正余弦定理复习教案
高三数学总复习 正弦定理和余弦定理教案
高三数学总复习 正弦定理和余弦定理教案教学目标:1、掌握正弦定理和余弦定理的推导,并能用它们解三角形.2、利用正、余弦定理求三角形中的边、角及其面积问题是高考考查的热点.3、常与三角恒等变换相结合,综合考查三角形中的边与角、三角形形状的判断等.教学重点:①能充分应用三角形的性质及有关的三角函数公式证明三角形的边角关系式. ②能合理地选用正弦定理余弦定理结合三角形的性质解斜三角形.③能解决与三角形有关的实际问题.教学难点:①根据已知条件判定解的情形,并正确求解.②将实际问题转化为解斜三角形.教学过程一、基础回顾1、正余弦定理正弦定理:a sinA =b sinB =c sinC=2R(其中R 为△ABC 外接圆的半径). 余弦定理a 2=b 2+c 2-2bccosA ,b 2=a 2+c 2-2accosB ;c 2=a 2+b 2-2abcosC2、变形式①a =2RsinA ,b =2RsinB ,c =2RsinC ;(其中R 是△ABC 外接圆半径)②a ∶b ∶c =sinA :sinB :sinB③cosA =b 2+c 2-a 22bc ,cosB =a 2+c 2-b 22ac ,cosC =a 2+b 2-c 22ab. 3、三角形中的常见结论(1) A +B +C =π.(2) 在三角形中大边对大角,大角对大边:A>B a>b sinA>sinB.(3) 任意两边之和大于第三边,任意两边之差小于第三边.(4) △ABC 的面积公式① S =12a ·h(h 表示a 边上的高); ② S =12absinC =12acsinB =12bcsinA =abc 4R; ③ S =12r(a +b +c)(r 为内切圆半径); ④ S =P (P -a )(P -b )(P -c ),其中P =12(a +b +c). 二、基础自测1、在△ABC 中,若∠A=60°,∠B =45°,BC =32,则AC =________.2、在△ABC 中,a =3,b =1,c =2,则A =________.3、在△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,若a =2bcosC ,则此三角形一定是________三角形.4、已知△ABC 的三边长分别为a 、b 、c ,且a 2+b 2-c 2=ab ,则∠C=________.5、在△ABC 中,a =32,b =23,cosC =13,则△ABC 的面积为________.三、典例分析例1 (2013·惠州模拟)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a .(1)求b a; (2)若c 2=b 2+3a 2,求B . 解:(1)由正弦定理,得asin B =bsin A ,又asin Asin B +bcos 2A =2a ,∴bsin 2A +bcos 2A =2a ,即b =2a ,因此b a = 2. (2)由c 2=b 2+3a 2及余弦定理,得cos B =a 2+c 2-b 22ac =(1+3)a 2c, (*) 又由(1)知,b =2a ,∴b 2=2a 2,因此c 2=(2+3)a 2,c =2+3a =3+12 a. 代入(*)式,得cos B =22, 又0<B <π,所以B =π4. 规律方法:1.运用正弦定理和余弦定理求解三角形时,要分清条件和目标.若已知两边与夹角,则用余弦定理;若已知两角和一边,则用正弦定理.2.在已知三角形两边及其中一边的对角,求该三角形的其它边角的问题时,首先必须判断是否有解,如果有解,是一解还是两解,注意“大边对大角”在判定中的应用.例2、(2013·合肥模拟)已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(4,-1),n =(cos 2A 2,cos 2A),且m ·n =72. (1)求角A 的大小; (2)若b +c =2a =23,试判断△ABC 的形状.解:(1)∵m =(4,-1),n =(cos 2A2,cos 2A ), ∴m ·n =4cos 2A 2-cos 2A =4·1+cos A 2-(2cos 2A -1)=-2cos 2A +2cos A +3. 又∵m ·n =72, ∴-2cos 2A +2cos A +3=72,解得cos A =12. ∵0<A <π,∴A =π3.(2)在△ABC 中,a 2=b 2+c 2-2bc cos A ,且a =3,∴(3)2=b 2+c 2-2bc ·12=b 2+c 2-bc . ① 又∵b +c =23,∴b =23-c ,代入①式整理得c 2-23c +3=0,解得c =3,∴b =3, 于是a =b =c =3,即△ABC 为等边三角形.规律方法:判定三角形的形状,应围绕三角形的边角关系进行转化.无论使用哪种方法,不要随意约掉公因式;要移项提取公因式,否则会有漏掉一种形状的可能.例3、(2012·课标全国卷)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,acos C +3asin C -b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c.解:(1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0.因为B =π-A -C ,则sin B =sin A cos C +cos A sin C . 所以3sin A sin C -cos A sin C -sin C =0.由于sin C ≠0,所以sin(A -π6)=12. 又0<A <π,故A =π3. (2)△ABC 的面积S =12bc sin A =3,故bc =4. ① 又a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8.② 由①②联立,得b =c =2.四、练习 变式练习1:(2012·浙江高考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且bsin A =3acos B.(1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值.变式练习2:在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2asin A =(2b +c)sin B +(2c +b)sin C.(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状五、作业布置六、板书设计1、正余弦定理2、变形式3、三角形中常用结论典例分析七、教学反思。
江苏正弦定理和余弦定理教案
江苏正弦定理和余弦定理教案一、教学目标:1. 让学生了解正弦定理和余弦定理的定义及应用。
2. 培养学生运用正弦定理和余弦定理解决实际问题的能力。
3. 通过对正弦定理和余弦定理的学习,提高学生的数学思维能力和创新能力。
二、教学内容:1. 正弦定理的定义及证明。
2. 余弦定理的定义及证明。
3. 正弦定理和余弦定理的应用。
4. 相关例题解析。
5. 实践练习。
三、教学重点与难点:1. 正弦定理和余弦定理的推导过程。
2. 灵活运用正弦定理和余弦定理解决实际问题。
四、教学方法:1. 采用讲授法,讲解正弦定理和余弦定理的定义、证明及应用。
2. 利用多媒体展示相关例题,进行解析。
3. 开展小组讨论,让学生互动交流,巩固所学知识。
4. 布置实践练习题,巩固所学内容。
五、教学过程:1. 引入:通过回顾三角形的基本知识,引导学生思考正弦定理和余弦定理的定义。
2. 讲解:详细讲解正弦定理和余弦定理的定义、证明及应用。
3. 例题解析:利用多媒体展示相关例题,进行解析,让学生掌握解题技巧。
4. 小组讨论:让学生围绕例题展开讨论,互相交流解题思路。
5. 实践练习:布置实践练习题,让学生独立完成,巩固所学知识。
6. 总结:对本节课的内容进行归纳总结,强调重点知识点。
7. 作业布置:布置课后作业,巩固所学内容。
8. 课后反思:教师对本节课的教学效果进行反思,为下一步教学做好准备。
六、教学评价:1. 课后作业:通过课后作业的完成情况,评估学生对正弦定理和余弦定理的理解和应用能力。
2. 课堂练习:通过课堂练习的实时反馈,了解学生在学习过程中的掌握情况,及时调整教学方法。
3. 小组讨论:观察学生在小组讨论中的参与程度和思考深度,评估他们的合作能力和问题解决能力。
4. 期中期末考试:通过期中期末考试的正弦定理和余弦定理部分,全面评估学生的学习成果。
七、教学资源:1. 教材:选用权威的数学教材,提供正弦定理和余弦定理的基础知识。
2. 多媒体课件:制作精美的多媒体课件,通过动画、图像等形式直观展示正弦定理和余弦定理的应用。
高中数学:正弦定理、余弦定理及应用教案苏教版必修
教案:高中数学——正弦定理、余弦定理及应用教案编写者:教学目标:1. 理解正弦定理、余弦定理的定义及几何意义;2. 掌握正弦定理、余弦定理的应用方法;3. 能够运用正弦定理、余弦定理解决实际问题。
教学重点:1. 正弦定理、余弦定理的定义及几何意义;2. 正弦定理、余弦定理的应用方法。
教学难点:1. 正弦定理、余弦定理在实际问题中的应用。
教学准备:1. 教师准备PPT、教案、例题及练习题;2. 学生准备笔记本、文具。
教学过程:一、导入(5分钟)1. 复习初中阶段学习的三角函数知识,引导学生回顾正弦、余弦函数的定义及图像;2. 提问:如何利用三角函数解决几何问题?引出正弦定理、余弦定理的学习。
二、正弦定理(15分钟)1. 讲解正弦定理的定义:在一个三角形中,各边和它所对角的正弦的比相等;2. 解释正弦定理的几何意义:三角形任意一边的长度等于这一边所对角的正弦值乘以对边的长度;3. 举例说明正弦定理的应用方法,如已知三角形两边和一边的对角,求第三边的长度;4. 引导学生通过PPT上的例题,理解并掌握正弦定理的应用。
三、余弦定理(15分钟)1. 讲解余弦定理的定义:在一个三角形中,各边的平方和等于两边的平方和减去这两边与它们夹角的余弦的乘积的二倍;2. 解释余弦定理的几何意义:三角形任意一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦值的乘积的两倍;3. 举例说明余弦定理的应用方法,如已知三角形两边和它们的夹角,求第三边的长度;4. 引导学生通过PPT上的例题,理解并掌握余弦定理的应用。
四、应用练习(15分钟)1. 给学生发放练习题,要求学生在纸上完成;2. 学生在纸上完成练习题,教师巡回指导;3. 选取部分学生的作业进行讲解和点评。
1. 回顾本节课学习的正弦定理、余弦定理的定义及应用;2. 强调正弦定理、余弦定理在解决几何问题中的重要性;3. 提醒学生课后复习巩固,做好预习准备。
教学反思:本节课通过讲解正弦定理、余弦定理的定义及几何意义,让学生掌握了这两个重要定理的应用方法。
江苏正弦定理和余弦定理教案
江苏正弦定理和余弦定理教案一、教学目标1. 让学生掌握正弦定理和余弦定理的定义及表达式。
2. 培养学生运用正弦定理和余弦定理解决实际问题的能力。
3. 引导学生通过观察、分析、归纳和验证等方法,深入理解正弦定理和余弦定理的内在联系。
二、教学内容1. 正弦定理:在三角形中,各边的长度与其对角的正弦值成比例。
2. 余弦定理:在三角形中,各边的平方和等于其他两边平方和与这两边夹角余弦值的乘积的两倍。
三、教学重点与难点1. 教学重点:正弦定理和余弦定理的定义及应用。
2. 教学难点:正弦定理和余弦定理的推导过程及其在实际问题中的应用。
四、教学方法1. 采用问题驱动法,引导学生通过观察、分析、归纳和验证等方法,探索正弦定理和余弦定理。
2. 利用多媒体课件,直观展示正弦定理和余弦定理的推导过程。
3. 设计具有代表性的例题,讲解正弦定理和余弦定理在解决实际问题中的应用。
4. 组织学生进行小组讨论和探究,提高学生的合作能力和解决问题的能力。
五、教学过程1. 导入新课:通过展示三角形模型,引导学生思考三角形中的几何关系。
2. 探究正弦定理:让学生观察三角形模型,引导学生发现各边长度与对角正弦值的关系,进而总结出正弦定理。
3. 验证正弦定理:让学生运用正弦定理解决具体问题,验证其正确性。
4. 探究余弦定理:引导学生观察三角形模型,发现各边平方和与夹角余弦值的关系,总结出余弦定理。
5. 验证余弦定理:让学生运用余弦定理解决具体问题,验证其正确性。
6. 总结正弦定理和余弦定理:引导学生对比总结两个定理的异同点。
7. 巩固练习:设计具有针对性的练习题,让学生巩固正弦定理和余弦定理的应用。
8. 拓展与应用:引导学生运用正弦定理和余弦定理解决实际问题,提高学生的应用能力。
六、教学评价1. 课堂讲解:评价学生对正弦定理和余弦定理的理解程度,以及运用这两个定理解决问题的能力。
2. 练习题:通过布置练习题,检验学生对正弦定理和余弦定理的掌握情况。
高考数学复习知识点讲解教案第27讲 余弦定理、正弦定理
(2) 若,求 的周长的取值范围.
[思路点拨]根据正弦定理,结合三角恒等变换将三角形的周长转化为正弦型三角函数,利用正弦型三角函数的性质求 周长的取值范围即可.
解: 由正弦定理得,则 ,,又 ,,所以,又 为锐角三角形,所以,,则 ,所以 ,因为,所以,则 ,所以,即的周长的取值范围为
[总结反思]破解此类问题的关键:一是观察已知三角恒等式,判断是边往角化还是角往边化,从而利用正弦定理或余弦定理进行转化;二是把所求的取值范围或最值问题转化为三角函数问题,利用三角函数的单调性进行求解,或利用基本不等式、三角函数的有界性进行求解.
[思路点拨]先由余弦定理求出,然后由正弦定理求解 即可.
[பைடு நூலகம்结反思]
(1)正弦定理、余弦定理的作用是在已知三角形部分元素的情况下求解其余元素,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程(组),通过解方程(组)求得未知元素.(2)正弦定理、余弦定理的另一个作用是实现三角形边角关系的互化,解题时可以把已知条件化为角的三角函数关系,也可以把已知条件化为三角形边的关系.
微点2 多三角形背景解三角形
例4 [2023·新课标Ⅱ卷] 记的内角,,的对边分别为,, ,已知面积为,为的中点,且 .
(1) 若,求 ;
[思路点拨]思路一:利用三角形的面积公式求出,再利用余弦定理求得 ,进而可得,从而求得的值;思路二:利用三角形的面积公式求出 ,作出 边上的高,利用直角三角形的性质求解即可.
《正弦定理和余弦定理》复习课教学设计
《正弦定理和余弦定理》复习课教学设计《正弦定理和余弦定理》复习课教学设计教材分析这是高三一轮复习,内容是必修5第一章解三角形。
本章内容准备复习两课时。
本节课是第一课时。
标要求本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后应落实在解三角形的应用上。
通过本节学习,学生应当达到以下学习目标:(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理解三角形。
(2)能够运用正弦定理、余弦定理等知识和方法判断三角形形状的问题。
本章内容与三角函数、向量联系密切。
作为复习课一方面将本章知识作一个梳理,另一方面通过整理归纳帮助学生进一步达到相应的学习目标。
学情分析学生通过必修5的学习,对正弦定理、余弦定理的内容已经了解,但对于如何灵活运用定理解决实际问题,怎样合理选择定理进行边角关系转化从而解决三角形综合问题,学生还需通过复习提点有待进一步理解和掌握。
教学目标知识目标:(1)学生通过对任意三角形边长和角度关系的探索,掌握正弦、余弦定理的内容及其证明方法;会运用正、余弦定理与三角形内角和定理,面积公式解斜三角形的两类基本问题。
(2)学生学会分析问题,合理选用定理解决三角形综合问题。
能力目标:培养学生提出问题、正确分析问题、独立解决问题的能力,培养学生在方程思想指导下处理解三角形问题的运算能力,培养学生合情推理探索数学规律的数学思维能力。
情感目标:通过生活实例探究回顾三角函数、正余弦定理,体现数学来源于生活,并应用于生活,激发学生学习数学的兴趣,并体会数学的应用价值,在教学过程中激发学生的探索精神。
教学方法探究式教学、讲练结合重点难点1、正、余弦定理的对于解解三角形的合理选择;2、正、余弦定理与三角形的有关性质的综合运用。
教学策略1、重视多种教学方法有效整合;2、重视提出问题、解决问题策略的指导。
3、重视加强前后知识的密切联系。
4、重视加强数学实践能力的培养。
5、注意避免过于繁琐的形式化训练6、教学过程体现“实践→认识→实践”。
正余弦定理解三角形复习教案
6. 在△ABC 中,b = 8,c =38,S △ABC =316,则∠A 等于( )A. 30 ºB. 60ºC. 30º 或 150ºD. 60º 或120º7、在△ABC 中,已知B=30°, b=503 ,c=150,那么这个三角形是 ( ) A .等边三角形 B .直角三角形C .等腰三角形D .等腰三角形或直角三角形8、在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c,A=3π,a=3,b=1,则c= (A) 1 (B )2 (C )3—1 (D )39.在△AOB 中,()2cos 2sin OA αα=,,()5cos 5sin OB ββ=,,若5OA OB =,则AOB S △等于( )A.3B.32C.53D.53210. 在ABC △中,cos cos sin sin A B A B >,则ABC △是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.正三角形 11.ABC ∆中,3π=A ,BC =3,则ABC ∆的周长为( )A .33sin 34+⎪⎭⎫⎝⎛+πB B .36sin 34+⎪⎭⎫ ⎝⎛+πB C .33sin 6+⎪⎭⎫ ⎝⎛+πB D .36sin 6+⎪⎭⎫ ⎝⎛+πB 12.在△ABC 中,A =60°,b =1,S ABC △=3,求a b cA B C++++sin sin sin 的值。
13.在△ABC 中,若a bAB 22=tan tan ,试判断△ABC 的形状。
14.在△ABC 中,αβcos cos A b =,判断△ABC 的形状。
二.余弦定理1、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.2、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=.3、设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =;②若222a b c +>,则90C <;③若222a b c +<,则90C >.典型例题:1.在△ABC 中,若8,3,7===c b a ,则其面积等于( ) A .12 B .221C .28D .36B.直角三角形ABC中,(1)求sin B的值;b=ABC的面积。
高中数学正余弦定理教案模板(精选7篇)-最新
高中数学正余弦定理教案模板(精选7篇)作为一位杰出的老师,时常要开展教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。
如何把教案做到重点突出呢?这里给大家分享一些关于高中数学余弦定理教案,方便大家学习。
下面是的为您带来的7篇《高中数学正余弦定理教案模板》,希望能够对困扰您的问题有一定的启迪作用。
余弦定理教案篇一今天我说课的内容是余弦定理,本节内容共分3课时,今天我将就第1课时的余弦定理的证明与简单应用进行说课。
下面我分别从教材分析。
教学目标的确定。
教学方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。
一、教材分析本节内容是江苏教育出版社出版的普通高中课程标准实验教科书《数学》必修五的第一章第2节,在此之前学生已经学习过了勾股定理。
平面向量、正弦定理等相关知识,这为过渡到本节内容的学习起着铺垫作用。
本节内容实质是学生已经学习的勾股定理的延伸和推广,它描述了三角形重要的边角关系,将三角形的“边”与“角”有机的联系起来,实现边角关系的互化,为解决斜三角形中的边角求解问题提供了一个重要的工具,同时也为在日后学习中判断三角形形状,证明三角形有关的等式与不等式提供了重要的依据。
在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。
二、教学目标的确定基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者。
引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,我认为本节课的教学目标有:1、知识与技能:熟练掌握余弦定理的内容及公式,能初步应用余弦定理解决一些有关三角形边角计算的问题;2、过程与方法:掌握余弦定理的两种证明方法,通过探究余弦定理的过程学会分析问题从特殊到一般的过程与方法,提高运用已有知识分析、解决问题的能力;3、情感态度与价值观:在探究余弦定理的过程中培养学生探索精神和创新意识,形成严谨的数学思维方式,培养用数学观点解决问题的能力和意识、三、教学方法的选择基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。
高三数学总复习---正弦定理和余弦定理教案
第七讲 正弦定理和余弦定理教学目标:1、掌握正弦定理和余弦定理的推导,并能用它们解三角形.2、利用正、余弦定理求三角形中的边、角及其面积问题是高考考查的热点.3、常与三角恒等变换相结合,综合考查三角形中的边与角、三角形形状的判断等.教学重点:①能充分应用三角形的性质及有关的三角函数公式证明三角形的边角关系式. ②能合理地选用正弦定理余弦定理结合三角形的性质解斜三角形. 教学难点:①根据已知条件判定解的情形,并正确求解.②将实际问题转化为解斜三角形.课型及课时:复习课,2课时(第一课时)教学过程一、教材回顾,追根溯源1、正余弦定理正弦定理:a sinA =b sinB =c sinC=2R(其中R 为△ABC 外接圆的半径). 余弦定理 a 2=b 2+c 2-2bccosA ,b 2=a 2+c 2-2accosB ,c 2=a 2+b 2-2abcosC 变形式①a =2RsinA ,b =2RsinB ,c =2RsinC ;(其中R 是△ABC 外接圆半径)②a ∶b ∶c =sinA :sinB :sinB③cosA =b 2+c 2-a 22bc ,cosB =a 2+c 2-b 22ac ,cosC =a 2+b 2-c 22ab. 2、正、余弦定理的作用正弦定理主要解决以下两类问题:(1)已知两角及任一边求解三角形; (2)已知两边及其一边的对角求解三角形。
余弦定理主要解决以下三类问题:(1)已知两边及其夹角求解三角形; (2)已知三边求解三角形。
(3)已知两边及其一边的对角求解三角形。
3、 △ABC 的面积公式① S =12a ·h(h 表示a 边上的高); ② S =12absinC =12acsinB =12bcsinA =abc 4R; ③ S =12r(a +b +c)(r 为内切圆半径); ④ S =P (P -a )(P -b )(P -c ),其中P =12(a +b +c). 二、走进考纲,解读高考三、双基自测,夯实基础1、(教材习题改编)在△ABC 中,A =45°,C =30°,c =6,则a 等于( )A .3 2B .62C . 2 6D .3 62、(教材习题改编)在△ABC 中,已知a =5,b =7,c =8,则A +C =( )A .90°B .120°C .135°D .150°3、已知a 、b 、c 分别为△ABC 三个内角A 、B 、C 的对边,若cos B =45,a =10,△ABC 的面积为42,则c =_______四、直击高考,突破考点高频考点:利用正、余弦定理解三角形,三角形的面积公式利用正、余弦定理解三角形和三角形的面积公式都是高考的热点,三种题型在高考中时有出现,其试题为中档题.高考对该考点的考查有以下两个命题角度:(1)由已知求边、角、面积;(2)已知面积求边、角、周长等.例1 (2017高考全国乙卷)17.(12分)ABC △的内角,,A B C 的对边分别为,,a b c ,已知()2sin 8sin 2B AC +=. (1)求cos B ;(2)若6a c +=,ABC △的面积为2,求b .跟踪训练 1、(2016·高考全国卷乙,T17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长.【解】 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B cos A )=sin C ,2cos C sin(A +B )=sin C ,故2sin C cos C =sin C .可得cos C =12,所以C =π3. (2)由已知,12ab sin C =332.又C =π3,所以ab =6.由已知及余弦定理得,a 2+b 2-2ab cos C =7,故a 2+b 2=13,从而(a +b )2=25. 所以△ABC 的周长为5+7.2、(2017·重庆第一次适应性测试)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且cos(B+C)=-33sin 2A.(1)求A;(2)设a=7,b=5,求△ABC的面积.[解] (1)由cos(B+C)=-33sin 2A可得,-cos A=-33sin 2A,所以cos A=33×2sin A cos A,因为△ABC为锐角三角形,所以cos A≠0,故sinA=32,从而A=π3.(2)因为A=π3,故cos A=12,由余弦定理可知,a2=b2+c2-2bc cos A,即49=25+c2-5c,所以c2-5c-24=0,解得c=-3(舍去),c=8,所以△ABC的面积为12bc sin A=12×5×8×32=10 3.五、归纳小结,掌握技巧解题策略(1)解三角形时,如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;如果式子中含有角的余弦或二次式时,要考虑用余弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到。
《正余弦定理复习课》教案
《正余弦定理复习课》教案教材:人教A版必修5第一章授课教师:浙江省温州中学邹琼艳一、教学目标1.知识与技能:(1)正弦定理和余弦定理结合起来,能够很好地解决三角形的问题,注意定理的变式及合理选用公式;(2)掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;(3)掌握三角形各种类型的判定方法;三角形面积定理的应用;(4)能运用两个定理转化三角形中的一些边角关系式。
2.过程与方法:(1)体会解三角形的实质就是由正弦定理与余弦定理联立得到方程组,由方程的思想求解未知的边角;(2)通过引导学生分析,解答两个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题。
3. 情感、态度与价值观:通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系。
二、教学重点、难点重点:正、余弦定理与三角形的有关性质的综合运用。
在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。
难点:正、余弦定理与三角形的有关性质的综合运用。
三、教学过程【例题】已知△ABC中,a、b、c分别是角A、B、C的对边,已知c=8,C=60o【问1】你能否解此三角形?【设计意图】此问主要是想让学生抓住问题的本质,三角形中六个基本元素,任何一条正余弦定理的公式都对着四个未知量,所以必须要有三个已知量才能求解。
渗透解三角形问题中的方程思想。
【问2】若固定A、B两点,符合题意的点C的运动轨迹是什么?【设计意图】此问的目的之二是回顾正弦定理的内容,三角形中一边和其对角确定,该三角形的外接圆半径是确定的,学生容易回答点C的轨迹是以AB为60o圆周角所对弦、半径确定的圆;同时利用几何画板的优势,把图形静与动的相对关系淋漓尽致地体现在学生的面前,让学生对图形有较强的把握,A、B、C三点共圆的图形可对接下来一些问题的研究提供数形结合的依据。
正弦定理和余弦定理复习总结教案
3、正弦定理和余弦定理复习总结1.正弦定理和余弦定理定理正弦定理余弦定理内容a sin A =b sin B =c sin C=2R ,(R 为△ABC 外接圆半径)a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B c 2=a 2+b 2-2ab cos C 变形形式(边角转化)a =2R sin A ,b =2R sinB ,c =2R sin C ;sin A =a 2R ,sinB =b 2R ,sin C =c2R ;a ∶b ∶c =sin_A ∶sin_B ∶sin_Ccos A =b 2+c 2-a 22bc ;cosB =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 22ab2.三角形中常用的面积公式(1)S =12ah (h 表示边a 上的高);(2)S =12bc sin A =12ac sinB =12ab sin C ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).考点一 利用正、余弦定理解三角形1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+3bc ,则A=___________解:(1)由余弦定理得cos A =b 2+c 2-a 22bc =-3bc 2bc =-32.又因为0<A <π,所以A =5π6.2.(2015·北京卷)在△ABC 中,a =3,b =6,∠A =2π3,则∠B =________.解析:由正弦定理,得a sin A =bsin B ,即332=6sin B,所以sin B =22,所以∠B =π4.答案:π43.在△ABC 中,a =15,b =10,A =60°,则cos B 等于( )A .-223 B.223 C .-63 D.63解析:利用正弦定理:a sin A =b sin B ,1532=10sin B,所以sin B =33,因为大边对大角(三角形中),所以B 为锐角,所以cos B =1-sin 2 B =63.答案:D4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =62b ,A =2B ,则cos B 等于( ) A.66 B.65 C.64 D.63解析:选C 因为a =62b ,A =2B ,所以由正弦定理可得62b sin 2B =b sin B ,所以622sin B cos B =1sin B ,所以cosB =64. 5.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sinBcos C +c sinBcos A =12b ,且a >b ,则B =( )A.π6B.π3 C.2π3D.5π6解析:选A 由正弦定理得,sin A sin Bcos C +sin C sin Bcos A =12sin B ,所以sin A cos C +sin C cos A =12,即sin(A +C )=12,所以sin B =12.已知a >b ,所以B 不是最大角,所以B =π6.6.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.解析:因为sin B =12且B ∈(0,π),所以B =π6或B =5π6,又C =π6,所以B =π6,A =π-B -C =2π3,又a =3,由正弦定理得a sin A =b sin B ,即3sin 2π3=b sinπ6,解得b =1. 答案:17.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( )A.24B .-24C.34 D .-34解析:选B 由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.8.在△ABC 中,AB =3,BC =13,AC =4,则边AC 上的高为( )A.322B.332C.32D .3 3解析:选B 由题意得cos A =AB 2+AC 2-BC 22AB ·AC =32+42-(13)22×3×4=12,∴sin A =1-⎝⎛⎭⎫122=32,∴边AC 上的高h =AB sin A =332.9.(2017·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,则B =________.解析:由2b cosB =a cos C +c cos A 及余弦定理,得 2b ·a 2+c 2-b 22ac =a ·a 2+b 2-c 22ab +c ·b 2+c 2-a 22bc ,整理得,a 2+c 2-b 2=ac , 所以2ac cosB =ac >0,cosB =12.又0<B <π,所以B =π3.答案:π3考点二 利用正弦、余弦定理判定三角形的形状1.在△ABC 中,已知三边a =3,b =5,c =7,则三角形ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .无法确定解析:何种三角形取决于最大的角.最长的边所对的角最大,由余弦定理知: cos C =a 2+b 2-c 22ab =-12<0,所以C 为钝角.答案:C2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形解析:选C ∵sin A sin B =a c ,∴a b =ac ,∴b =c .又(b +c +a )(b +c -a )=3bc ,∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =bc 2bc =12.∵A ∈(0,π),∴A =π3,∴△ABC 是等边三角形.3.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若c -a cosB =(2a -b )cos A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析:选D 因为c -a cosB =(2a -b )cos A , C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B·cos A , 所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin Bcos A , 所以cos A (sin B -sin A )=0, 所以cos A =0或sin B =sin A , 所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰或直角三角形. 考点三 与三角形面积有关的问题1.在△ABC 中,a ,b ,c 分别是角A 、B 、C 的对边,a =5,b =4,cos C =45,则△ABC 的面积是( )A .8B .6C .4D .2 解析:因为cos C =45,C ∈(0,π),所以sin C =35,所以S △ABC =12ab sin C =12×5×4×35=6.答案:B2.已知△ABC 的面积为32,且b =2,c =3,则( )A .A =30°B .A =60°C .A =30°或150°D .A =60°或120° 解析:因为S =12bc sin A =32,所以12×2×3 sin A =32,所以sin A =32, 所以A =60°或120°. 答案:D3.(2018·云南第一次统一检测)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若B =π2,a =6,sin 2B =2sinA sin C ,则△ABC 的面积S =( )A.32 B .3 C. 6D .6解析:选B 由sin 2B =2sin A sin C 及正弦定理,得b 2=2ac ,① 又B =π2,所以a 2+c 2=b 2.②联立①②解得a =c =6,所以S =12×6×6=3.4.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC 的面积为( )A .23+2B .3+1C .23-2D .3-1B [∵b =2,B =π6,C =π4.由正弦定理b sin B =c sin C ,得c =b sin Csin B =2×2212=22, A =π-⎝⎛⎭⎫π6+π4=712π,∴sin A =sin ⎝⎛⎭⎫π4+π3=sin π4cos π3+cos π4sin π3=6+24. 则S △ABC =12bc ·sin A =12×2×22×6+24=3+1.]课后演练1.在△ABC 中,若sin A a =cos Bb,则B 的大小为( )A .30°B .45°C .60°D .90° 解析:选B 由正弦定理知,sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.2.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定解析:选C 由正弦定理得b sin B =c sin C, ∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.3.在△ABC 中,若a =18,b =24,A =45°,则此三角形有( )A .无解B .两解C .一解D .解的个数不确定解析:选B ∵a sin A =bsin B ,∴sinB =b a sin A =2418sin 45°=223.又∵a <b ,∴B 有两个解, 即此三角形有两解.4.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若c =2a ,b sinB -a sin A =12a sin C ,则cosB 为( )A.74 B.34 C.73 D.13解析:选B ∵b sin B -a sin A =12a sin C ,且c =2a ,∴b =2a ,∴cosB =a 2+c 2-b 22ac =a 2+4a 2-2a 24a 2=34.5.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =3,S △ABC =22,则b 的值为( )A .6B .3C .2D .2或3解析:选D 因为S △ABC =12bc sin A =22,所以bc =6, 又因为sin A =223,所以cos A =13,又a =3,由余弦定理得9=b 2+c 2-2bc cos A =b 2+c 2-4,b 2+c 2=13,可得b =2或b =3. 6.在△ABC 中,2a cos A +b cos C +c cosB =0,则角A 的大小为( )A.π6B.π3C.2π3D.5π6解析:选C 由余弦定理得2a cos A +b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =0,即2a cos A +a =0,∴cos A =-12,A =2π3.7.(2017·山东高考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若△ABC 为锐角三角形,且满足sinB(1+2cos C )=2sin A cos C +cos A sin C ,则下列等式成立的是( )A .a =2bB .b =2aC .A =2BD .B =2A 解析:选A 由题意可知sin B +2sinBcos C =sin A cos C +sin(A +C ),即2sin Bcos C =sinA cos C ,又cos C ≠0,故2sinB =sin A ,由正弦定理可知a =2b .8.在△ABC 中,AB =6,A =75°,B =45°,则AC =________.解析:C =180°-75°-45°=60°, 由正弦定理得AB sin C =ACsin B ,即6sin 60°=AC sin 45°,解得AC =2. 答案:29.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,A =π4,b 2sin C =42sinB ,则△ABC 的面积为____.解析:因为b 2sin C =42sin B , 所以b 2c =42b ,所以bc =42, S △ABC =12bc sin A =12×42×22=2.答案:210.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.解析:∵3sin A =2sin B ,∴3a =2b . 又a =2,∴b =3.由余弦定理可知c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×⎝⎛⎭⎫-14=16, ∴c =4. 答案:411.已知△ABC 的角A ,B ,C 所对的边分别是a ,b ,c ,若cos A =78,c -a =2,b =3,则a =________.解析:由余弦定理可知,a 2=b 2+c 2-2bc cos A ⇒a 2=9+(a +2)2-2·3·(a +2)·78⇒a =2.答案:212.(2017·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.解析:由正弦定理,得sin B =b sin C c =6sin 60°3=22,因为0°<B <180°, 所以B =45°或135°.因为b <c ,所以B <C ,故B =45°, 所以A =180°-60°-45°=75°. 答案:75°13.在△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________.解析:由余弦定理知72=52+BC 2-2×5×BC ×cos 120°, 即49=25+BC 2+5BC ,解得BC =3.故S △ABC =12AB ·Bc sin B =12×5×3×32=1534.答案:153414.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a =2b cos C ,则此三角形一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形解析:选C 法一:由余弦定理可得a =2b ·a 2+b 2-c 22ab ,因此a 2=a 2+b 2-c 2,得b 2=c 2,于是b =c , 从而△ABC 为等腰三角形.法二:由正弦定理可得sin A =2sin Bcos C , 因此sin(B +C )=2sin Bcos C ,即sin Bcos C +cos Bsin C =2sin Bcos C , 于是sin(B -C )=0,因此B -C =0,即B =C , 故△ABC 为等腰三角形.15.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,sin A ,sinB ,sin C 成等差数列,且a =2c ,则cos A =________.解析:因为sin A ,sin B ,sin C 成等差数列,所以2sin B =sin A +sin C .由正弦定理得a +c =2b ,又a =2c ,可得b =32c ,所以cos A =b 2+c 2-a 22bc =94c 2+c 2-4c 22×32c 2=-14.答案:-1416.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,a =2,cos B =35.(1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b 、c 的值. [解] (1)∵cos B =35>0,0<B <π,∴sin B =1-cos 2B =45.由正弦定理,得a sin A =bsin B ,∴sin A =a b sin B =25.(2)∵S △ABC =12ac sin B =45c =4,∴c =5.由余弦定理,得b 2=a 2+c 2-2ac cos B =22+52-2×2×5×35=17,∴b =17.17、在ABC ∆中,角C B A ,,所对的边为c b a ,,,已知b c A b a 3,sin 2==(1)求B 的值;(2)若ABC ∆的面积为32,求b a ,的值答案:解:(1)A b a sin 2=,⇒=A B A sin sin 2sin 21sin =B , 30=B 或 150,b c >,所以 30=B ……………………6分(2)由 30cos 2222ac c a b -+=解得⇒=+-03222a ab b b a =或b a 2=…………① …………9分又⇒==∆3230sin 21ac S ABC 38=ac …………② b c 3=…………③由①②③⎩⎨⎧==24b a 或22==b a …………14分。
正弦定理和余弦定理:复习教案
铭智教育一对一个性化教案学生姓名教师姓名授课日期授课时段课题正弦定理和余弦定理重难点1.正弦定理和余弦定理2.正弦定理和余弦定理的灵活应用教学步骤及教学内1.正弦定理:asin A=bsin B=csin C=2R,其中R是三角形外接圆的半径.由正弦定理可以变形:(1)a∶b∶c =sin_A∶sin_B∶sin_C;(2)a=2R sin_A,b=2R sin_B,c=2R sin_C;(3)sin A=a2R,sin B=b2R,sin C =c2R等形式,以解决不同的三角形问题.2.余弦定理:a2=b2+c2-2bc cos_A,b2=a2+c2-2ac cos_B,c2=a2+b2-2ab cos_C.余弦定理可以变形:cos A=b2+c2-a22bc,cos B=a2+c2-b22ac,cos C=a2+b2-c22ab.3.S△ABC=12ab sin C=12bc sin A=12ac sin B=abc4R=12(a+b+c)·r(r是三角形内切圆的半径),并可由此计算R、r.4.在△ABC中,已知a、b和A时,解的情况如下:A为锐角A为钝角或直角教育要对民族的未来负责教育要对民族的未来负责容图形关系式 a =b sin A b sin A <a <b a ≥b a >b 解的个数一解两解一解一解[难点正本 疑点清源]1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .2. 根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.1. 在△ABC 中,若A =60°,a =3,则a +b +csin A +sin B +sin C=________.答案 2解析 由正弦定理及等比性质知a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C =2R , 而由A =60°,a =3,得a +b +c sin A +sin B +sin C=2R =a sin A =3sin 60°=2.2. (2012·福建)已知△ABC 的三边长成公比为2的等比数列,则其最大角的余弦值为________.答案 -24解析 设三角形的三边长从小到大依次为a ,b ,c , 由题意得b =2a ,c =2a . 在△ABC 中,由余弦定理得cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22×a ×2a=-24.教育要对民族的未来负责3. (2012·重庆)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos A =35,cos B =513,b =3,则c=________. 答案145解析 在△ABC 中,∵cos A =35>0,∴sin A =45.∵cos B =513>0,∴sin B =1213.∴sin C =sin [π-(A +B )]=sin(A +B ) =sin A cos B +cos A sin B =45×513+35×1213=5665. 由正弦定理知b sin B =csin C ,∴c =b sin Csin B =3×56651213=145.4. (2011·课标全国)在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________.答案 27解析 由正弦定理知AB sin C =3sin 60°=BCsin A, ∴AB =2sin C ,BC =2sin A .又A +C =120°,∴AB +2BC =2sin C +4sin(120°-C ) =2(sin C +2sin 120°cos C -2cos 120°sin C ) =2(sin C +3cos C +sin C )=2(2sin C +3cos C )=27sin(C +α), 其中tan α=32,α是第一象限角, 由于0°<C <120°,且α是第一象限角, 因此AB +2BC 有最大值27.教育要对民族的未来负责5. 已知圆的半径为4,a 、b 、c 为该圆的内接三角形的三边,若abc =162,则三角形的面积为( )A .2 2B .8 2 C. 2D.22答案 C解析 ∵a sin A =b sin B =c sin C =2R =8,∴sin C =c8,∴S △ABC =12ab sin C =116abc =116×162= 2.题型一 利用正弦定理解三角形例1 在△ABC 中,a =3,b =2,B =45°.求角A 、C 和边c .思维启迪:已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的个数的判断.解 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°,∴sin A =32. ∵a >b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°,c =b sin C sin B =6+22;当A =120°时,C =180°-45°-120°=15°, c =b sin Csin B =6-22.探究提高 (1)已知两角及一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可. (2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则角A 的大小为________. 答案 π6教育要对民族的未来负责解析 ∵A +C =2B 且A +B +C =π,∴B =π3.由正弦定理知:sin A =a sin B b =12,又a <b ,∴A <B ,∴A =π6.题型二 利用余弦定理求解三角形例2 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b2a +c.(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.思维启迪:由cos B cos C =-b2a +c ,利用余弦定理转化为边的关系求解.解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .将上式代入cos B cos C =-b2a +c 得:a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b 2a +c , 整理得:a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.∵0<B <π,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B , ∴13=16-2ac ⎝⎛⎭⎫1-12,∴ac =3. ∴S △ABC =12ac sin B =334.教育要对民族的未来负责探究提高 (1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键. (2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2A2+cos A =0.(1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积. 解 (1)由2cos 2A2+cos A =0,得1+cos A +cos A =0,即cos A =-12,∵0<A <π,∴A =2π3.(2)由余弦定理得,a 2=b 2+c 2-2bc cos A ,A =2π3,则a 2=(b +c )2-bc ,又a =23,b +c =4,有12=42-bc ,则bc =4, 故S △ABC =12bc sin A = 3.题型三 正弦定理、余弦定理的综合应用例3 (2012·课标全国)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C -b -c =0. (1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .思维启迪:利用正弦定理将边转化为角,再利用和差公式可求出A ;面积公式和余弦定理相结合,可求出b ,c .解 (1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12.教育要对民族的未来负责又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.探究提高 在已知关系式中,若既含有边又含有角.通常的思路是将角都化成边或将边都化成角,再结合正、余弦定理即可求角.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .(1)若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值;(2)若sin C +sin(B -A )=sin 2A ,试判断△ABC 的形状. 解 (1)∵c =2,C =π3,∴由余弦定理c 2=a 2+b 2-2ab cos C 得a 2+b 2-ab =4. 又∵△ABC 的面积为3,∴12ab sin C =3,ab =4.联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2.(2)由sin C +sin(B -A )=sin 2A , 得sin(A +B )+sin(B -A )=2sin A cos A ,即2sin B cos A =2sin A cos A ,∴cos A ·(sin A -sin B )=0, ∴cos A =0或sin A -sin B =0, 当cos A =0时,∵0<A <π, ∴A =π2,△ABC 为直角三角形;当sin A -sin B =0时,得sin B =sin A , 由正弦定理得a =b ,教育要对民族的未来负责即△ABC 为等腰三角形.∴△ABC 为等腰三角形或直角三角形.代数化简或三角运算不当致误典例:(12分)在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断△ABC 的形状.审题视角 (1)先对等式化简,整理成以单角的形式表示.(2)判断三角形的形状可以根据边的关系判断,也可以根据角的关系判断,所以可以从以 下两种不同方式切入:一、根据余弦定理,进行角化边;二、根据正弦定理,进行边化 角.规范解答解 ∵(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),∴b 2[sin(A +B )+sin(A -B )]=a 2[sin(A +B )-sin(A -B )], ∴2sin A cos B ·b 2=2cos A sin B ·a 2, 即a 2cos A sin B =b 2sin A cos B .[4分]方法一 由正弦定理知a =2R sin A ,b =2R sin B , ∴sin 2A cos A sin B =sin 2B sin A cos B , 又sin A sin B ≠0,∴sin A cos A =sin B cos B , ∴sin 2A =sin 2B .[8分]在△ABC 中,0<2A <2π,0<2B <2π,∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2.∴△ABC 为等腰或直角三角形.[12分] 方法二 由正弦定理、余弦定理得: a 2bb 2+c 2-a 22bc =b 2a a 2+c 2-b 22ac,[6分] ∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),教育要对民族的未来负责∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2-b 2=0或a 2+b 2-c 2=0.[10分] 即a =b 或a 2+b 2=c 2.∴△ABC 为等腰或直角三角形.[12分]温馨提醒 (1)利用正弦、余弦定理判断三角形形状时,对所给的边角关系式一般都要先化为纯粹的边之间的关系或纯粹的角之间的关系,再判断.(2)本题也可分析式子的结构特征,从式子看具有明显的对称性,可判断图形为等腰或直角三角形. (3)易错分析:①方法一中由sin 2A =sin 2B 直接得到A =B ,其实学生忽略了2A 与2B 互补的情况,由于计算问题出错而结论错误.方法二中由c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2)不少同学直接得到c 2=a 2+b 2,其实是学生忽略了a 2-b 2=0的情况,由于化简不当致误.②结论表述不规范.正确结论是△ABC 为等腰三角形或直角三角形,而不少学生回答为:等腰直角三角形.高考中的解三角形问题典例:(12分)(2012·辽宁)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列.(1)求cos B 的值;(2)边a ,b ,c 成等比数列,求sin A sin C 的值.考点分析 本题考查三角形的性质和正弦定理、余弦定理,考查转化能力和运算求解能力. 解题策略 根据三角形内角和定理可直接求得B ;利用正弦定理或余弦定理转化到只含角或只含边的式子,然后求解. 规范解答解 (1)由已知2B =A +C ,A +B +C =180°,解得B =60°, 所以cos B =12.[4分](2)方法一 由已知b 2=ac ,及cos B =12,根据正弦定理得sin 2B =sin A sin C ,[8分] 所以sin A sin C =1-cos 2B =34.[12分]教育要对民族的未来负责方法二 由已知b 2=ac ,及cos B =12,根据余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac =12,解得a =c ,[8分]所以A =C =B =60°,故sin A sin C =34.[12分]解后反思 (1)在解三角形的有关问题中,对所给的边角关系式一般要先化为只含边之间的关系或只含角之间的关系,再进行判断.(2)在求解时要根据式子的结构特征判断使用哪个定理以及变形的方向.方法与技巧1.应熟练掌握和运用内角和定理:A +B +C =π,A 2+B 2+C 2=π2中互补和互余的情况,结合诱导公式可以减少角的种数.2.正、余弦定理的公式应注意灵活运用,如由正、余弦定理结合得sin 2A =sin 2B +sin 2C - 2sin B ·sin C ·cos A ,可以进行化简或证明. 失误与防范1.在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解,所以要进行分类讨论.2.利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2012·广东)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC 等于( )A .4 3B .2 3 C. 3 D.32答案 B教育要对民族的未来负责解析 在△ABC 中,AC sin B =BCsin A, ∴AC =BC ·sin Bsin A =32×2232=2 3.2. (2011·浙江)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a cos A =b sin B ,则sin A cos A +cos 2B 等于( )A .-12B.12C .-1D .1答案 D解析 ∵a cos A =b sin B ,∴sin A cos A =sin B sin B , 即sin A cos A -sin 2B =0,∴sin A cos A -(1-cos 2B )=0, ∴sin A cos A +cos 2B =1.3. 在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a =2b cos C ,则此三角形一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形答案 C解析 因为a =2b cos C ,所以由余弦定理得a =2b ·a 2+b 2-c 22ab ,整理得b 2=c 2,因此三角形一定是等腰三角形.4. (2012·湖南)△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( )A.32B.332C.3+62D.3+394答案 B解析 设AB =a ,则由AC 2=AB 2+BC 2-2AB ·BC cos B 知7=a 2+4-2a ,即a 2-2a -3=0,∴a =3(负值舍去).∴BC 边上的高为AB ·sin B =3×32=332. 二、填空题(每小题5分,共15分)教育要对民族的未来负责5. (2011·北京)在△ABC 中,若b =5,∠B =π4,sin A =13,则a =________.答案523解析 根据正弦定理应有a sin A =b sin B, ∴a =b sin Asin B =5×1322=523.6. (2011·福建)若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度等于________.答案 2解析 由于S △ABC =3,BC =2,C =60°, ∴3=12×2·AC ·32,∴AC =2,∴△ABC 为正三角形.∴AB =2.7. 在△ABC 中,若AB =5,AC =5,且cos C =910,则BC =________.答案 4或5解析 设BC =x ,则由余弦定理AB 2=AC 2+BC 2-2AC ·BC cos C 得5=25+x 2-2·5·x ·910,即x 2-9x+20=0,解得x =4或x =5. 三、解答题(共22分)8. (10分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=255,AB →·AC →=3.(1)求△ABC 的面积; (2)若b +c =6,求a 的值.解 (1)∵cos A 2=255,∴cos A =2cos 2A 2-1=35,∴sin A =45.又AB →·AC →=3,∴bc cos A =3,∴bc =5.∴S △ABC =12bc sin A =12×5×45=2.(2)由(1)知,bc =5,又b +c =6,教务处签字:日期:年月日课后评价一、学生对于本次课的评价○特别满意○满意○一般○差二、教师评定1、学生上次作业评价:○好○较好○一般○差2、学生本次上课情况评价:○好○较好○一般○差作业布置.s.5.u.根据余弦定理得a2=b2+c2-2bc cos A=(b+c)2-2bc-2bc cos A=36-10-10×35=20,∴a=2 5.教育要对民族的未来负责教师留言教师签字:家长意见家长签字:日期:年月日教育要对民族的未来负责。
正余弦定理完美教案
难点
理解正弦、余弦定理的推导过程 掌握正弦、余弦定理的应用方法 理解正弦、余弦定理在解题中的运用 理解正弦、余弦定理在几何问题中的应用
05
教具和多媒体资源
传统教具
黑板
三角板
添加标题
添加标题
粉笔
添加标题
添加标题
量角器
多媒体资源
投影仪:用于展示PPT和图形
电脑:用于运行教学软件和展 示动态演示
交互式白板:用于学生互动和 即时反馈
XX
正余弦定理完美教案
单击添加副标题
汇报人:XX
目录
01 03 05 07
单击添加目录项标题
02
教学内容
04
教具和多媒体资源
06
教学过程
08
教学目标 教学重点与难点
教学方法 评价与反馈
01
添加章节标题
02
教学目标
知识目标
掌握正余弦定理的基本概 念和公式
理解正余弦定理在几何问 题中的应用
学会运用正余弦定理解决 实际问题
余弦定理的推导:利用向量数量积的性质和向量的线性运算,通过作向量垂直和向量 的平方关系推导出余弦定理。
余弦定理的应用:余弦定理是解决三角形问题的重要工具,可以用于求解三角形的边 长、角度、面积等。
余弦定理的证明方法:可以通过几何和代数两种方法证明余弦定理,几何方法是通过 构造向量垂直和平行来证明,代数方法则是通过平方恒等式和向量的线性运算来证明。
题目:已知直角三角形中,角A的正弦值为1/2,求角A的余弦值。
题目:在锐角三角形ABC中,已知角A的正弦值为2/3,求角A的余 弦值。
010
教师自我反思
感谢观看
汇报人:XX
2024届高考一轮复习数学教案(新人教B版):正弦定理、余弦定理
§4.8正弦定理、余弦定理考试要求1.掌握正弦定理、余弦定理及其变形.2.理解三角形的面积公式并能应用.3.能利用正弦定理、余弦定理解决一些简单的三角形度量问题.知识梳理1.正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则定理正弦定理余弦定理内容a sin A =bsinB =c sinC =2R a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)sin A =a 2R,sin B =b 2R ,sin C =c 2R;(3)a ∶b ∶c=sin A ∶sin B ∶sin Ccos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.三角形解的判断A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A <a <b a ≥b a >b 解的个数一解两解一解一解3.三角形中常用的面积公式(1)S =12ah a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).常用结论在△ABC 中,常有以下结论:(1)∠A +∠B +∠C =π.(2)任意两边之和大于第三边,任意两边之差小于第三边.(3)a >b ⇔A >B ⇔sin A >sin B ,cos A <cos B .(4)sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B 2=cos C2;cos A +B 2=sin C 2.(5)三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B .(6)三角形中的面积S =12(a +b +思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)三角形中三边之比等于相应的三个内角之比.(×)(2)在△ABC 中,若sin A >sin B ,则A >B .(√)(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.(×)(4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形.(×)教材改编题1.在△ABC 中,AB =5,AC =3,BC =7,则∠BAC 等于()A.π6B.π3C.2π3D.5π6答案C解析在△ABC 中,设AB =c =5,AC =b =3,BC =a =7,由余弦定理得cos ∠BAC =b 2+c 2-a 22bc =9+25-4930=-12,因为∠BAC 为△ABC 的内角,所以∠BAC =2π3.2.记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为4,a =2,B =30°,则c 等于()A .8B .4C .833D .433答案A解析由S △ABC =12ac sin B =12×2c ×12=4,得c =8.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知B =30°,b =2,c =2,则C =.答案45°或135°解析由正弦定理得sin C =c sin B b =2sin 30°2=22,因为c >b ,B =30°,所以C =45°或C =135°.题型一利用正弦定理、余弦定理解三角形例1(12分)(2022·新高考全国Ⅰ)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos A1+sin A=sin 2B1+cos 2B.(1)若C =2π3,求B ;[切入点:二倍角公式化简](2)求a 2+b 2c2的最小值.[关键点:找到角B 与角C ,A 的关系]思维升华解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,则考虑用正弦定理,以上特征都不明显时,则要考虑两个定理都有可能用到.跟踪训练1(2022·全国乙卷)记△ABC的内角A,B,C的对边分别为a,b,c,已知sin C sin(A -B)=sin B sin(C-A).(1)证明:2a2=b2+c2;(2)若a=5,cos A=2531,求△ABC的周长.(1)证明方法一由sin C sin(A-B)=sin B sin(C-A),可得sin C sin A cos B-sin C cos A sin B=sin B sin C cos A-sin B cos C sin A,结合正弦定理asin A=bsin B=csin C可得ac cos B-bc cos A=bc cos A-ab cos C,即ac cos B+ab cos C=2bc cos A(*).由余弦定理可得ac cos B=a2+c2-b2,2ab cos C=a2+b2-c2,22bc cos A=b2+c2-a2,将上述三式代入(*)式整理,得2a2=b2+c2.方法二因为A+B+C=π,所以sin C sin(A-B)=sin(A+B)sin(A-B)=sin2A cos2B-cos2A sin2B=sin2A(1-sin2B)-(1-sin2A)sin2B=sin2A-sin2B,同理有sin B sin(C-A)=sin(C+A)sin(C-A)=sin2C-sin2A.又sin C sin(A-B)=sin B sin(C-A),所以sin2A-sin2B=sin2C-sin2A,即2sin2A=sin2B+sin2C,故由正弦定理可得2a2=b2+c2.(2)解由(1)及a2=b2+c2-2bc cos A得,a2=2bc cos A,所以2bc=31.因为b2+c2=2a2=50,所以(b+c)2=b2+c2+2bc=81,得b+c=9,所以△ABC的周长l=a+b+c=14.题型二正弦定理、余弦定理的简单应用命题点1三角形的形状判断例2(1)在△ABC中,角A,B,C所对的边分别是a,b,c,若c-a cos B=(2a-b)cos A,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形答案D解析因为c-a cos B=(2a-b)cos A,C=π-(A+B),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A ,所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A ,所以cos A (sin B -sin A )=0,所以cos A =0或sin B =sin A ,所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰三角形或直角三角形.(2)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,c -a 2c =sin 2B2,则△ABC 的形状为()A .直角三角形B .等边三角形C .等腰三角形或直角三角形D .等腰直角三角形答案A解析由cos B =1-2sin 2B2,得sin 2B 2=1-cos B2,所以c -a 2c =1-cos B 2,即cos B =a c .方法一由余弦定理得a 2+c 2-b 22ac=ac ,即a 2+c 2-b 2=2a 2,所以a 2+b 2=c 2.所以△ABC 为直角三角形,但无法判断两直角边是否相等.方法二由正弦定理得cos B =sin A sin C,又sin A =sin(B +C )=sin B cos C +cos B sin C ,所以cos B sin C =sin B cos C +cos B sin C ,即sin B cos C =0,又sin B ≠0,所以cos C =0,又角C 为△ABC 的内角,所以C =π2,所以△ABC 为直角三角形,但无法判断两直角边是否相等.延伸探究将本例(2)中的条件“c -a 2c=sin 2B 2”改为“sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ”,试判断△ABC 的形状.解因为sin A sin B =a c ,所以由正弦定理得a b =ac,所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc ,所以由余弦定理得cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.思维升华判断三角形形状的两种思路(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)化角:通过三角恒等变换,得出内角的关系,从而判断三角形的形状.此时要注意应用A +B +C =π这个结论.命题点2三角形的面积例3(2022·浙江)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知4a =5c ,cos C =35.(1)求sin A 的值;(2)若b =11,求△ABC 的面积.解(1)由正弦定理a sin A =c sin C,得sin A =a ·sin Cc.因为cos C =35,所以sin C =45,又a c =54,所以sin A =5sin C 4=55(2)由(1)知sin A =55,因为a =5c 4<c ,所以0<A <π2,所以cos A =255,所以sin B =sin(A +C )=sin A cos C +sin C cos A =55×35+45×255=11525.因为b sin B =csin C,即1111525=c 45,所以c =45,所以S △ABC =12bc sin A =12×11×45×55=22.思维升华三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.命题点3与平面几何有关的问题例4(2023·厦门模拟)如图,已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,b (1+cos C )=3c sin ∠ABC 且△ABC 的外接圆面积为49π3.(1)求边c 的长;(2)若a =5,延长CB 至M ,使得cos ∠AMC =217,求BM .解(1)设△ABC 的外接圆半径为R ,由题意πR 2=49π3,解得R =733.由题意及正弦定理可得sin ∠ABC (1+cos C )=3sin C sin ∠ABC ,因为sin ∠ABC ≠0,所以1+cos C =3sin C ,即1,因为0<C <π,所以C -π6∈-π6,C -π6=π6,即C =π3.故c =2R sin C =2×733×32=7.(2)因为a =5,c =7,C =π3,故cos C =12=25+b 2-492×5×b ,得b 2-5b -24=0,解得b =8(b =-3舍去).在△ABC 中,由余弦定理可得cos ∠ABC =52+72-822×5×7=17,所以sin ∠ABC =437.由cos ∠AMC =217得sin ∠AMC =277.故sin∠BAM=sin(∠ABC-∠AMC)=sin∠ABC cos∠AMC-cos∠ABC sin∠AMC=107 49,在△ABM中,由正弦定理可得BMsin∠BAM=ABsin∠AMB,则BM=7277×10749=5.思维升华在平面几何图形中研究或求与角有关的长度、角度、面积的最值、优化设计等问题时,通常是转化到三角形中,利用正、余弦定理通过运算的方法加以解决.在解决某些具体问题时,常先引入变量,如边长、角度等,然后把要解三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,再解方程即可.若研究最值,常使用函数思想.跟踪训练2(1)(多选)(2023·合肥模拟)已知△ABC的内角A,B,C所对的边分别为a,b,c,下列四个命题中正确的是()A.若a cos A=b cos B,则△ABC一定是等腰三角形B.若b cos C+c cos B=b,则△ABC是等腰三角形C.若acos A=bcos B=ccos C,则△ABC一定是等边三角形D.若B=60°,b2=ac,则△ABC是直角三角形答案BC解析对于A,若a cos A=b cos B,则由正弦定理得sin A cos A=sin B cos B,∴sin2A=sin2B,则2A=2B或2A+2B=180°,即A=B或A+B=90°,则△ABC为等腰三角形或直角三角形,故A错误;对于B,若b cos C+c cos B=b,则由正弦定理得sin B cos C+sin C cos B=sin(B+C)=sin A=sin B,即A=B,则△ABC是等腰三角形,故B正确;对于C,若acos A=bcos B=ccos C,则由正弦定理得sin Acos A=sin Bcos B=sin Ccos C,则tan A=tan B=tan C,即A=B=C,即△ABC是等边三角形,故C正确;对于D,由于B=60°,b2=ac,由余弦定理可得b2=ac=a2+c2-ac,可得(a-c)2=0,解得a=c,可得A=C=B,故△ABC是等边三角形,故D错误.(2)在①b2+2ac=a2+c2;②cos B=b cos A;③sin B+cos B=2这三个条件中任选一个填在下面的横线中,并解决该问题.已知△ABC的内角A,B,C的对边分别为a,b,c,,A=π3,b=2,求△ABC的面积.解若选①,则由b2+2ac=a2+c2,得2ac=a2+c2-b2.由余弦定理得cos B =a 2+c 2-b 22ac =2ac 2ac =22.因为B ∈(0,π),所以B =π4.由正弦定理得a sin A =b sin B,即asin π3=2sin π4,解得a = 3.因为C =π-A -B =π-π3-π4=5π12,所以sin C =sin 5π12==sin π6cos π4+cos π6sin π4=6+24,所以S △ABC =12ab sin C =12×3×2×6+24=3+34.若选②,因为cos B =b cos A ,A =π3,b =2,所以cos B =b cos A =2cos π3=22.因为B ∈(0,π),所以B =π4.由正弦定理得a sin A =b sin B,即asin π3=2sin π4,解得a = 3.因为C =π-A -B =π-π3-π4=5π12,所以sin C =sin 5π12==sin π6cos π4+cos π6sin π4=6+24,所以S △ABC =12ab sin C =12×3×2×6+24=3+34.若选③,则由sin B +cos B =2,得2sin =2,所以 1.因为B ∈(0,π),所以B +π4∈所以B +π4=π2,所以B =π4.由正弦定理得a sin A =bsin B,即asin π3=2sin π4,解得a = 3.因为C =π-A -B =π-π3-π4=5π12,所以sin C =sin 5π12==sin π6cos π4+cos π6sin π4=6+24,所以S △ABC =12ab sin C =12×3×2×6+24=3+34.(3)(2022·重庆八中模拟)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,在①c (sin A -sin C )=(a -b )(sin A +sin B );②2b cos A +a =2c ;③233ac sin B =a 2+c 2-b 2三个条件中任选一个,补充在下面问题中,并解答.①若,求角B 的大小;②求sin A +sin C 的取值范围;③如图所示,当sin A +sin C 取得最大值时,若在△ABC 所在平面内取一点D (D 与B 在AC 两侧),使得线段DC =2,DA =1,求△BCD 面积的最大值.解①若选①,因为c (sin A -sin C )=(a -b )(sin A +sin B ),由正弦定理得c (a -c )=(a -b )(a +b ),整理得a 2+c 2-b 2=ac ,所以cos B =a 2+c 2-b 22ac =ac 2ac =12,又0<B <π,所以B =π3.若选②,因为2b cos A +a =2c ,由余弦定理得2b ·b 2+c 2-a 22bc +a =2c ,化简得,a 2+c 2-b 2=ac ,所以cos B =a 2+c 2-b 22ac =ac 2ac =12,又0<B <π,所以B =π3.若选③,因为233ac sin B =a 2+c 2-b 2,由余弦定理得233ac sin B =2ac cos B ,化简得tan B =3,又0<B <π,所以B =π3.②由①得,A +C =2π3,则0<A <2π3,sin A +sin C =sin A +=32sin A +32cos A =3sin 又π6<A +π6<5π6,所以12<sin 1,则sin A +sin C ,3.③当sin A +sin C 取得最大值时,A +π6=π2,解得A =π3,又B =π3,所以△ABC 为等边三角形,令∠ACD =θ,∠ADC =α,AB =AC =BC =a ,则由正弦定理可得a sin α=1sin θ,所以sin α=a sin θ.又由余弦定理得,a 2=22+12-2×2×1×cos α,所以a 2cos 2θ=a 2-a 2sin 2θ=cos 2α-4cos α+4,所以a cos θ=2-cos α.S △BCD =12×a ×=32a cos θ+12a sin θ=32(2-cos α)+12sin α=3+≤3+1,当且仅当α=∠ADC =5π6时等号成立,所以△BCD 面积的最大值为3+1.课时精练1.在△ABC 中,C =60°,a +2b =8,sin A =6sin B ,则c 等于()A.35B.31C .6D .5答案B解析因为sin A =6sin B ,则由正弦定理得a =6b ,又a +2b =8,所以a =6,b =1,因为C =60°,所以由余弦定理c 2=a 2+b 2-2ab cos C ,即c 2=62+12-2×6×1×12,解得c =31.2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若(a +b )(sin A -sin B )=(b +c )sin C ,a =7,则△ABC 外接圆的直径为()A .14B .7C.733D.1433答案D 解析已知(a +b )(sin A -sin B )=(b +c )sin C ,由正弦定理可得(a +b )(a -b )=(b +c )c ,化简得b 2+c 2-a 2=-bc ,所以cos A =b 2+c 2-a 22bc =-bc 2bc=-12,又因为A ∈(0,π),所以A =2π3,所以sin A =sin2π3=32,设△ABC 外接圆的半径为R ,由正弦定理可得2R =asin A =732=1433,所以△ABC 外接圆的直径为1433.3.(2022·北京模拟)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若3a sin B =b cos A ,且b =23,c =2,则a 的值为()A .27B .2C .23-2D .1答案B解析由已知及正弦定理得,3sin A sin B =sin B cos A 且sin B ≠0,可得tan A =33,又0<A <π,所以A =π6,又b =23,c =2,所以由余弦定理a 2=b 2+c 2-2bc cos A =16-12=4,解得a =2.4.(2023·枣庄模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,A =60°,b =1,S △ABC =3,则a +b +csin A +sin B +sin C等于()A.2393B.2633C.833D .23答案A解析由三角形的面积公式可得S △ABC =12bc sin A =34c =3,解得c =4,由余弦定理可得a =b 2+c 2-2bc cos A =13,设△ABC 的外接圆半径为r ,由正弦定理得a sin A =b sin B =csin C=2r ,所以a +b +c sin A +sin B +sin C =2r (sin A +sin B +sin C )sin A +sin B +sin C=2r =asin A =1332=2393.5.(2023·马鞍山模拟)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B +sin C )2=sin 2A +(2-2)sin B sin C ,2sin A -2sin B =0,则sin C 等于()A.12B.32C.6-24 D.6+24答案C解析在△ABC 中,由(sin B +sin C )2=sin 2A +(2-2)sin B sin C 及正弦定理得(b +c )2=a 2+(2-2)bc ,即b 2+c 2-a 2=-2bc ,由余弦定理得cos A =b 2+c 2-a 22bc=-22,而0°<A <180°,解得A =135°,由2sin A -2sin B =0得sin B =22sin A =12,显然0°<B <90°,则B =30°,C =15°,所以sin C =sin(60°-45°)=sin 60°cos 45°-cos 60°sin 45°=6-24.6.(2023·衡阳模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos B (a cos C +c cos A )=b ,lg sin C =12lg 3-lg 2,则△ABC 的形状为()A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形答案C解析∵2cos B (a cos C +c cos A )=b ,∴根据正弦定理得,2cos B (sin A cos C +cos A sin C )=sin B ,∴2cos B sin(A +C )=sin B ,∴2cos B sin(π-B )=sin B ,即2cos B sin B =sin B ,∵B ∈(0,π),∴sin B ≠0,∴cos B =12,∴B =π3.∵lg sin C =12lg 3-lg 2,∴lg sin C =lg32,∴sin C =32,∵C ∈(0,π),∴C =π3或2π3,∵B =π3,∴C ≠2π3,∴C =π3,∴A =B =C =π3,即△ABC 为等边三角形.7.(2022·全国甲卷)已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB取得最小值时,BD =.答案3-1解析设BD =k (k >0),则CD =2k .根据题意作出大致图形,如图.在△ABD 中,由余弦定理得AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB =22+k 2-2×2k k 2+2k +4.在△ACD 中,由余弦定理得AC 2=AD 2+CD 2-2AD ·CD cos ∠ADC =22+(2k )2-2×2×2k ·12=4k 2-4k +4,则AC 2AB 2=4k 2-4k +4k 2+2k +4=4(k 2+2k +4)-12k -12k 2+2k +4=4-12(k +1)k 2+2k +4=4-12(k +1)(k +1)2+3=4-12k +1+3k +1.∵k +1+3k +1≥23(当且仅当k +1=3k +1,即k =3-1时等号成立),∴AC 2AB 2≥4-1223=4-23=(3-1)2,∴当ACAB取得最小值3-1时,BD =k =3-1.8.(2023·宜春模拟)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b sin C +c sin B =4a sin B sin C ,b 2+c 2-a 2=8,则△ABC 的面积为.答案233解析∵b sin C +c sin B =4a sin B sin C ,sin B sin C >0,结合正弦定理可得sin B sin C +sin C sin B =4sin A sin B sin C ,∴sin A =12,∵b 2+c 2-a 2=8,结合余弦定理a 2=b 2+c 2-2bc cos A ,可得2bc cos A =8,∴A 为锐角,且cos A =32,从而求得bc =833,∴△ABC 的面积为S =12bc sin A =12×833×12=233.9.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b cos C =(2a -c )cos B .(1)求B ;(2)若b =3,sin C =2sin A ,求△ABC 的面积.解(1)由正弦定理,得sin B cos C =2sin A cos B -cos B sin C ,即sin B cos C +cos B sin C =2sin A cos B ,∴sin(B +C )=2sin A cos B ,∴sin A =2sin A cos B ,又∵sin A ≠0,∴cos B =12,∵B 为三角形内角,∴B =π3.(2)∵sin C =2sin A ,∴由正弦定理得c =2a ,∴由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+4a 2-2a 2=9,即3a 2=9,∴a =3,c =23,∴△ABC 的面积为S =12ac sin B =12×3×23×32=332.10.(2023·湖州模拟)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,已知3b a sin B .(1)求角A 的大小;(2)若b ,a ,c 成等比数列,判断△ABC 的形状.解(1)∵3b a sin B ,由诱导公式得3b cos A =a sin B ,由正弦定理得3sin B cos A =sin A sin B ,∵sin B ≠0,∴3cos A =sin A ,即tan A =3,∵A ∈(0,π),∴A =π3.(2)∵b ,a ,c 成等比数列,∴a 2=bc ,由余弦定理得cos A =b 2+c 2-a 22bc =b 2+c 2-bc 2bc=12,即b 2+c 2-bc =bc ,∴(b -c )2=0,∴b =c ,又由(1)知A =π3,∴△ABC 为等边三角形.11.(多选)对于△ABC ,有如下判断,其中正确的是()A .若cos A =cosB ,则△ABC 为等腰三角形B .若A >B ,则sin A >sin BC .若a =8,c =10,B =60°,则符合条件的△ABC 有两个D .若sin 2A +sin 2B <sin 2C ,则△ABC 是钝角三角形答案ABD解析对于A ,若cos A =cos B ,则A =B ,所以△ABC 为等腰三角形,故A 正确;对于B ,若A >B ,则a >b ,由正弦定理a sin A =b sin B=2R ,得2R sin A >2R sin B ,即sin A >sin B 成立,故B 正确;对于C ,由余弦定理可得b =82+102-2×8×10×12=84,只有一解,故C 错误;对于D ,若sin 2A +sin 2B <sin 2C ,则根据正弦定理得a 2+b 2<c 2,cos C =a 2+b 2-c 22ab <0,所以C为钝角,所以△ABC 是钝角三角形,故D 正确.12.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,sin A sin B sin C =18,△ABC 的面积为2,则下列选项错误的是()A .abc =162B .若a =2,则A =π3C .△ABC 外接圆的半径R =22D ≥32sin C 答案B解析由题可得12ab sin C =2,则sin C =4ab,代入sin A sin B sin C =18,得4sin A sin B ab =18,即R 2=8,即R =22,C 正确;abc =8R 3sin A sin B sin C =1282×18=162,A 正确;若a =2,则sin A =a 2R =242=14,此时A ≠π3,B 错误;因为sin A >0,sin B >0,所以(sin A +sin B )2≥4sin A sin B ,所以(sin A +sin B )2(sin A sin B )2≥4sin A sin B ,由sin A sin B sin C =18,得4sin A sin B=32sin C ,所以(sin A +sin B )2(sin A sin B )2≥32sin C ,即≥32sin C ,D 正确.13.(2023·嘉兴模拟)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知c sin A =3a cos C ,c =23,ab =8,则a +b 的值是.答案6解析∵c sin A =3a cos C ,根据正弦定理得sin C sin A =3sin A cos C ,∵sin A ≠0,故tan C =3,∵C ∈(0,π),∴C =π3,再由余弦定理得cos C =a 2+b 2-c 22ab =(a +b )2-2ab -c 22ab =12,代入c =23,ab =8,得a +b =6.14.在△ABC 中,已知AB =4,AC =7,BC 边的中线AD =72,那么BC =.答案9解析在△ABD 中,结合余弦定理得cos ∠ADB =BD 2+AD 2-AB 22BD ·AD,在△ACD 中,结合余弦定理得cos ∠ADC =CD 2+AD 2-AC 22CD ·AD,由题意知BD =CD ,∠ADB +∠ADC =π,所以cos ∠ADB +cos ∠ADC =0,所以BD 2+AD 2-AB 22BD ·AD +CD 2+AD 2-AC 22CD ·AD =0,2×72CD 2×72CD 0,解得CD =92,所以BC =9.15.(多选)(2023·珠海模拟)已知△ABC 满足sin A ∶sin B ∶sin C =2∶3∶7,且△ABC 的面积S △ABC =332,则下列命题正确的是()A .△ABC 的周长为5+7B .△ABC 的三个内角A ,B ,C 满足关系A +B =2C C .△ABC 的外接圆半径为2213D .△ABC 的中线CD 的长为192答案ABD解析因为△ABC 满足sin A ∶sin B ∶sin C =2∶3∶7,所以a ∶b ∶c =2∶3∶7,设a =2t ,b =3t ,c =7t ,t >0,利用余弦定理cos C =a 2+b 2-c 22ab =4t 2+9t 2-7t 212t 2=12,由于C ∈(0,π),所以C =π3.对于A ,因为S △ABC =332,所以12ab sin C =12·2t ·3t ·32=332,解得t =1.所以a =2,b =3,c =7,所以△ABC 的周长为5+7,故A 正确;对于B ,因为C =π3,所以A +B =2π3,故A +B =2C ,故B 正确;对于C ,利用正弦定理c sin C =732=2213=2R ,解得R =213,所以△ABC 的外接圆半径为213,故C 错误;对于D ,如图所示,在△ABC 中,利用正弦定理732=2sin A ,解得sin A =217,又a <c ,所以cos A =277,在△ACD 中,利用余弦定理CD 2=AC 2+AD 2-2AC ·AD ·cos A =9+74-2×3×72×277=194,解得CD =192,故D 正确.16.如图,△ABC 的内角A ,B ,C 的对边分别是a ,b ,c .已知a 2+c 2=b 2+ac ,则B =.若线段AC 的垂直平分线交AC 于点D ,交AB 于点E ,且BC =4,DE = 6.则△BCE 的面积为.答案π323解析在△ABC 中,由余弦定理知cos B =a 2+c 2-b 22ac,而a 2+c 2=b 2+ac ,∴cos B =12,又0<B <π,则B =π3,在△BCE 中,设∠CEB =θ,则CE sin π3=BC sin θ,可得CE =23sin θ,又AC 的垂直平分线交AC 于点D ,交AB 于点E ,则∠ECA =∠EAC =θ2,∴sin θ2=DE CE =2sin θ2,可得cos θ2=22,而0<θ<π,故θ2=π4,即θ=π2.∴CE =23,BE =2,故△BCE 的面积为12·CE ·BE =23.。
正余弦定理复习教案
正弦、余弦定理一. 教学内容: 正弦、余弦定理 二. 教学重、难点: 1. 重点:正弦、余弦定理。
2. 难点:运用正、余弦定理解决有关斜三角形问题。
一、正弦定理和余弦定理1、正弦定理和余弦定理 cos ,cos ,cos .bc A ac B ab C 22;;a b注:在ΔABC 中,sinA>sinB 是A>B 的充要条件。
(∵sinA>sinB ⇔22R R>⇔a>b ⇔A>B )二、应用举例1、实际问题中的常用角 (1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下文的叫俯角(如图①)(2)方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②)注:仰角、俯角、方位角的区别是:三者的参照不同。
仰角与俯角是相对于水平线而言的,而方位角是相对于正北方向而言的。
(3)方向角:相对于某一正方向的水平角(如图③)①北偏东α即由指北方向顺时针旋转α到达目标方向; ②北偏本α即由指北方向逆时针旋转α到达目标方向;③南偏本等其他方向角类似。
(4)坡度:坡面与水平面所成的二面角的度数(如图④,角θ为坡角) 坡比:坡面的铅直高度与水平长度之比(如图④,i 为坡比) 2、ΔABC 的面积公式(1)1()2a a S a h h a =表示边上的高; (2)111sin sin sin ()2224abcS ab C ac B bc A R R ====为外接圆半径;(3)1()()2S r a b c r =++为内切圆半径。
【典型例题】[例1] 已知在ABC ∆中,︒=∠45A ,2=a ,6=c 解此三角形。
练习:不解三角形,判断下列三角形解的个数。
(1)5=a ,4=b ,︒=120A (2)7=a ,14=b ,︒=150A (3)9=a ,10=b ,︒=60A (4)50=c ,72=b ,︒=135C正弦定理余弦定理的应用:例2:在ABC∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=( )A .12 B .12C . -1D . 1 练习:在△ABC 中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是(A )(0,]6π(B )[,)6ππ(C )(0,]3π(D )[,)3ππ利用正弦定理余弦定理判断三角形的形状及求取值范围[例3]若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =则△ABC A .一定是锐角三角形. B .一定是直角三角形.C .一定是钝角三角形.D .可能是锐角三角形,也可能是钝角三角形.练习:1、在锐角△ABC 中,BC =1,B =2A ,则ACcos A 的值等于______,AC 的取值范围为______.2、在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,π3<C <π2且b a -b =sin2Csin A -sin2C(1)判断△ABC 的性状;(2)若|BA +BC |=2,求BA ·BC 的取值范围. 3、在△ABC 中,cos 2B 2=a +c2c,(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为 ( )A .正三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形利用正余弦定理求三角形面积〖例4〗(2009浙江文)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足25cos2A =,3AB AC ⋅=.(I )求ABC ∆的面积; (II )若1c =,求a 的值.练习:在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足25cos25A =,3AB AC ⋅=.(I )求ABC ∆的面积; (II )若6b c +=,求a 的值.正余弦定理实际应用问题〖例5〗(本小题满分12分)如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/时,该救援船到达D 点需要多长时间? 已知在ABC ∆中,︒=∠45A ,2=a ,6=c 解此三角形。
高中《正弦和余弦定理》数学教案4篇
高中《正弦和余弦定理》数学教案4篇教案是讲课的前提,是讲好课的基础,教案则备课的具体表现形式。
它可以反映教师在整个教学中的总体设计和思路尤其是教学态度认真与否的重要尺度。
以下是小编为大家整理的高中《正弦和余弦定理》数学教案,感谢您的欣赏。
高中《正弦和余弦定理》数学教案1教学目标进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.教学重难点教学重点:熟练运用定理.教学难点:应用正、余弦定理进行边角关系的相互转化.教学过程一、复习准备:1.写出正弦定理、余弦定理及推论等公式.2.讨论各公式所求解的三角形类型.二、讲授新课:1.教学三角形的解的讨论:①出示例1:在△ABC中,已知下列条件,解三角形.分两组练习→讨论:解的个数情况为何会发生变化②用如下图示分析解的情况.(A为锐角时)②练习:在△ABC中,已知下列条件,判断三角形的解的情况.2.教学正弦定理与余弦定理的活用:①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦. 分析:已知条件可以如何转化→引入参数k,设三边后利用余弦定理求角.②出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型.分析:由三角形的什么知识可以判别→求角余弦,由符号进行判断③出示例4:已知△ABC中,,试判断△ABC的形状.分析:如何将边角关系中的边化为角→再思考:又如何将角化为边3.小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.三、巩固练习:3.作业:教材P11B组1、2题.高中《正弦和余弦定理》数学教案2一)教材分析(1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力工具。
(2)重点、难点。
重点:正余弦定理的证明和应用难点:利用向量知识证明定理(二)教学目标(1)知识目标:①要学生掌握正余弦定理的推导过程和内容;②能够运用正余弦定理解三角形;③了解向量知识的应用。
正余弦定理完美教案
正余弦定理完美教案第一章:正弦定理简介1.1 学习目标了解正弦定理的定义和基本性质学会运用正弦定理解决实际问题1.2 教学内容正弦定理的定义及公式正弦定理与三角形内角和的关系正弦定理在实际问题中的应用1.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现正弦定理的规律1.4 教学步骤1. 引入正弦定理的概念,引导学生了解正弦定理的定义和公式2. 通过示例,讲解正弦定理在解决实际问题中的应用3. 安排练习题,巩固学生对正弦定理的理解和应用能力第二章:余弦定理简介2.1 学习目标了解余弦定理的定义和基本性质学会运用余弦定理解决实际问题2.2 教学内容余弦定理的定义及公式余弦定理与三角形内角和的关系余弦定理在实际问题中的应用2.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现余弦定理的规律2.4 教学步骤1. 引入余弦定理的概念,引导学生了解余弦定理的定义和公式2. 通过示例,讲解余弦定理在解决实际问题中的应用3. 安排练习题,巩固学生对余弦定理的理解和应用能力第三章:正弦定理与余弦定理的综合应用3.1 学习目标学会运用正弦定理和余弦定理解决综合问题理解正弦定理和余弦定理之间的关系3.2 教学内容正弦定理和余弦定理的综合应用正弦定理和余弦定理之间的关系3.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现正弦定理和余弦定理之间的关系3.4 教学步骤1. 通过示例,讲解正弦定理和余弦定理在解决综合问题中的应用2. 引导学生发现正弦定理和余弦定理之间的关系3. 安排练习题,巩固学生对正弦定理和余弦定理的综合应用能力第四章:正弦定理和余弦定理在几何中的应用4.1 学习目标学会运用正弦定理和余弦定理解决几何问题理解正弦定理和余弦定理在几何中的重要性4.2 教学内容正弦定理和余弦定理在几何中的应用正弦定理和余弦定理在几何中的重要性4.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现正弦定理和余弦定理在几何中的重要性4.4 教学步骤1. 通过示例,讲解正弦定理和余弦定理在几何问题中的应用2. 引导学生理解正弦定理和余弦定理在几何中的重要性3. 安排练习题,巩固学生对正弦定理和余弦定理在几何中的应用能力第五章:正弦定理和余弦定理在实际问题中的应用5.1 学习目标学会运用正弦定理和余弦定理解决实际问题理解正弦定理和余弦定理在实际问题中的意义5.2 教学内容正弦定理和余弦定理在实际问题中的应用正弦定理和余弦定理在实际问题中的意义5.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现正弦定理和余弦定理在实际问题中的意义5.4 教学步骤1. 通过示例,讲解正弦定理和余弦定理在实际问题中的应用2. 引导学生理解正弦定理和余弦定理在实际问题中的意义3. 安排练习题,巩固学生对正弦定理和余弦定理在实际问题中的应用第六章:正弦定理和余弦定理的综合练习6.1 学习目标巩固正弦定理和余弦定理的基本概念提高运用正弦定理和余弦定理解决综合问题的能力6.2 教学内容综合练习题,涵盖正弦定理和余弦定理的应用分析解题思路和方法6.3 教学方法提供综合练习题,引导学生独立解答分析解题思路,讨论解题方法6.4 教学步骤1. 提供综合练习题,要求学生独立解答2. 分析解题思路,引导学生运用正弦定理和余弦定理解决问题3. 讨论解题方法,总结正弦定理和余弦定理的应用技巧第七章:正弦定理和余弦定理在三角形中的应用7.1 学习目标深入学习正弦定理和余弦定理在三角形中的应用掌握正弦定理和余弦定理在解决三角形问题时的灵活运用7.2 教学内容正弦定理和余弦定理在三角形中的应用案例三角形特殊角度时的定理特殊性质7.3 教学方法采用案例教学,通过具体三角形问题讲解定理的应用引导学生通过几何画图工具直观理解定理的应用7.4 教学步骤1. 通过具体三角形问题,展示正弦定理和余弦定理的应用2. 引导学生利用几何画图工具,直观理解定理的应用过程3. 安排练习题,巩固学生对定理在三角形中应用的理解第八章:正弦定理和余弦定理在复杂三角形中的应用8.1 学习目标学习正弦定理和余弦定理在复杂三角形中的应用培养学生解决复杂三角形问题的能力8.2 教学内容复杂三角形问题中正弦定理和余弦定理的运用练习题及解题策略8.3 教学方法采用问题解决法,引导学生思考和探讨提供练习题,让学生通过实际操作解决问题8.4 教学步骤1. 引入复杂三角形问题,引导学生思考如何应用定理2. 提供练习题,让学生独立解决3. 讨论解题策略,引导学生总结解题技巧第九章:正弦定理和余弦定理在实际工程中的应用9.1 学习目标学习正弦定理和余弦定理在实际工程中的应用培养学生解决实际工程问题的能力9.2 教学内容正弦定理和余弦定理在工程测量、建筑等方面的应用案例实际工程问题中的解题方法9.3 教学方法采用案例教学,通过实际工程案例讲解定理的应用引导学生通过实际操作,理解定理在工程中的应用9.4 教学步骤1. 通过实际工程案例,展示正弦定理和余弦定理的应用2. 引导学生参与实际操作,理解定理在工程中的应用过程3. 安排练习题,巩固学生对定理在实际工程中应用的理解第十章:总结与复习10.1 学习目标总结正弦定理和余弦定理的主要内容和应用复习本门课程的知识点,为考试做好准备10.2 教学内容复习正弦定理和余弦定理的基本概念、性质和应用总结解题方法和技巧10.3 教学方法通过复习讲义和练习题,引导学生复习和巩固知识点组织复习课堂,鼓励学生提问和讨论10.4 教学步骤1. 发放复习讲义,让学生提前预习2. 组织复习课堂,引导学生复习重点知识点3. 提供练习题,让学生通过实际操作巩固知识点重点和难点解析第六章:正弦定理和余弦定理的综合练习环节:分析解题思路和方法重点和难点解析:此环节需要重点关注解题思路的培养和方法的多样性。
《正弦定理和余弦定理》复习课教学设计
正弦定理和余弦定理复习课教学设计一、教学目标本次复习课的教学目标主要包括:1.复习正弦定理和余弦定理的概念与公式;2.掌握应用正弦定理和余弦定理解决相关问题的方法;3.加深学生对三角函数的理解和应用能力。
二、教学准备教学准备包括:1.教学课件:包括正弦定理和余弦定理的公式推导和相关例题;2.教学工具:黑板、彩色粉笔、计算器。
三、教学内容与步骤本次复习课采用讲授和练习相结合的教学方法,具体内容与步骤如下:1. 复习正弦定理•教师介绍正弦定理的概念和公式,并通过数学推导进行解释;•教师通过几个简单的几何图形,引导学生理解正弦定理的几何意义;•教师给出一些常见的例题,并让学生根据正弦定理计算未知边长或角度。
2. 复习余弦定理•教师介绍余弦定理的概念和公式,并通过数学推导进行解释;•教师通过几个简单的几何图形,引导学生理解余弦定理的几何意义;•教师给出一些常见的例题,并让学生根据余弦定理计算未知边长或角度。
3. 应用正弦定理和余弦定理解决相关问题•教师给出一些综合性的例题,要求学生运用正弦定理和余弦定理解决;•教师引导学生分析题目,确定解题思路,并进行详细解析;•学生在黑板上演示解题过程,并对整个过程进行讨论和总结。
四、教学总结与评价本次复习课通过对正弦定理和余弦定理的复习,加深了学生对这两个重要定理的理解和应用能力。
在分析和解决问题的过程中,学生逐渐形成了逻辑思维和数学推导的能力,提高了解决实际问题的能力。
通过本次复习课,看到了学生们对正弦定理和余弦定理有了更深入的理解,并且在解决问题时愈发独立和自信。
然而,仍然存在一些学生对推导过程理解不够深入的情况,需要进一步巩固。
为了进一步提高学生的学习效果和解决问题的能力,建议课后学生进行相关习题的练习和巩固。
同时,希望学生主动参与课堂讨论和提问,积极与教师互动,共同提高学习效果。
注意:文档中无法展示数学公式,故省略了实际的公式,但在教学中需要详细讲解和推导相关公式,以保证学生对正弦定理和余弦定理的理解和掌握。
正余弦定理复习导学案
1.1正弦定理复习导学案
一.学习目标
1.掌握正弦定理形式及应用环境;
2.能应用正弦定理解决相应问题.
重点:掌握正弦定理的形式及应用环境.
难点:能独立应用正弦定理解决相应的问题.
二.自主复习
1.正弦定理:______________________________________.
其中2r是该三角形外接圆的_____________.外心是三角形____________的交点.
2.※正弦定理使用的环境1.___________________;2.___________________.
其中哪种情况更应该特别注意为什么?
3.与正弦定理有关的结论
1._________________________.
2.面积公式:_____________________;______________________.
3.边角互化公式_________________;_________________;________________. 三.典型例题:
1.在△ABC中,
A=30°,C=75°,则BC=_____________.(写出解题过程)
2.在△ABC中,A=30
°,1,
a b
==1)求角C;(2)求该三角形的面积.(写出解题过程)
3. 在△ABC
中,60o
a b B
===,那么角A=______________.
4. 在△ABC中,cos cos
a B
b A
=,试判断三角形形状.
5. 在△ABC中,已知cos cos
a A
b B
=,试判断该三角形形状.
四.反思与探究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦、余弦定理一. 教学内容: 正弦、余弦定理 二. 教学重、难点: 1. 重点:正弦、余弦定理。
2. 难点:运用正、余弦定理解决有关斜三角形问题。
一、正弦定理和余弦定理1、正弦定理和余弦定理 cos ,cos ,cos .bc A ac B ab C 22;;a b注:在ΔABC 中,sinA>sinB 是A>B 的充要条件。
(∵sinA>sinB ⇔22R R>⇔a>b ⇔A>B )二、应用举例1、实际问题中的常用角 (1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下文的叫俯角(如图①)(2)方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②)注:仰角、俯角、方位角的区别是:三者的参照不同。
仰角与俯角是相对于水平线而言的,而方位角是相对于正北方向而言的。
(3)方向角:相对于某一正方向的水平角(如图③)①北偏东α即由指北方向顺时针旋转α到达目标方向; ②北偏本α即由指北方向逆时针旋转α到达目标方向;③南偏本等其他方向角类似。
(4)坡度:坡面与水平面所成的二面角的度数(如图④,角θ为坡角) 坡比:坡面的铅直高度与水平长度之比(如图④,i 为坡比) 2、ΔABC 的面积公式(1)1()2a a S a h h a =表示边上的高; (2)111sin sin sin ()2224abcS ab C ac B bc A R R ====为外接圆半径;(3)1()()2S r a b c r =++为内切圆半径。
【典型例题】[例1] 已知在ABC ∆中,︒=∠45A ,2=a ,6=c 解此三角形。
练习:不解三角形,判断下列三角形解的个数。
(1)5=a ,4=b ,︒=120A (2)7=a ,14=b ,︒=150A (3)9=a ,10=b ,︒=60A (4)50=c ,72=b ,︒=135C正弦定理余弦定理的应用:例2:在ABC∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=( )A .12 B .12C . -1D . 1 练习:在△ABC 中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是(A )(0,]6π(B )[,)6ππ(C )(0,]3π(D )[,)3ππ利用正弦定理余弦定理判断三角形的形状及求取值范围[例3]若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =则△ABC A .一定是锐角三角形. B .一定是直角三角形.C .一定是钝角三角形.D .可能是锐角三角形,也可能是钝角三角形.练习:1、在锐角△ABC 中,BC =1,B =2A ,则ACcos A 的值等于______,AC 的取值范围为______.2、在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,π3<C <π2且b a -b =sin2Csin A -sin2C(1)判断△ABC 的性状;(2)若|BA +BC |=2,求BA ·BC 的取值范围. 3、在△ABC 中,cos 2B 2=a +c2c,(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为 ( )A .正三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形利用正余弦定理求三角形面积〖例4〗(2009浙江文)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足25cos2A =,3AB AC ⋅=.(I )求ABC ∆的面积; (II )若1c =,求a 的值.练习:在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足25cos25A =,3AB AC ⋅=.(I )求ABC ∆的面积; (II )若6b c +=,求a 的值.正余弦定理实际应用问题〖例5〗(本小题满分12分)如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/时,该救援船到达D 点需要多长时间? 已知在ABC ∆中,︒=∠45A ,2=a ,6=c 解此三角形。
解:由余弦定理得:445cos 62)6(22=︒⋅-+b b ∴ 02322=+-b b ∴ 13±=b又 C b b cos 222)6(222⨯-+= ∴21cos ±=C ,︒=∠60C 或︒=∠120C∴ ︒=∠75B 或︒=∠15B ∴ 13+=b ,︒=∠60C ,︒=∠75B 或13-=b ,︒=∠120C ,︒=∠15B[例4] 已知a 、b 、c 是ABC ∆中,A ∠、B ∠、C ∠的对边,S 是ABC ∆的面积,若4=a ,5=b ,35=S ,求c 的长度。
解:∵ 4=a ,5=b ,35sin 21==C ab S∴23sin =C ∴ ︒=60C 或︒120∴ 当︒=60C 时,21222=-+=ab b a c ∴ 21=c当︒=120C 时,61222=++=ab b a c ∴ 61=c即4)(2≤+c a ∴ 2≤+c a 又1>+c a ∴ 21≤+<c aBDCA[例6] 在ABC ∆中,已知)13(-=a b ,︒=30C ,求A 、B 。
解:由余弦定理,ab c b a C 22330cos cos 222-+==︒=∴)13(3)324(2222-=--+a c a a ∴ 22)32(a c -= ∴aa c 21332-=-=由正弦定理:︒-=-=30sin 213sin )13(sin aB a A a ∴2230sin 2sin =︒=B∵ b a > ∴ B A > ∴ B 为锐角 ∴ ︒=45B ∴ ︒=︒+︒-︒=105)3045(180A[例7] 已知ABC ∆中,B b aC A sin )()sin (sin 2222-=-,外接圆半径为2。
(1)求C ∠(2)求ABC ∆面积的最大值 解:(1)由B b aC A sin )()sin (sin 2222-=- ∴R b b a R c R a 2)()44(22222-=-2 ∴ 2=R ∴ 222b ab c a -=- ∴ ab c b a =-+222∴212cos 222=-+=ab c b a C又 ︒<<︒1800C ∴ ︒=60C(2)B A abC ab S sin sin 322321sin 21=⨯==)sin 120cos cos 120(sin sin 32)120sin(sin 32A A A A A ︒-︒=-︒⋅=232cos 232sin 23sin 3cos sin 32+-=+=A A A A A23)302sin(3+︒-=A∴ 当︒=1202A 即︒=60A 时,233m ax =S[例8] 在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c 依次成等比数列,求BB B y cos sin 2sin 1++=的取值范围。
解:∵ ac b =2∴2121)(2122cos 22222≥-+=-+=-+=a c c a acacc a acb c a B∴30π≤<B)4sin(2cos sin cos sin )cos (sin cos sin 2sin 12π+=+=++=++=B B B B B B B B B B y∵ πππ12744<+<B ∴ 1)4sin(22≤+<πB ∴ 21≤<y[例9] 在ABC ∆中,若三边长为连续三个正整数,最大角是钝角,求此最大角。
解:设1-=k a ,k b =,1+=k c ,*N k ∈且1>k∵ C 是钝角 ∴ 0)1(242cos 222<--=-+=k k ab c b a C解得41<<k ∵ *N k ∈ ∴ 2=k 或3当2=k 时,1cos -=C (舍去)当3=k 时,41cos -=C ∴ )41arccos(-=c∴ 最大角为)41arccos(-【模拟试题】(答题时间:60分钟)一. 选择题:1. 在ABC ∆中,一定成立的等式是( ) A. B b A a sin sin = B. B b A a cos cos = C. A b B a sin sin =D. A b B a cos cos =2. 在ABC ∆中,若a bB A =cos cos ,则ABC ∆是( ) A. 等腰三角形 B. 等边三角形 C. 直角三角形 D. 等腰或直角三角形 3. 已知ABC ∆中,AB=1,BC=2,则C ∠的取值范围是( )A.]6,0(πB.)2,0(πC. ]2,6(ππ D. ]3,6(ππ4. ABC ∆中,若A b a sin 23=,则B 为( )A. 3πB. 6πC. 3π或π32D. 6π或π655. ABC ∆的三边满足ab c b a c b a 3))((=-+++,则C ∠等于( ) A. ︒15 B. ︒30 C. ︒45 D. ︒606. 在ABC ∆中,AB=3,BC=13,AC=4,则边AC 上的高为( )A. 223B. 233C. 23D. 337. ABC ∆中,“B A sin sin =”是“A=B ”的( )条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要8. ABC ∆中,C C B B A 222sin sin sin sin sin ++=,则A 等于( )A. ︒30B. ︒60C. ︒120D. ︒1509. ABC ∆中,︒=30B ,350=b ,150=c ,则这个三角形是( ) A. 等边三角形 B. Rt 三角形 C. 等腰三角形 D. 等腰或直角三角形10. 在ABC ∆中,kC cB b A a ===sin sin sin ,则k =( )A. 2RB. RC. 4RD. 21R二. 填空:1. 在ABC ∆中,已知7=a ,8=b ,1413cos =C ,则最大角的余弦值为 。
2. 在ABC ∆中,C B A sin cos 2sin =,则三角形为 。
3. 在ABC ∆中,:6:)13(::+=c b a 2,则最小角为 。
4. 若)(341222a c b S -+=∆,则A= 。