颜色也变化. 制作步骤:1. 打开计算器,输入”2”(可以是任意的),坐标系;2. 在x 轴上画一点A,测量该点的横坐标;输入(x-t)2,确定后,得(x-t)2的值;3. 选择点的横,纵坐标/作图/描点C;4. 选择点D 与参数/显示/颜色/确定.此时C 变为C ’;5. 选择A,C,点/作图/轨迹/得函数图象,选择曲线,设粗线条;/显示/运动控制按钮; 6. 选择参数与开始按钮,出现效果.思考:画出函数sin()y x ω=的图象,并用ω控制图象颜色变化.3实例7.内容:作为参数a,b,c,y=a 2x+bx+c 的图象 操作步骤: 1. 建立坐标系,与单位点;2. 在X 出三点C,D,E,三条与X 线,3. 分别测取三点F,G ,H 纵坐标,并改为a,b,c,连接CF,DG,EH,隐藏点C,D,E,用文本工具改F,G,H 为A,B,C; 4. 打开函数编辑器,编写”a*x^2+b*x+c”,点击/确定/出现函数图象.调动A,B,C 5. 编辑四个文本块的函数。

《几何画板教程》课件

《几何画板教程》课件

《几何画板教程》课件目录1. 几何画板简介 (2)1.1 什么是几何画板 (3)1.2 几何画板的界面介绍 (4)2. 基本绘图工具 (5)2.1 点、线、圆、弧等基本图形绘制 (7)2.2 图形的编辑与操作 (8)3. 基本变换 (9)3.1 平移、旋转、缩放等基本变换操作 (10)3.2 利用坐标系统进行变换 (11)4. 图形的度量与计算 (12)4.1 测量长度、面积、体积等 (13)4.2 图形的代数运算 (14)5. 几何图形的动画与动态效果 (16)5.1 动画制作基础 (17)5.2 制作动态几何模型 (18)6. 交互式教学功能 (20)6.1 创建交互式课件 (21)6.2 利用教学模板进行教学设计 (22)7. 几何图形的性质与证明 (24)7.1 探究图形的性质 (25)7.2 使用几何画板进行数学证明 (27)8. 几何画板在教学中的应用 (28)8.1 制作几何教学课件 (29)8.2 利用几何画板提高教学效果 (31)9. 几何画板教案设计 (33)9.1 如何设计几何画板教案 (33)9.2 教案示例分析 (35)10. 课程设计与资源整合 (37)10.1 如何整合教学资源 (38)10.2 设计综合性几何画板课程 (39)11. 几何画板常见导致问题及解决方法 (40)11.1 常见导致问题 (40)11.2 解决方法 (41)12. 如何提高学习效率与兴趣 (42)12.1 提高学习效率的技巧 (43)12.2 激发学习兴趣的方法 (44)1. 几何画板简介几何画板是一款强大的数学教学软件,它以直观、生动的方式呈现几何图形,帮助学生更好地理解几何概念。

通过几何画板,用户可以创建、编辑和分析各种几何图形,如点、线、圆、多边形等。

几何画板还支持丰富的几何变换和计算功能,为教师和学生提供了一个便捷的数学工具。

直观易用:几何画板采用图形化界面设计,用户无需编程知识即可轻松上手。

最全的几何画板实例教程

最全的几何画板实例教程

上篇用几何画板做数理实验图1-0.1我们主要认识一下工具箱和状态栏,其它的功能在今后的学习过程中将学会使用。

案例一四人分饼有一块厚度均匀的三角形薄饼,现在要把它平均分给四个人,应该如何分?图1-1.1思路:这个问题在数学上就是如何把一个三角形分成面积相等的四部分。

方案一:画三角形的三条中位线,分三角形所成的四部分面积相等,(其实四个三角形全等)。

如图1-1.2。

图1-1.2方案二:四等分三角形的任意一边,由等底等高的三角形面积相等,可以得出四部分面积相等,如图1-1.3。

图1-1.3用几何画板验证:第一步:打开几何画板程序,这时出现一个新绘图文件。

说明:如果几何画板程序已经打开,只要由菜单“文件”“新绘图”,也可以新建一个绘图文件。

第二步:(1)在工具箱中选取“画线段”工具;(2)在工作区中按住鼠标左键拖动,画出一条线段。

如图图1-1.41-1.4。

注意:在几何画板中,点用一个空心的圈表示。

第三步:(1)选取“文本”工具;(2)在画好的点上单击左键,可以标出两点的标签,如图1-1.5:注意:如果再点一次,又可以隐藏标签,如果想改标签用“文本”工具双击显示的标签,在弹出的对话框中进行修改,(本例中我们不做修改)。

如图1-1.6图1-1.6在后面的操作中,请观察图形,根据需要标出点或线的标签,不再一一说明第四步:(1)再次选取“画线段”工具,移动鼠标与点A重合,按左键拖动画出线段AC;(2)画线段BC ,标出标签C,如图1-1.7。

注意:在熟悉后,可以先画好首尾相接的三条线段后再标上标签更方便。

图1-1.7第五步:(1) 用“选择”工具单击线段AB,这时线段上出现两个正方形的黑块,表示线段处于被选取状态;(2)由菜单“作图”“中点”,画出线段AB的中点,标上标签。

得如图1-1.8。

注意:如果被选取的是点,点的外面会有一个粗黑圆圈。

在几何画板中,选取线段是不包括它的两个端点的,以后的问题都是这样,如果不小心多选了某个对象,可以按Shift键后用左键再次单击该对象取消选取。

《几何画板》教程——从入门到精通

《几何画板》教程——从入门到精通

《几何画板》教程——从入门到精通用几何画板做数理实验首先请下载安装好几何画板软件,打开几何画板,可以看到如下的窗口,各部分的功能如图所示:图1-0.1我们主要认识一下工具箱和状态栏,其它的功能在今后的学习过程中将学会使用。

案例一四人分饼有一块厚度均匀的三角形薄饼,现在要把它平均分给四个人,应该如何分?图1-1.1思路:这个问题在数学上就是如何把一个三角形分成面积相等的四部分。

方案一:画三角形的三条中位线,分三角形所成的四部分面积相等,(其实四个三角形全等)。

如图1-1.2。

图1-1.2方案二:四等分三角形的任意一边,由等底等高的三角形面积相等,可以得出四部分面积相等,如图1-1.3。

图1-1.3用几何画板验证:第一步:打开几何画板程序,这时出现一个新绘图文件。

说明:如果几何画板程序已经打开,只要由菜单“文件” “新绘图”,也可以新建一个绘图文件。

第二步:(1)在工具箱中选取“画线段”工具;(2)在工作区中按住鼠标左键拖动,画出一条线段。

如图1-1.4。

注意:在几何画板中,点用一个空心的圈表示。

图1-1.4第三步:(1)选取“文本”工具;(2)在画好的点上单击左键,可以标出两点的标签,如图1-1.5:注意:如果再点一次,又可以隐藏标签,如果想改标签为其它字母,可以这样做:用“文本”工具双击显示的标签,在弹出的对话框中进行修改,(本例中我们不做修改)。

如图1-1.6B 图1-1.5图1-1.6在后面的操作中,请观察图形,根据需要标出点或线的标签,不再一一说明第四步:(1)再次选取“画线段”工具,移动鼠标与点A 重合,按左键拖动画出线段AC ;(2)画线段BC ,标出标签C ,如图1-1.7。

注意:在熟悉后,可以先画好首尾相接的三条线段后再标上标签更方便。

B图1-1.7第五步:(1) 用“选择”工具单击线段AB ,这时线段上出现两个正方形的黑块,表示线段处于被选取状态;(2) 由菜单“作图”→“中点”,画出线段AB 的中点,标上标签。

几何画板十个实例教程

几何画板十个实例教程

几何画板十个实例教程
一、绘制矩形
1.打开GeoGebra的几何画板,进行绘图前必须点击绘图板右上角的“工具”按钮,弹出几何画板的“工具栏”。

2.点击矩形工具,也就是绘图板里最左边的第三个图标,点击后鼠标
变成了一只箭头,把箭头移动到屏幕想要绘制矩形的位置,然后按下鼠标
左键,再拖动鼠标,就能绘制一个矩形。

3.在进行拖动时如果不断按住空格键的话,就能绘制出一个正方形,
而不是一个普通的矩形。

4.绘制一个矩形之后,如果想更改矩形的大小,只需要把鼠标移到边缘,当鼠标变成箭头的时候,再拖动即可,拖动之后,矩形的尺寸自动改变。

5.如果想拖动矩形的中心,可以把鼠标移到矩形的内部,当鼠标变成
十字图标的时候,再拖动即可,拖动之后,矩形会自动移动到新的位置。

二、绘制三角形
1.点击三角形工具,也就是在画板里最左边的第四个图标,点击后鼠
标变成了一只箭头,把箭头移动到屏幕想要绘制三角形的位置,然后按下
鼠标左键,再拖动鼠标,就能绘制一个三角形。

2.绘制三角形的步骤和绘制矩形类似,只不过必须同时绘制三个顶点,要求三个顶点不能共线。

3.拖动三角形的顶点可以修改三角形的形状。

几何画板教程PPT

几何画板教程PPT

3. 计算三个内角的度数之和,确 认是否等于180度。
绘制正方体的展开图
总结词:通过几何画板,可以直观地展 示正方体的展开图,帮助理解空间几何 的概念。
3. 选择“显示”菜单中的“透视”选项 ,观察正方体的展开效果。
2. 使用“面”工具绘制正方体的各个面 。
详细描述
1. 使用“线段”工具绘制正方体的各个 棱。
制作动态的点、线、面
详细描述
2. 使用“线”工具连接这些点, 形成不同的几何图形。
总结词:几何画板支持动态演示 ,可以通过改变点、线、面的位 置和属性,观察几何形状的变化 。
1. 使用“点”工具在画布上创建 若干个点。
3. 选择“显示”菜单中的“动画 ”选项,观察点、线、面的动态 变化过程。
05
变换几何图形
平移
选择“平移”工具,将图形拖动到指定位置 即可完成平移变换。
旋转
选择“旋转”工具,将图形拖动到指定角度 即可完成旋转变换。
缩放
选择“缩放”工具,将图形拖动到指定大小 即可完成缩放变换。
反射
选择“反射”工具,将图形拖动到指定垂直 线即可完成反射变换。
测量几何图形
长度测量
选择“度量”工具,将鼠 标悬停在图形上即可显示 长度测量结果。
•·
快捷键使用:了解并掌握 常用快捷键,提高操作效 率。
THANKS
感谢观看
几何画板的特点
动态几何
几何画板允许用户通过拖拽、旋 转、缩放等操作来动态改变图形, 从而直观地探索几何关系和性质。
精确性
几何画板提供了精确的数学工具, 可以绘制精确的几何图形,并确保 所有操作都是基于严格数学原理的。
交互性
用户可以通过交互式界面与图形进 行互动,从而更好地理解几何概念。

几何画板200个经典课件(一)

几何画板200个经典课件(一)

几何画板200个经典课件(一)几何画板200个经典 - 课件教学内容•几何画板200个经典中的几何概念和图形•几何画板200个经典中的几何性质和定理教学准备•教材《几何画板200个经典》•讲义、笔记和练习册•黑板、白板或投影仪•几何工具箱,包括尺子、直尺、量角器等•计算器教学目标•理解几何画板200个经典中的几何概念和图形•掌握几何画板200个经典中的几何性质和定理的证明方法•能够运用所学的几何知识解决相关问题•培养学生的几何想象力和空间思维能力•本课程以《几何画板200个经典》为教材,通过理论与实践相结合的方式进行教学,以激发学生对几何的兴趣和学习的动力。

•通过展示几何画板200个经典中的图形和性质,引发学生对几何的思考和探索,帮助他们建立几何的概念框架。

•通过示范、讲解和实践练习等多种教学方法,让学生逐步掌握几何画板200个经典中的定理和证明方法,培养他们的逻辑思维和推理能力。

教学过程1.引入几何画板200个经典主题,并激发学生的兴趣。

2.展示几何画板200个经典中的一些图形和性质,让学生观察,并提出自己的观点和猜测。

3.教师讲解相关的几何概念和定理,并进行示范和证明。

4.学生进行个人或小组的实践练习,运用所学的几何知识解决问题。

5.教师进行讲解和指导,并鼓励学生分享答案和解题思路。

6.学生进行课堂作业,巩固所学的知识和技能。

7.教师进行课堂总结,并提出问题和展望下一步的学习内容。

8.学生进行课后复习和思考,准备下一节课的学习。

•本节课通过结合几何画板200个经典中的实例和理论进行教学,激发了学生的兴趣和思考能力。

•学生参与度较高,能够积极思考和运用几何知识解决问题。

•部分学生在证明几何性质和定理时存在一定困难,需要加强相关练习和示范。

•下次课应适当增加互动环节,提高学生的参与度和合作能力。

《几何画板》教程——从入门到精通

《几何画板》教程——从入门到精通

《几何画板》教程 【2 】——从入门到精晓用几何画板做数理试验 起首请下载安装好几何画板软件,打开几何画板,可以看到如下的窗口,各部分的功效如图所示:图1-0.1我们重要熟习一下对象箱和状况栏,其它的功效在往后的进修进程中将学会运用.案例一 四人分饼有一块厚度平均的三角形薄饼,如今要把它平均分给四小我,应当若何分?图1-1.1思绪:这个问题在数学上就是若何把一个三角形分成面积相等的四部分.计划一:画三角形的三条中位线,分三角形所成的四部分面积相等,(其实四个三角形全等).如图1-1.2.图1-1.2计划二:四等分三角形的随意率性一边,由等底等高的三角形面积相等,可以得出四部分面积相等,如图1-1.3.图1-1.3用几何画板验证:第一步:打开几何画板程序,这时消失一个新画图文件.解释:假如几何画板程序已经打开,只要由菜单“文件” “新画图”,也可以新建一个画图文件. 第二步:(1)在对象箱中拔取“画线段”对象; (2)在工作区中按住鼠标左键拖动,画出一条线段.如图1-1.4. 留意:在几何画板中,点用一个空心的圈表示.图1-1.4第三步:(1)拔取“文本”对象;(2)在画好的点上单击左键,可以标出两点的标签,如图1-1.5:留意:假如再点一次,又可以隐蔽标签,假如想改标签为其它字母,可以如许做: 用“文本”对象双击显示的标签,在弹出的对话框中进行修正,(本例中我们不做修正).如图1-1.6图1-1.6 在后面的操作中,请不雅察图形,依据须要标出点或线的标签,不再一一解释AB图1-1.5第四步:(1)再次拔取“画线段”对象,移动鼠标与点A 重合,按左键拖动画出线段AC;(2)画线段BC,标出标签C,如图1-1.7. 留意:在熟习后,可以先画好首尾相接的三条线段后再标上标签更便利.ABC图1-1.7第五步:(1)用“选择”对象单击线段AB,这时线段上消失两个正方形的黑块,表示线段处于被拔取状况;(2)由菜单“作图” “中点”,画出线段AB 的中点,标上标签.得如图1-1.8. 留意:假如被拔取的是点,点的外面会有一个粗黑圆圈.在几何画板中,拔取线段是不包括它的两个端点的,今后的问题都是如许,假如不当心多选了某个对象,可以按Shif t 键后用左键再次单击该对象撤消拔取.AB CD图1-1.8第六步:用同样的办法画出其它双方的中点.得如图1-1.9. 技能:最快的办法是:按住Shift 不放,用“选择”对象分离点击三条线段,可以同时拔取这三条线段,再由“作图” “画中点”(或按快捷键Ctrl+M),就可以同时画好三条边的中点.AB C D EF图1-1.9第七步:用“画线段”对象贯穿连接DE.EF.FD,得如图1-1.10: 技能:画线段的另一办法,在保证画线对象消失的是“画线段”按钮(不必拔取)的前提下.拔取两点后,由菜单“作图” “画线段”,(或按快捷键Ctrl+L),可以画出贯穿连接两点的线段.ABCDEF本例最快的做法:1.拔取“画点”对象,按住Shift 键不放在工作区中画三个点,这时三个极点都保持拔取状况2.按Ctrl+L,可以同时画出三条边并且三边同时被拔取;3.按Ctrl+M,可以同时画出三边中点且三中点同时被拔取;4.按Ctrl+L,可以同时画出小三角形三条边,标上标签即可. 图1-1.10第八步:(1) 按住Shift 键不放,用“选择“对象拔取点A.D.F;(2)由菜单“作图” “多边形内部”填充多边形内部;(3) 保持内部的拔取状况,由菜单“器量” “面积”,可以量出ADF 的面积,如图1-1.11.ADF面积 ADF = 0.77 cm 2图1-1.11第九步:(1) 用同样的办法,填充并器量三角形BDE.ECF.DEF;(2) 拔取DEF 的内部,由菜单“显示” “色彩”,选择其它色彩,如蓝色,得到如图1-1.12.ACD F面积 ADF = 0.77 cm 2面积 DBE = 0.77 cm 2面积 ECF = 0.77 cm 2面积 DEF = 0.77 cm 2图1-1.2 留意:在制造进程中,要经常保存文件,以免因不测原因造成文件丧掉,以下每一个例子都是如许,不再加以解释. 归纳结论:拖动极点A.B.C中的任一个,可以转变三角形的大小和外形,请不雅察不同情形下,四部分的面积是否老是相等?如许做可以完成分饼的义务吗?解释:这是经由过程试验来验证数学纪律,不能保证结论必定是准确,一般来说,有一些成果经由了人类的长期实践,大家都公认了它的准确性,这时会把这个结论作为正义直接运用;而大多半情形下,试验得到的成果仍然须要进行推理证实.那么,试验有什么用呢?试验可以关心我们熟习纪律,更轻易接收常识,并且常常可以让我们找到解决问题的偏向.若有问题,请到几何画板分版,下载案例一供参考. 演习:1.对于计划二,四等分面积的问题就转化为四等分线段的问题,四等分线段可以用哪些办法?2.为了便利在转变等分的份数(例如要分成五份)时办法仍然能用,这里介绍运用平行线等分线段的办法把一条线段四等分.第一步:(1) 拔取“画射线”对象;(2)移动鼠标到与点A 重合,按住左键拖动,画出一条以点A 为端点的射线AD,得如图1-1.13.ABCD图1-1.13第二步:(1) 拔取“画点”对象,移动鼠标到射线AD 上,在接近点A 处单击画出一个点E,得如图1-1.14;(2) 按住Shift 键不放,用“选择”对象,依次拔取点A.E,由菜单“变换” “标记向量A-E”.解释:标记了一个向量后,可以在后面的平移变换中按这个向量来平移,保证消失若干段相等的线段,标记向量时,必定要留意选选择点的先后次序.EABCD图1-1.14第三步:(1) 用“选择”对象拔取点E,由菜单“变换” “平移…”,在弹出的对话框中点“肯定”即可得一点E’;(2) 拔取E’,做同样的操作可以得E’’,……,如许做下去,直到得到你想要的若干段相等的线段,这里是四段,如图1-1.15.E'''E''DABCEE'图1-1.15第四步:(1)贯穿连接B E’’’;(2)同时拔取线段B E’’’.点E.E’.E’’,由菜单“作图” “平行线”,画出了一组平行线,如图1-1.16.ABCDEE'E''E'''图1-1.16第五步:(1) 用“选择”对象单击平行线和AB 订交处,得到三个四等分点; (2) 拔取所有平行线.射线AD 及AD 上的点(除A 外),由菜单“显示” “隐蔽 对象”,可以隐蔽制造进程中的关心线.得如图1-1.17. 以下只要贯穿连接点C 和三个四等分点就行了,…… 留意:在最后成果中不须要看到的对象,一般是把它隐蔽,假如你拔取后删去了它,你会发明你要的四等分点也会消掉,这是因为这些点是受关心线掌握的,隐蔽的对象只是看不到,但它仍然起感化.隐蔽和删除是不同的.若有问题,请到几何画板分版,下载案例一的演习供参考. ABC图1-1.17 3.本身比较一下这两种办法,在只须要四等分的情形下,哪种办法便利?,在须要其它等分的情形下,哪种办法更具有一般性?案例二 三角形的内角和现有一块三角形的木板,用来制造一个半圆形的木盖,请设计一个糟蹋比较小并且便于施工的计划.图1-2.1思绪:以三角形较短一边的一半为半径,以三个极点为圆心画弧,得到三个扇形后拼成半圆,如图1-2.2:图1-2.2那么,若何知道拼成的必定是一个半圆呢?下面用几何画板做一个试验来解释.计划:画一个三角形;量三个内角的度数;用几何画板的盘算功效盘算三个内角的和.假如对于随意率性的三角形,总有内角和是1800,那么解释拼成的必定是一个半圆形. 用几何画板验证:第一步:新建一个几何画板画图文件.画出三角形ABC第二步:(1) 拔取“选择”对象,按住Shift 不放,依次拔取点B.A.C;(2) 由菜单中的“器量” “角度”,量出∠BAC 的度数, 用同样的办法器量其它两个角.如图1-2.3 解释:因为每小我画的图不同,度数不必定和图1-2.3一样). 留意:选一个角的症结是角的极点要第二个选.ABCBAC = 45.0?ABC = 74.6?ACB = 60.4?图1-2.3第三步:由菜单“器量” “盘算”弹出一个盘算器,依次点击“∠BAC=…”.“+”.“∠ABC=…”“+”.“∠ACB=…”.“肯定”,如图1-2.4. 解释:“∠BAC=…”在本例中是“∠BAC=45.00”,这里用省略号表示,是因为每小我画的图不同,量出的度数有可能不同,今后相似的问题都如许来表示. 技能:弹出盘算器的办法有:(1) 由菜单“器量” “盘算”;(2) 双击工作区中的任一器量值,如“∠BAC=…”;(3) 在工作区中击鼠标右键,由“器量” “盘算”.ABBAC = 45.0?ABC = 74.6?ACB = 60.4?BAC + ABC + ACB = 180.0?图1-2.4归纳结论:请按请求操作后填写下表: 序号 操作现象 三个角的和等于1 不雅察∠BAC=______ ∠ABC=______ ∠ACB=______ 2 用鼠标拖动个中一个极点转变三角形变成钝角三角形 ∠BAC=______ ∠ABC=______ ∠ACB=______ 3用鼠标拖动个中一个极点转变三角形变成直角三角形∠BAC=______ ∠ABC=______∠ACB=______4 用鼠标拖动个中一个极点随意率性转变三角形的外形 三个内角的和老是结论 三角形的内角和老是________若有问题,请到几何画板分版,下载案例二供参考.演习:1.本身画一个凸四边形,器量它的内角,盘算内角和,验证凸四边形的内角和是3600.若有问题,请到几何画板分版,下载案例二演习1供参考.2.用“选择”对象同时拔取点A.B,由菜单“器量” “距离”,可以器量出线段AB的长度,请你用上面所学的常识验证“三角形的双方之和大于第三边,三角形的双方之差小于第三边”.若有问题,请到几何画板分版,下载案例二演习2供参考.案例三 最佳行走路线如图1-3.1:你身在草原上,如今要走到公路边去等车,请设计一个最佳行走路线.图1-3.1思绪:把人所处地位看作一个点,公路看作一条直线,行走的路线看作线段,由垂线段最短可以找到最佳行走路线.计划:画一条直线,过直线外一点引直线的垂线段和斜线段,器量线段的长,动态验证垂线段最短.用几何画板验证:第一步:新建一个几何画板画图文件.第二步:(1)C按住对象箱中的画线对象不放,在弹出的对象条中拔取“画直线”对象,按住鼠标左键拖动画出一条直线;(2) 用“画点”对象在直线外画一点,如图1-3.2.A B图1-3.2第三步:(1) 按Shift键,用鼠标拔取点C和直线AB,(不要拔取点A和B);(2)C由菜单“作图” “垂线”,画出了过点C垂直于AB的直线,如图1-3.3解释:固然点A.B在直线AB上,但拔取直线时并没有拔取直线上的点,在后面的进修中,假如请求拔取直线.线段.圆等对象,这时不要把对象上的点也拔取,除非特别指明要拔取这些点. A B图1-3.3第四步:(1) 用“选择”对象单击垂足处,界说出垂足,标上标签D; (2)拔取垂线CD(不要拔取点C.D).点A.B,由“显示” “隐蔽”,把拔取的对象隐蔽,用“文本”对象在直线上点一下,标出直线的标签j;(3) 选“画线段”对象,贯穿连接线段CD,如图1-3.4. 解释:点A.B 是掌握直线AB 的点,经由过程拖动这两点,可以转变直线的偏向和地位,一般情形下,假如不想再转变直线的地位,或不再画其它线经由这两个点,可以在制造完成后把它隐蔽.jCD1-3.4第五步:(1) 拔取“画线段”对象;(2) 移动鼠标到点C 处,按下左键拖动,当鼠标位于直线j 上时松开,如图1-3.5. 技能:CE 是直线j的斜线段,所以要保证一个端点是C,另一个端点E 只能在直线j上移动,如何才能保证呢?,在画图的进程中,移动鼠标到点C 时,留意不雅察状况栏中有“从点C ”,这时按下左键可以保证一个端点为C,移动鼠标到直线j 时,状况栏中有“到点位于直线j ”时松开,如许点E 必定在直线上,不能拖到直线外.在几何画板中,状况栏的感化异常重要.jCDE图1-3.5第六步:同时拔取点C.D,由“器量” “距离”,量出CD,同理量出CE,如图1-3.6.jCDCD = 1.68 cm CE = 2.16 cm图1-3.6归纳结论:拖动点E在直线j 上移动,不雅察CD 与CE 的大小,什么时刻CE=CD ?,除了这个地位外的其它地位CD 与CE 哪一个比较大?以上操作解释:从直线处一点引直线的所有线段中,_________最短,因而最佳行走路线是走点到直线的垂线段. 若有问题,请到几何画板分版,下载实例三供参考. 演习:1.在图1-3.6的基本上,增长一个点F,经由过程器量∠CDF.∠CEF,如图1-3.7,拖动点E,不雅察什么情形下两个角相等,除了CD 外,CE在其它地位能和直线j 垂直吗?j CDEFCD = 1.68 cm CE = 2.16 cmCDF = 90?CEF = 51?图1-3.7若有问题,请到几何画板分版,下载案例三演习供参考.案例四 横梁有多长如图1-4.1,一个三角形屋架,屋面的宽度是13米,立柱长5米,那么横梁有多长?图1-4.1思绪:这是直角三角形中运用勾股定理的问题,那么,是不是随意率性的直角三角形三边都有这种关系? 计划:大家都已经证实过勾股定理,但如今我们用不同的办法来从新熟习一下这个老同伙.用几何画板画一个直角三角形,器量三条边,盘算两直角边的平方和,盘算斜边的平方,不断转变图形的大小外形(但保持直角不变),验证定理是否老是成立.用几何画板验证:第一步:新建一个几何画板画图文件.第二步:在工作区中画一条线段AB,如图1-4.2.BA图1-4.2第三步:(1) 按住Shift,用“选择”对象拔取点A 和线段AB;(2) 由菜单“作图” “垂线”,作出点A 垂直于线段AB 的直线.如图1-4.3留意:不要选别的一个端点B,那样过B 点也会有一条直线与AB 垂直,本例中我们不须要同时画两条垂线.技能:只有如许画的图才能在你拖动点转变图形的大小和外形时老是保持垂直的关系,假如只是画出一条本身看上去“垂直”的直线,就不能在转变外形时保持垂直关系.BA图1-4.3第三步:(1) 选“画点”对象;(2) 移动鼠标到垂线上单击,如图图1-4.4 留意:不雅察状况栏中消失“点位于直线上”时单击,如许画的点永久位于直线上,不会拖到外面.ABC图1-4.4第三步:(1) 拔取垂线CD,由“显示” “隐蔽直线”,把垂线隐蔽; (2) 用画线段对象画出线段AC.线段BC,如图1-4.5. 技能:最后的图中应当是线段,但为了保证变化进程中保持垂直关系,必须先画关心垂线,最后在不须要时把它隐蔽.A BC图1-4.5第四步:用“文本”对象单击三角形的三边,得到如图1-4.6所示,jm nABC图1-4.6第五步:用“文本”对象双击标签n,在弹出的对话框中作如下修正:如图1-4.7.图1-4.7 用同样的办法改j 为c,改m 为b,如图1-4.8. 解释:如许做是为了照料我们的数进修惯,或者是标题本身的请求,这种改点或线的标签的办法,在操作进程中会经常用到.cbaABC图1-4.8第七步:同时拔取线段a.b.c,由菜单“器量” “长度”,可以同时量出三条边的长度,如图1-4.9cbaABCc = 2.70 cm a = 3.03 cb = 1.39 cm图1-4.9第八步:弹出盘算器,依次点击“b=…”.“^”.“2”.“+”.“c=…”.“^”.“2”,然后按“肯定”,可以盘算出b 2+c 2的值;同样可以算出a 2的值, 得到如图1-4.10,解释:这里“^”表示乘方运算.cbaABC c = 2.70 cm a = 3.03 cmb = 1.39 cmb 2 + c2 = 9.20 cm 2a 2 = 9图1-4.10归纳结论: 序号操作现象 b 2+c 2与a 2相等吗? 1 不雅察 b 2+c 2=____a 2=_____2 用鼠标拖动点B 到另一地位. b 2+c 2=____a 2=_____3 用鼠标拖动点B 到另一地位. b 2+c 2=____a 2=_____4 随意率性拖动三角形极点转变直角三角形的外形, 结论 b 2+c 2____a 2 可以看到,老是有两直角边的平方和等于斜边的平方,本例中的横梁用勾股定理算得一半为12米,全长为24米.若有问题,请到几何画板分版,下载实例四供参考. 演习:1.量出直角三角形的两锐角的度数,验证直角三角形的两锐角互余. 若有问题,请到几何画板分版,下载案例四演习1供参考.2.学画一个矩形,先完成本例到第三步得图1-4.11,这里只是把本来的点C 改成了D.A BD图1-4.11(1)拔取点D 和线段AB,由“作图” “平行线”,画出过D 平行AB 的直线;(2)拔取点B 和直线AD,同样画出过点B 平行于AD 的直线;(3)用“选择”对象界说出第四个极点,标记标签为C;如图1-4.12A BDC图1-4.12(4)隐蔽三条直线,画出线段AD.DC.CB,即得矩形ABCD,如图1-4.13. 解释:拖动点A.B 可以转变矩形的大小和地位并可以扭转必定的角度;拖动点D 只能转变矩形在纵向上的大小,拖动点C 不会转变矩形的大小,但可以转变矩形的地位,但无论若何转变,这个图形必定是矩形,你可以经由过程器量角和边来证实这一点.A D图1-4-133.先画出如图1-4-14的图形,然后用相似于第2题的办法画一个平行四边形,ABC图1-4-14案例五 三角形的高三角形的高可能出如今哪些地位?思绪:应当对于直角.锐角.钝角三种不同类形的三角作不同的答复.计划:假如用笔在纸上画图,只能三种类型中各画一个图来解释,如今借助几何画板,我们可以动态地转变三角形的外形,使不同类形的三角形的高可以动态转变.用几何画板验证:第一步:(1) 拔取“画点”对象画三个点;(2)拔取“画直线”对象后,什么都不用做;(3) 拔取“选择”对象,在屏幕上拉一个虚线框框住画好的三点;(4) 由菜单“作图” “画直线” (快捷键是Ctrl+L) ,可以画出过这三点的三条直线,标上标签,如图1-5.1. 技能:(1) 假如要拔取的对象比较多,可以用“选择”对象在工作区中拉一个虚线框框住这些对象,这时可能会多选了一些你并不想选的,可以按Shift 键后,单击该对象撤消选择状况;(2) 上面第二步选“画直线”对象的操作会影响菜单中会不会出出“画直线”的选项,假如你没有做这一步,菜单中平日消失“画线段”,也就是说,几何画板中的有些菜单敕令和按钮的显示状况是相干的.ABC1-5.1第二步:过点A 作直线BC 的垂线,并单击垂足,界说出垂足D,用同样的办法作出垂线BE 和CF,如图1-5.2,A BCDEF图1-5.2第三步:按住Shift 键,用“选择”对象拔取所有的直线,留意不要选到点;由菜单“显示” “隐蔽直线”,可以隐蔽所有直线,得到如图1-5.3BCD EFA图1-5.3第四步:(1) 同时拔取点A.B,(2) 拔取“画线段”对象,然后按Ctrl+L,画出线段AB;(3)用同样的办法画出线段BC.AC.AD.BE.CF,得到如图1-5.4. 技能:上面说Ctrl+L 是画直线,但当你先画了“画线段”的对象后,它的功效会主动变边画线段.留意:为什么不一开端就画三条线段构成三角形呢?这是本例的要点,因为假如一开端画的是线段,点D.E.F 被界说为垂线和线段的交点,假如你拖动三角形变为钝角三角形,垂线和线段没有交点,如许会导致有两条高消掉.如今的点D.E.F 分离是垂线和直线的交点,再拉动三角形成钝角三角形时,高不会消掉.A B CDE F图1-5.4第五步:(1) 拖动点A,使∠ACB变成钝角,(如图1-5.5);(2) 拔取点C和D,按Ctrl+L,画出线段CD;(3)保持线段CD的拔取状况,由菜单“显示” “线型” “虚线”,改CD为虚线,相符平日的习惯,用同样的办法画线虚线段CE,B FAB C DEF图1-5.5第六步:拖动点A使使∠ABC变成钝角后用同样的办法作出虚线段BF.最后完成图1-5.6AB CDEF图1-5.6 归纳结论;序号 操作三角形三条高的地位三条高(或高的延伸线)交于一点吗?1 不雅察2 用鼠标拖动点C到另一地位.使△ABC仍为锐角三角形,再不雅察,3 用鼠标拖动点A到另一地位.使△ABC变为直角三角形,再不雅察,4 用鼠标拖动点A到另一地位.使∠ABC为钝角,再不雅察结论三角形的三条高或高的延伸线___________.若有问题,请到几何画板分版,下载案例五供参考.演习:不雅察三角形的三条中线,三条角等分线的地位关系.个中画中点的办法:拔取线段,由菜单“作图” “中点”(或按Ctrl+M)可以作出线段的中点,接着就可以画中线了;画角等分线的办法:如按Shift,依次点选点B.A.C,可以作出∠BAC的等分线,肯定角等分线和对边的交点后,隐蔽角等分线,再连出线段就行了.1.请本身画一个三角形作出它的三条中线,然后按请求填写试验报告.序号 操作三角形三条中线的地位三条中线交于一点吗?1 不雅察2 用鼠标拖动点C到另一地位.使△ABC仍为锐角三角形,再不雅察,3 用鼠标拖动点A到另一地位.使△ABC变为直角三角形,再不雅察,4 用鼠标拖动点A到另一地位.使∠ABC为钝角,再不雅察结论三角形的三条中线___________.若有问题,请到几何画板分版,下载案例五演习1供参考.2.请本身画一个三角形,作出它的三条角等分线,然后按请求填写试验报告.序操作 三角形三条角等分线的三条角等分线交于一点号 地位 吗?1 不雅察2 用鼠标拖动点C到另一地位.使△ABC仍为锐角三角形,再不雅察,3 用鼠标拖动点A到另一地位.使△ABC变为直角三角形,再不雅察,4 用鼠标拖动点A到另一地位.使∠ABC为钝角,再不雅察结论三角形的三条角等分线___________.若有问题,请到几何画板分版,下载案例五演习2供参考.案例六 挂画的学问要把一幅画挂在墙上,画的高低边框要和横梁平行,阁下与立柱的距离相等,应当若何钉上挂钉?图1-6.1思绪: 这个问题可以转化为和线段的垂直等分线有关的问题.计划:挂绳拉紧后,挂点到像框边框两头的距离应当相等,斟酌到平行和等距的前提,只要横梁的中垂线与边框中垂线二线合一就行了,所以只要画横梁的中垂线,把挂绳的中点定位在横梁中垂线上即可.下面验证“线段垂直等分线上的点,到线段两头的距离相等”.用几何画板验证:第一步:画一条线段AB.如图1-6.2 A B图1-6.2第二步:(1) 用选择对象拔取线段AB,(2) 由菜单“作图” “中点”(快捷键是Ctrl+M),画出线段AB的中点C,如图1-6.3留意:不要多选其他对象,假如你多选了其他对象,“中点”这个选项是灰色的不可用,一般来说,只要选择的对象不相符请求的前提,就不可能运用响应的菜单项. A BC如图1-6.3第三步:(1) 用“选择”对象按住左键拉一个框经由点C 和线段AB (但不要框住A.B 两点),如许可以同时拔取点C 和线段AB,(2) 由菜单“作图” “垂线”,画出过点C 垂直于线段AB 的垂线,等于线段AB 的垂直等分线.如图1-6.4留意:假如你画的图不是如许,过点A 或B 也有了垂线,那是因为你多选了点A 或点B.ABC图1-6.4第四步:拔取“画点”对象,在中垂线上画一点,标记为P,如图1-6.5ABCP图1-6.5第五步:(1) 画出线段PA.PB;(2) 拔取点P.A,由菜单“器量” “距离”,量得PA,同样量出PB. 第六步:(1) 同时拔取点P和中垂线;(2) 由菜单“编辑” “操作类按钮” “动画”,在弹出的对话框中,设置如图1-6.6图1-6.6 如许在屏幕上会出出一个“动画”按钮,当双击这个按钮时,点P会在直线上双向地移动.便于我们动态地不雅察. 最后成果如图1-6.7.留意:不要多选其它对象,这里只须要点P 在中垂线上活动.ABCPPA = 2.59 cm PB = 2.59 cm动画图1-6.7归纳结论:序号 操作现象 结论(是否相等)1 拖动点P 到另一地位, 这时PA=____PB=____ PA____PB2 拖动点P 到第二个地位 这时PA=____PB=____ PA____PB3 拖动点P 到第三个地位 这时PA=____PB=____PA____PB4 双击“动画”按钮, 点P在AB 的中垂线上不停的活动,PA____PB结论 只要点P在线段AB 的中垂线上,试验进程中PA______PB. 若有问题,请到几何画板分版,下载案例六供参考. 演习:1.我们将在前面作图的基本上,进一步验证等腰三角形.等边三角形的一些性质. 第七步:(1) 拔取垂直等分线,将它隐蔽;(2) 画出线段PC.得到如图1-6.8.ABCPPA = 2.59 cm PB = 2.59 cm动画图1-6.8第八步:用量距离的办法量AC.BC,量∠PAB.∠PBA.∠APB.∠PCB.∠A PC.∠BPC 的度数,得到如图1-6.9.ABCPPA = 3.17 cm PB = 3.17 cm 动画AC = 1.47 cmBC = 1.47 cm PAB = 62.47?PBA = 62.47?PCB = 90.00?APC = 27.53?BPC = 27.53?BPA = 55.06?图1-6.9归纳结论: 序号 操作现象结论1 用鼠标拖动(或双击动画按钮)不断地转变点P地位. PA 和PB 老是相等吗? ____________________ △PAB 是______三角形. 2∠PAB 和∠PBA 老是相等吗等腰三角形的两底角__________3 ∠PCB 老是等于90度吗?______________PC 是等腰三角底边上的________4 AC 和CB 的长老是相等吗?______PC 是等腰三角形底边上的_________.5∠APC 和∠BPC 老是相等吗__________PC是等腰三角形顶角的_______________.结论等腰三角形的两底角_______,底边上的高.底边上的中线.顶角等分线三线__________. 也可以拖动使∠APB=600,再不雅察边角的变化. 若有问题,请到几何画板分版,下载案例六演习1供参考.2.学画一个菱形,接第1题,先画出如图1-6.10的图形,因为点P在线段AB 的垂直等分线上,所以PA=PB.BACP图1-6.10(1)选择线段AB,由“变换” “标记镜面…”,标记AB 为镜面,线段上消失闪耀后消掉的两个方框.解释:标记镜面后,一个对象假如关于这个镜面反射,这时就仿佛人照镜子一样,人离镜面近,人像离镜面也近,用数学的说法,镜面就是对称轴,反射可以得到对称点或对称图形.技能:标记镜面的另两种办法:(1)直接双击直线(线段.射线);(2)拔取直线(线段.射线)后用快捷键Ctrl+G.(2)同时拔取点P.线段PA.PC.PB;(3)由“变换” “反射”,得到如图1-6.11. (4)用“文本”对象改各点标签为你想要的,例如得图1-6.12. 解释:在几何画板中,画特别四边形的办法不只一种,但不管用哪种办法,都要相符图形的几何干系,也就是当转变大小了地位时,矩形仍是矩形,菱形仍是菱形.BACPCAODB。

几何画板简明教程

几何画板简明教程
选择对象的父母和子女:选中一些对象后,选择 “【编辑】”菜单中的【选择父对象】;类似地,也 可以选择子对象。如果一个对象没有父母,那么几何 画板认为它自己是自己的父母;同样,如果一个对象 没有子女,那么它自己是自己的子女。 所谓“父母” 和“子女”,是指对象之间的派生关系。如:线段是 由两点派生出来的,因此这两点的“子女”就是线段, 而线段的“父母”就是两个点。
椭圆(一)
执行跟踪动点(Ctrl+T)后,再让动点运动,产生 被动点的临时轨迹,按ESC,就可擦去此轨迹。
P为圆上任意一点,则线段OP中点M的轨迹是什么?
回目录
综合实例:
矩形的画法 正方形的画法 菱形的画法
第三章 用变换菜单作图
数学中所谓“变换”,是指从一个图形 (或表达式)到另一个图形(或表达式) 的演变,在几何画板中,研究的是图形的 演变。我们能对图形进行平移、旋转、缩 放、反射、迭代等变换。
注意:在拖动之前,请按“Esc”键,或点击【选 择箭头工具】后,选定要移动的对象。

第四节:对象的隐藏和显示
【编辑】菜单中的【撤消】功能
如果按下拉菜单之前,按下 Shift键,则“撤消”命令就变成 了“全部撤消”。快捷键是Shift-Ctrl-Z。这是获得一个空白 画板文件的快速方法,俗称“擦黑板”。
线段的垂直平分线
制作结果 无论你怎样拖动线段,竖直的线为水平线段的 垂直平分线
等边三角形的画法
直角三角形
制作结果 拖动左边和上边的点可改变三角形的大小和形 状,但始终是直角三角形。拖动右边的点和三边可改变直 角三角形的位置
从以上几个实例不知你是否意识到:
1)用几何画板绘制几何图形,首先得考虑对象间的 几何关系,不是基本元素(点、线、圆)的简单堆积。

几何画板精品教程PPT课件

几何画板精品教程PPT课件
几何画板精品教程
精选ppt课件2021
1
3.2 利用几何画板绘制简单几何图形
3.2.1 几何画板快速入门 3.2.2 窗口菜单及操作 3.2.3 绘制点、线、圆 3.2.4 绘制多边形 3.2.5 绘制圆及其内接三角形 3.2.6 绘制长方体 3.2.7 修改目标符号
精选ppt课件2021
精选ppt课件2021
11
3.2.2 窗口菜单及操作
(3) 打开PowerPoint,打开【编辑】菜单,选择【粘贴图片】命令,把几何图形 粘贴到指定位置。注意:动画效果不能被粘贴。
将其他应用程序中绘制的图形嵌入几何画板中的步骤如下: (1) 在PowerPoint中使用绘图工具绘制一个立方体,打开【编辑】菜单,选择
在利用几何画板制作动画时,需要注意对象之间的关系,几何画板中绘制的图形都可以称 为对象,几何画板借用了现实生活中父母与子女关系来解释对象之间的关系。例如,我们 先作出两个点,再作线段,那么作出的线段就是那两个点的“子女”。 当“父母”的位置 或大小发生改变,作为“子女”的对象也随之变化。如,先作一个几何对象,再基于这个 对象用某种几何关系(平行、垂直等)或变换(旋转、平移等)作出另一个对象,那么后面作出 的几何图形就是前面的“子女”,当为第一个几何对象制作动画效果时,第二个几何对象 也发生相应的变化。
精选ppt课件2021
12
3.2.2 窗口菜单及操作
图 3.6 粘贴后的结果
精选ppt课件2021
13
3.2.2 窗口菜单及操作
3.【显示】菜单 【显示】菜单中的内容较多,不仅控制几何画板中对象的外观,还可以显示或隐
藏动画或对象,具体如图3.8所示。 几何画板中的【线型】有3种:细线、粗线和虚线,种类虽少,但在课件制作过

几何画板十个实例教程

几何画板十个实例教程

几何画板实例教程:(1)模拟时钟1,制作表盘打开图表----定义坐标系,以原点为圆心构造圆O,右击圆周选选择粗线,颜色任意。

在圆周上取点B,选取点O、B打开菜单变换---缩放选择固定比为4:5得到点B′构造线段BB′右击选择粗线,选择点O 打开变换标记中心,选择线段BB′(不要断点)打开菜单变换---旋转六十度,同理旋转十一次得到。

在圆周任意取点C,选取O和C打开菜单变换---缩放,固定比选择为9:10得到C′构造线段CC′,选取点C和线段CC′变换旋转6°,C旋转得到点D,然后选取点C打开菜单变换---迭代,影像选择点D,迭代次数操作键盘加号得到58次:设y轴与圆的交点为E以点0为缩放中心将点E分别缩放90%,60℅,30%,得到点F、G、H隐藏网格和坐标轴,分别构造线段OF,OG,OH 并设置为虚线、细线、粗线得到图:到此为止表盘完成了。

2:制作按钮操作时钟打开菜单图标—新建参数标签改为秒,值的精确度选择为百分之一打开菜单度量---计算,使用函数trunc分别计算一下结果:秒针旋转的角度、分针的旋转角度、时针的旋转角度。

选取参数“秒=1”打开编辑---操作类按钮—动画范围设置为0到86400(一天一夜二十四小时共86400秒),标签改为“启动时钟”。

再次选择参数秒同上面一样打开动画按钮,不同的是把范围改为0到0.001,(此范围保证各指针的旋转的角度为0°),标签改为“归零”选取打开菜单变换---标记角度,然后选取秒针(即图中的虚线)做变换—旋转变换,同理再分别选取分针和时针的旋转角度做分针和时针的旋转变换。

此时点击启动时钟和归零就可以得到时钟的转动的效果了。

(没有用的线可以隐藏了)3.制作合并文本用文本工具分别作时、分、秒三个独立的文本再分别打开度量---计算下面三个值:此结果是小时的取整;此结果是秒的显示数字;此结果为分的显示数字分别右键单击三个结果选择属性—值的精确度选择单位。

几何画板教程

几何画板教程

- 1 -动画按钮的制作几何画板真正激动人心的是动画效果的实现,利用动画功能可以制作出很多赏心悦目的作品。

下面让我们通过实例学习“动画”按钮的制作。

例1:点在线段上的动画(1)在工作区中画线段AB 和CD ,且点C 在线段AB上,单击选中点C ,如图1-01所示。

图01(2)选择【编辑】|【操作类按钮】|【动画】命令,打开【运动点的属性】对话框,如图1-02所示。

图1-03所示。

图1-03说明:单击【运动点】按钮,点C 在线段AB 上的运动,再次单击运动停止。

例2:点在圆上的动画(1)在工作区中画圆O 和线段AB ,依次单击点A 和圆周,选择【编辑】|【合并点到圆】命令,点A 移动合并到圆周上,如图1-04。

图1-04(2)选择【编辑】|【操作类按钮】|【动画】命令,打开【运动点的属性】对话框,如图1-05所示。

- 2 -图1-05单击【确定】按钮,在工作区中生成一个【运动点】按钮。

如图1-06所示。

这样可以通过按钮来控制点在圆上的动画。

图1-06说明:可以在【运动点的属性】对话框中修改按钮的名称,也可以选择运动的方向。

1-07),点C在AB 上,点F 在圆周上。

图1-07(2)分别单击选点C 和点F ,选择【编辑】|【操作类按钮】|【动画】命令,打开【运动点的属性】对话框,如图1-08所示。

图1-08单击【确定】按钮,生成一个【运动点】按钮,通过此按钮可以同时控制点C 和点F 的运动。

例4:参数的动画除了设置图形对象的动画外,还可以设置参数的动画。

几何画板中的参数是不同于度量值和计算值的能够独立存在的一种数值,它的建立不依靠具体的对象。

使用参数可以进行计算、构造可控制- 3 -的动态图形、建立动态的函数解析式、控制图形的变换、控制对象的颜色变化等等。

参数具体的应用我们在后面有专题介绍,这里只说明如何通过按钮控制参数的动画。

(1)建立参数。

选择【图表】|【新建参数】命令,打开【新建参数】对话框,如图1-09所示。

《几何画板教程》课件

《几何画板教程》课件

1. 几何画板5.0.1简介
《几何画板》是这样一个工具: 便捷的交流工具----由于每个画板都可以被用户按自己的意图修改 并保存起来,它特别适合用来进行几何交流、研究和讨论。人们由此 把它称之为“动态黑板”。它还是教师布置作业、学生完成作业的理 想工具。 优秀的演示工具----它完全符合CAI演示的要求,能准确地、动态 地表达几何问题。一旦与大屏幕投影仪等设备配合,演示效果更完美。 另外,《几何画板》还能进行其它学科的动态演示,如物理中的力学、 运动学、光学,数学中的认数,地理中的行星运动等等。 有力的探索工具----《几何画板》为探索式几何教学开辟了道路。 可以用它去发现、探索、表现、总结几何规律,建立自己的认识体系, 成为真正的研究者。它将传统的演示练习型CAI模式,转向研究探索 型。
2.几何画板的工具箱和菜单
几何画板的精髓就在于“在运动中保持几何关系不变”: 线段AB中点A、B是线段的父母,拖动点B,线段受点B控制,所 以要随着运动,但点A不动。拖动线段,线段的方向不变,位置发生 改变,但点A、B由于必须保持相应关系,所以两点也随之运动。
点A(圆心)B(圆周上的点)是圆的父母,拖动点B,圆的大小随着点
1. 几何画板5.0.1简介
重要的反馈工具----《几何画板》提供多种方法帮助教师了解学生 的思路和对概念的掌握程度,如复原、重复;隐藏、显示;建立脚本 等,轻而易举地解决了这个令所有教师头疼的难题。 简单的使用工具----《几何画板》功能虽然强大,但使用起来却非 常简单。
1. 几何画板5.0.1简介 2. 几何画板的工具箱和菜单 3. 绘制几何图形 4. 迭代与深度迭代 5. 动画制作 6. 绘制初等函数图形 7. 典型实例
7. 典型案例
几何画板典型案例-张延军.gsp 开始/程序/几何画板5.01最强中文版/画板教程/几何画板基础培训 教程, C:\Program Files\Sketchpad5\Sketchpad Help C:\Program Files\Sketchpad5\Sketchpad\Sample

最全的几何画板教程.

最全的几何画板教程.

最全的几何画板教程.用几何画板研究二次函数的图像除了用几何画板进行大量的数学探索实验之外,与数学紧密相连的物理同样可以在几何画板上完成很多实验。

我们将选取大家在初中数学和物理中遇到的一些典型问题为例子,利用几何画板来完成一些数学和物理实验。

学完这些例子,相信同学们会熟练地应用几何画板,并且对学习过的或将要学的数学知识、物理知识有更进一步的认识。

好啦,让我们开始吧。

思路:画出函数()k h x a y +-=2的图象,要求能动态地控制图象的开口方向、形状、位置。

用几何画板验证:第二步:(1“建立坐标系”(2近原点,标记为x ,标签;(3)按住Shift 不放,轴,由“作图”→分别过这三点垂直于x 直线;(4标标签为,a 、h 、k 。

得到如图1-14.1。

第三步:(1)度量点x 、a 、h 、k 的坐标,再用计算器分离出点x 的横坐标、点a 、h 、k 的纵坐标;(2)用“文本工具”修改显示格式,最后得x=…、a=…、h=…、k=…的形式,(3)调出计算器,依次点击“a=…”、“*”、“(”、“x=…”、“-”、“h=…”、“)”、“^”、“2”、“+”、“k=…”、“确定”,这样可以计算函数值,供后面画点用。

如图1-14.2。

第四步:(1)按住Shift 不放,用“选择”工具按顺序先选取“x=…”,再选“()k h x a +-?2=…”;(2)由菜单“图表”→“P 绘出(x,y )”,可以绘出图象上的一个点,标记为P ;(3)按住Shift 不放,用“选择”工具按顺序先选取点x ,再选取点P ,然后由菜单“作图”→“轨迹”,这样就画出了二次函数()k h x a y +-=2的图象;(4)按住Shift 不放,用“选择工具”按顺序先选取“h=…”,再选“k=…”,然后由菜单“图表”→“P 绘出(x,y )”,可以绘出抛物线的顶点;(5)选取画好的顶点和x 轴,由“作图”→“垂线”,这样实际上画出了二次函数图象的对称轴;(6)选取对称轴,由“显示”→“线型”→“虚线”,这样改变对称轴为虚线,便于区别。

几何画板课件制作实例教程_解析几何篇

几何画板课件制作实例教程_解析几何篇

几何画板课件制作实例教程(5)中学数学——解析几何解析几何一直都是学生学习的难点,而现在用几何画板展示直线、圆、圆锥曲线非常方便;用几何画板可以演示曲线关于某点某线的对称图形,让我们一目了然;也可以用几何画板演示我们不很清楚的习题,使我们对某一类型的题有了深刻的认识和印象,提高学习效率,并为利用代数方法的计算提供了一个动画思维的过程。

目录实例51 直线的斜率实例52 两直线垂直实例53 网页探究型课件实例54 椭圆(双曲线)的第二定义实例55 椭圆长、短轴变化(一)实例56 椭圆长、短轴变化(二)实例57 椭圆工具(已知顶点和任意一点)实例58 发掘课本习题的作用实例59 半椭圆实例60 双曲线的第一定义实例61 双曲线的切线实例62 抛物线的切线实例63 抛物线的焦点弦实例64 圆锥曲线的统一形式实例65 与定线段成定张角的点的轨迹实例65 与定线段成定张角的点的轨迹实例65 与定线段成定张角的点的轨迹实例66 到定点的距离与定直线的距离的比值等于定值的点的轨迹实例67 与两定点的距离的比值等于定值的点的轨迹实例68 与两定点连线的斜率之积等于定值的点的轨迹实例69 与两定直线的距离之积等于定值的点的轨迹实例70 心形曲线的构造–249–实例51 直线的斜率【课件效果】直线的倾斜程度由倾斜角和斜率确定。

本实例效果图,如图2-169a 表示单击【旋转】按钮后的状态,直线CE 将从x 轴开始旋转到与直线CD 重合,同时出现倾斜角和斜率,如图2-169b 所示。

拖动点D ,可以改变直线CD 的倾斜度,拖动点C ,可以将直线CD 平移。

a b图2-169 课件效果图【构造分析】1.技术要点◆ 利用圆上的弧标记角◆ 【移动】按钮的使用2.思想分析本例构造的的目的用于理解直线倾斜角的范围及斜率的含义。

对于与x 轴相交的直线,可以通过移动交点将直线进行平移,为此构造了一个辅助圆。

选择【显示】|【显示所有隐藏】命令,显示出整个课件的制作过程,如图2-170所示;对于与x 轴平行的直线,读者可以自行构造。

几何画板教程

几何画板教程

5.1用参数的迭代研究数列 5.1.1画数列的图像例1:画d n a a n )1(1-+= 的图像 一、制作效果如图:选择表格(或者选择图像迭代得到的点),然后按小键盘上的“+”或者“-”,可以增加或减少点的个数。

二、思路分析新建参数和函数后,计算出 和 ,然后依次选中它们绘制点,最后迭代参数n ,计算机就会自动画出其余的点。

因为这时构造数列的图像,一定要注意参数的初始值。

三、操作步骤1、新建函数和参数,结果如下图2、 计算函数值f (n+1)和参数值n+1,结果如上右图;3、 绘点( n+1,f (n +1))4、 迭代:选中参数n ,单击【变换】菜单→迭代,出现对话框,单击绘图区的计算值“n +1=1.00”,对话框中的“?”成为“n+1”。

(注意绘图区此时的变化)单击对话框的“迭代”按钮。

四、拓展研究1、构造结果的附属品表格如不想要,选中它,可以删除掉。

还可以在迭代时,单击迭代对话框的“结构”按钮,出现下拉菜单,把“生成迭代数据表”的“√”去掉,就不会出现表格了2、编辑函数,如(其中)可以得到任意您想要的数列的图像(不一定要求是等差数列,注意是“任意”)3、您还可以把这个课件作简单的修饰,如用圆的内部代替点,就是在操作步骤第三步绘制点后,再画一条线段,选中线段和点构造圆及圆内部,然后在迭代。

调整线段的长短可以控制圆的大小。

例2:已知递推公式画数列的图像(以数列,的图像为例)一、制作效果如图:选中参数k,改变它的值,就可以改变点的多少,同时可以看到数列第k项的值(随着k值的变化而变化)。

编辑函数可以得到不同递推数列的图像二、思路分析这里是用参数的计算值k-1控制迭代的次数,想一想为什么不用k的值来控制?数列的第k项,因为有第一项,只要迭代k-1次就行了。

想一想为什么要选用参数n和?仅用参数n的迭代行吗?数列的第k项的值实际上是迭代点的“终点”的纵坐标的值。

三、操作步骤1、新建函数和参数,(注意,初始值)结果如下图:2、计算函数值和参数值,结果如上3、绘制点()和()(想一想为什么要绘制两点,试试绘一个点,迭代后情形会如何)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图5
【直尺工具】展开,也有三个工具,如图6所示,分别是:“线段”“射线”“和直线”。线段的画法,我们知道了,如何用它来画射线直线呢?
图6
画射线:移动光标到【直尺工具】上,按住鼠标不放,待【直尺工具】展开后,不要松开鼠标,继续移动光标到射线工具上 ,松开鼠标,直尺工具变为 。然后在画板绘图区单击鼠标并按住鼠标拖动,到适当位置松开,就画出一条射线,如图7所示
三、操作步骤观察图10,你能明白三角形就是用【直尺工具】画三条首尾相接的线段所组成的图形。
图10
1、打开几何画板,建立新绘图
2、单击【直尺工具】 ,将光标移到在绘图区,单击并按住鼠标拖动,画一条线段,松开鼠标。的方向)
4、在原处单击鼠标并按住拖动,画出第三条线段,光标移到起点处松开鼠标。(注意起点会变色)
按住工具框的边缘,可随意拖动到画板窗口的任何位置,不同位置形状不同。试一试,能否拖到某一个地方,工具框变成图2所示的形状?
图2
顾名思义,猜测一下它们都有何功能?
:选择对象这是它的主要功能,当然还有其他
:画点可以在画板绘图区任何空白的地方或“线”上画点。“线”可以是线段、射线、圆、轨迹、函数图像
:画圆只能画正圆不能画椭圆,是不是有点遗憾?(几何画板也能画椭圆,请看第二章)
第二节用绘图工具绘制简单的组合图形
下面我们用绘图工具来画一些组合图形,希望通过一下范例的学习,你能够熟悉绘图工具的使用,和一些相关技巧。
例1、三角形(一)
一、制作结果如图所示,拖动三角形的顶点,可改变三角形的形状、大小
这个三角形是动态的三角形,它可以被拖成下列三角形之一,如图9所示。
图9
二、要点思路熟悉“直尺工具”的使用,拖动图中的点改变其形状。
画线:单击【直尺工具】 ,然后拖动鼠标,将光标移动到画板窗口中单击一下,再拖动鼠标到另一位置松开鼠标,就会出现一条线段。
画圆:单击【圆规工具】 ,然后拖动鼠标,将光标移动到画板窗口中单击一下(确定圆心),并按住鼠标拖动到另一位置(起点和终点间的距离就是半径)松开鼠标,就回出现一个圆。
画交点:单击【选择箭头工具】 ,然后拖动鼠标将光标移动到线段和圆相交处(光标由 变成横向 ,状态栏显示的是“点击构造交点”)单击一下,就会出现交点。如图4所示:
所以说,你不觉得几何画板所画图形是动态的图形?
几何画板绘制的图形也非常容易加上标签。(你不妨和word的绘图比较一下)
单击文本工具,光标由前头变为手形 然后分别移动鼠标,当光标移到对象处,变为 单击鼠标,对象显示出标签。
请将图3中的所有对象添上标签。去掉标签也容易,只需对上图的每一个对象,单击,标签就没有了。在几何画板中的每个几何对象都对应一个“标签”。当您在画板中构造几何对象时,系统会自动给您画的对象配标签。文本工具就是一个标签的开关,可以让几何画板中每个几何对象的标签显示和隐藏。
图4
交点只能由线段(包括直线、射线)间、圆间、线段((包括直线、射线))与圆之间点击构造。
绘图工具的使用是不是比操作直尺和圆规更容易?
如果你细心的话,你会发现【选择箭头工具】 ,和【直尺工具】 的右下角都有一个小三角,用鼠标按住它约一秒,看看会发生什么?
【选择箭头工具】展开如图5所示,有三个工具,分别是:“移动”,“旋转”,“缩放”,其用途键下一节。
:画线直尺工具当然用于画线段,还不仅仅如此!
:加标注(即说明性的文字)或给对象标标签
:自定义工具如果你觉得上述工具不够(如:不能直接画正方形),你可以定义新的工具
选择某项绘图工具时,用鼠标单击一下该工具即可。
试一试能否画出如图3所示的图形
图3
画点:单击【点工具】 ,然后将鼠标移动到画板窗口中单击一下,就会出现一个点。
画板的左侧是画板工具箱,把光标移动到工具的上面,一会儿就会显示工具的名称,看看它们分别是什么?它们分别是【选择箭头工具】 、【点工具】 、【圆规工具】 、【直尺工具】 、【文本工具】 、【自定义画图工具】 。
和一般的绘图软件相比,你会不会感觉它的工具是不是少了点?几何画板的主要用途之一是用来绘制几何图形。而几何图形的绘制,我们通常是用直尺和圆规,它们的配合几乎可以画出所有的欧氏几何图形。因为任何欧氏几何图形最后都可归结为“点”、“线”、“圆”。这种公里化作图思想因为“三大作图难题”曾经吸引无数数学爱好者的极大兴趣从而在数学历史上影响重大,源远流长。从某种意义上讲几何画板绘图是欧氏几何“尺规作图”的一种现代延伸。因为这种把所有绘图建立在基本元素上的做法和数学作图思维中公里化思想是一脉相承的。
5、将该文件保存为“三角形.gsp”
移动光标到线段的端点之间任何地方(光标成水平状)拖动鼠标,就可以移动线段。分别拖动一下直线、射线的点和线,尝试改变它们一下。
试一试画一个圆,看能否改变圆的大小和位置。
(提示:圆是由两个点来决定的,鼠标按下去的点即为圆心,松开鼠标的点即为圆上的一点。改变这两个点中的任意一点都可以改变圆。分别拖动圆心和圆周上的点,可改变圆的大小,拖动圆周,可移动圆。)
超经典几何画板教程
第一章用工具作图
第一节几何画板的启动和绘图工具的介绍
1、启动几何画板:单击桌面左下角的【开始】按钮,选择【所有程序】|【GSP4.05】应用程序后,启动几何画板。
如图1所示,是打开一个几何画板文件的截图。
图1
几何画板的窗口是不是和其他Windows应用程序窗口十分类似?有控制菜单、最大/最小化以及标题栏,画板窗口的左侧是画板工具栏,画板的右边和下边可以有滚动条可以使小画板处理更大的图形。
图7
(在几何画板里是看不见射线上的箭头,它向一端是无限延伸的)
画直线:依样画葫芦,请你画如图8所示的一条直线。
图8
(在几何画板里同样也是看不见直线上的箭头,它向两端是无限延伸的)
你还会发现,用几何画板画出的线段、直线、射线和画圆,分别多了两点。一方面构造它们只要两点就够了,另一方面,它们可以被拖动。如,单击【选择箭头工具】 按钮,移动光标到线段的端点处(注意光标会变水平)拖动鼠标,线段的长短和方向就会改变;正因为多出了“点”,才使它们有被改变的可能。
相关文档
最新文档