中考数学几何图形折叠试题典题及解答

合集下载

中考数学矩形的折叠中的距离或线段长度问题专题练习

中考数学矩形的折叠中的距离或线段长度问题专题练习

中考数学矩形的折叠中的距离或线段长度问题专题练习【典例】在矩形纸片ABCD 中,AB =3,AD =5. 如图例1-1所示,折叠纸片,使点A落在BC 边上的A’处,折痕为PQ ,当点A’在BC 边上移动时,折痕的端点P 、Q 也随之移动. 若限定点P 、Q 分别在AB 、AD 边上移动,则点A’在BC 边上可移动的最大距离为.A D (Q )CB PA'5534 A DC B (P )A'Q 332图例1-1 图例1-2 图例1-3【解析】此题根据题目要求准确判断出点A '的最左端和最右端位置.当点Q 与点D 重合时,A '的位置处于最左端,当点P 与点B 重合时,点A '的位置处于最右端. 根据分析结果,作出图形,利用折叠性质分别求出两种情况下的BA '或CA '的长度,二者之差即为所求.①当点Q 与点D 重合时,A '的位置处于最左端,如图例1-2所示.确定点A '的位置方法:因为在折叠过程中,A 'Q =AQ ,所以以点Q 为圆心,以AQ 长为半径画弧,与BC 的交点即为点A '. 再作出∠A 'QA 的角平分线,与AB 的交点即为点P .由折叠性质可知,AD = A 'D =5,在Rt △A 'CD 中,由勾股定理得,'4A C ===②当点P 与点B 重合时,点A '的位置处于最右端,如图例1-3所示.确定点A '的位置方法:因为在折叠过程中,A 'P =AP ,所以以点P 为圆心,以AP 长为半径画弧,与BC 的交点即为点A '. 再作出∠A 'PA 的角平分线,与AD 的交点即为点Q . 由折叠性质可知,AB= A'B=3,所以四边形AB A'Q为正方形. 所以A'C=BC-A'B=5-3=2.综上所述,点A移动的最大距离为4-2=2.故答案为:2.【小结】此类问题难度较大,主要考察学生的分析能力,作图能力。

2020中考数学 几何图形的折叠与动点问题(含答案)

2020中考数学 几何图形的折叠与动点问题(含答案)

2020中考数学几何图形的折叠与动点问题(含答案)1.如图,在矩形ABCD中,AB=4,AD=9,点E在BC上,CE=4,点F是AD 上的一个动点,若把△BEF沿EF折叠,点B落在点B′处,当点B′恰好落在矩形ABCD的一边上,则AF的长为________.第1题图3或11 32.如图,矩形纸片ABCD中,AB=4,AD=6,点P是边BC上的动点,现将纸片折叠,使点A与点P重合,折痕与矩形边的交点分别为E、F,要使折痕始终与边AB、AD有交点,则BP的取值范围是________.第2题图6-25≤BP≤43.如图,在矩形ABCD中,AB=2,AD=6,E,F分别是线段AD、BC上的点,连接EF,使四边形ABFE为正方形,若点G是AD上的动点,连接FG,将矩形沿FG折叠使得点C落在正方形ABFE的对角线所在的直线上,对应点为P,则线段AP的长为__________.第3题图4或4-224.如图,在四边形ABCD中,AD∥BC(AD<BC),AB与CD不平行,AB=CD=5,BC=12,点E是BC上的动点,将∠B沿着AE折叠,使点B落在直线AD上的点B′处,DB′=1,直线BB′与直线DC交于点H,则DH=________.第4题图5 11或5135.如图,已知AD∥BC,AB⊥BC,AB=8,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC 于点M,N.当点B′分线段MN为3∶5的两部分时,EN的长为________.第5题图355 11或539 136.如图,在矩形纸片ABCD中,AB=6,BC=8,点P是对角线BD上一动点,将纸片折叠,使点C与点P重合,折痕为EF,折痕EF的两端分别在BC、DC边上(含端点),当△PDF为直角三角形时,FC的长为________.第6题图24 7或8 37.如图,正方形的边长为4,E是BC的中点,点P是射线AD上一动点,过P作PF⊥AE于F.若以P、F、E为顶点的三角形与△ABE相似,则P A=________.第7题图2或58.如图,矩形ABCD中,AB=1,AD=2,E是AD中点,点P在射线BD上运动,若△BEP为等腰三角形,则线段BP的长度等于____________.第8题图2或53或6559.如图,在▱ABCD中,∠B=30°,AB=AC,O是两条对角线的交点,过点O作AC的垂线分别交边AD、BC于点E、F;点M是边AB的一个三等分点.则△AOE 与△BMF的面积比为__________.第9题图3∶4或3∶810.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,E为斜边AB的中点,点P是射线BC上的一个动点,连接AP、PE,将△AEP沿着边PE折叠,折叠后得到△EP A′,若△EP A′与△ABC的另一个交点为F,当EF=14AB时,则BP的长为________.第10题图2或2311.已知△ABC ,以AB 为直径的⊙O 交AC 于点D ,交BC 于点E ,连接ED ,若ED =EC .(1)求证:AB =AC ;(2)①若AB =4,BC =23,则CD =________; ②当∠A =________时,四边形ODEB 是菱形.第1题图1.(1)证明:∵ED =EC ,∴∠EDC =∠C , ∵∠EDC +∠ADE =180°,∠B +∠ADE =180°, ∴∠EDC =∠B ,∴∠B =∠C , ∴AB =AC ; (2)解:①32; 如解图,连接BD ,第1题解图∵AB 为∵O 的直径,∵BD ∵AC ,设CD =a ,由(1)知AC =AB =4,则AD =4-a ,在Rt∵ABD 中,由勾股定理可得BD 2=AB 2-AD 2=42-(4-a )2, 在Rt∵CBD 中,由勾股定理可得BD 2=BC 2-CD 2=(23)2-a 2, ∵42-(4-a )2=(23)2-a 2,解得a =32,即CD =32. ∵60°.如解图,连接OD 、OE ,∵四边形ODEB 是菱形,∵OB =BE ,又∵OB =OE ,∵∵OBE 是等边三角形,∵∵OBE =60°, ∵OD ∵BE ,∵∵BOD =120°,∵∵A =12∵BOD =60°.12 .如图,在▱ABCD 中,AD =4,AB =5,延长AD 到点E ,连接EC ,过点B 作BF ∥CE 交AD 于点F ,交CD 的延长线于点G .(1)求证:四边形BCEF 是平行四边形;(2)①当DF =______时,四边形BCEF 是正方形; ②当GFGD =________时,四边形BCEF 是菱形.第2题图13. (1)证明:∵四边形ABCD 是平行四边形,∴EF ∥BC . ∵BF ∥CE ,∴四边形BCEF 是平行四边形;(2)解:①1;∵四边形BCEF 是正方形,∵BF =BC =AD =4,∵FBC =∵AFB =90°, ∵AF =AB 2-BF 2=52-42=3. ∵AD =4,∵DF =AD -AF =4-3=1. ∵45. ∵四边形BCEF 是菱形, ∵BF =BC =AD =4.∵四边形ABCD 是平行四边形,∵CD ∵AB , ∵GD AB =GF BF ,即GF GD =BF AB =45.14.如图,AB 是半圆O 的直径,射线AM ⊥AB ,点P 在AM 上,连接OP 交半圆O 于点D ,PC 切半圆O 于点C ,连接BC .(1)求证:BC ∥OP ;(2)若半圆O 的半径等于2,填空:①当AP =________时,四边形OAPC 是正方形;②当AP =________时,四边形BODC 是菱形.第3题图解:(1)证明:连接OC ,AC ,如解图所示, ∵AB 是直径,AM ⊥AB , ∴BC ⊥AC ,AP 是半⊙O 的切线,又∵PC是半⊙O的切线,∴P A=PC,又∵OA=OC,∴OP⊥AC,∴BC∥OP;(2)① 2;② 2 3.∵若四边形OAPC是正方形,则OA=AP,∵OA=2,∵AP=2;∵若四边形BODC是菱形,则CB=BO=OD=DC,∵AB=2OB,∵ACB=90°,∵AB=2BC,∵∵BAC=30°,∵ABC=60°,∵BC∵OP,∵∵AOP=∵ABC=60°,又∵∵OAP=90°,OA=2,∵∵OP A=30°,∵OP=4,∵AP=22222-OAOP=2 3.=4-第3题解图15.如图,在△ABC中,∠ACB=90°,线段BC的垂直平分线DE交BC于点D,交AB于点E,点F在DE的延长线上,AF=CE且F不与E重合.(1)求证:△EF A≌△ACE;(2)填空:①当∠B=_________°时,四边形ACEF是菱形;②当∠B=_________°时,线段AF与AB垂直.第4题图(1)证明:如解图,第4题解图∵ED是BC的垂直平分线,∴EB=EC,ED⊥BC,∴∠3=∠4,∵∠ACB=90°,∴FE∥AC,∴∠1=∠5,∵∠2与∠4互余,∠1与∠3互余,∴∠1=∠2=∠5,∴AE=CE.又∵AF=CE,∴AE=AF,∴∠5=∠F,在△EF A和△ACE中,AF=AE=EC,∠1=∠2=∠5=∠F,∴△EF A≌△ACE.(2)解:① 30;②45.∵∵四边形ACEF是菱形,∵AC=CE,∵CE是Rt∵ABC斜边AB的中线,∵CE=AE=BE,∵AE=AC=CE,∵∵ACE是等边三角形,∵∵1=60°,则∵B=30°,∵当∵B=30°时,四边形ACEF是菱形;∵由(1)知∵EF A∵∵ACE,∵∵AEC=∵EAF,∵AF∥CE,∵AF∵AB,∵CE∵AB,∵CE=EB,∵∵3=∵4=45°,∵当∵B=45°时,线段AF与AB垂直.16.如图,AB是⊙O的直径,E是⊙O外一点,过点E作⊙O的两条切线ED,EB,切点分别为点D,B.连接AD并延长交BE延长线于点C,连接OE.(1)试判断OE与AC的关系,并说明理由;(2)填空:①当∠BAC=_________°时,四边形ODEB为正方形;②当∠BAC=30°时,ADDE的值为________.第5题图5.解:(1)OE∥AC,OE=12AC.理由:连接OD,如解图,第5题解图∵DE,BE是⊙O的切线,∴OD⊥DE,AB⊥BC,∴∠ODE=∠ABC=90°,∵OD=OB,OE=OE,∴Rt△ODE≌Rt△OBE(HL),∴∠1=∠2.∵∠BOD=∠A+∠3,OA=OD,∴∠A=∠3,∴∠2=∠A,∴OE∥AC;∵OA=OB,∴EC=EB,∴OE是△ABC的中位线,∴OE=12AC.(2)①45;②3.∵要使四边形ODEB是正方形,由ED=EB,∵ODE=∵ABC=90°,只需∵DOB =90°,∵∵A=45°;∵过O作OH∵AD于H,∵∵A=30°,OA=OD,∵∵3=∵A=30°,∵OD,∵∵ODE=90°,∵1=∵3=30°,∵OD,∵ADDE=3.17.如图,将⊙O的内接矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连接BC1,∠ACB=30°,AB=1,CC1=x.(1)若点O与点C1重合,求证:A1D1为⊙O的切线;(2)①当x=________时,四边形ABC1D1是菱形;②当x=________时,△BDD1为等边三角形.第6题图(1)证明:∵四边形ABCD为矩形,∴∠D=90°,∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1D1O=∠D=90°,∴A1D1⊥OD1,∴A1D1为⊙O的切线;(2)解:①1;②2.∵如解图∵,连接AD1,当x=1时,四边形ABC1D1是菱形;第6题解图∵理由:由平移得:AB=D1C1,且AB∵D1C1,∵四边形ABC1D1是平行四边形,∵∵ACB=30°,∵∵CAB=60°,∵AB=1,∵AC=2,∵x=1,∵AC1=1,∵AB=AC1,∵∵AC1B是等边三角形,∵AB=BC1,∵四边形ABC1D1是菱形;∵如解图∵所示,当x=2时,∵BDD1为等边三角形,第6题解图∵则可得BD=DD1=BD1=2,即当x=2时,∵BDD1为等边三角形.。

中考数学点对点-几何折叠翻折类问题(解析版)

中考数学点对点-几何折叠翻折类问题(解析版)

专题33 中考几何折叠翻折类问题专题知识点概述1.轴对称(折痕)的性质:(1)成轴对称的两个图形全等。

(2)对称轴与连结“对应点的线段”垂直。

(3)对应点到对称轴的距离相等。

(4)对应点的连线互相平行。

也就是不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.2.折叠或者翻折试题解决哪些问题(1)求角度大小;(2)求线段长度;(3)求面积;(4)其他综合问题。

3.解决折叠问题的思维方法(1)折叠后能够重合的线段相等,能够重合的角相等,能够重合的三角形全等,折叠前后的图形关于折痕对称,对应点到折痕的距离相等。

(2)折叠类问题中,如果翻折的直角,那么可以构造三垂直模型,利用三角形相似解决问题。

(3)折叠类问题中,如果有平行线,那么翻折后就可能有等腰三角形,或者角平分线。

这对解决问题有很大帮助。

(4)折叠类问题中,如果有新的直角三角形出现,可以设未知数,利用勾股定理构造方程解决。

(5)折叠类问题中,如果折痕经过某一个定点,往往用辅助圆解决问题。

一般试题考查点圆最值问题。

(6)折叠后的图形不明确,要分析可能出现的情况,一次分析验证可以利用纸片模型分析。

例题解析与对点练习【例题1】(2020•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°【答案】A【解析】由余角的性质可求∠C=40°,由轴对称的性质可得∠AB'B=∠B=50°,由外角性质可求解.∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°。

2024年中考数学压轴突破【几何中的折叠】题型汇编(解析版)

2024年中考数学压轴突破【几何中的折叠】题型汇编(解析版)

几何中的折叠问题一、单选题1如图,在菱形ABCD中,AD=5,tan B=2,E是AB上一点,将菱形ABCD沿DE折叠,使B、C的对应点分别是B 、C ,当∠BEB =90°时,则点C 到BC的距离是()A.5+5B.25+2C.6D.35【答案】D【分析】过C作CH⊥AD于H,C 作C F⊥AD于F,HD=5,HC=25,再由折叠证明∠BED=∠B ED=135°,∠EDC=∠EDC =45°,△CHD≌△DFC ,C F= HD=5,【C作CH⊥AD于H,C 作C F⊥AD于F,由已知AD=5,tan B=2,=2,∴CD=5,tan∠CDH=HCHD∴设HD=x,HC=2x,∴在Rt△HDC中HC2+HD2=CD2,2x2+x2=52,解得x=5,∴HD=5,HC=25,由折叠可知∠BED=∠B ED,∠EDC=∠EDC ,CD=C D∵∠BEB =90°,∴∠BED=∠B ED=135°,∵AB∥DC,∴∠EDC=180°-∠BED=45°,∴∠EDC=∠EDC =45°∴∠CDC =90°∵∠CHD =∠C AD =90°,∴∠CDH +C DF =90°,∵∠CDH +∠HCD =90°,∴∠C DF =∠HCD ,∴△CHD ≌△DFC ,∴C F =HD =5,∴点C 到BC 的距离是C F +CH =5+25=35.故选:D .【点睛】本题考查了全等三角形的性质和判定、菱形的性质、图形的折叠以及正切定义的应用,解答关键是根据折叠的条件推出∠BED =∠B ED =135°.2如图,将△ABC 折叠,使AC 边落在AB 边上,展开后得到折痕l 与BC 交于点P ,且点P 到AB 的距离为3cm ,点Q 为AC 上任意一点,则PQ 的最小值为()A.2cmB.2.5cmC.3cmD.3.5cm【答案】C【分析】由折叠可得:PA 为∠BAC 的角平分线,根据垂线段最短即可解答.【详解】解:∵将△ABC 折叠,使AC 边落在AB 边上,∴PA 为∠BAC 的角平分线,∵点Q 为AC 上任意一点,∴PQ 的最小值等于点P 到AB 的距离3cm .故选C .【点睛】本题主要考查了折叠的性质、角平分线的性质定理等知识点,掌握角平分线上的点到两边距离相等是解答本题的关键.3如图,在▱ABCD 中,BC =8,AB =AC =45,点E 为BC 边上一点,BE =6,点F 是AB 边上的动点,将△BEF 沿直线EF 折叠得到△GEF ,点B 的对应点为点G ,连接DE ,有下列4个结论:①tan B =2;②DE =10;③当GE ⊥BC 时,EF =32;④若点G 恰好落在线段DE 上时,则AF BF=13.其中正确的是()A.①②③B.②③④C.①③④D.①②④【答案】D【分析】过点A 作AH ⊥BC 于点H ,利用三线和一以及正切的定义,求出tan B ,即可判断①;过点D 作DK ⊥BC 于点K ,利用勾股定理求出DE ,判断②;过点F 作FM ⊥BC 于点M ,证明△EMF 为等腰直角三角形,设EM =FM =x ,三角函数求出BM 的长,利用BE =BM +EM ,求出x 的值,进而求出EF 的长,判断③;证明△AND ∽△CNE ,推出∠ENC =∠ECN ,根据折叠的性质,推出EF ∥CA ,利用平行线分线段成比例,即可得出结论,判断④.【详解】解:①过点A 作AH ⊥BC 于点H ,∵BC =8,AB =AC =45,∴BH =12BC =4,∴AH =AB 2-BH 2=8,∴tan B =AHBH=2;故①正确;②过点D 作DK ⊥BC 于点K ,则:四边形AHKD 为矩形,∴DK =AH =8,HK =AD =BC =8,∵BE =6,∴CE =2,∵CH =12BC =4,∴CK =4,∴EK =CE +CK =6,∴DE =EK 2+DK 2=10;故②正确;③过点F 作FM ⊥BC 于点M ,∵GE ⊥BC ,∴∠BEG =90°,∵翻折,∴∠BEF =∠GEF =45°,∴∠EFM =∠BEF =45°,∴EM =FM ,设EM =FM =x ,∵tan B =FMBM =2,∴BM =12FM =12x ,∴BE =BM +EM =12x +x =6,∴x =4,∴EM =FM =4,∴EF =2EM =42;故③错误;④当点G 恰好落在线段DE 上时,如图:设AC 与DE 交于点N ,∵▱ABCD ,∴AD ∥BC ,∴△AND ∽△CNE ,∴EN DN =CE AD=28=14,∴EN DE =15,∴EN =15DE =2=CE ,∴∠ENC =∠ECN ,∴∠BEN =∠ENC +∠ECN =2∠ECN ,∵翻折,∴∠BEN =2∠BEF ,∴∠BEF =∠ECN ,∴EF ∥AC ,∴AF BF =CE BE=26=13;故④正确,综上:正确的是①②④;故选D .【点睛】本题考查平行四边形的折叠问题,同时考查了解直角三角形,相似三角形的判定和性质,等腰三角形的判定和性质,勾股定理.本题的综合性强,难度较大,是中考常见的压轴题,熟练掌握相关性质,添加合适的辅助线,构造特殊三角形,是解题的关键.4如图,AB 是⊙O 的直径,点C 是⊙O 上一点,将劣弧BC 沿弦BC 折叠交直径AB 于点D ,连接CD ,若∠ABC =α0°<α<45° ,则下列式子正确的是()A.sin α=BCABB.sin α=CD ABC.cos α=AD BDD.cos α=CD BC【答案】B【分析】连AC ,由AB 是⊙O 的直径,可知∠ACB =90°,由折叠,AC和CD所在的圆为等圆,可推得AC =CD ,再利用正弦定义求解即可.【详解】解:连AC ,∵AB 是⊙O 的直径,∴∠ACB =90°,由折叠,AC 和CD所在的圆为等圆,又∵∠CBD =∠ABC ,∴AC和CD所对的圆周角相等,∴AC=CD,∴AC =CD ,在Rt △ACB 中,sin α=AC AB =CDAB,故选:B .【点睛】本题考查圆周角定理和圆心角、弦、弧之间的关系以及正弦、余弦定义,解答关键是通过折叠找到公共的圆周角推出等弦.5如图,在平面直角坐标系中,OA 在x 轴正半轴上,OC 在y 轴正半轴上,以OA ,OC 为边构造矩形OABC ,点B 的坐标为8,6 ,D ,E 分别为OA ,BC 的中点,将△ABE 沿AE 折叠,点B 的对应点F 恰好落在CD 上,则点F 的坐标为()A.3213,3013B.3013,3213C.3013,2013D.2013,3013【答案】A【分析】先求得直线CD 的解析式,过点F 作FM ⊥CE 于点M ,过点F 作FN ⊥OC 于点N ,设点F m ,-32m +6 ,在Rt △EMF 中,再利用勾股定理得到关于m 的方程,解方程即可.【详解】解:∵点B 的坐标为8,6 ,四边形OABC 是矩形,D ,E 分别为OA ,BC 的中点,∴C 0,6 ,D 4,0 ,E 4,6 ,由折叠的性质可得:EF =BE =4,设直线CD 的解析式为y =kx +b ,则6=b 4k +b =0 ,解得:k =-32b =6,∴直线CD 的解析式为y =-32x +6,过点F 作FM ⊥CE 于点M ,过点F 作FN ⊥OC 于点N ,设点F m,-32m+6,则MF=CN=6--32m+6=32m,EM=4-m,在Rt△EMF中,EM2+MF2=EF2,∴4-m2+32m2=42,解得:m=3213或m=0(不合题意,舍去),当m=3213时,y=-32×3213+6=3013,∴点F的坐标为3213,30 13,故选:A.【点睛】本题是一次函数与几何综合题,考查了求一次函数解析式,勾股定理,翻折的性质,矩形的性质,中点的性质,熟练掌握知识点并灵活运用是解题的关键.6综合与实践课上,李老师让同学们以矩形纸片的折叠为主题开展数学活动.如图,将矩形纸片ABCD对折,折痕为EF,再把点A折叠在折痕EF上,其对应点为A ,折痕为DP,连接A B,若AB=2,BC =3,则tan∠A BF的值为()A.33B.3 C.32D.12【答案】A【分析】先证明EF=AB=CD=2,CF=BF=DE=32,∠DEA=90°,∠A FB=90°,AD=A D=3,可得A E=A D2-DE2=32,AF=2-32=12,再利用正切的定义求解即可.【详解】解:∵矩形纸片ABCD对折,折痕为EF,AB=2,BC=3,∴EF=AB=CD=2,CF=BF=DE=32,∠DEA=90°,∠A FB=90°,由折叠可得:AD=A D=3,∴A E=A D2-DE2=32,∴A F=2-32=12,∴tan ∠A BF =1232=33.故选A【点睛】本题考查的是轴对称的性质,矩形的性质,勾股定理的应用,求解锐角的正切,熟记轴对称的性质是解本题的关键.7如图,矩形ABCD 中,AB =2,BC =3,P 是边BC 中点,将顶点D 折叠至线段AP 上一点D ,折痕为EF ,此时,点C 折叠至点C .下列说法中错误的是()A.cos ∠BAP =45B.当AE =53时,D E ⊥AP C.当AE =18-65时,△AD E 是等腰三角形 D.sin ∠DAP =45【答案】C【分析】根据矩形的性质,直角三角形的性质,三角函数,勾股定理,折叠的性质计算判断即可.【详解】∵矩形ABCD 中,AB =2,BC =3,P 是边BC 中点,∴BP =12BC =32,∠B =90°,∴AP =AB 2+BP 2=22+32 2=52,∴cos ∠BAP =AB AP=252=45,故A 正确;∵矩形ABCD ,∴AD ∥BC ,∴∠DAP =∠APB ,∴sin ∠DAP =sin ∠APB =cos ∠BAP =45,故D 正确;设DE =D E =x ,根据题意,得AE =AD -DE =3-x ,sin ∠DAP =45,∵D E ⊥AP ,∴sin ∠DAP =D E AE=x 3-x =45,解得x =43,∴AE =AD -DE =3-x =53,故B 正确;当D E =AE 时,∴x =3-x ,解得x =32;此时D ,A 重合,三角形不存在,不符合题意;当D E =AD 时,过点D 作D N ⊥AD 于点N ,则AN =NE ;∵矩形ABCD ,∴AD ∥BC ,∴∠DAP =∠APB ,∴cos ∠DAP =cos ∠APB =3252=35,设DE =D E =x ,根据题意,得AE =AD -DE =3-x ,D E =AD =x ,∴AN AD=AN x =35,解得AN =35x ;∴AE =AD -DE =3-x =2AN =65x ,解得x =1511;∴AE =65×1511=1811;当AE =AD 时,过点D 作D H ⊥AD 于点H ,设DE =D E =x ,根据题意,得AE =AD =AD -DE =3-x ,∴D H =AD sin ∠DAP =453-x ,AH =AD cos ∠DAP =353-x ,∴HE =AE -AH =3-x -353-x =253-x ,根据勾股定理,得HE 2+D H 2=D E 2,∴253-x 2+453-x2=x 2解得x =65-12;∴AE =3-x =15-65;综上所述,AE =15-65或AE =1811,故C 错误,故选C .【点睛】本题考查了矩形的性质,直角三角形的性质,三角函数,勾股定理,折叠的性质,熟练掌握三角函数,勾股定理,矩形的性质,折叠的性质是解题的关键.8如图,AB 为半圆O 的直径,点O 为圆心,点C 是弧上的一点,沿CB 为折痕折叠BC交AB 于点M ,连接CM ,若点M 为AB 的黄金分割点(BM >AM ),则sin ∠BCM 的值为()A.5-12B.5+12C.5-14D.12【答案】A【分析】过点M作MD⊥CB,垂足为D,延长MD交半⊙O于点M′,连接CM ,BM′,根据折叠的性质可得:∠CMB=∠CM′B,BC⊥MM′,从而可得∠BDM=90°,再根据黄金分割的定义可得BMAB =5-12,然后利用直径所对的圆周角是直角可得∠ACB=90°,从而证明A字模型相似三角形△DBM∽△CBA,进而利用相似三角形的性质可得DMAC=BMAB=5-12,最后根据圆内接四边形对角互补以及平角定义定义可得:∠A=∠AMC,从而可得CA=CM,再在Rt△CDM中,利用锐角三角函数的定义进行计算,即可解答.【详解】解:过点M作MD⊥CB,垂足为D,延长MD交半⊙O于点M′,连接CM ,BM′,由折叠得:∠CMB=∠CM′B,BC⊥MM′,∴∠BDM=90°,∵点M为AB的黄金分割点(BM>AM),∴BMAB =5-12,∵AB为半圆O的直径,∴∠ACB=90°,∴∠ACB=∠MDB,∵∠DBM=∠CBA,∴△DBM∽△CBA,∴DMAC =BMAB=5-12,∵四边形ACM′B是半⊙O的内接四边形,∴∠A+∠CM′B=180°,∵∠AMC+∠CMB=180°,∠CMB=∠CM′B,∴∠A=∠AMC,∴CA=CM,在Rt△CDM中,sin∠BCM=DMCM=DMAC=5-12.故选:A.【点睛】本题考查了相似三角形的判定与性质,黄金分割,解直角三角形,翻折变换(折叠问题),圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.二、填空题9如图,将一张矩形纸片ABCD折叠,折痕为EF,折叠后,EC的对应边EH经过点A,CD的对应边HG交BA的延长线于点P.若PA=PG,AH=BE,CD=3,则BC的长为.【答案】43【分析】本题考查了矩形与折叠问题,全等三角形的判定和性质,勾股定理.连接PF ,设BC =2x ,AH =BE=a ,证明Rt △PAF ≌Rt △PGF HL ,求得FA =FG =FD =x ,由折叠的性质求得BE =12x ,在Rt △ABE中,利用勾股定理列式计算,即可求解.【详解】解:连接PF ,设BC =2x ,AH =BE =a ,由矩形的性质和折叠的性质知FG =FD ,∠G =∠FAP =90°,AB =CD =3,AD =BC ,∵PA =PG ,PF =PF ,∴Rt △PAF ≌Rt △PGF HL ,∴FA =FG =FD =12AD =12BC =x ,由矩形的性质知:AD ∥BC ∴∠AFE =∠FEC ,折叠的性质知:∠FEA =∠FEC ,∴∠FEA =∠AFE ,∴AE =FA =x ,由折叠的性质知EC =EH =AE +AH =x +a ,∴BC =BE +EC =a +x +a =2x ,∴a =12x ,即BE =12x ,在Rt △ABE 中,AB 2+BE 2=AE 2,即32+12x 2=x 2,解得x =23,∴BC =2x =43,故答案为:4310如图,在矩形ABCD 中,AB =3,AD =6,M 为AD 的中点,N 为BC 边上一动点,把矩形沿MN 折叠,点A ,B 的对应点分别为A ,B ,连接AA '并延长交射线CD 于点P ,交MN 于点O ,当N 恰好运动到BC 的三等分点处时,CP 的长为.【答案】1或5【分析】分两种情况:①当CN =2BN 时.过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形;②当BN =2CN 时,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,根据矩形的性质得GM =AM -AG =1.再由折叠的性质可得∠AOM =90°,然后根据相似三角形的判定与性质可得答案.【详解】解:①当CN =2BN 时.如图1,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,∴NG =AB =3,AG =BN =2.∵M 为AD 的中点,∴AM =3,∴GM =AM -AG =1.由折叠A 与A 对应,∴∠AOM =90°,∵∠MAO +∠APD =90°,∠MAO +∠AMO =90°,∴∠AMO =∠APD ,即∠GMN =∠APD .又∵∠NGM =∠ADP =90°,∴△ADP ∽△NGM ,∴NG AD=GM DP =12,解得DP =2,∴CP =CD -DP =1.②当BN =2CN 时,如图2,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,∴NG =AB =3,AG =BN =4.∵M 为AD 的中点,∴AM =3,∴GM =AG -AM =1.由折叠A 与A 对应,∴∠AOM =90°∠MAO +∠AMO =90°,∠MAO +∠APD =90°,∴∠AMO =∠APD ,即∠GMN =∠APD .又∠ADP =∠NGM =90°,∴△ADP ∽△NGM ,∴NG AD=GM DP =12,解得DP =2,∴CP =CD +DP =5.综上,CP 的长为1或5.故答案为:1或5.【点睛】此题考查的是翻折变换-折叠问题、矩形的性质,正确作出辅助线是解决此题的关键.11如图,DE 平分等边△ABC 的面积,折叠△BDE 得到△FDE ,AC 分别与DF ,EF 相交于G ,H 两点.若DG =m ,EH =n ,用含m ,n 的式子表示GH 的长是.【答案】m 2+n 2【分析】先根据折叠的性质可得S △BDE =S △FDE ,∠F =∠B =60°,从而可得S △FHG =S △ADG +S △CHE ,再根据相似三角形的判定可证△ADG ∽△FHG ,△CHE ∽△FHG ,根据相似三角形的性质可得S △ADG S △FHG =DG GH2=m 2GH 2,S △CHE S △FHG =EH GH 2=n 2GH 2,然后将两个等式相加即可得.【详解】解:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,∵折叠△BDE 得到△FDE ,∴△BDE ≌△FDE ,∴S △BDE =S △FDE ,∠F =∠B =60°=∠A =∠C ,∵DE 平分等边△ABC 的面积,∴S 梯形ACED =S △BDE =S △FDE ,∴S △FHG =S △ADG +S △CHE ,又∵∠AGD =∠FGH ,∠CHE =∠FHG ,∴△ADG ∽△FHG ,△CHE ∽△FHG ,∴S △ADG S △FHG =DG GH 2=m 2GH 2,S △CHE S △FHG =EH GH 2=n 2GH 2,∴S △ADG S △FHG +S △CHE S △FHG =m 2+n 2GH 2=S △ADG +S △CHE S △FHG =1,∴GH 2=m 2+n 2,解得GH =m 2+n 2或GH =-m 2+n 2(不符合题意,舍去),故答案为:m 2+n 2.【点睛】本题考查了等边三角形的性质、折叠的性质、相似三角形的判定与性质等知识点,熟练掌握相似三角形的判定与性质是解题关键.12在矩形ABCD 中,点E 为AD 边上一点(不与端点重合),连接BE ,将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,连接并延长EF ,BF 分别交BC ,CD 于G ,H 两点.若BA =6,BC =8,FH =CH ,则AE 的长为.【答案】92【分析】连接GH ,证明Rt △FHG ≅Rt △CHG (HL ),可得FG =CG ,设FG =CG =x ,在Rt △BFG 中,有62+x 2=(8-x )2,可解得CG =FG =74,知BG =254,由矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,得∠AEB =∠FEB ,可得∠FEB =∠EBG ,EG =BG =254,故EF =EG -FG =92,从而得到AE =92.【详解】连接GH ,如图:∵四边形ABCD 是矩形,∴∠A =∠C =90°,∵将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,∴BF =AB =6,AE =EF ,∠BFE =∠A =90°,∴∠GFH =90°=∠C ,∵GH =GH ,FH =CH ,∴Rt △FHG ≅Rt △CHG (HL ),∴FG =CG ,设FG =CG =x ,则BG =BC -CG =8-x在Rt △BFG 中,BF 2+FG 2=BG 2∴62+x 2=(8-x )2,解得:x =74,∴CG =FG =74,∴BG =8-x =25x,∵将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,∴∠AEB =∠FEB ,∵AD ⎳BC ,∴∠AEB =∠EBG ,∴∠FEB =∠EBG ,∴EG =BG =254,∴AE =92,故答案为:92.【点睛】本题考查矩形中的翻折变换,涉及三角形全等的判定与性质,勾股定理及应用,掌握相关知识是解题的关键.13如图,在矩形ABCD 中,AD =23,CD =6,E 是AB 的中点,F 是线段BC 上的一点,连接EF ,把△BEF 沿EF 折叠,使点B 落在点G 处,连接DG ,BG 的延长线交线段CD 于点H .给出下列判断:①∠BAC =30°;②△EBF ∽△BCH ;③当∠EGD =90°时,DG 的长度是23 ④线段DG 长度的最小值是21-3;⑤当点G 落在矩形ABCD 的对角线上,BG 的长度是3或33;其中正确的是.(写出所有正确判断的序号)【答案】①②③【分析】利用正切函数的定义即可判断①正确;利用同角的余角相等推出∠HBC =∠BEF ,可判断②正确;推出点D 、G 、F 三点共线,证明Rt △EAD ≌Rt △EGD HL ,可判断③正确;当点D 、G 、E 三点共线,线段DG 长度的最小值是21-3,由于F 是线段BC 上的一点,不存在D 、G 、E 三点共线,可判断④不正确;证明△BGE 是等边三角形,可判断⑤.【详解】解:连接AC ,∵矩形ABCD 中,AD =23,CD =6,∴tan ∠ACD =AD CD=236=33,∴∠ACD =30°,∴∠BAC =30°,故①正确;由折叠的性质知EF 是BG 的垂直平分线,∴∠HBC +∠BFE =90°=∠BEF +∠BFE ,∴∠HBC =∠BEF ,∴△EBF ∽△BCH ,故②正确;由折叠的性质知∠EGF =∠ABC =90°,∵∠EGD =90°,∴点D 、G 、F 三点共线,连接DE ,在Rt △EAD 和Rt △EGD 中,AE =BE =EG ,DE =DE ,∴Rt △EAD ≌Rt △EGD HL ,∴DG =AD =23,故③正确;∵AE =BE =EG ,∴点A 、G 、B 都在以E 为圆心,3为半径的圆上,DE =23 2+32=21,∴当点D 、G 、E 三点共线,线段DG 长度的最小值是21-3,但F 是线段BC 上的一点,∴D 、G 、E 三点不可能共线,故④不正确;当点G 落在矩形ABCD 的对角线AC 上时,由折叠的性质知BE =EG ,∵E 是AB 的中点,由①知∠BAC =30°,∴BE =EG =EA ,∠BAC =∠EGA =30°,∴∠BEG =∠BAC +∠EGA =60°,∴△BGE 是等边三角形,∴BG 的长度是3;由于F 是线段BC 上的一点,则点G 不会落在矩形ABCD 的对角线BD 上,故⑤不正确;综上,①②③说法正确,故答案为:①②③.【点睛】本题考查了矩形与折叠问题,正切函数,相似三角形的判定,勾股定理等知识,解答本题的关键是明确题意,找出所求问题需要的条件.14如图,将矩形ABCD沿BE折叠,点A与点A 重合,连接EA 并延长分别交BD、BC于点G、F,且BG=BF.(1)若∠AEB=55°,则∠GBF=;(2)若AB=3,BC=4,则ED=.【答案】40°/40度5-10/-10+5【分析】(1)先证明∠DEF=180°-2×55°=70°,∠BFG=∠DEF=70°,利用BG=BF,可得答案;(2)如图,过F作FQ⊥AD于Q,可得CF=DQ,FQ=CD=3,同理可得:∠BGF=∠BFG,∠DEG=∠BFG,而∠DGE=∠BGF,则∠DEG=∠DGE,设DE=DG=x,而BD=32+42=5,则BG=BF=5-x,CF=4-5-x=1,再求解EF=12+32=10,由折叠可得:A E=AE=4 =x-1,EQ=x-x-1-x,AF=10-4+x,利用cos∠BFA=cos∠FEQ,再建立方程求解即可.【详解】解:(1)∵∠AEB=55°,结合折叠可得:∠AEB=∠A EB=55°,∴∠DEF=180°-2×55°=70°,∵矩形ABCD,∴AD∥BC,∴∠BFG=∠DEF=70°,∵BG=BF,∴∠BGF=∠BFG=70°;∴∠GBF=180°-2×70°=40°;故答案为:40°.(2)如图,过F作FQ⊥AD于Q,∴四边形FCDQ是矩形,则CF=DQ,FQ=CD=3,同理可得:∠BGF=∠BFG,∠DEG=∠BFG,而∠DGE=∠BGF,∴∠DEG=∠DGE,∴设DE=DG=x,∵矩形ABCD,AB=3,BC=4,∴BD=32+42=5,∴BG=BF=5-x,∴CF=4-5-x=x-1,∴EQ=x-x-1=1,∴EF=12+32=10,由折叠可得:A E=AE=4-x,∴AF =10-4+x,∵∠QEF=∠BFA ,∴cos∠BFA =cos∠FEQ,∴EQEF=A FBF,∴110=10-4+x5-x,解得:x=5-10,经检验符合题意;∴DE=5-10.故答案为:5-10.【点睛】本题考查的是轴对称的性质,矩形的性质与判定,勾股定理的应用,锐角三角函数的应用,等腰三角形的判定与性质,熟练的利用以上知识解题是关键.三、解答题15综合与实践课上,老师让同学们以“正方形的折叠”为主题开展实践活动.(1)操作判断操作一:如图(1),正方形纸片ABCD,点E是BC边上(点E不与点B,C重合)任意一点,沿AE折叠△ABE到△AFE,如图(2)所示;操作二:将图(2)沿过点F的直线折叠,使点E的对称点G落在AE上,得到折痕MN,点C的对称点记为H,如图(3)所示;操作三:将纸片展平,连接BM,如图(4)所示.根据以上操作,回答下列问题:①B,M,N三点(填“在”或“不在”)一条直线上;②AE和BN的位置关系是,数量关系是;③如图(5),连接AN,改变点E在BC上的位置,(填“存在”或“不存在”)点E,使AN平分∠DAE.(2)迁移探究苏钰同学将正方形纸片换成矩形纸片ABCD,AB=4,BC=6,按照(1)中的方式操作,得到图(6)或图(7).请完成下列探究:①当点N在CD上时,如图(6),BE和CN有何数量关系?并说明理由;②当DN的长为1时,请直接写出BE的长.【答案】(1)①在,②AE⊥BN,相等;③不存在;(2)①BECN =23,理由见解析;②BE=2或165.【分析】(1)①E的对称点为E ,BF⊥EE ,MF⊥EE ,即可判断;②由①AE⊥BN,由同角的余角相等得∠BAE=∠CBN,由AAS可判定△ABE≌△BCN,由全等三角形的性质即可得证;③由AAS可判定△DAN≌△MAN,由全等三角形的性质得AM=AD,等量代换得AB=AM,与AB>AM矛盾,即可得证;(2)①由(1)中的②可判定△ABE∽△BCN,由三角形相似的性质即可求解;②当N在CD上时,△ABE∽△BCN,由三角形相似的性质即可求解;当N在AD上时,同理可判定△ABE∽△NAB,由三角形相似的性质即可求解.【详解】(1)解:①E的对称点为E ,∴BF⊥EE ,MF⊥EE ,∴B、F、M共线,故答案为:在;②由①知:B、F、M共线,N在FM上,∴AE⊥BN,∴∠AMB=90°,∴∠ABM+∠BAE=90°,∵四边形ABCD是正方形,∴∠ABC=∠BCN=90°,AB=BC,∴∠CBN+∠ABM=90°,∴∠BAE=∠CBN,在△ABE和△BCN中,∠BAE=∠CBN ∠ABC=∠BCN AB=BC,∴△ABE≌△BCN(AAS),∴AE=BN,故答案为:相等;③不存在,理由如下:假如存在,∵AN平分∠DAE,∴∠DAN=∠MAN,∵四边形ABCD是正方形,AM⊥BN,∴∠D=∠AMN=90°,在△DAN和△MAN中,∠D=∠AMN∠DAN=∠MAN AN=ANN∴△DAN≌△MAN(AAS),∴AM=AD,∵AD=AB,∴AB=AM,∵AB是Rt△ABM的斜边,∴AB>AM,∴AB =AM 与AB >AM 矛盾,故假设不成立,所以答案为:不存在;(2)解:①BE CN=23,理由如下:由(1)中的②得:∠BAE =∠CBN ,∠ABE =∠C =90°,∴△ABE ∽△BCN ,∴BE CN =AB BC=23;②当N 在CD 上时,CN =CD -DN =3,由①知:△ABE ∽△BCN ,∴BE CN =AB BC =23,∴BE =23CN =2,当N 在AD 上时,AN =AD -DN =5,∵∠BAE =∠CBN =∠ANB ,∠ABE =∠BAN =90°,∴△ABE ∽△NAB ,∴BE AB =AB AN ,∴BE 4=45,∴BE =165,综上所述:BE =2或165.【点睛】本题考查了折叠的性质,矩形的性质,正方形的性质,全等三角形的判定及性质,三角形相似的判定及性质,掌握相关的判定方法及性质,“十字架”典型问题的解法是解题的关键.16在矩形ABCD 中,AD =2AB =8,点P 是边CD 上的一个动点,将△BPC 沿直线BP 折叠得到△BPC .(1)如图1,当点P 与点D 重合时,BC ′与AD 交于点E ,求BE 的长度;(2)当点P 为CD 的三等分点时,直线BC ′与直线AD 相交于点E ,求DE 的长度;(3)如图2,取AB 中点F ,连接DF ,若点C ′恰好落在DF 边上时,试判断四边形BFDP 的形状,并说明理由.【答案】(1)BE 的长度为5;(2)DE 的长度为113或83;(3)四边形BFDP 是平行四边形(理由见解析)【分析】本题利用了折叠的知识(折叠后的两个图形全等)以及矩形的性质(矩形的对边相等,对角相等),以及平行四边形的判定有关知识.(1)利用矩形性质和折叠的性质可推出BE=DE,设BE=x,则DE=x,AE=8-x,利用勾股定理建立方程求解即可得出答案;(2)设DE=m,则AE=m+8,设BE交CD于G,可证得△AEB∽△CBG,得出CGAB =BCAE,即CG4=8m+8,求得CG=32m+8,分两种情况:当PC=13CD=43时,当PC=23CD=83时,分别添加辅助线构造相似三角形,利用相似三角形性质建立方程求解即可得出答案;(3)由中点定义可得AF=BF,过点C 作C M∥AD交AB于点M,过点F作FN⊥BC 于点N,由矩形性质和翻折的性质可得∠C BP=∠CBP=12∠C BC,可证得△FC M∽△FDA,得出FMAF=C MAD,再证得△BFN∽△BC M,进而推出FM=FN,利用角平分线的判定定理可得∠BC F=∠MC F=12∠BC M推出∠BC F=∠C BP,再由平行线的判定定理可得DF∥BP,运用平行四边形的判定定理即可证得四边形BFDP是平行四边形.【点睛】点睛片段【详解】(1)解:∵AD=2AB=8,∴AB=4,∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,∴∠ADB=∠DBC,由折叠得:∠DBC=∠DBC ,∴∠ADB=∠DBC ,即∠EDB=∠EBD,∴BE=DE,设BE=x,则DE=x,AE=8-x,在Rt△ABE中,AE2+AB2=BE2,∴(8-x)2+42=x2,解得:x=5,∴BE的长度为5;(2)设DE=m,则AE=m+8,设BE交CD于G,∵四边形ABCD是矩形,∴BC=AD=8,CD=AB=4,AD∥BC,∠A=∠BCG=90°,∴∠AEB=∠CBG,∴△AEB∽△CBG,∴CG AB =BCAE,即CG4=8m+8,∴CG=32m+8,当PC=13CD=43时,BP=BC2+PC2=82+432=4373,连接CC ,过点C 作C H⊥CD于点H,如图,∵将△BPC沿直线BP折叠得到△BPC ,∴CC ⊥BP,△BPC ≌△BPC,∴S四边形BCPC =2S△BPC,∴1BP⋅CC =2×1BC⋅PC,即12×4373CC =2×12×8×43,∴CC =163737,∵∠C CH +∠BPC =90°,∠PBC +∠BPC =90°,∴∠C CH =∠PBC ,∵∠CHC =∠BCP =90°,∴△CC H ∽△BPC ,∴C H PC =CH BC =CC BP ,即CH 43=CH 8=1637374373,∴C H =1637,CH =9637,∵∠C HG =∠EDG =90°,∴C H ∥AE ,∴∠GC ′H =∠AEB ,∴△C GH ∽△EBA ,∴GH AB =C H AE ,即GH 4=1637m +8,∴GH =6437(m +8),∵CH +GH =CG ,∴9637+6437(m +8)=32m +8,解得:m =113,经检验,m =113是该方程的解,∴DE =113;当PC =23CD =83时,BP =BC 2+PC 2=82+83 2=8103,连接CC ,过点C 作C H ⊥CD 交CD 的延长线于点H ,作C G ⊥AD 于点G ,如图,同理可得:CC =8105,同理△CC H ∽△BPC ,∴C H PC =CH BC =CC BP ,即CH 83=CH 8=81058103,∴C H =85,CH =245,∴DH =CH -CD =245-4=45,∵∠HDG =∠H =∠C GD =90°,∴四边形DGC H 是矩形,∴C G =DH =45,DG =C H =85,∵∠C GE =∠A =90°,∠C EG =∠BEA ,∴△C EG ∽△BEA ,∴EG AE =C G AB =454=15,∴AE =5EG ,∵AE +EG =AG =AD -DG =8-85=325,∴5EG +EG =325,∴EG =1615,∴DE =DG +EG =85+1615=83,综上所述,DE 的长度为113或83;(3)四边形BFDP 是平行四边形,理由如下:∵点F 是AB 的中点,∴AF =BF ,过点C 作C M ∥AD 交AB 于点M ,过点F 作FN ⊥BC 于点N ,如图,则∠FC M =∠ADF ,∵四边形ABCD 是矩形,∴AD ∥BC ,AB ∥CD ,∴C M ∥BC ,∴∠BC M =∠C BC ,由翻折得:∠C BP =∠CBP =12∠C BC ,BC =BC =8,∵C M ∥AD ,∴△FC M ∽△FDA ,∴FM AF =C M AD ,∴FM BF =C MBC ,∵∠BNF =∠BMC =90°,∠FBN =∠C BM ,∴△BFN ∼△BC M∴FN BF =C MBC ,∴FM BF =FN BF ,∴FM =FN ,又∵FM ⊥C M ,FN ⊥C B ,∴∠BC F =∠MC F =12∠BC M ,∴∠BC F =∠C BP ,∴DF ∥BP ,∴四边形BFDP 是平行四边形.17矩形ABCD 中,AB =6,AD =8,点E 为对角线AC 上一点,过点E 作EF ⊥AD 于点F ,EG ⊥AC 交边BC 于点G ,将△AEF 沿AC 折叠得△AEH ,连接HG .(1)如图1,若点H 落在边BC 上,求证:AH =CH ;(2)如图2,若A ,H ,G 三点在同一条直线上,求HG 的长;(3)若△EHG 是以EG 为腰的等腰三角形,求EF 的长.【答案】(1)见解析(2)HG =94(3)EF =103或4【分析】(1)根据矩形的性质和翻折的性质证明∠ACH =∠HAC ,即可解决问题;(2)结合(1)的方法AG =CG ,解Rt △AEG ,Rt △HEG 分别求得EG ,HG ;(3)当△EHG 是以EG 为腰的等腰三角形时,分两种情况:①当EG =EH ,②当EG =HG ,结合(2)的方法,利用全等三角形的判定与性质和相似三角形的判定与性质即可解决问题.【详解】(1)∵四边形ABCD 是矩形,∴AD ∥BC .∴∠DAE =∠ACH .∵△AHE 由△AFE 折叠得到,∴∠HAC =∠DAE ,∴∠HAC =∠ACH ,∴AH =CH ;(2)∵矩形ABCD 中,AB =6,AD =8.∴AC =10.当A ,H ,G 三点在同一条直线上时,∠EHG =90°.同(1)可得AG =CG .又∵EG ⊥AC ,∴AE =12AC =5.∵∠AEH +∠HEG =90°,∠AEH +∠HAE =90°,∴∠HEG =∠HAC =∠CAD .∵在Rt △AEG 中,tan ∠EAG =EG AE =34,∴EG =34AE =154.∵在Rt △HEG 中,sin ∠HEG =HG EG =35,∴HG =35EG =94.(3)①若EH =EG ,如图3①设EF =EH =EG =x ,∵EF ⊥AD ,∴EF ∥CD ,∴△AEF ∽△ACD ,∴AE AC =AF AD =EF CD ∴AE 10=AF 8=x 6∴AE =53x ,AF =43x ,∴AH =AF =43x ,∵∠AHE =∠CEG =90°,∠HAE =∠GCE ,EH =EH ,∴△AHE ≌△CGE AAS ,∴AH =CE ,∴43x =10-53x ,∴x =103∴EF =103.②若HG =GE ,如图3②.(图3②)过点G 作GM ⊥HE ,设EF =a ,∵EC =10-53a ,∵∠AHE =∠CEG =90°,∠HAE =∠GCE ,∴△AHE ∽△CGE ,∴EG =34EC =3410-53a =152-54a ,∵∠GME =∠EHA ,∠MGE =90°-∠MEG =∠HAE ,∴△MGE ∽△HEA ,∴ME AH =EG AE ,∵AH AE =AD AC =45,∴AH =45AE ,∴ME =45EG =45152-54a =6-a ,∴HE =2ME =12-2a =EF ,∴12-2a =a ,∴a =4,∴EF =4,综上,EF =103或4.【点睛】本题考查了矩形的性质,解直角三角形,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,等腰三角形的性质,翻折的性质,解决本题的关键是综合运用以上知识.18综合与实践【问题情境】数学活动课上,老师准备了若干张正方形纸片ABCD,组织同学们进行折纸探究活动.【初步尝试】把正方形对折,折痕为EF,然后展开,沿过点A与点E所在的直线折叠,点B落在点B 处,连接 B C,如图1,请直接写出∠AEB 与∠ECB 的数量关系.【能力提升】把正方形对折,折痕为EF,然后展开,沿过点A与BE上的点G所在的直线折叠,使点B落在EF上的点P处,连接PD,如图2,猜想∠APD的度数,并说明理由.【拓展延伸】在图2的条件下,作点A关于直线CP的对称点A ,连接PA ,BA ,AC,如图3,求∠PA B的度数.【答案】初步尝试:∠AEB =∠ECB ;能力提升:猜想:∠APD=60°,理由见解析;拓展延伸:∠PA B=15°【分析】初步尝试:连接BB ,由折叠的性质可知,BE=CE,BE=BE ,∠AEB=∠AEB ,BB ⊥AE,根据等边对等角的性质和三角形内角和定理,得出∠BB C=90°,推出AE∥CB ,即可得出答案;能力提升:根据正方形的性质和折叠的性质,易证△AFP≌△DFP SAS,从而证明△APD是等边三角形,即可得到答案;拓展延伸:连接A C、AA ,由(2)得△APD是等边三角形,进而得出∠PDC=30°,再结合等边对等角的性质和三角形内角和定理,求得∠PAC=15°,∠ACP=30°,由对称性质得:AC=A C,∠ACP=∠A CP=30°,证明△AA B≌△CA B SSS,得到∠CA B=30°,再由∠CA P=∠CAP=15°,即可求出∠PA B的度数.【详解】解:初步尝试:∠AEB =∠ECB ,理由如下:如图,连接BB ,由折叠的性质可知,BE=CE,BE=BE ,∠AEB=∠AEB ,BB ⊥AE,∴BE=CE=BE ,∴∠EBB =∠EB B,∠ECB =∠EB C,∵∠EBB +∠EB B+∠EB C+∠ECB =2∠EB B+∠EB C=180°,∴∠BB C=90°,即BB ⊥CB ,∴AE∥CB ,∴∠AEB=∠ECB ,∴∠AEB =∠ECB ;解:能力提升:猜想:∠APD=60°,理由如下:理由:∵四边形ABCD是正方形,∴AB=AD,∠ADC=90°,由折叠性质可得:AF =DF ,EF ⊥AD ,AB =AP ,在△AFP 和△DFP 中,AF =DF∠AFP =∠DFP =90°FP =FP,∴△AFP ≌△DFP SAS ,∴AP =PD ,∴AP =AD =PD ,∴△APD 是等边三角形,∴∠APD =60°;解:拓展延伸:如图,连接A C 、AA ,由(2)得△APD 是等边三角形,∴∠PAD =∠PDA =∠APD =60°,AP =DP =AD ,∵∠ADC =90°,∴∠PDC =30°,又∵PD =AD =DC ,∴∠DPC =∠DCP =12×180°-30° =75°,∠DAC =∠DCA =45°,∴∠PAC =∠PAD -∠DAC =60°-45°=15°,∠ACP =∠DCP -∠DCA =75°-45°=30°,由对称性质得:AC =A C ,∠ACP =∠A CP =30°,∴∠ACA =60°,∴△ACA 是等边三角形,在△AA B 与△CA B 中,A A =A CA B =A B AB =BC,∴△AA B ≌△CA B SSS ,∴∠AA B =∠CA B =12∠AA C =30°,又∵∠CA P =∠CAP =15°,∴∠PA B =∠CA B -∠CA P =15°.【点睛】本题考查了折叠的性质,等腰三角形的判定和性质,三角形内角和定理,正方形的性质,全等三角形的判定和性质,等边三角形的判定和性质等知识,作辅助线构造全等三角形是解题关键.19综合与实践数学活动课上,数学老师以“矩形纸片的折叠”为课题开展数学活动:将矩形纸片ABCD 对折,使得点A ,D 重合,点B ,C 重合,折痕为EF ,展开后沿过点B 的直线再次折叠纸片,点A 的对应点为点N ,折痕为BM . (1)如图(1)若AB =BC ,则当点N 落在EF 上时,BF 和BN 的数量关系是,∠NBF 的度数为.思考探究:(2)在AB=BC的条件下进一步进行探究,将△BMN沿BN所在的直线折叠,点M的对应点为点M .当点M 落在CD上时,如图(2),设BN,BM 分别交EF于点J,K.若DM =4,请求出三角形BJK的面积.开放拓展:(3)如图(3),在矩形纸片ABCD中,AB=2,AD=4,将纸片沿过点B的直线折叠,折痕为BM,点A的对应点为点N,展开后再将四边形ABNM沿BN所在的直线折叠,点A的对应点为点P,点M的对应点为点M ,连接CP,DP,若PC=PD,请直接写出AM的长.(温馨提示:12+3=2-3,12+1=2-1)【答案】(1)BF=12BN,60°(2)2+2(3)4-23【分析】(1)根据折叠的性质得:AB=BN,BF=CF=12BC,根据直角三角形的性质可得∠BNF=30°,由直角三角形的两锐角互余可得结论;(2)由折叠得:BM=BM ,证明Rt△ABM≌Rt△CBM (HL),可知AM=CM ,∠ABM=∠CBM ,得△BFJ是等腰直角三角形,再证明四边形ABCD是正方形,分别计算BF=FJ=12BC=2+2,JK=2,由三角形面积公式可得结论;(3)如图(3),过点P作PG⊥BC于G,PH⊥CD于H,根据等腰三角形的三线合一可得DH=CH=12CD=12AB=1,由折叠的性质和矩形的性质可得PG=CH=1,BN=BP=AB=2,∠NBP=∠ABN,设PL=x,则M L=2x,M P=3x,根据NL=233=NM +M L,列方程可解答.【详解】(1)解:由折叠得:AB=BN,BF=CF,∠BFN=90°,∵AB=BC,∴BF=12BN,∴∠BNF=30°,∴∠NBF=90°-30°=60°,故答案为:BF=12BN,60°;(2)由折叠得:BM=BM ,∵四边形ABCD是矩形,∴∠A=∠C=90°,∵AB=BC,∴Rt△ABM≌Rt△CBM (HL),∴AM=CM ,∠ABM=∠CBM ,∴∠ABM=∠MBN=∠NBM =∠CBM ,∴∠FBJ=45°,∴△BFJ是等腰直角三角形,∵四边形ABCD是矩形,AB=BC,∴矩形ABCD是正方形,∴AD=CD,∠D=90°,∴DM=DM =4,∴MM =42,∵AM=MN=M N=CM ,∴CM =22,∴BC =CD =4+22,∴BF =FC =2+2,∵FK ∥CM ,∴BK =KM ,∴FK =12CM =2,∵△BFJ 是等腰直角三角形,∴BF =FJ =12BC =2+2,∴JK =2+2-2=2,∴S △BJK =12⋅JK ⋅BF =12×2×(2+2)=2+2;(3)如图,过点P 作PG ⊥BC 于G ,PH ⊥CD 于H ,∵PC =PD ,∴DH =CH =12CD =12AB =1,∵∠PGC =∠PHC =∠BCH =90°,∵四边形PGCH 是矩形,∴PG =CH =1,由折叠得:BN =BP =AB =2,∠NBP =∠ABN ,Rt △BPG 中,∠PBG =30°,∴∠ABN =∠NBP =90°-30°2=30°,延长NM ,BP 交于L ,Rt △BNL 中,BN =2,∠NBL =30°,∴NL =2×33=233,Rt △M PL 中,∠M LP =90°-30°=60°,∴∠PM L =30°,设PL =x ,则M L =2x ,M P =3x ,∵NL =233=NM +M L ,∴3x +2x =233,∴x =433-2,∴AM =3x =3×433-2 =4-23.【点睛】本题是四边形的综合题,考查了折叠的性质,含30°角的直角三角形的性质,矩形的性质和判定,正方形的判定和性质,三角函数等知识,掌握折叠的性质和正确作辅助线是解题的关键,题目具有一定的综合性,比较新颖.20综合与实践综合与实践课上,老师带领同学们以“矩形和平行四边形的折叠”为主题开展数学活动.(1)操作判断如图1,先用对折的方式确定矩形ABCD 的边AB 的中点E ,再沿DE 折叠,点A 落在点F 处,把纸片展平,延长DF ,与BC 交点为G .。

中考数学几何图形折叠试题典题及解答

中考数学几何图形折叠试题典题及解答

中考数学几何图形折叠试题典题及解答一、选择题1.德州市如图,四边形ABCD为矩形纸片.把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF.若CD=6,则AF等于A.4B.3C.4D.82.江西省如图,将矩形ABCD纸片沿对角线BD折叠,使点C落在C′处,BC′交AD于E,若∠DBC=°,则在不添加任何辅助线的情况下,图中45°的角虚线也视为角的边有A.6个B.5个C.4个D.3个3.乐山市如图,把矩形纸条ABCD沿EF,GH同时折叠,B,C两点恰好落在AD边的P点处,若∠FPH=90°,PF=8, PH=6,则矩形ABCD的边BC长为A.20 B.22C.24 D.304.绵阳市当身边没有量角器时,怎样得到一些特定度数的角呢动手操作有时可以解“燃眉之急”.如图,已知矩形ABCD,我们按如下步骤操作可以得到一个特定的角:1以点A所在直线为折痕,折叠纸片,使点B落在AD上,折痕与BC交于E;2将纸片展平后,再一次折叠纸片,以E所在直线为折痕,使点A落在BC上,折痕EF交AD于F.则∠AFE =A.60° B.° C.72° D.75°5. 绍兴市学习了平行线后,小敏想出了过己知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的如图1~4 .从图中可知,小敏画平行线的依据有①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①② B.②③C.③④D.①④6.贵阳市如图6-1所示,将长为20cm,宽为2cm的长方形白纸条,折成图6-2所示的图形并在其一面着色,则着色部分的面积为A.34cm2 B.36cm2C.38cm2 D.40cm2二、填空题7.成都市如图,把一张矩形纸片ABCD沿EF折叠后,点C,D分别落在C′,D′的位置上,EC′交AD于点G.已知∠EFG=58°,那么∠BEG °.8. 苏州市如图,将纸片△ABC沿DE折叠,点A落在点A′处,已知∠1+∠2=100°,则∠A的大小等于______ ______度.三、解答题9.荆门市如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O0,0,A4,0,C0,3,点P是OA边上的动点与点O、A不重合.现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF重合.设Px,0,E0,y,求y关于x的函数关系式,并求y的最大值;如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;在2的情况下,在该抛物线上是否存在点Q,使△PEQ是以P E为直角边的直角三角形若不存在,说明理由;若存在,求出点Q的坐标.10. 济宁市如图,先把一矩形ABCD纸片对折,设折痕为MN,再把B点叠在折痕线上,得到△ABE.过B点折纸片使D点叠在直线AD上,得折痕PQ.求证:△PBE∽△QAB;你认为△PBE和△BAE相似吗如果相似给出证明,如不相似请说明理由;如果沿直线EB折叠纸片,点A是否能叠在直线EC上为什么11.威海市如图,四边形ABCD为一梯形纸片,AB∥CD,AD=BC.翻折纸片AB CD,使点A与点C重合,折痕为EF.已知CE⊥AB.1求证:EF∥BD;2若AB=7,CD=3,求线段EF的长.12. 烟台市生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的阴影部分表示纸条的反面:如果由信纸折成的长方形纸条图①长为2 6 cm,宽为xcm,分别回答下列问题:为了保证能折成图④的形状即纸条两端均超出点P,试求x 的取值范围.2如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点A的距离用x表示.13. 将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.1求证:△ABE≌△AD′F;2连接CF,判断四边形AECF是什么特殊四边形证明你的结论.14.孝感市在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开如图1;第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN如图2.请解答以下问题:1如图2,若延长MN交BC于P,△BMP是什么三角形请证明你的结论.2在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合1中结论的三角形纸片BM P3设矩形ABCD的边AB=2,BC=4,并建立如图3所示的直角坐标系. 设直线BM′为y=kx,当∠M′BC=60°时,求k的值.此时,将△ABM′沿BM′折叠,点A是否落在EF上E、F分别为AB、CD中点为什么15.邵阳市如图①,△ABC中,∠ACB=90°,将△ABC沿着一条直线折叠后,使点A与点C重合图②.1在图①中画出折痕所在的直线l.设直线l与AB,AC分别相交于点D,E,连结CD.画图工具不限,不要求写画法2请你找出完成问题1后所得到的图形中的等腰三角形.不要求证明16.济宁市如图,先把一矩形ABCD纸片对折,设折痕为MN,再把B点叠在折痕线上,得到△ABE.过B点折纸片使D点叠在直线AD上,得折痕PQ.求证:△PBE∽△QAB;你认为△PBE和△BAE相似吗如果相似给出证明,如补相似请说明理由;3如果直线EB折叠纸片,点A是否能叠在直线EC上为什么17.临安市如图,△OAB 是边长为的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB 折叠,使点A落在边OB上,记为A′,折痕为EF.1当A′E18.南宁市如图,在锐角△ABC中,BC=9,AH⊥BC于点H,且AH=6,点D为AB 边上的任意一点,过点D作DE∥BC,交AC于点E.设△ADE的高AF为x0<x<6,以DE为折线将△ADE翻折,所得的△A′DE与梯形DBCE重叠部分的面积记为y点A关于DE的对称点A′落在AH所在的直线上.1分别求出当0<x≤3与3<x<6时,y与x的函数关系式;2当x取何值时,y的值最大最大值是多少19.宁夏回族自治区如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,连结AE.证明:1BF=DF;2AE∥BD.参考答案一、二、°三、9. 解:1由已知PB平分∠APD,PE平分∠OPF,且PD、PF重合,则∠OPE+∠APB=90°.又∠APB+∠ABP=90°,∴∠OPE=∠PBA.∴Rt△POE∽Rt△BPA.∴.即.∴.且当x=2时,y 有最大值.由已知,△PAB、△POE均为等腰直角三角形,可得P1,0,E0, 1,B4,3.……6分设过此三点的抛物线为y=ax2+bx+c,则∴y=.由2知∠EPB=90°,即点Q与点B重合时满足条件.直线PB为y=x-1,与y轴交于点0,-1.将PB向上平移2个单位则过点E0,1,∴该直线为y=x+1.由得∴Q5,6.故该抛物线上存在两点Q4,3、5,6满足条件.10. 证明:1∵∠PBE+∠ABQ=180°-90°=90°,∠PBE+∠PEB=90°,∴∠ABQ=∠PEB.又∵∠BPE=∠AQB=90°,∴△PBE~△QAB.2∵△PBE~△QAB,∴∵BQ=PB,∴.又∵∠ABE=∠BPE=90°,∴△PBE~△BAE.3点A能叠在直线EC上.由2得,∠AEB=∠CEB,∴EC 和折痕AE重合.11. 解:1证明:过C点作CH∥BD,交AB的延长线于点H;连结AC,交EF于点K,则AK=CK.∵AB∥CD,∴BH=CD,BD=CH.∵AD=BC,∴AC=BD=CH.∵CE⊥AB,∴AE=EH.∴EK是△AHC的中位线.∴EK∥CH.∴EF∥BD.2解:由1得BH∥CD,EF∥BD,∴∠AEF=∠ABD.∵AB=7,CD=3,∴AH=10.∵AE=CE,AE=EH,∴AE=CE=EH=5.∵CE⊥AB,∴CH=5=BD.∵∠EAF=∠BAD,∠AEF=∠ABD,∴△AFE∽△ADB.∴.∴.12. 解:1由折纸过程知0<5x<26,,0<x <. 2图④为轴对称图形,∴AM =.即点M与点A的距离是1 3-xcm.13. 证明:⑴由折叠可知:∠D=∠D′,CD=AD′,∠C=∠D′AE.∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,∠C=∠BAD.∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD,即∠1+∠2=∠2+∠3.∴∠1=∠3.∴△ABE ≌△AD′F.⑵四边形AECF是菱形.由折叠可知AE=EC,∠4=∠5.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠5=∠6.∴∠4=∠6.∴AF=AE.∵AE=EC, ∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.∵AF=AE,∴四边形AECF是菱形.14. 解:1△BMP是等边三角形.证明:连结AN.∵EF垂直平分AB,∴AN = BN.由折叠知 AB = BN ,∴AN = AB = BN, ∴△ABN为等边三角形.∴∠ABN =60°. ∴∠PBN =30°.又∵∠ABM =∠NBM =30°,∠BNM =∠A =90°.∴∠BPN =60°.∠MBP =∠MBN +∠PBN =60°.∴∠BMP =60°∴∠MBP =∠BMP =∠BPM =60°.∴△BMP为等边三角形 .2要在矩形纸片ABCD上剪出等边△BMP,则BC ≥BP.在Rt△BNP中, BN = BA =a,∠PBN =30°,∴BP =. ∴b≥. ∴a≤b .∴当a≤b时,在矩形上能剪出这样的等边△BM P.3∵∠M′BC =60°, ∴∠ABM′=90°-60°=30°.在Rt△ABM′中,tan ∠ABM′ =. ∴tan30°= . ∴AM′ =.∴M′,2. 代入y=kx中 ,得k==.设△ABM′沿BM′折叠后,点A落在矩形ABCD内的点为A′.过A′作AH ⊥BC交BC于H.∵△A′BM′ ≌△ABM′, ∴∠A′BM′=∠ABM′=3 0°, A′B = AB =2.∴∠A′BH=∠M′BH-∠A′BM′=30°.在Rt△A′BH 中,A′H =A′B =1 ,BH=,∴.∴A'落在EF上.图2图315.解:1如图.等腰三角形DAC.16.1证明:∵∠PBE+∠ABQ=180°-90°=90°,∠PBE+∠PEB=90°,∴∠ABQ=∠PEB.又∵∠BPE=∠AQB,∴△PBE∽△QAB.2∵△PBE∽△QAB,∴.∵BQ=PB,∴.又∵∠ABE=∠BPE=90°,∴△PBE~△BAE.3点A能折叠在直线EC上.由2得,∠AEB=∠CEB,∴EC和折痕AE重合.17. 解:1由已知可得∠A'OE=60o , A'E=AE.由A′E设A′的坐标为0,b,则AE=A'E=b,OE=2b.∵b+2b=2+,∴b=1.∴A'、E的坐标分别是0,1与,1.2因为A'、E在抛物线上,所以所以函数关系式为y=.由=0得,.与x轴的两个交点坐标分别是-,0与,0. 3不可能使△A'EF成为直角三角形.∵∠FA'E=∠FAE=60o,若△A'EF成为直角三角形,只能是∠A'EF=90o或∠A'FE=90o.若∠A'EF=90o,利用对称性,则∠AEF=90o, A'、E、A 三点共线,O与A重合,与已知矛盾.同理若∠A'FE=90o也不可能.所以不能使△A′EF成为直角三角形.18. 解:1①当0<x≤3时,由折叠得到的△A'ED落在△ABC内部如图101,重叠部分为△A'ED.∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∴△ADE∽△ABC.∴. ∴,即.又∵FA'=FA=x,∴y=DE·A'F=·x·x.∴0<x≤3.②当3<x<6时,由折叠得到的△A'ED有一部分落在△ABC外,如图102,重叠部分为梯形EDPQ.∵FH=6-AF=6-x,A'H=A'F-FH=x-6-x=2x-6,又∵DE∥PQ,∴△A'PQ∽△A'DE.∴.∴∴.2当0<x≤3时,y 的最大值;当3<x<6时,由,可知当x=4时,y的最大值y2=9.∵y1<y2,∴当x=4时,y有最大值y最大=9.19. 证明:1能正确说明∠ADB=∠EBD或△ABF≌△ED F,∴BF=DF.2能得出∠AEB=∠DBE或∠EAD=∠BDA,∴AE∥BD.。

备战中考--第39讲几何图形折叠问题--(附解析答案)

备战中考--第39讲几何图形折叠问题--(附解析答案)

备战2019 中考初中数学导练学案50 讲第39 讲几何图形折叠问题【疑难点拨】1. 折叠(翻折)问题常常出现在三角形、四边形、圆等平面几何问题中,其实质是轴对称性质的应用.解题的关键利用轴对称的性质找到折叠前后不变量与变量,运用三角形的全等、相似及方程等知识建立有关线段、角之间的联系.2. 折叠(翻折)意味着轴对称,会生成相等的线段和角,这样便于将条件集中.如果题目中有直角,则通常将条件集中于较小的直角三角形,利用勾股定理求解.3. 矩形中的一次折叠通常利用折叠性质和平行线性质求角的度数,或者利用折叠性质以及勾股定理求线段长度.矩形中的两次或多次折叠通常出现“一线三直角” 的模型(如图),从而构造相似三角形,利用相似三角形求边或者角的度数.4. 凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.1. 常见的轴对称图形:等腰三角形、矩形、菱形、正方形、圆. 2. 折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【基础篇】一、选择题:1. . (2018?四川凉州?3 分)如图将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD 于点E,则下到结论不一定成立的是()A.AD=BC′ B.∠EBD=∠EDB C.△ABE∽△CBD D.sin ∠ABE=2. (2017 山东烟台)如图1,将一圆形纸片向右、向上两次对折后得到如图 2 所示的扇形AOB.已知OA=6,取OA的中点C,过点C作CD⊥OA交于点D,点F 是上一点.若将扇形BOD沿OD翻折,点B恰好与点F 重合,用剪刀沿着线段BD,DF,FA依次剪下,则剪下的纸片(形状同阴影图形)面积之和为().A.36π -108 B .108-32 π C.2π D.π3. (2017浙江衢州)如图,矩形纸片ABCD中,AB=4,BC=6,将△ ABC沿AC折叠,使点B 落在点E处,CE交AD于点F,则DF的长等于()4. (2018·山东青岛· 3分)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕现交于点F.已知EF= ,则BC的长是()A.B.3 2 C. 3 D.3 3D.5. (2017乌鲁木齐)如图,在矩形 ABCD 中,点 F 在 AD 上,点 E 在 BC 上,把这个矩形沿 EF 折叠后,使点 D 恰好落在 BC 边上的 G 点处,若矩形面积为 4 且∠AFG=60°, GE=2BG , 则折痕 EF 的长为()A .1B .C . 2D .、填空题:6. (2018·辽宁省盘锦市)如图,已知 Rt △ABC 中,∠ B=90°,∠ A=60°, AC=2 +4,点 M 、N 分别在线段 AC.AB 上,将△ANM 沿直线 MN 折叠, 使点 A 的对应点 D 恰好落在线段 BC 上,当△ DCM 为直角三角形时,折痕 MN 的长为.7. (2018·山东威海· 8 分)如图,将矩形 ABCD (纸片)折叠,使点 B 与 AD 边上的点 K 重合,EG 为折痕;点C 与AD 边上的点 K 重合, FH 为折痕.已知∠ 1=67.5°, ∠2=75°, EF=+1,则 BC 的长.处,点 C 落在点 H 处,已知∠ DGH=3°0,连接8. (2018·湖南省常德 ·3 分)如图,将矩形ABCD 沿 EF 折叠,使点 B 落在 AD 边上的点 GBG ,则∠ AGB=三、解答与计算题:9. (2018·广东· 7 分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ ADE≌△ CED;(2)求证:△ DEF是等腰三角形.10. (2018?山东枣庄?10 分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2 ,求BE的长.能力篇】、选择题:11. ( 2018·辽宁省阜新市)如图,将等腰直角三角形 落在 BC 边的中点 A 1处, BC=8,那么线段 AE 的长度为 ( )12. ( 2018·四川省攀枝花·3 分)如图,在矩形 ABCD 中, E 是 AB 边的中点,沿 EC 对折矩 形 ABCD ,使 B 点落在点 P 处,折痕为 EC ,连结 AP 并延长 AP 交 CD 于 F 点,连结 CP 并延长 CP 交 AD 于 Q 点.给出以下结论:① 四边形 AECF 为平行四边形;② ∠PBA=∠APQ ;③ △FPC 为等腰三角形;④ △APB ≌△EPC .其中正确结论的个数为(ABC (∠ B=90°)沿 EF 折叠,使点 AD .7A .1B . 2C .3D .413.2018·湖北省武汉 3 分)如图,在⊙ O 中,点 C 在优弧 上,将弧 沿 BC 折叠后刚好经过AB 的中点D.若⊙ O的半径为,AB=4,则BC的长是()C.、填空题:14. (2018 ·辽宁省葫芦岛市)如图,在矩形ABCD中,点E是CD的中点,将△ BCE沿BE折叠后得到△ BEF、将BF 延长交AD 于点G .若=,则且点 F 在矩形ABCD的内部,15. (2018·四川宜宾· 3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△ CBE沿CE折叠,使点B 落在矩形内点F处,下列结论正确的是①②③ (写出所有正确结论的序号)①当E 为线段AB中点时,AF∥CE;②当E 为线段AB中点时,AF=9;5③当A、F、C三点共线时,AE=④当A、F、C三点共线时,△ CEF≌△.三、解答与计算题:16.(2018·湖北省宜昌·11 分)在矩形ABCD中,AB=12,P是边AB上一点,把△PBC 沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD 上,BE交PC于点F.(1)如图1,若点E是AD 的中点,求证:△AEB≌△DEC;(2)如图2,① 求证:BP=BF;② 当AD=25,且AE< DE 时,求cos∠ PCB的值;③ 当BP=9 时,求BE?EF的值.17. (2018·广东·7 分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ ADE≌△ CED;(2)求证:△ DEF是等腰三角形.18. (2018?江苏盐城? 10 分)如图,在以线段为直径的上取一点,连接、. 将沿翻折后得到.(1)试说明点在上;(2)在线段的延长线上取一点,使. 求证:为的切线;(3)在(2)的条件下,分别延长线段、相交于点,若,,求线段的长.探究篇】19. (2018 年江苏省泰州市?12 分)对给定的一张矩形纸片ABCD进行如下操作:先沿CE 折叠,使点B 落在CD边上(如图①),再沿CH折叠,这时发现点E 恰好与点D重合(如图②)1)根据以上操作和发现,求的值;2)将该矩形纸片展开.①如图③,折叠该矩形纸片,使点C与点H 重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠ HPC=9°0 ;②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P 点,要求只有一条折痕,且点P 在折痕上,请简要说明折叠方法.(不需说明理由)20. (2018 年江苏省宿迁)如图,在边长为 1 的正方形ABCD中,动点E、F 分别在边AB、CD上,将正方形ABCD沿直线EF折叠,使点B 的对应点M始终落在边AD上(点M不与点A、D重合),点C落在点N处,MN与CD交于点P,设BE=x,1)当AM= 时,求x 的值;2)随着点M 在边AD上位置的变化,△ PDM的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;3)设四边形BEFC的面积为S,求S与x 之间的函数表达式,并求出S的最小值.第39 讲几何图形折叠问题疑难点拨】1. 折叠(翻折)问题常常出现在三角形、四边形、圆等平面几何问题中,其实质是轴对称性质的应用.解题的关键利用轴对称的性质找到折叠前后不变量与变量,运用三角形的全等、相似及方程等知识建立有关线段、角之间的联系.2. 折叠(翻折)意味着轴对称,会生成相等的线段和角,这样便于将条件集中.如果题目中有直角,则通常将条件集中于较小的直角三角形,利用勾股定理求解.3. 矩形中的一次折叠通常利用折叠性质和平行线性质求角的度数,或者利用折叠性质以及勾股定理求线段长度.矩形中的两次或多次折叠通常出现“一线三直角” 的模型(如图),从而构造相似三角形,利用相似三角形求边或者角的度数.4. 凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.1. 常见的轴对称图形:等腰三角形、矩形、菱形、正方形、圆. 2. 折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【基础篇】一、选择题:1. . (2018?四川凉州?3 分)如图将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD于点E,则下到结论不一定成立的是()A.AD=BC′ B.∠ EBD=∠EDB C.△ABE∽△CBD D.sin ∠ABE=【分析】主要根据折叠前后角和边相等找到相等的边之间的关系,即可选出正确答案.【解答】解:A、BC=BC′,AD=BC,∴ AD=BC′,所以正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠ EBD=∠EDB 正确.∴∠EBD=∠EDB∴BE=DE ∴sin ∠ABE= .故选: C .点评】本题主要用排除法,证明 A ,B ,D 都正确,所以不正确的就是 C ,排除法也是数学 中一种常用的解题方法.2. (2017 山东烟台) 如图 1,将一圆形纸片向右、向上两次对折后得到如图 2 所示的扇形 AOB .已知 OA=6,取 OA 的中点 C ,过点 C 作 CD ⊥OA 交 于点 D ,点 F 是 上一点.若将 扇形 BOD 沿 OD 翻折,点 B 恰好与点 F 重合,用剪刀沿着线段 BD ,DF ,FA 依次剪下,则剪下 的纸片(形状同阴影图形)面积之和为( ).A .36π -108B . 108-32 πC .2πD .π【考点】 MO :扇形面积的计算; P9:剪纸问题.【分析】先求出∠ ODC ∠= BOD=3°0 ,作 DE ⊥OB 可得 DE= OD=3,先根据 S 弓形 BD =S 扇形BOD ﹣ S △ BOD 求得弓形的面积,再利用折叠的性质求得所有阴影部分面积.解答】解:如图,∵ CD ⊥ OA ,∴∠ DCO=∠AOB=9°0 ,D 、∵ sin ∠ABE= ,∴∠ ODC=∠BOD=3°0 ,作 DE ⊥ OB 于点 E ,则 DE= OD=3,则剪下的纸片面积之和为 12×( 3π﹣ 9)=36π﹣ 108,故答案为: 36π﹣ 108.故选 A3. (2017浙江衢州) 如图,矩形纸片 ABCD 中, AB=4,BC=6,将△ ABC 沿 AC 折叠,使点 B 落在点 E 处, CE 交 AD 于点 F ,则 DF 的长等于( )A .B .C .D .考点】 PB :翻折变换(折叠问题) ; LB :矩形的性质.【分析】根据折叠的性质得到 AE=AB ,∠E=∠B=90°,易证 Rt △AEF ≌Rt △ CDF ,即可得到结 论 EF=DF ;易得 FC=FA ,设 FA=x ,则 FC=x ,FD=6﹣ x ,在 Rt △CDF中利用勾股定理得到关于∴S 弓形 BD =S 扇形 BOD ﹣ S △ BOD =×6×3=3π 9,∵OA=OD=OB=,6OC= OA= OD ,x 的方程x2=42+(6﹣x)2,解方程求出x.【解答】解:∵矩形ABCD沿对角线AC对折,使△ ABC落在△ ACE的位置,∴AE=AB,∠ E=∠B=90°,又∵四边形ABCD为矩形,∴AB=CD,∴AE=DC,而∠ AFE=∠DFC,∵在△ AEF与△ CDF中,,∴△ AEF≌△ CDF(AAS),∴EF=DF;∵四边形ABCD为矩形,∴AD=BC=6,CD=AB=,4∵Rt △AEF≌Rt△CDF,∴FC=FA,设FA=x,则FC=x,FD=6﹣x,在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6﹣x)则FD=6﹣x=实用文档20故选:B .4. (2018·山东青岛· 3分)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕现交于点F.已知EF= ,则BC的长是()分析】由折叠的性质可知∠ B=∠EAF=45°,所以可求出∠ AFB=90°,再直角三角形的性质解答】解:∵沿过点E的直线折叠,使点B与点A 重合,∴∠ B=∠EAF=45°,∴∠AFB=90°,∵点E 为AB中点,∴EF= 1 AB,EF= 3,22∵∠BAC=90°,AB,所以AB=AC的长可求,再利用勾股定理即可求出BC的长.D. 3 3可知EF∴AB=AC=3,故选:B.【点评】本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出∠AFB=90°是解题的关键.5. (2017乌鲁木齐)如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4 且∠AFG=60°,GE=2BG,则折痕EF 的长为()A.1 B.C.2 D.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】由折叠的性质可知,DF=GF、HE=CE、GH=DC、∠ DFE=∠ GFE,结合∠ AFG=60°即可得出∠ GFE=60°,进而可得出△ GEF为等边三角形,在Rt △GHE中,通过解含30 度角的直角三角形及勾股定理即可得出GE=2EC、DC= EC,再由GE=2BG结合矩形面积为4 ,即可求出EC的长度,根据EF=GE=2EC即可求出结论.解答】解:由折叠的性质可知,DF=GF,HE=CE,GH=DC,∠ DFE=∠GFE.∵∠ GFE+∠DFE=180°﹣∠ AFG=12°0 ,∴∠GFE=60°.∵AF∥ GE,∠ AFG=60°,∴∠ FGE=∠AFG=60°,∴△ GEF为等边三角形,∴EF=GE.∵∠ FGE=60°,∠ FGE+∠HGE=9°0 ,∴∠ HGE=3°0 .在Rt△GHE中,∠HGE=3°0 ,∴GE=2HE=C,E∴GH= = HE= CE.∵GE=2BG,∴BC=BG+GE+EC=4.EC∵矩形ABCD的面积为4 ,∴4EC? EC=4 ,∴EC=1,EF=GE=2.故选C.二、填空题:6. (2018·辽宁省盘锦市)如图,已知Rt△ABC中,∠ B=90°,∠ A=60°,AC=2 +4,点M、N分别在线段AC.AB上,将△ANM沿直线MN折叠,使点A 的对应点D恰好落在线段BC 上,当△ DCM为直角三角形时,折痕MN的长为.解答】解:分两种情况:①如图,当∠ CDM=9°0 时, △CDM 是直角三角形,∵在 Rt△ABC 中,∠ B=90°,∠ A=60°,AC=2 +4 ,∴∠ C=30°,AB= AC= 叠可得:∠ MDN= ∠ A=60°,∴∠ BDN=3°0 ,∴ BN= DN= AN ,∴ BN= AB=,∴∠ ANM= ∠ DNM=6°0 ,∴∠ AMN=6°0 ,∴ AN=MN=DN= AN , BD\1AB= ,∴ AN=2 ,BN= ,过 N 作 NH ⊥AM 于 H ,则∠ ANH=30° ,∴AH=AN=1 , HN= ,由折叠可得:∠ AMN= ∠DMN=45° ,∴△ MNH 是等腰直角三角形,∴HM=HN= ,∴ MN= .,由折 ∵∠ DNB=6°0 AN=2BN= ②如图,当∠ CMD=9°0 时, △CDM 是直角三角形,由题可得: ∠CDM=6°0 ,∠ A= ∠ MDN=6°0 ,∴∠ BDN=6°0 ,∠BND=3°0 ,∴BD= BN故答案为:或.7. (2018·山东威海· 8 分)如图,将矩形ABCD(纸片)折叠,使点B 与AD边上的点K 重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠ 1=67.5°,∠2=75°,EF= +1,求BC的长.【分析】由题意知∠ 3=180°﹣2∠1=45°、∠ 4=180°﹣2∠2=30°、BE=KE、KF=FC,作KM⊥BC,设KM=x,知EM=x、MF= x,根据EF的长求得x=1,再进一步求解可得.解答】解:由题意,得:∠3=180°﹣2∠1=45°,∠4=180°﹣2∠2=30°,BE=KE、KF=FC,如图,过点K 作KM⊥BC于点M,设KM=x,则EM=x、MF= x,∴ x+ x= +1,解得:x=1,∴EK= 、KF=2,∴BC=BE+EF+FC=EK+EF+KF=3+ + ,∴BC的长为3+ + .点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8. (2018·湖南省常德·3 分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G 处,点C落在点H处,已知∠ DGH=3°0 ,连接BG,则∠ AGB= 75° .【分析】由折叠的性质可知:GE=BE,∠ EGH=∠ABC=90°,从而可证明∠ EBG=∠EGB.,然后再根据∠ EGH﹣∠ EGB=∠ EBC﹣∠ EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠ AGB=∠ BGH,据此可得答案.【解答】解:由折叠的性质可知:GE=BE,∠ EGH=∠ABC=90°,∴∠ EBG=∠EGB.∴∠ EGH﹣∠ EGB=∠EBC﹣∠ EBG,即:∠ GBC=∠BGH.又∵ AD∥ BC,∴∠ AGB=∠GBC.∴∠ AGB=∠BGH.∵∠DGH=3°0 ,∴∠ AGH=15°0 ,∴∠ AGB= ∠AGH=7°5 ,故答案为:75【点评】本题主要考查翻折变换,解题的关键是熟练掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答与计算题:9. (2018·广东· 7 分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ ADE≌△ CED;(2)求证:△ DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ ADE≌△ CED(SSS);(2)根据全等三角形的性质可得出∠ DEF=∠ EDF,利用等边对等角可得出EF=DF,由此即可证出△ DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ ADE和△ CED中,,∴△ ADE≌△ CED(SSS).∴∠ DEA=∠EDC ,即∠ DEF=∠EDF ,∴EF=DF ,∴△ DEF 是等腰三角形.点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是: 1)根据矩形的性质结合折叠的性质找出 AD=CE 、 AE=CD ;( 2)利用全等三角形的性质找出 ∠DEF=∠EDF .10. (2018?山东枣庄 ?10 分)如图,将矩形 ABCD 沿 AF 折叠,使点 D 落在 BC 边的点 E 处, 过点 E 作 EG ∥CD 交 AF 于点 G ,连接 DG .(1)求证:四边形 EFDG 是菱形;(2)探究线段 EG 、GF 、 AF 之间的数量关系,并说明理由;(3)若 AG=6, EG=2 ,求 BE 的长.【分析】( 1)先依据翻折的性质和平行线的性质证明∠ DGF=∠DFG ,从而得到 GD=DF ,接下 来依据翻折的性质可证明 DG=GE=DF=E ;F(2)由( 1)得△ ADE ≌△(2)连接DE,交AF 于点O.由菱形的性质可知GF⊥DE,OG=OF= GF,接下来,证明△ DOF ∽△ ADF,由相似三角形的性质可证明DF2=FO?AF,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ ADF中依据勾股定理可求得AD的长,然后再证明△ FGH∽△ FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.【解答】解:(1)证明:∵ GE∥DF,∴∠ EGF=∠DFG.∵由翻折的性质可知:GD=G,E DF=EF,∠ DGF=∠EGF,∴∠ DGF=∠DFG.∴GD=DF.∴DG=GE=DF=E.F∴四边形EFDG为菱形.(2)EG2= GF?AF.理由:如图1 所示:连接DE,交AF 于点O.∵四边形EFDG为菱形,∴GF⊥ DE,OG=OF= GF.∵∠ DOF=∠ADF=90°,∠ OFD=∠ DFA,∴△ DOF∽△ ADF.,即DF2=FO?AF.∵FO= GF,DF=EG,∴EG2= GF?AF.3)如图2 所示:过点G作GH⊥ DC,垂足为H.∵EG2= GF?AF,AG=6,EG=2 ,∴20= FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去)∵DF=GE=2 ,AF=10,∴AD= =4 .∵GH⊥ DC,AD⊥ DC,∴GH∥ AD.∴△ FGH∽△ FAD.∴GH=∴BE=AD ﹣ GH=4 ﹣ =【点评】本题主要考查的是四边形与三角形的综合应用,解答本题主要应用了矩形的性质、 菱形的判定和性质、 相似三角形的性质和判定、 勾股定理的应用, 利用相似三角形的性质得 到DF 2=FO?AF 是解题答问题 ( 2)的关键,依据相似三角形的性质求得 GH 的长是解答问题 (3)的关键.能力篇】、选择题:11. ( 2018·辽宁省阜新市)如图,将等腰直角三角形 ABC (∠ B=90°)沿 EF 折叠,使点 A落在 BC 边的中点 A 1处, BC=8,那么线段 AE 的长度为 ( ) .解答】解: 由折叠的性质可得 AE=A 1E .∵△ ABC 为等腰直角三角形, BC=8,∴ AB=8.2∵A 1为 BC 的中点, ∴A 1B=4,设 AE=A 1E=x ,则 BE=8﹣ x .在 Rt △A 1BE 中, 由勾股定理可得 42+(8﹣ x ) 2=x 2,解得 x=5.故答案为: 5.故选 BA .4B . 5C . 6D .7∴ ,即 = .12. (2018·四川省攀枝花·3 分)如图,在矩形ABCD中,E 是AB 边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F 点,连结CP并延长CP交AD于Q点.给出以下结论:①四边形AECF为平行四边形;②∠PBA=∠APQ;③△FPC为等腰三角形;④△APB≌△EPC.其中正确结论的个数为()A.1 B.2 C.3 D.4解:①如图,EC,BP交于点G;∵点P是点B关于直线EC的对称点,∴ EC 垂直平分BP,∴ EP=EB,∴∠ EBP=∠EPB.∵点E为AB中点,∴ AE=EB,∴ AE=EP,∴∠ PAB=∠PBA.∵∠PAB+∠PBA+∠APB=180°,即∠ PAB+∠PBA+∠APE+∠BPE=2(∠PAB+∠PBA)=180°,∴∠PAB+∠PBA=90°,∴ AP⊥BP,∴AF∥EC;∵AE∥CF,∴四边形AECF是平行四边形,故①正确;∵四边形 ABCD 是正方形,∴∠ ABC=∠ABP+∠PBC=90°,∴∠ ABP=∠APQ ,故②正确;③∵AF ∥EC ,∴∠ FPC=∠PCE=∠BCE .∵∠PFC 是钝角,当△BPC 是等边三角形, 即∠BCE=30°时, 才有∠ FPC=∠FCP ,如右图,△PCF 不一定是等腰三角形,故③不正确;④∵AF=EC , AD=BC=P ,C ∠ADF=∠EPC=90°,∴ Rt △EPC ≌△FDA ( HL ).∵∠ADF=∠APB=90°,∠ FAD=∠AB P ,当 BP=AD 或△BPC 是等边三角形时,△ APB ≌△ FDA , ∴△APB ≌△EPC ,故④不正确; 其中正确结论有①②, 2 个.故选 B .13. (2018·湖北省武汉 ·3 分)如图,在⊙ O 中,点 C 在优弧 上,将弧沿 BC 折叠后刚好经过 AB 的中点 D .若⊙ O 的半径为 , AB=4,则 BC 的长是()②∵∠ APB=90°,∴∠ APQ+∠BPC=90°,由折叠得: BC=PC ,∴∠ BPC=∠PBC .【分析】连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥ CE于F,如图,利用垂径定理得到OD⊥ AB,则AD=BD= AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC和弧CD 所在的圆为等圆,则根据圆周角定理得到= ,所以AC=DC,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF为正方形得到OF=EF=1,然后计算出CF后得到CE=BE=3,于是得到BC=3 2 .【解答】解:连接OD、AC、DC、OB、OC,作CE⊥ AB于E,OF⊥CE于F,如图,∵D 为AB的中点,∴OD⊥ AB,∴AD=BD= AB=2,在Rt△OBD中,OD= ( 5)2 22=1,∵将弧沿BC折叠后刚好经过AB的中点D.∴弧AC和弧CD所在的圆为等圆,∴=,∴AC=DC,∴AE=DE=1,易得四边形ODEF为正方形,∴OF=EF=1,∴CE=CF+EF=2+1=,3而 BE=BD+DE=2+1=,3∴BC=3 .故选: B .【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线, 必连 过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理.二、填空题:∵点 E 是 CD 的中点,∴ EC=DE∵将△BCE 沿BE 折叠后得到 △BEF 、且点 F 在矩形 ABCD 的内部, ∴EF=DE ,∠ BFE=90° .在14. (2018 ·辽宁省葫芦岛市 ) 如图,在矩形 折叠后得到△BEF 、 且点 F 在矩形 ABCD 的内将 BF 延长交 AD 于点 G .若 = ,则在Rt △OCF 中,CF= ( 5)2 12 =2,ABCD 中,点 E 是 CD 的中点,将△ BCE 沿BE解答】 解:连接GE .,∴Rt △EDG ≌Rt △EFG (HL ),∴FG=DG .∵ = ,∴设 DG=FG=a ,则 AG=7a ,故 AD=BC=8a ,则 BG=BF+FG=9a ,∴ AB=15. (2018·四川宜宾· 3分)如图,在矩形 ABCD 中, AB=3,CB=2,点 E 为线段 AB 上的动点,将△ CBE 沿 CE 折叠,使点 B 落在矩形内点 F 处,下列结论正确的是 ①②③ (写出 所有正确结论的序号) ①当 E 为线段 AB 中点时, AF ∥CE ;②当E 为线段 AB 中点时, AF=9;5③当 A 、 F 、C 三点共线时, AE=④当 A 、 F 、 C 三点共线时,△ CEF ≌△ AEF .=4 a ,故故答案为:考点】PB:翻折变换(折叠问题);KB:全等三角形的判定;LB:矩形的性质.分析】分两种情形分别求解即可解决问题;解答】解:如图1 中,当AE=EB时,∵AE=EB=EF,∴∠ EAF=∠EFA,∵∠ CEF=∠CEB,∠ BEF=∠ EAF+∠EFA,∴∠ BEC=∠EAF,∴AF∥EC,故①正确,作EM⊥ AF,则AM=FM,在Rt△ECB中,EC= = ,∵∠ AME=∠B=90°,∠ EAM=∠ CEB,∴△ CEB∽△ EAM,=,∴AM= ,9∴AF=2AM= ,故②正确,5如图2 中,当A、F、C 共线时,设AE=x.则EB=EF=3﹣x,AF= 13 ﹣2,在Rt △ AEF中,∵ AE2=AF2+EF2,∴x =(﹣2)+(3﹣x)∴x=∴AE= ,故③正确,如果,△ CEF≌△ AEF,则∠ EAF=∠ECF=∠ECB=30°,显然不符合题意,故④错误,故答案为①②③.【点评】本题考查翻折变换、全等三角形的性质、勾股定理、矩形的性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.16.(2018·湖北省宜昌 ·11 分)在矩形 ABCD 中,AB=12,P 是边 AB 上一点,把△PBC沿直线 PC 折叠,顶点 B 的对应点是点 G ,过点 B 作 BE ⊥CG ,垂足为 E 且在 AD 上,BE 交 PC 于点 F .(1)如图 1,若点 E 是 AD 的中点,求证: △AEB ≌△DEC ; (2)如图 2,① 求证: BP=BF ;② 当 AD=25,且 AE < DE 时,求 cos ∠ PCB 的值;【分析】(1)先判断出 ∠ A=∠D=90°,AB=DC 再判断出 AE=DE ,即可得出结论;(2) ① 利用折叠的性质,得出 ∠PGC=∠PBC=9°0,∠BPC=∠GPC ,进而判断出 ∠GPF=∠PFB 即可得出结论;② 判断出 △ABE ∽ △DEC ,得出比例式建立方程求解即可得出 AE=9, DE=16,再 判断出 △ECF ∽△GCP ,进而求出 PC ,即可得出结论; ③ 判断出 △GEF ∽ △EAB ,即可得出结论.【解答】解:(1)在矩形 ABCD 中, ∠A=∠D=90°,AB=DC , ∵E 是 AD 中点,∴AE=DE , 在△ABE 和△DCE 中,三、解答与计算题:③ 当 BP=9 时,求 BE?EF 的值.∴△ABE≌△DCE(SAS);(2)① 在矩形ABCD,∠ABC=9°0,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90,°∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;② 当AD=25 时,∵∠BEC=90,°∴∠AEB+∠CED=90,°∵∠AEB+∠ABE=90,°∴∠CED=∠ABE,∵∠A=∠D=90 ,° ∴△ABE∽△DEC,∴,∴,设AE=x,∴ DE=25﹣x,∴,∴,∴x=9 或x=16,∵AE<DE,∴AE=9,DE=16,∴CE=20,BE=15,由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,设BP=BF=PG=,y∴,∴y=在Rt△PBC中,PC= ,cos∠PCB= = ;③ 如图,连接FG,∵∠GEF=∠BAE=90,∵BF∥PG,BF=PG,∴?BPGF是菱形,∴BP∥GF,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴ BE?EF=AB?GF=12 × 9.=108【点评】此题是四边形综合题,主要考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,折叠的性质,利用方程的思想解决问题是解本题的关键.17. (2018·广东·7 分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ ADE≌△ CED;(2)求证:△ DEF是等腰三角形.分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ ADE≌△ CED(SSS);2)根据全等三角形的性质可得出∠DEF=∠ EDF,利用等边对等角可得出EF=DF,由此即可证出△ DEF是等腰三角形.解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ ADE和△ CED中,,∴△ ADE≌△ CED(SSS).2)由(1)得△ ADE≌△ CED,∴EF=DF ,∴△ DEF 是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是: (1)根据矩形的性质结合折叠的性质找出 AD=CE 、 AE=CD ;( 2)利用全等三角形的性质找出 ∠DEF=∠EDF .18. (2018?江苏盐城? 10 分)如图,在以线段为直径的 上取一点,连接 、. 将 沿 翻折后得到 .(1)试说明点 在 上;(2)在线段 的延长线上取一点 ,使 . 求证: 为 的切线; (3)在( 2)的条件下,分别延长线段、 相交于点 ,若 , ,求线段 的长 . 【答案】( 1)解:连接 OC ,OD,∴∠ DEA=∠EDC ,即∠ DEF=∠EDF ,由翻折可得OD=OC,∵OC是⊙ O的半径,∴点D在⊙ O上。

中考数学折叠问题实战解答题

中考数学折叠问题实战解答题

中考折叠问题实战四解答题1.(贵州遵义10分)把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.(1)求证:△BHE≌△DGF;(2)若AB =6cm,BC=8cm,求线段FG的长.2.(黑龙江大庆7分)如图,ABCD是一张边AB长为2、边AD长为1的矩形纸片,沿过点B 的折痕将A角翻折,使得点A落在边CD上的点A1处,折痕交边AD于点E.(1)求∠DA1E的大小;(2)求△A1BE的面积.3.(广东省7分)如图,直角梯形纸片ABCD中,AD//BC,∠A=90º,∠C=30º.折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8.(1)求∠BDF的度数;(2)求AB的长.4.(广东深圳8分)如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD折叠,点C落在点C′的位置,BC′交AD于点G.(1)求证:AG=C′G;(2)如图2,再折叠一次,使点D与点A重合,得折痕EN,EN交AD于M,求EM的长.5.(四川南充8分)如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD上.(1)求证:△ABE∽△DFEABC D D AMN C B K1 (2)若sin ∠DFE=13,求tan ∠EBC 的值。

6.(江苏徐州6分)如图,将矩形纸片ABCD 按如下顺序进行折叠: 对折、展平, 得折痕EF(如图①); 沿GC 折叠, 使点B 落在EF 上的点B' 处(如图②); 展平, 得折痕GC(如图③); 沿GH 折叠, 使点C 落在DH 上的点C' 处(如图④); 沿GC' 折叠(如图⑤); 展平, 得折痕GC' 、GH(如图⑥)。

(1)求图②中∠BCB' 的大小;(2)图⑥中的△GCC' 是正三角形吗?请说明理由.图⑤ABC D GH A'C'图⑥A BCD G H C'图④A BCD GH C'图③A BCDEF G 图②A BCD E F GB'ABCDEF 图①7.(山东莱芜9分)已知:矩形纸片ABCD ,AB =2,BC =3。

中考数学专题训练:图形的折叠问题(附参考答案)

中考数学专题训练:图形的折叠问题(附参考答案)

中考数学专题训练:图形的折叠问题(附参考答案)1.如图,在平面直角坐标系中,矩形ABCD的边AD=5,OA∶OD=1∶4,将矩形ABCD沿直线OE折叠到如图所示的位置,线段OD1恰好经过点B,点C落在y轴的点C1处,则点E的坐标是( )A.(1,2) B.(-1,2)C.(√5-1,2) D.(1-√5,2)2.如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=30°,则∠α的度数是( )A.30°B.45°C.74°D.75°3.如图,在矩形ABCD中,AB=2,BC=2√5,E是BC的中点,将△ABE沿直线AE翻折,点B落在点F处,连接CF,则cos ∠ECF的值为( )A.23B.√104C.√53D.2√554.把一张矩形纸片ABCD按如图所示方法进行两次折叠,得到等腰直角三角形BEF.若BC=1,则AB的长度为( )A.√2B.√2+12C.√5+12D.435.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D,E分别在AB,AC 上,连接DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上.若FD平分∠EFB,则AD的长为( )A.259B.258C.157D.2076.如图,在Rt△ABC中,∠C=90°,CA=CB=3,点D在边BC上.将△ACD沿AD折叠,使点C落在点C′处,连接BC′,则BC′的最小值为__________.7.如图,在Rt△ABC纸片中,∠ACB=90°,CD是边AB上的中线,将△ACD沿CD折叠,当点A落在点A′处时,恰好CA′⊥AB.若BC=2,则CA′=_______.8.如图,点E在矩形ABCD的边CD上,将△ADE沿AE折叠,点D恰好落在边BC 上的点F处.若BC=10,sin ∠AFB=45,则DE=_____.9.如图,在扇形AOB中,点C,D在AB⏜上,将CD⏜沿弦CD折叠后恰好与OA,OB 相切于点E,F.已知∠AOB=120°,OA=6,则EF⏜的度数为________;折痕CD 的长为_______.10.如图,在矩形ABCD中,AB=5,AD=4,M是边AB上一动点(不含端点),将△ADM沿直线DM对折,得到△NDM.当射线CN交线段AB于点P时,连接DP,则△CDP的面积为______;DP的最大值为_______.11.如图,在矩形ABCD中,AB=2,AD=√7,动点P在矩形的边上沿B→C→D →A运动.当点P不与点A,B重合时,将△ABP沿AP对折,得到△AB′P,连接CB′,则在点P的运动过程中,线段CB′的最小值为_________.12.如图,DE平分等边三角形ABC的面积,折叠△BDE得到△FDE,AC分别与DF,EF相交于G,H两点.若DG=m,EH=n,用含m,n的式子表示GH的长是______.13.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E,将△DEC沿DE折叠得到△DEF,DF交AC于点G.若AGGE =73,则tan A=______.14.如图,在等边三角形ABC中,过点C作射线CD⊥BC,点M,N分别在边AB,BC上,将△ABC沿MN折叠,使点B落在射线CD上的点B′处,连接AB′,已知AB=2.给出下列四个结论:①CN+NB′为定值;②当BN=2NC时,四边形BMB′N为菱形;③当点N与C重合时,∠AB′M=18°;④当AB′最短时,MN=7√21.20其中正确的结论是__________.(填序号)15.将一个矩形纸片OABC放置在平面直角坐标系中,点O(0,0),点A(3,0),点C(0,6),点P在边OC上(点P不与点O,C重合),折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且∠OPQ=30°,点O的对应点O′落在第一象限.设OQ=t.(1)如图1,当t=1时,求∠O′QA的大小和点O′的坐标;(2)如图2,若折叠后重合部分为四边形,O′Q,O′P分别与边AB相交于点E,F,试用含有t的式子表示O′E的长,并直接写出t的取值范围;(3)若折叠后重合部分的面积为3√3,则t的值可以是__________________________________________.(请直接写出两个不同....的值即可)16.如图,已知△ABC,AB=AC,BC=16,AD⊥BC,∠ABC的平分线交AD于点E,且DE=4.将∠C沿GM折叠使点C与点E恰好重合.下列结论正确的有________.(填序号)①BD=8;②点E到AC的距离为3;③EM=103;④EM∥AC.17.综合与实践课上,老师让同学们以“正方形的折叠”为主题开展数学活动,有一位同学操作过程如下:操作一:对折正方形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在正方形内部点M处,把纸片展平,连接PM,BM,延长PM交CD于点Q,连接BQ.(1)如图1,当点M在EF上时,∠EMB=________;(填度数)(2)改变点P在AD上的位置(点P不与点A,D重合)如图2,判断∠MBQ与∠CBQ 的数量关系,并说明理由.参考答案1.D 2.D 3.C 4.A 5.D6. 3√2-3 7.2√3 8.5 9.60°4√6 10.10 2√511.-2 12.√m2+n2 13.3√7714.①②④15.(1)∠O′QA=60°点O′的坐标为(32,√32)(2)O′E=3t-6,其中t的取值范围是2<t<3 (3)3或103(答案不唯一,满足3≤t<2√3即可) 16.①④17.(1)30°(2)∠MBQ=∠CBQ,理由略。

初三复习 数学几何中折叠问题 4大类 分类 含答案

初三复习 数学几何中折叠问题 4大类 分类 含答案

初中数学中的折叠问题折叠问题(对称问题)是近几年来中考出现频率较高的一类题型,学生往往由于对折叠的实质理解不够透彻,导致对这类中档问题失分严重。

本文试图通过对在初中数学中经常涉及到的几种折叠的典型问题的剖析,从中抽象出基本图形的基本规律,找到解决这类问题的常规方法。

其实对于折叠问题,我们要明白:1、折叠问题(翻折变换)实质上就是轴对称变换.2、折叠是一种对称变换,它属于轴对称.对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、对于折叠较为复杂的问题可以实际操作图形的折叠,在画图时,画出折叠前后的图形,这样便于找到图形之间的数量关系和位置关系.4、在矩形(纸片)折叠问题中,重合部分一般会是一个以折痕为底边的等腰三角形5、利用折叠所得到的直角和相等的边或角,设要求的线段长为x,然后根据轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求解.一、矩形中的折叠1.将一张长方形纸片按如图的方式折叠,其中BC,BD为折痕,折叠后BG和BH在同一条直线上,∠CBD= 度.BC、BD是折痕,所以有∠ABC = ∠GBC,∠EBD = ∠HBD则∠CBD = 90°折叠前后的对应角相等2.如图所示,一张矩形纸片沿BC折叠,顶点A落在点A′处,再过点A′折叠使折痕DE∥BC,若AB=4,AC=3,则△ADE的面积是.沿BC折叠,顶点落在点A’处,根据对称的性质得到BC垂直平分AA’,即AF = 12AA’,又DE∥BC,得到△ABC ∽△ADE,再根据相似三角形的面积比等于相似比的平方即可求出三角形ADE的面积= 24对称轴垂直平分对应点的连线3.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,得折痕DG ,求AG 的长.由勾股定理可得BD = 5,由对称的性质得△ADG ≌ △A ’DG ,由A ’D = AD = 3,AG ’ = AG ,则A ’B = 5 – 3 = 2,在Rt △A ’BG 中根据勾股定理,列方程可以求出AG 的值根据对称的性质得到相等的对应边和对应角,再在直角三角形中根据勾股定理列方程求解即可4.把矩形纸片ABCD 沿BE 折叠,使得BA 边与BC 重合,然后再沿着BF 折叠,使得折痕BE 也与BC 边重合,展开后如图所示,则∠DFB 等于( )根据对称的性质得到∠ABE=∠CBE ,∠EBF=∠CBF ,据此即可求出∠FBC 的度数,又知道∠C=90°,根据三角形外角的定义即可求出∠DFB = 112.5°注意折叠前后角的对应关系5.如图,沿矩形ABCD 的对角线BD 折叠,点C 落在点E 的位置,已知BC=8cm ,AB=6cm ,求折叠后重合部分的面积. ∵点C 与点E 关于直线BD 对称,∴∠1 = ∠2 ∵AD ∥BC ,∴∠1 = ∠3∴∠2 = ∠3 ∴FB = FD设FD = x ,则FB = x ,FA = 8 – x在Rt △BAF 中,BA 2 + AF 2 = BF 2∴62 + (8 - x)2 = x 2 解得x = 254所以,阴影部分的面积S △FBD = 12 FD ×AB = 12 ×254 ×6 = 754cm2重合部分是以折痕为底边的等腰三角形6.将一张矩形纸条ABCD 按如图所示折叠,若折叠角∠FEC=64°,则∠1= 度;△EFG 的形状 三角形.∵四边形CDFE 与四边形C ’D ’FE 关于直线EF 对称∴∠2 = ∠3 = 64°∴∠4 = 180° - 2 × 64° = 52° ∵AD ∥BC321F E D C B A54132G D‘FC‘DAGA'CA B D∴∠1 = ∠4 = 52°∠2 = ∠5又∵∠2 = ∠3∴∠3 = ∠5∴GE = GF∴△EFG是等腰三角形对折前后图形的位置变化,但形状、大小不变,注意一般情况下要画出对折前后的图形,便于寻找对折前后图形之间的关系,注意以折痕为底边的等腰△GEF7.如图,将矩形纸片ABCD按如下的顺序进行折叠:对折,展平,得折痕EF(如图①);延CG折叠,使点B落在EF上的点B′处,(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处,(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图⑥).(1)求图②中∠BCB′的大小;(2)图⑥中的△GCC′是正三角形吗?请说明理由.(1)由对称的性质可知:B’C=BC,然后在Rt△B′FC中,求得cos∠B’CF= 12,利用特殊角的三角函数值的知识即可求得∠BCB’= 60°;(2)首先根据题意得:GC平分∠BCB’,即可求得∠GCC’= 60°,然后由对称的性质知:GH是线段CC’的对称轴,可得GC’= GC,即可得△GCC’是正三角形.理清在每一个折叠过程中的变与不变8.如图,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为四边形BCFE与四边形B′C′FE关于直线EF对称,则①②③④这四个三角形的周长之和等于正方形ABCD的周长折叠前后对应边相等9.如图,将边长为4的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G处,求四边形BCFE的面积设AE = x,则BE = GE = 4 - x,在Rt△AEG中,根据勾股定理有:AE2 + AG2 = GE2即:x2 + 4 = (4 - x)2解得x = 1.5,BE = EG = 4 – 1.5 = 2.5∵∠1 + ∠2 = 90°,∠2 + ∠3 = 90°∴∠1 = ∠3又∵∠A = ∠D = 90°∴△AEG ∽△DGP∴AEDG=EGGP,则1.52=2.5GP,解得GP =103PH = GH – GP = 4 - 103=23∵∠3 = ∠4,tan∠3 = tan∠1 = 3 4∴tan∠4 = 34,FHPH=34,FH =34×PH =34×23=12∴CF = FH = 1 2∴S梯形BCFE = 12(12+52)×4 = 6注意折叠过程中的变与不变,图形的形状和大小不变,对应边与对应角相等10.如图,将一个边长为1的正方形纸片ABCD折叠,使点B落在边AD上不与A、D 重合.MN为折痕,折叠后B’C’与DN交于P.(1)连接BB’,那么BB’与MN的长度相等吗?为什么?(2)设BM=y,AB’=x,求y与x的函数关系式;(3)猜想当B点落在什么位置上时,折叠起来的梯形MNC’B’面积最小?并验证你的猜想.(1)BB’ = MN过点N作NH∥BC交AB于点H),证△ABB’≌△HNM(2)MB’ = MB = y,AM = 1 – y,AB’ = x在Rt△ABB’中BB’ = AB2 + AB'2= 1 + x2因为点B与点B’关于MN对称,所以BQ = B’Q,则BQ = 12 1 + x2由△BMQ∽△BB’A得BM×BA = BQ×BB’PC'NB CA DMB'QPHC'NB CA DMB'∴y = 12 1 + x2× 1 + x2=12(1 + x2)(3) 梯形MNC′B′的面积与梯形MNCB的面积相等由(1)可知,HM = AB’ = x,BH = BM – HM = y – x,则CN = y - x∴梯形MNCB的面积为:12(y – x + y) ×1 = 12(2y - x)= 12(2×12(1 + x2) – x)= 12(x -12)2 +38当x = 12时,即B点落在AD的中点时,梯形MNC’B’的面积有最小值,且最小值是38二、纸片中的折叠11.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于()∵∠α= ∠1,∠2 = ∠1∴∠α= ∠2∴2∠α+∠ABE=180°,即2∠α+30°=180°,解得∠α=75°.题考查的是平行线的性质,同位角相等,及对称的性质,折叠的角与其对应角相等,和平角为180度的性质,注意△EAB是以折痕AB为底的等腰三角形12.如图,将一宽为2cm的纸条,沿BC,使∠CAB=45°,则后重合部分的面积为作CD⊥AB,∵CE∥AB,∴∠1=∠2,根据翻折不变性,∠1=∠BCA,故∠2=∠BCA.∴AB=AC.又∵∠CAB=45°,∴在Rt△ADC中,AC = 2 2 ,AB = 2 2S△ABC=12AB×CD = 2 2a2130°BEFACD在折叠问题中,一般要注意折叠前后图形之间的联系,将图形补充完整,对于矩形(纸片)折叠,折叠后会形成“平行线+角平分线”的基本结构,即重叠部分是一个以折痕为底边的等腰三角形ABC13.将宽2cm 的长方形纸条成如图所示的形状,那么折痕PQ 的长是如图,作QH ⊥PA ,垂足为H ,则QH=2cm , 由平行线的性质,得∠DPA=∠PAQ=60° 由折叠的性质,得∠DPA =∠PAQ , ∴∠APQ=60°,又∵∠PAQ=∠APQ=60°, ∴△APQ 为等边三角形, 在Rt △PQH 中,sin ∠HPQ = HQPQ∴32 = 2PQ ,则PQ = 433注意掌握折叠前后图形的对应关系.在矩形(纸片)折叠问题中,会出现“平行线+角平分线”的基本结构图形,即有以折痕为底边的等腰三角形APQ14.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )图c 图b图aCDGFEC GDFEFBCAEBB∵AD ∥BC ,∴∠DEF=∠EFB=20°,在图b 中,GE = GF ,∠GFC=180°-2∠EFG=140°, 在图c 中∠CFE=∠GFC-∠EFG=120°,本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.由题意知∠DEF=∠EFB=20°图b ∠GFC=140°,图c 中的∠CFE=∠GFC-∠EFG15.将一张长为70 cm 的长方形纸片ABCD ,沿对称轴EF 折叠成如图的形状,若折叠后,AB 与CD 间的距离为60cm ,则原纸片的宽AB 是( )设AB=xcm .右图中,AF = CE = 35,EF = x根据轴对称图形的性质,得AE=CF=35-x (cm ). 则有2(35-x )+x=60, x=10.16.一根30cm 、宽3cm 的长方形纸条,将其按照图示的过程折叠(阴影部分表示纸条的反面),为了美观,希望折叠完成后纸条两端超出点P 的长度相等,则最初折叠时,求MA 的长将折叠这条展开如图,根据折叠的性质可知,两个梯形的上底等于纸条宽,即3cm , 下底等于纸条宽的2倍,即6cm , 两个三角形都为等腰直角三角形, 斜边为纸条宽的2倍,即6cm ,故超出点P 的长度为(30-15)÷2=7.5, AM=7.5+6=13.5GEFD AE FD B C A B C 60cm三、三角形中的折叠17.如图,把Rt △ABC (∠C=90°),使A ,B 两点重合,得到折痕ED ,再沿BE 折叠,C 点恰好与D 点重合,则CE :AE=18.在△ABC 中,已知AB=2a ,∠A=30°,CD 是AB 边的中线,若将△ABC 沿CD 对折起来,折叠后两个小△ACD 与△BCD 重叠部分的面积恰好等于折叠前△ABC 的面积的14 .(1)当中线CD 等于a 时,重叠部分的面积等于 ;(2)有如下结论(不在“CD 等于a ”的限制条件下):①AC 边的长可以等于a ;②折叠前的△ABC 的面积可以等于32a 2;③折叠后,以A 、B 为端点的线段AB 与中线CD 平行且相等.其中, 结论正确(把你认为正确结论的代号都填上,若认为都不正确填“无”). (1)∵CD = 12 AB∴∠ACB = 90°∵AB = 2a ,BC = a ,∴AC = 3a ∴S △ABC = 12 ×AC ×BC = 32a 2∴重叠部分的面积为:14×32a 2 = 38a 2(2)若AC = a ,如右图∵AD = a ,∴∠2 = 180°- 30°2 = 75°∠BDC = 180°- 75°= 105° ∴∠B'DC = 105°∴∠3 = 105°- 75°= 30° ∴∠1 = ∠3 ∴AC ∥B'D∴四边形AB'DC 是平行四边形∴重叠部分△CDE 的面积等于△ABC的面积的14若折叠前△ABC 的面积等于32a 2 过点C 作CH ⊥AB 于点H ,则 12 ×AB ×CH = 32a 2 B'CDAB231EB'CDBACH =32a 又tan ∠1 =CH AH∴AH = 32a∴BH = 12a则tan ∠B =CHBH,得∠B = 60° ∴△CBD 是等边三角形 ∴∠2 = ∠4∴∠3 = ∠4,AD ∥CB 2又CB 2 = BC = BD = a ,∴CB 2 = AD ∴四边形ADCB 2是平行四边形则重叠部分△CDE 的面积是△ABC 面积的14(3)如右图,由对称的性质得,∠3 = ∠4,DA = DB 3 ∴∠1 = ∠2又∵∠3 + ∠4 = ∠1 +∠2 ∴∠4 = ∠1 ∴AB 3∥CD注意“角平分线+等腰三角形”的基本构图,折叠前后图形之间的对比,找出相等的对应角和对应边19.在△ABC 中,已知∠A=80°,∠C=30°,现把△CDE 沿DE 进行不同的折叠得△C ′DE ,对折叠后产生的夹角进行探究:(1)如图(1)把△CDE 沿DE 折叠在四边形ADEB 内,则求∠1+∠2的和; (2)如图(2)把△CDE 沿DE 折叠覆盖∠A ,则求∠1+∠2的和;(3)如图(3)把△CDE 沿DE 斜向上折叠,探求∠1、∠2、∠C 的关系.(1)根据折叠前后的图象全等可知,∠1=180°-2∠CDE ,∠2=180°-2∠CED ,再根据三角形内角和定理比可求出答案;(2)连接DG ,将∠ADG+∠AGD 作为一个整体,根据三角形内角和定理来求;3241EHB 2DABC3412B 3DA BC在第一次折叠中可得到∠EAD = ∠FAD在第二次折叠中可得到EF是AD的垂直平分线,则AD⊥EF∴∠AEF = ∠AFE∴△AEF是等腰三角形(1)由折叠可知∠AEB = ∠FEB,∠DEG = ∠BEG而∠BEG = 45°+ ∠α因为∠AEB + ∠BEG + ∠DEG = 180°所以 45°+ 2(45°+∠α)= 180°∠α = 22.5°由于角平分线所在的直线是角的对称轴,所以在三角形中的折叠通常都与角平分线有关。

自学初中数学资料 折叠问题 图形的翻折、轴对称(资料附答案)

自学初中数学资料 折叠问题 图形的翻折、轴对称(资料附答案)

自学资料一、图形的翻折、轴对称【知识探索】1.如果把一个图形沿某一条直线翻折,能与另一个图形重合,那么叫做这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做关于这条直线的对称点.【说明】(1)两个图形关于一条直线成轴对称,这两个图形对应线段的长度和对应角的大小相等,它们的形状相同,大小不变;(2)在成轴对称的两个图形中,分别联结两对对应点,取中点,联结两个中点所得的直线就是对称轴.2.把一个图形沿某一条直线翻折过来,直线两旁的部分能够相互重合,这个图形叫做轴对称图形,这条直线就是它的对称轴.【错题精练】第1页共26页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训第2页 共26页 自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌 非学科培训例1.如图,在△ABC 中,∠ACB=90°,AB=5,BC=3,P 是AB 边上的动点(不与点B 重合),将△BCP 沿CP 所在的直线翻折,得到△B′CP ,连接B′A ,则下列判断:①当AP=BP 时,AB′∥CP ;②当AP=BP 时,∠B′PC=2∠B′AC③当CP ⊥AB 时,AP=175;④B′A 长度的最小值是1.其中正确的判断是______ (填入正确结论的序号)【解答】解:①∵在△ABC 中,∠ACB=90°,AP=BP ,∴AP=BP=CP ,∠BPC=12(180°-∠APB′),由折叠的性质可得:CP=B′P ,∠CPB′=∠BPC=12(180°-∠APB′),∴AP=B′P ,∴∠AB′P=∠B′AP=12(180°-∠APB′),∴∠AB′P=∠CPB′,∴AB′∥CP ;故①正确;②∵AP=BP ,∴PA=PB′=PC=PB ,∴点A ,B′,C ,B 在以P 为圆心,PA 长为半径的圆上,∵由折叠的性质可得:BC=B′C , ∴BC ̂=B′C ̂,∴∠B′PC=2∠B′AC ;故②正确;③当CP ⊥AB 时,∠APC=∠ACB ,∵∠PAC=∠CAB ,∴△ACP ∽△ABC ,∴APAC =ACAB ,∵在Rt △ABC 中,由勾股定理可知:AC=√AB 2−BC 2=√52−32=4,∴AP=AC 2AB =165;故③错误;④由轴对称的性质可知:BC=CB′=3,∵CB′长度固定不变,∵AB'≥AC-CB'∴AB′的长度有最小值.AB′有最小值=AC-B′C=4-3=1.故④正确.故答案为:①②④.【答案】①②④例2.如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.现给出以下四个命题(1)∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长不发生变化;(3)∠PBH=45°;(4)BP=BH.其中正确的命题是______.【解答】(1)证明:如图1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH-∠EPB=∠EBC-∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.故(1)正确;(2))△PHD的周长不变为定值8.第3页共26页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训第4页 共26页 自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌 非学科培训证明:如图2,过B 作BQ ⊥PH ,垂足为Q .由(1)知∠APB=∠BPH ,在△ABP 和△QBP 中,{∠APB =∠BPH∠A =∠BQP BP =BP∴△ABP ≌△QBP (AAS ).∴AP=QP ,AB=BQ .又∵AB=BC ,∴BC=BQ .又∵∠C=∠BQH=90°,BH=BH ,∴△BCH ≌△BQH .∴CH=QH .∴△PHD 的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.故(2)正确;(3)解:∵△ABP ≌△QBP (AAS )、△BCH ≌△BQH .∴∠QBH=∠HBC ,∠ABP=∠PBQ ,∴∠PBH=∠PBQ+∠QBH=12∠ABC=45°.故(3)正确;(4)解:∵∠PBH=45°固定不变,∴当点P 在AD 上移动时,∠BPH 的度数不断发生变化,∴∠BPH 的度数与∠BHP 不一定相等,故BP 与BH 不一定相等.故答案为:(1)(2)(3).【答案】(1)(2)(3)例3.如图,把某矩形纸片ABCD 沿EF ,GH 折叠(点E ,H 在AD 边上,点F ,G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A′点,D 点的对称点为D′点,若∠FPG =90°,△A′EP 的面积为4,△D′PH 的面积为1,则矩形ABCD 的面积等于【答案】例4.如图,在菱形紙片ABCD中,AB=2.将纸片折叠,使点B落在AD边上的点B′处(不与A,D重合),点C落在C′处,线段B′C′与直线CD交于点G,折痕为EF,则下列说法①若∠A=90,B′为AD中点时,AE=34②若∠A=60°,B′为AD中点时,点E恰好是AB的中点③若∠A=60°,C′F⊥CD时,CFFD =√3−12其中正确的是()第5页共26页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训第6页 共26页 自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌 非学科培训A. ①②B. ①③C. ②③D. ①②③【解答】解:①∵∠A=90°,四边形ABCD 是菱形,∴四边形ABCD 是正方形,∴AB=AD ,∵B′为AD 中点时,∴AB'=1,设AE=x ,则B'E=BE=2-x ,在Rt △AB'E 中,由勾股定理得:12+x 2=(2-x )2,解得:x=34,①正确; ②连接BD 、BE',如图:∵∠A=60°,AB=AD ,∴△ABD 是等边三角形,∴∠ABD=60°,∵B′为AD 中点,∴∠AB'B=90°,∠ABB'=30°∵BE=B'E ,∴∠BB'E=∠ABB'=30°,∴∠AB'E=60°,∴△AB'E 是等边三角形,∴AE=B'E=BE ,∴点E 是AB 的中点,②正确;③设CF=x ,由折叠的性质得:C'F=CF=x ,∠C'=∠C=∠A=60°,∵C′F ⊥CD ,∴∠C'GF=30°,∴C'G=2C'F=2x ,GF=√3C'F=√3x ,∴DG=CD-GF-CF=2-√3x-x ,∵∠D=180°-∠A=120°,∠DGB'=∠C'GF=30°,∴∠DB'G=30°,∴DB'=DG ,设BD 交B'C'于H ,则B'H=GH=12B'G=12(2-2x )=1-x ,∴DG=2(1−x )√3,∴2(1−x )√3=2-√3x-x , 解得:x=4-2√3,∴CF=4-2√3,FD=2-(4-2√3)=2√3-2,∴CF FD =√3−12,③正确; 故选:D .【答案】D例5.如图,以半圆的一条弦BC为对称轴将弧BC折叠后与直径AB交于点D,若AD=4,BD=8,则CB的长为__________【解答】第7页共26页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训【答案】例6.如图,矩形ABCD中,BC=3,且BC>AB,E为AB边上任意一点(不与A,B重合),设BE=t,将△BCE沿CE对折,得到△FCE,延长EF交CD的延长线于点G,则tan∠CGE= (用含t的代数式表示).【解答】解:如图连接BF交EC于O,作EM⊥CD于M,∵∠EMC=∠EBC=∠BCM=90°,∴四边形EBCM是矩形,∴CM=EB=t,EM=BC=3,在RT△EBC中,∵EB=t,BC=3,∴EC=√t2+32=√t2+9,∵EB=EF,CB=CF,∴EC垂直平分BF,∵12•EC•BO=12•EB•BC,∴BO=3t√t2+9,BF=2BO=6t√t2+9∵∠AEF+∠BEF=180°,∠BEF+∠BCF=180°,∴∠AEF=∠BCF,∵AB∥CD,∴∠BEC=∠ECG=∠CEF,∠AEF=∠G=∠BCF ∴GE=GC,∴∠GCE=∠GEC=∠CFB=∠CBF,∴△CBF∽△GCE,∴GCBC =ECBF,第8页共26页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训∴GC=t 2+92t,GM=GC-CM=9−t22t,∴tan∠CGE=EMGM =6t9−t2.故答案为6t9−t2.【答案】6t9−t2例7.阅读下面材料:在学习小组活动中,小明探究了下面问题:菱形纸片ABCD的边长为2,折叠菱形纸片,将B、D两点重合在对角线BD上的同一点处,折痕分别为EF、GH.当重合点在对角线BD上移动时,六边形AEFCHG的周长的变化情况是怎样的?小明发现:若∠ABC=60°,①如图1,当重合点在菱形的对称中心O处时,六边形AEFCHG的周长为______;②如图2,当重合点在对角线BD上移动时,六边形AEFCHG的周长______(填“改变”或“不变”).请帮助小明解决下面问题:如果菱形纸片ABCD边长仍为2,改变∠ABC的大小,折痕EF的长为m.(1)如图3,若∠ABC=120°,则六边形AEFCHG的周长为______;(2)如图4,若∠ABC的大小为2α,则六边形AEFCHG的周长可表示为______.【解答】解:①如图1,当重合点在菱形的对称中心O处时,由题意可知△BEF和△DGH是等边三角形,∴EF+AE+AG+GH+CH+CF=BE+AE+AG+GD+DH+CH=2+2+2=6.∴六边形AEFCHG的周长为6;②如图2,当重合点在对角线BD上移动时,由题意可知△BEF和△DGH是等边三角形,∴EF+AE+AG+GH+CH+CF=BE+AE+AG+GD+DH+CH=2+2+2=6.∴六边形AEFCHG的周长为6.故六边形AEFCHG的周长不变.(1)如图3,若∠ABC=120°,由题意可知EF+GH=AC,则六边形AEFCHG的周长为2×2+2×sin60°×2=4+2√3;(2)如图4,若∠ABC的大小为2α,由题意可知EF+GH=AC,则六边形AEFCHG的周长可表示为2×2+2×sinα×2=4+4sinα.故答案为:①6;②不变.(1)4+2√3;(2)4+4sinα.第9页共26页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训【答案】6不变4+2√34+4sinα例8.已知边长为3的正方形ABCD中,点E在射线BC上,且BE=2CE,连接AE交射线DC于点F,若△ABE沿直线AE翻折,点B落在点B1处.(1)如图1,若点E在线段BC上,求CF的长;(2)求sin∠DAB1的值;(3)如果题设中“BE=2CE”改为“BECE=x”,其它条件都不变,试写出△ABE翻折后与正方形ABCD公共部分的面积y与x的关系式及自变量x的取值范围(只要写出结论,不需写出解题过程).【解答】(1)解:∵AB∥DF,∴ABCF =BECE,∵BE=2CE,AB=3,∴3CF =2CECE,∴CF=32;(2)解:①若点E在线段BC上,如图1,设直线AB1与DC相交于点M.由题意翻折得:∠1=∠2.∵AB∥DF,∴∠1=∠F,∴∠2=∠F,∴AM=MF.设DM=x,则CM=3−x.又∵CF=1.5,∴AM=MF=92−x,在Rt△ADM中,AD2+DM2=AM2,∴32+x2=(92−x)2,∴x=54,∴DM=54,AM=134,第10页共26页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训∴sin∠DAB1=DMAM =513;②若点E在边BC的延长线上,如图2,设直线AB1与CD延长线相交于点N.同理可得:AN=NF.∵BE=2CE,∴BC=CE=AD.∵AD∥BE,∴ADCE =DFFC,∴DF=FC=32,设DN=x,则AN=NF=x+32.在Rt△ADN中,AD2+DN2=AN2,∴32+x2=(x+32)2,∴x=94.∴DN=94,AN=154sin∠DAB1=DNAN=35;(3)解:若点E在线段BC上,y=9x2x+2,定义域为x>0;若点E在边BC的延长线上,y=9x−92x,定义域为x>1.【答案】(1)32;(2)①513,②35;(3)略.【举一反三】1.如图,已知△ABC中,AB=8,BC=7,AC=6,E是AB的中点,F是AC边上一个,综上所述,EF的长为72或143.72或1432.如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD边的中点E处,折痕为FG,点F、G分别在边AB、AD上,则GE=______,EF=______.【解答】解:如图过点E作EH⊥AD于H,EN⊥AB于N,过点A作AM⊥CD于M∵ABCD是菱形,∴AB∥CD,AD=AB=CD=AB=4∴∠ADM=∠BAD=∠HDE=60°∵E是CD中点∴DE=2在Rt△DHE,中,DE=2,HE⊥DH,∠HDE=60°∴DH=1,HE=√3∵折叠∴AG=GE,AF=EF在Rt△HGE中,GE2=GH2+HE 2∴GE2=(4-GE+1)2+3∴GE=2.8在Rt△AMD中,AD=4,AM⊥DM,∠ADM=60°∴MD=2,AM=2√3∵AB∥CD,AM∥EN∴AMEN是平行四边形且AM⊥CD∴AMEN是矩形∴AN=ME=2+2=4,(即N与B重合)AM=EN=2√3在Rt△FBE中,EF2=EN2+FB 2EF2=(4-EF)2+12EF=3.5【答案】2.83.53.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=______.【解答】解:设AD=x,则AB=x+2,∵把△ADE翻折,点A落在DC边上的点F处,∴DF=AD,EA=EF,∠DFE=∠A=90°,∴四边形AEFD为正方形,∴AE=AD=x,∵把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,∴DH=DC=x+2,∵HE=1,∴AH=AE-HE=x-1,在Rt△ADH中,∵AD2+AH2=DH2,∴x2+(x-1)2=(x+2)2,整理得x2-6x-3=0,解得x1=3+2√3,x2=3-2√3(舍去),即AD的长为3+2√3.故答案为3+2√3.【答案】3+2√34.小明尝试着将矩形纸片 ABCD (如图①, AD>CD )沿过 A 点的直线折叠,使得 B 点落在 AD 边上的点 F 处,折痕为 AE (如图②);再沿过 D 点的直线折叠,使得 C 点落在 DA 边上的点 N 处, E 点落在 AE 边上的点 M 处,折痕为 DG (如图③).如果第二次折叠后, M 点正好在 ∠ NDG 的平分线上,那么矩形 ABCD 长与宽的比值为.【答案】√2:1 .5.如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,点F,G分别在AD,BC上,连接OG,DG,若OG⊥DG,且⊙O 的半径长为1,则下列结论不成立的是()A. CG=1B. 矩形ABCD的面积为6+4√3C. ∠ACB=30°D. AF=2√3【解答】解:如图,设⊙O 与BC 的切点为M ,连接MO 并延长MO 交AD 于点N ,∵将矩形ABCD 按如图所示的方式折叠,使点D 与点O 重合,折痕为FG ,∴OG=DG ,∵OG ⊥DG ,∴∠MGO+∠DGC=90°,∵∠MOG+∠MGO=90°,∴∠MOG=∠DGC ,在△OMG 和△GCD 中,{∠OMG =∠DCG =90°∠MOG =∠DGC OG =DG,∴△OMG ≌△GCD ,∴OM=GC=1,CD=GM=BC-BM-GC=BC-2.故A 正确,∵AB=CD ,∴BC-AB=2.设AB=a ,BC=b ,AC=c ,⊙O 的半径为r ,⊙O 是Rt △ABC 的内切圆可得r=12(a+b-c ),∴c=a+b-2.在Rt △ABC 中,由勾股定理可得a 2+b 2=(a+b-2)2,整理得2ab-4a-4b+4=0,又∵BC-AB=2即b=2+a ,代入可得2a (2+a )-4a-4(2+a )+4=0,解得a 1=1+√3,a 2=1-√3(舍去),∴a=1+√3,b=3+√3,∴S 矩形ABCD =AB•BC=6+4√3,故B 正确,∴tan ∠ACB=AB BC =√33,∴∠ACB=30°,故C 正确,再设DF=x ,在Rt △ONF 中,FN=3+√3-1-x ,OF=x ,ON=1+√3-1=√3,由勾股定理可得(2+√3-x )2+(√3)2=x 2,解得x=4-√3,∴AF=AD-DF=2√3-1,故D 错误,故选:D .【答案】D6.如图,在⊙O 中,将AB̂沿弦AB 翻折交半径AO 的延长线于点D ,延长BD 交⊙O 于点C ,AC 切ADB ̂所在的圆于点A ,则tan ∠C 的值是( )A. √3B. 43C. 2+√3D. 1+√2【解答】解:作点D关于AB的对称点H,连接AH,BH,CH.根据对称性可知,ADB̂所在圆的圆心在直线AH上,∵AC切ADB̂所在的圆于点A,∴AC⊥AH,∴∠CAH=90°,∴CH是⊙O的直径,∴∠CBH=90°,∴∠ABD=∠ABH=45°,∴∠AHC=∠ABC=45°,∴∠ACH=∠AHC=45°,∴AC=AH,∵OC=OH,∴AD垂直平分线段CH,∴DC=DH,∴∠DCH=∠DHC,∵BD=BH,∴∠BDH=∠BHD=45°,∵∠BDH=∠DCH+∠DHC,∴∠DCH=22.5°,∴∠ACD=∠CHB=67.5°,设BD=BH=a,则CD=DH=√2a,∴tan∠ACB=tan∠CHB=BCBH =a+√2aa=1+√2,故选:D.【答案】D7.半径为2的圆弧形纸片按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是______.【解答】解:如图,连接OM交AB于点C,连接OA、OB,由题意知,OM⊥AB,且OC=MC=1,在Rt△AOC中,∵OA=2,OC=1,∴cos∠AOC=OCOA =12,AC=√OA2−OC2=√3∴∠AOC=60°,AB=2AC=2√3,∴∠AOB=2∠AOC=120°,则S弓形ABM=S扇形OAB-S△AOB=120π×22360-12×2√3×1=4π3-√3,S阴影=S半圆-2S弓形ABM=1 2π×22-2(4π3-√3)=2√3−23π.故答案为:2√3−23π.【答案】2√3−23π8.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的C1处,点D落在点D1处,C1D1交线段AE于点G.(1)求证:△BC1F∽△AGC1;(2)若C1是AB的中点,AB=6,BC=9,求AG的长.1.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°,将纸片先沿直线BD 对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平,若铺平后的图形中有一个是面积为2的平行四边形,则BC= .【解答】解:如图1所示:作AE∥BC,延长AE交CD于点N,过点B作BT⊥EC于点T,当四边形ABCE为平行四边形,∵AB=BC,∴四边形ABCE是菱形,∵∠A=∠C=90°,∠B=150°,BC∥AN,∴∠ADC=30°,∠BAN=∠BCE=30°,则∠NAD=60°,∴∠AND=90°,∵四边形ABCE面积为2,∴设BT=x,则BC=EC=2x,故2x×x=2,解得:x=1(负数舍去),故BC=2;如图2,当四边形BEDF是平行四边形,∵BE=BF,∴平行四边形BEDF是菱形,∵∠A=∠C=90°,∠B=150°,∴∠ADB=∠BDC=15°,∵BE=DE,∴∠AEB=30°,∴设AB=y,则BE=2y,∵四边形BEDF面积为2,∴AB×DE=2y2=2,解得:y=1,故BC=1,综上所述:BC=2或1.故答案为:2或1.【答案】2或1̂沿BD翻折,点C的对称点C′恰好落在AB 2.如图,已知半圆的内接四边形ABCD,AB是直径,DCB上.若AC′=4,C′B=5,则BD的长是()A. 4√3B. 3√7C. 7D. 8【解答】解:作DE⊥AB于E,连接DC′,由折叠的性质可知,CD=C′D,∠CBD=∠C′BD,∴DA=DC,∴AD=C′D,又DE⊥AB,∴AE=EC′=2,∴EB=7,由射影定理得,DE2=AE•EB=14,在Rt△DEB中,BD2=DE2+BE2=63,∴BD=3√7,故选:B.【答案】B3.如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①点G是BC中点;②FG=FC;③与∠AGB相等的角有5个;④S△FGC=910.其中正确的是()A. ①③B. ②③C. ①④D. ②④【解答】解:∵正方形ABCD中,AB=3,CD=3DE,∴DE=13×3=1,CE=3-1=2,∵△ADE沿AE对折至△AFE,∴AD=AF,EF=DE=1,∠AFE=∠D=90°,∴AB=AF=AD,在Rt△ABG和Rt△AFG中,{AG=AGAB=AF,∴Rt△ABG≌Rt△AFG(HL),∴BG=FG,设BG=FG=x,则EG=EF+FG=1+x,CG=3-x,在Rt△CEG中,EG2=CG2+CE2,即(1+x)2=(3-x)2+22,解得,x=32,∴CG=3-32=3 2,∴BG=CG=32,即点G是BC中点,故①正确;∵tan∠AGB=ABBG =332=2,∴∠AGB≠60°,∴∠CGF≠180°-60°×2≠60°,又∵BG=CG=FG,∴△CGF不是等边三角形,∴FG≠FC,故②错误;由(1)知Rt △ABG ≌Rt △AFG ,∴∠AGB=∠AGF=12∠BGF ,根据三角形的外角性质,∠GCF+∠GFC=∠AGB+∠AGF ,∴∠GCF=∠GFC=∠AGB ,∵AD ∥BC ,∴∠AGB=∠GAD ,∴与∠AGB 相等的角有4个,故③错误;△CGE 的面积=12CG•CE=12×32×2=32, ∵EF :FG=1:32=2:3,∴S △FGC =32+3×32=910,故④正确; 综上所述,正确的结论有①④.故选:C .【答案】C4.如图,在矩形ABCD 中,AB=2,AD=5,点P 在线段BC 上运动,现将纸片折叠,使点A 与点P 重合,得折痕EF (点E 、F 为折痕与矩形边的交点),设BP=x ,当点E 落在线段AB 上,点F 落在线段AD 上时,x 的取值范围是______.【解答】解:如图;①当F 、D 重合时,BP 的值最小;根据折叠的性质知:AF=PF=5;在Rt △PFC 中,PF=5,FC=2,则PC=√21;∴BP 的最小值为5-√21;②当E 、B 重合时,BP 的值最大;由折叠的性质可得AB=BP=2,即BP的最大值为2.所以x的取值范围是5-√21≤x≤2.故答案为:5-√21≤x≤2.【答案】5-√21≤x≤25.如图,现有边长为5的正方形纸片ABCD,点P为AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在点P处,点C落在点G处,PG交DC于点H,折痕为EF连结BP,BH.当AP=2时,PH=______.【解答】解:设AE=x,则BE=5-x.由翻折的性质可知:BE=PE=x,∠APG=∠ABC=90°.∴∠APE+∠DPH=90°.∵∠AEP+∠APE=90°,∴∠AEP=∠DPH.又∵∠A=∠D=90°,∴△APE∽△DHP.在Rt△APE中,PE2=AE2+AP2,即(5-x)2=x2+22,解得x=2.1.则PE=5-2.1=2.9.∵△APE∽△DHP,∴EPPH =AEPD,即2.9PH=2.13,解得:PH=297.故答案为:297.【答案】2976.如图,矩形纸片ABCD中,AD=15cm,AB=10cm,点P、Q分别为AB、CD的中点,E、G分别为BC、PQ上的点,将这张纸片沿AE折叠,使点B与点G重合,则△AGE的外接圆的面积为______.【解答】解:由翻折的性质得,AG=AB,∠GAE=∠BAE,∵点P、Q分别为AB、CD的中点,∴AP=12AB,∴AP=12AG,∴∠AGP=30°,∴∠PAG=90°-∠AGP=90°-30°=60°,∴∠BAE=12∠PAG=12×60°=30°,在Rt△ABE中,AE=AB÷cos30°=10÷√32=20√33cm,∴△AGE的外接圆的面积=π(AE2)2=π(12×20√33)2=1003πcm2.故答案为:1003πcm2.【答案】1003πcm27.如图,矩形ABCD中,AD=10,AB=8,点E为边DC上一动点,连接AE,把△ADE沿AE折叠,使点D落在点D′处,当△DD′C是直角三角形时,DE的长为______.【解答】解:∵△ADE沿AE折叠,使点D落在点D′处,∴DE=D′E,AD=AD′=10,当∠DD′C=90°时,如图1,∵DE=D′E,∴∠1=∠2,∵∠1+∠4=90°,∠2+∠3=90°,∴∠3=∠4,∴ED′=EC,CD=4;∴DE=EC=12当∠DCD′=90°时,则点D′落在BC上,如图2,设DE=x,则ED′=x,CE=8-x,∵AD′=AD=10,∴在Rt△ABD′中,BD′=√102−82=6,∴CD′=4,在Rt△CED′中,(8-x)2+42=x2,解得x=5,即DE的长为5,综上所述,当△DD′C是直角三角形时,DE的长为4或5.故答案为4或5.【答案】4或5。

中考数学压轴题---《与折叠有关的计算》题型讲解

中考数学压轴题---《与折叠有关的计算》题型讲解

中考数学压轴题---《与折叠有关的计算》题型讲解1、(2020•青岛)如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为()A.B.C.2D.4【答案】C【解答】解:∵矩形ABCD,∴AD∥BC,AD=BC,AB=CD,∴∠EFC=∠AEF,由折叠得,∠EFC=∠AFE,∴∠AFE=∠AEF,∴AE=AF=5,由折叠得,FC=AF,OA=OC,∴BC=3+5=8,在Rt△ABF中,AB==4,在Rt△ABC中,AC==4,∴OA=OC=2,故选:C.2、如图,在△ABC纸片中,∠B=30°,AB=AC=,点D在AB上运动,将纸片沿CD折叠,得到点B的对应点B′(D在A点时,点D的对应点是本身),则折叠过程对应点B′的路径长是()A.3B.6C.πD.2π【答案】C【解答】解:过点A作AE⊥BC于点E,∵∠B=30°,AB=AC=,∴BE=AB cos∠B=,∴BC=2BE=3,由折叠的性质可得:∠BCB''=2∠ACB=60°,∴B′的路径长==π.故选:C.3、(2022•宜宾)如图,在矩形纸片ABCD中,AB=5,BC=3,将△BCD沿BD折叠到△BED位置,DE交AB于点F,则cos∠ADF的值为()A.B.C.D.【答案】C【解答】解:∵四边形ABCD是矩形,∴∠A=90°,AB∥CD,AD=BC=3,AB=CD=5,∴∠BDC=∠DBF,由折叠的性质可得∠BDC=∠BDF,∴∠BDF=∠DBF,∴BF=DF,设BF=x,则DF=x,AF=5﹣x,在Rt△ADF中,32+(5﹣x)2=x2,∴x=,∴cos∠ADF=,故选:C.4、(2022•毕节市)矩形纸片ABCD中,E为BC的中点,连接AE,将△ABE沿AE折叠得到△AFE,连接CF.若AB=4,BC=6,则CF的长是()A.3B.C.D.【答案】D【解答】解:连接BF,交AE于O点,∵将△ABE沿AE折叠得到△AFE,∴BE=EF,∠AEB=∠AEF,AE垂直平分BF,∵点E为BC的中点,∴BE=CE=EF=3,∴∠EFC=∠ECF,∵∠BEF=∠ECF+∠EFC,∴∠AEB=∠ECF,∴AE∥CF,∴∠BFC=∠BOE=90°,在Rt△ABE中,由勾股定理得,AE==,∴BO==,∴BF=2BO=,在Rt△BCF中,由勾股定理得,CF===,故选:D.5、(2022•湖州)如图,已知BD是矩形ABCD的对角线,AB=6,BC=8,点E,F分别在边AD,BC上,连结BE,DF.将△ABE沿BE翻折,将△DCF沿DF翻折,若翻折后,点A,C分别落在对角线BD上的点G,H处,连结GF.则下列结论不正确的是()A.BD=10B.HG=2C.EG∥FH D.GF⊥BC 【答案】D【解答】解:∵四边形ABCD是矩形,∴∠A=90°,BC=AD,∵AB=6,BC=8,∴BD===10,故A选项不符合题意;∵将△ABE沿BE翻折,将△DCF沿DF翻折,点A,C分别落在对角线BD上的点G,H处,∴AB=BG=6,CD=DH=6,∴GH=BG+DH﹣BD=6+6﹣10=2,故B选项不符合题意;∵四边形ABCD是矩形,∴∠A=∠C=90°,∵将△ABE沿BE翻折,将△DCF沿DF翻折,点A,C分别落在对角线BD上的点G,H处,∴∠A=∠BGE=∠C=∠DHF=90°,∴EG∥FH.故C选项不符合题意;∵GH=2,∴BH=DG=BG﹣GH=6﹣2=4,设FC=HF=x,则BF=8﹣x,∴x2+42=(8﹣x)2,∴x=3,∴CF=3,∴,又∵,∴,若GF⊥BC,则GF∥CD,∴,故D选项符合题意.故选:D.6、(2021•天津)如图,在△ABC中,∠BAC=120°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,下列结论一定正确的是()A.∠ABC=∠ADC B.CB=CD C.DE+DC=BC D.AB∥CD【答案】D【解答】解:由旋转的性质得出CD=CA,∠EDC=∠BAC=120°,∵点A,D,E在同一条直线上,∴∠ADC=60°,∴△ADC为等边三角形,∴∠DAC=60°,∴∠BAD=60°=∠ADC,∴AB∥CD,故选:D.7、(2022•滨州)正方形ABCD的对角线相交于点O(如图1),如果∠BOC绕点O按顺时针方向旋转,其两边分别与边AB、BC相交于点E、F(如图2),连接EF,那么在点E由B到A的过程中,线段EF的中点G经过的路线是()A.线段B.圆弧C.折线D.波浪线【答案】A【解答】解:建立如图平面直角坐标系,设正方形ABCD的边长为1,∵四边形ABCD是正方形,∴∠OAE=∠OBF=45°,OA=OB,∵∠AOB=∠EOF=90°,∴∠AOE=∠BOF,∴△AOE≌△BOF(ASA),∴AE=BF,设AE=BF=a,则F(a,0),E(0,1﹣a),∵EG=FG,∴G(a,﹣a),∴点G在直线y=﹣x+上运动,∴点G的运动轨迹是线段,故选:A.8、(2022•眉山)如图,四边形ABCD为正方形,将△EDC绕点C逆时针旋转90°至△HBC,点D,B,H在同一直线上,HE与AB交于点G,延长HE与CD的延长线交于点F,HB=2,HG=3.以下结论:①∠EDC=135°;②EC2=CD•CF;③HG=EF;④sin∠CED=.其中正确结论的个数为()A.1个B.2个C.3个D.4个【答案】D【解答】解:∵△EDC旋转得到△HBC,∴∠EDC=∠HBC,∵ABCD为正方形,D,B,H在同一直线上,∴∠HBC=180°﹣45°=135°,∴∠EDC=135°,故①正确;∵△EDC旋转得到△HBC,∴EC=HC,∠ECH=90°,∴∠HEC=45°,∴∠FEC=180°﹣45°=135°,∵∠ECD=∠ECF,∴△EFC∽△DEC,∴,∴EC2=CD•CF,故②正确;设正方形边长为a,∵∠GHB+∠BHC=45°,∠GHB+∠HGB=45°,∴∠BHC=∠HGB=∠DEC,∵∠GBH=∠EDC=135°,∴△GBH∽△EDC,∴,即,∵△HEC是等腰直角三角形,∴,∵∠GHB=∠FHD,∠GBH=∠HDF=135°,∴△HBG∽△HDF,∴,即,解得:EF=3,∵HG=3,∴HG=EF,故③正确;过点E作EM⊥FD交FD于点M,∴∠EDM=45°,∵ED=HB=2,∴,∴,∵∠DEC+∠DCE=45°,∠EFC+∠DCE=45°,∴∠DEC=∠EFC,∴,故④正确综上所述:正确结论有4个,故选:D.9、(2022•单县一模)如图,将边长为8cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在Q处,EQ与BC交于点G,则△EBG 的周长是cm.【答案】16【解答】解:设EF=x,∵EF=DF,∴DF=x,则AF=8﹣x;而AE=4,由勾股定理得:x2=42+(8﹣x)2,解得:x=5;AF=8﹣5=3;∠GEF=∠D=90°,∠A=∠B=90°,∴∠AEF+∠AFE=∠AEF+∠BEG,∴∠AFE=∠BEG;∴△AEF∽△BGE,∴==,∴EG==,BG==,∴△EBG的周长=++4=16.故答案为16.10、如图,在矩形ABCD中,AB=3,BC=5,点P在CD边上,联结AP.如果将△ADP沿直线AP翻折,点D恰好落在线段BC上,那么的值为.【答案】【解答】解:如图:∵将△ADP沿直线AP翻折,点D恰好落在线段BC上的D',∴AD'=AD=5,PD=PD',∠AD'P=∠D=90°,在Rt△ABD'中,BD'===4,∴CD'=BC﹣BD'=5﹣4=1,设CP=x,则PD=PD'=3﹣x,在Rt△CPD'中,CD'2+CP2=PD'2,∴12+x2=(3﹣x)2,解得x=,∴CP=,PD=,∴S△ADP=AD•PD=×5×=,S四边形ABCP=S矩形ABCD﹣S△ADP=3×5﹣=,∴==,故答案为:.11、(2022•铜仁市)如图,在边长为2的正方形ABCD中,点E为AD的中点,将△CDE沿CE翻折得△CME,点M落在四边形ABCE内.点N为线段CE 上的动点,过点N作NP∥EM交MC于点P,则MN+NP的最小值为.【答案】【解答】解:作点P关于CE的对称点P′,由折叠的性质知CE是∠DCM的平分线,∴点P′在CD上,过点M作MF⊥CD于F,交CE于点G,∵MN+NP=MN+NP′≥MF,∴MN+NP的最小值为MF的长,连接DG,DM,由折叠的性质知CE为线段DM的垂直平分线,∵AD=CD=2,DE=1,∴CE==,∵CE×DO=CD×DE,∴DO=,∴EO=,∵MF⊥CD,∠EDC=90°,∴DE∥MF,∴∠EDO=∠GMO,∵CE为线段DM的垂直平分线,∴DO=OM,∠DOE=∠MOG=90°,∴△DOE≌△MOG,∴DE=GM,∴四边形DEMG为平行四边形,∵∠MOG=90°,∴四边形DEMG为菱形,∴EG=2OE=,GM=DE=1,∴CG=,∵DE∥MF,即DE∥GF,∴△CFG∽△CDE,∴,即,∴FG=,∴MF=1+=,∴MN+NP的最小值为;方法二:同理方法一得出MN+NP的最小值为MF的长,DO=,∴OC==,DM=2DO=,∵S△CDM=DM•OC=CD•MF,即×=2×MF,∴MF=,∴MN+NP的最小值为;故答案为:。

中考数学几何图形折叠试题典题及解答

中考数学几何图形折叠试题典题及解答

中考数学几何图形折叠试题典题及解答一、题目描述:下面是一道关于几何图形折叠的中考数学试题,请根据给出的图形进行折叠并回答相关问题。

二、题目内容:以下是一些典型的几何图形折叠试题,供同学们考试复习参考。

1. 长方形折叠在平面上给出一张长方形纸片,长为12厘米,宽为6厘米。

折叠该长方形纸片,使得长方形的两个对边重叠,然后再剪掉重叠部分。

请问最后得到的图形是什么?计算它的周长和面积。

解答:将长方形纸片对折,让两条边相重合。

然后沿着重合的边将多余的部分剪掉。

最后得到的图形是一个等边三角形。

它的周长为36厘米(等边三角形的三条边长相等,每条边长为12厘米),面积为36平方厘米(等边三角形的面积公式为:面积=(边长^2)×(根号3)/4)。

2. 圆形折叠给出一张半径为8厘米的圆形纸片,折叠该圆形纸片使得圆心与边上的一点重合,然后再剪掉重叠部分。

请问最后得到的图形是什么?计算它的周长和面积。

解答:将圆形纸片对折,使得圆心与边上的一点重合。

然后沿着重合的边将多余的部分剪掉。

最后得到的图形是一个等腰三角形。

它的周长为2πr+2r(其中r为圆的半径,即8厘米),面积为(r^2)×π(等腰三角形的面积公式为:面积=(底边×高)/2,这里的底边等于2r)。

3. 正方形折叠给出一张边长为10厘米的正方形纸片,折叠该正方形纸片使对边重叠,然后再剪掉重叠部分。

请问最后得到的图形是什么?计算它的周长和面积。

解答:将正方形纸片对折,使得对边重叠。

然后沿着重合的边将多余的部分剪掉。

最后得到的图形是一个等腰梯形。

它的周长为2a+2b(其中a和b分别为梯形的上、下底边,都等于10厘米),面积为((a+b)×h)/2(等腰梯形的面积公式为:面积=(上底+下底)×高/2,这里的高等于10厘米)。

4. 直角三角形折叠给出一张直角三角形纸片,已知直角边长为5厘米,斜边长为8厘米。

折叠该直角三角形纸片,使直角边重叠,然后再剪掉重叠部分。

中考数学折叠典型问题

中考数学折叠典型问题

中考数学折叠典型问题中考数学折叠典型问题一.解答题(共4小题)1.(2009•天津)已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.(Ⅰ)若折叠后使点B与点A重合,求点C的坐标;(Ⅱ)若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式,并确定y的取值范围;(Ⅲ)若折叠后点B落在边OA上的点为B″,且使B″D∥OB,求此时点C的坐标.2.已知一个直角三角形AOB,其中∠AOB=90°,OA=2,OB=4.将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.(1)如图1,若折叠后使点B与点O重合,则点D的坐标为_________;(2)如图2,若折叠后使点B与点A重合,求点C的坐标;(3)如图3,若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式.3.(2009•恩施州)如图,在△ABC中,∠A=90°,BC=10,△ABC的面积为25,点D为AB边上的任意一点(D不与A、B重合),过点D作DE∥BC,交AC于点E.设DE=x,以DE为折线将△ADE翻折(使△ADE落在四边形DBCE所在的平面内),所得的△A'DE与梯形DBCE重叠部分的面积记为y.(1)用x表示△ADE的面积;(2)求出0<x≤5时y与x的函数关系式;(3)求出5<x<10时y与x的函数关系式;(4)当x取何值时,y的值最大,最大值是多少?4.(2009•长沙)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴相交于点C.连接AC、BC,A、C两点的坐标分别为A(﹣3,0)、C(0,),且当x=﹣4和x=2时二次函数的函数值y相等.(1)求实数a,b,c的值;(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q,使得以B,N,Q为项点的三角形与△ABC相似?如果存在,请求出点Q的坐标;如果不存在,请说明理由.中考数学折叠典型问题参考答案与试题解析一.解答题(共4小题)1.(2009•天津)已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.(Ⅰ)若折叠后使点B与点A重合,求点C的坐标;(Ⅱ)若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式,并确定y的取值范围;(Ⅲ)若折叠后点B落在边OA上的点为B″,且使B″D∥OB,求此时点C的坐标.分析:(Ⅰ)因为折叠后点B与点A重合,那么BC=AC,可先设出C点的坐标,然后表示出BC,AC,在直角三角形OCA中,根据勾股定理即可求出C点的纵坐标,也就求出了C点的坐标;(Ⅱ)方法同(Ⅰ)用OC表示出BC,B′C然后在直角三角形OB′C中根据勾股定理得出x,y的关系式.由于B′在OA上,因此有0≤x≤2,由此可求出y的取值范围;(Ⅲ)根据(Ⅰ)(Ⅱ)的思路,应该先得出OB″,OC的关系,知道OA,OB的值,那么可以通过证Rt△COB″∽Rt△BOA来实现.∠B″CO和∠CB″D是平行线B″D,OB的内错角,又因为∠OBA=∠CB″D,因此∠B″CO=∠OBA,即CB″∥BA,由此可得出两三角形相似,得出OC,OB″的比例关系,然后根据(1)(2)的思路,在直角三角形OB″C中求出OC的值,也就求出C点的坐标了.解答:解:(Ⅰ)如图①,折叠后点B与点A重合,则△ACD≌△BCD.设点C的坐标为(0,m)(m>0),则BC=OB﹣OC=4﹣m.∴AC=BC=4﹣m.在Rt△AOC中,由勾股定理,AC2=OC2+OA2,即(4﹣m)2=m2+22,解得m=.∴点C的坐标为(0,);(Ⅱ)如图②,折叠后点B落在OA边上的点为B′,∴△B′CD≌△BCD.∵OB′=x,OC=y,∴B'C=BC=OB﹣OC=4﹣y,在Rt△B′OC中,由勾股定理,得B′C2=OC2+OB′2.∴(4﹣y)2=y2+x2,即y=﹣x2+2.由点B′在边OA上,有0≤x≤2,∴解析式y=﹣x2+2(0≤x≤2)为所求.∵当0≤x≤2时,y随x的增大而减小,∴y的取值范围为≤y≤2;(Ⅲ)如图③,折叠后点B落在OA边上的点为B″,且B″D∥OC.∴∠OCB″=∠CB″D.又∵∠CBD=∠CB″D,∴∠OCB″=∠CBD,∵CB″∥BA.∴Rt△COB″∽Rt△BOA.∴,∴OC=2OB″.在Rt△B″OC中,设OB″=x0(x0>0),则OC=2x0.由(Ⅱ)的结论,得2x0=﹣x02+2,解得x0=﹣8±4.∵x0>0,∴x0=﹣8+4.∴点C的坐标为(0,8﹣16).2.已知一个直角三角形AOB,其中∠AOB=90°,OA=2,OB=4.将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.(1)如图1,若折叠后使点B与点O重合,则点D的坐标为(1,2);(2)如图2,若折叠后使点B与点A重合,求点C的坐标;(3)如图3,若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式.分析:(1)由CD为△OAB的中位线,可求D点坐标;(2)设OC=m,由折叠的性质可知,△ACD≌△BCD,则BC=AC=4﹣m,OA=2,在Rt△AOC中,利用勾股定理求m的值;(3)由折叠的性质可知,△B′CD≌△BCD,依题意设OB′=x,OC=y,则B′C=BC=OB﹣OC=4﹣y,在Rt△B′OC中,由勾股定理,建立y与x之间的函数关系式.解答:解:(1)由折叠的性质可知,BC=OC,CD⊥OB,则CD为△OAB的中位线,所以D(1,2),故答案为:(1,2);(2)如图2,折叠后点B与点A重合,则△ACD≌△BCD,设C点坐标为(0,m)(m>0),则BC=OB﹣OC=4﹣m,于是AC=BC=4﹣m,在Rt△AOC中,由勾股定理,得AC2=OC2+OA2,即(4﹣m)2=m2+22,解得m=,所以C(0,);(3)如图3,折叠后点BB落在边OA上的点为B′,则△B′CD≌△BCD,依题意设OB′=x,OC=y,则B′C=BC=OB﹣OC=4﹣y,在Rt△B′OC中,由勾股定理,得B′C2=OC2+OB′2,即(4﹣y)2=y2+x2,即y=﹣x2+2,由点B′在边OA上,有0≤x≤2,所以,函数解析式为y=﹣x2+2(0≤x≤2).3.(2009•恩施州)如图,在△ABC中,∠A=90°,BC=10,△ABC的面积为25,点D为AB边上的任意一点(D不与A、B重合),过点D作DE∥BC,交AC于点E.设DE=x,以DE为折线将△ADE翻折(使△ADE落在四边形DBCE所在的平面内),所得的△A'DE与梯形DBCE重叠部分的面积记为y.(1)用x表示△ADE的面积;(2)求出0<x≤5时y与x的函数关系式;(3)求出5<x<10时y与x的函数关系式;(4)当x取何值时,y的值最大,最大值是多少?分析:(1)由于DE∥BC,可得出三角形ADE和ABC相似,那么可根据面积比等于相似比的平方用三角形ABC的面积表示出三角形ADE的面积.(2)由于DE在三角形ABC的中位线上方时,重合部分的面积就是三角形ADE的面积,而DE在三角形ABC中位线下方时,重合部分就变成了梯形,因此要先看0<x≤5时,DE的位置,根据BC的长可得出三角形的中位线是5,因此自变量这个范围的取值说明了A′的落点应该在三角形ABC之内,因此y就是(1)中求出的三角形ADE的面积.(3)根据(2)可知5<x<10时,A′的落点在三角形ABC外面,可连接AA1,交DE于H,交BC于F,那么AH就是三角形ADE的高,A′F就是三角形A′DE的高,A′F就是三角形A′MN的高,那么可先求出三角形A′MN的面积,然后用三角形ADE的面积减去三角形A′MN的面积就可得出重合部分的面积.求三角形A′MN的面积时,可参照(1)的方法进行求解.(4)根据(2)(3)两个不同自变量取值范围的函数关系式,分别得出各自的函数最大值以及对应的自变量的值,然后找出最大的y的值即可.解答:解:(1)∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴,即S△ADE=x2;(2)∵BC=10,∴BC边所对的三角形的中位线长为5,∴当0<x≤5时,y=S△ADE=x2;(3)5<x<10时,点A′落在三角形的外部,其重叠部分为梯形,∵S△A′DE=S△ADE=x2,∴DE边上的高AH=A'H=x,由已知求得AF=5,∴A′F=AA′﹣AF=x﹣5,由△A′MN∽△A′DE知=()2,S△A′MN=(x﹣5)2.∴y=x2﹣(x﹣5)2=﹣x2+10x﹣25.(4)在函数y=x2中,∵0<x≤5,∴当x=5时y最大为:,在函数y=﹣x2+10x﹣25中,当x=﹣=时y最大为:,∵<,∴当x=时,y最大为:.4.(2009•长沙)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴相交于点C.连接AC、BC,A、C两点的坐标分别为A(﹣3,0)、C(0,),且当x=﹣4和x=2时二次函数的函数值y相等.(1)求实数a,b,c的值;(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q,使得以B,N,Q为项点的三角形与△ABC相似?如果存在,请求出点Q的坐标;如果不存在,请说明理由.考点:二次函数综合题;二次函数图象上点的坐标特征;二次函数图象与几何变换.专题:压轴题.分析:(1)由题意和图形可求出函数的表达式;(2)结合抛物线内部几何关系和性质求出t值及P点坐标;(3)假设成立(1)若有△ACB∽△QNB则有∠ABC=∠QBN,寻找相似条件,判断是否满足.解答:解:(1)∵C(0,)在抛物线上∴代入得c=,∵x=﹣4和x=2时二次函数的函数值y相等,∴顶点横坐标x==﹣1,∴,又∵A(﹣3,0)在抛物线上,∴=0由以上二式得a=,b=,c=;(2)由(1)y==∴B(1,0),连接BP交MN于点O1,根据折叠的性质可得:01也为PB中点.设t秒后有M(1﹣t,0),N(1﹣,),O1)设P(x,y),B(1,0)∵O1为P、B的中点可得,,即P()∵A,C点坐标知lAC:y=,P点也在直线AC上代入得t=,即P();(3)假设成立;①若有△ACB∽△QNB,则有∠ABC=∠QBN,∴Q点在x轴上,AC∥QN但由题中A,C,Q,N坐标知直线的一次项系数为:则△ACB不与△QNB相似.②若有△ACB∽△QBN,则有 (1)设Q(﹣1,y),C(0,),A(﹣3,0),B(1,0),N()则CB=2,AB=4,AC=2代入(1)得y=2或.当y=2时有Q(﹣1,2)则QB=4⇒不满足相似舍去;当y=时有Q(﹣1,)则QB=⇒.∴存在点Q(﹣1,)使△ACB∽△QBN.综上可得:(﹣1,).。

中考数学几何图形折叠试题典题和解答[1]

中考数学几何图形折叠试题典题和解答[1]

中考数学几何图形折叠试题典题及解答一、选择题1.(德州市)如图.四边形ABCD为矩形纸片.把纸片ABCD折叠.使点B恰好落在CD边的中点E处.折痕为AF.若CD=6.则AF等于()A.4B.3C.4D.82.(江西省)如图.将矩形ABCD纸片沿对角线BD折叠.使点C落在C′处.BC′交AD于E.若∠DBC=22.5°.则在不添加任何辅助线的情况下.图中45°的角(虚线也视为角的边)有()A.6个B.5个C.4个D.3个3.(乐山市)如图.把矩形纸条ABCD沿EF.GH同时折叠.B.C两点恰好落在AD边的P点处.若∠FPH=90°.PF=8.PH=6.则矩形ABCD的边BC长为()A.20 B.22C.24 D.304.(绵阳市)当身边没有量角器时.怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图.已知矩形ABCD.我们按如下步骤操作可以得到一个特定的角:(1)以点A所在直线为折痕.折叠纸片.使点B落在AD上.折痕与BC交于E;(2)将纸片展平后.再一次折叠纸片.以E所在直线为折痕.使点A落在BC 上.折痕EF交AD于F.则∠AFE =()A.60° B.67.5° C.72° D.7 5°5. (绍兴市)学习了平行线后.小敏想出了过己知直线外一点画这条直线的平行线的新方法.她是通过折一张半透明的纸得到的(如图(1)~(4)).从图中可知.小敏画平行线的依据有()①两直线平行.同位角相等;②两直线平行.内错角相等;③同位角相等.两直线平行; ④内错角相等.两直线平行.A .①②B .②③C .③④D .①④6.(贵阳市)如图6-1所示.将长为20cm.宽为2cm 的长方形白纸条.折成图6-2所示的图形并在其一面着色.则着色部分的面积为( )A .34cm2B .36cm2C .38cm2D .40cm2二、填空题7.(成都市)如图.把一张矩形纸片ABCD 沿EF 折叠后.点C.D 分别落在C′.D′的位置上.EC′交AD 于点G .已知∠EFG =58°.那么∠BEG °.8. (苏州市)如图.将纸片△ABC 沿DE 折叠.点A 落在点A′处.已知∠1+∠2=100°.则∠A 的大小等于____________度.三、解答题9.(荆门市)如图1.在平面直角坐标系中.有一张矩形纸片OABC.已知O(0.0).A(4.0).C(0.3).点P 是OA 边上的动点(与点O 、A 不重合).现将△PAB 沿PB 翻折.得到△PDB ;再在OC 边上选取适当的点E.将△POE 沿PE 翻折.得到△PFE.并使直线PD 、PF 重合.设P(x.0).E(0.y).求y 关于x 的函数关系式.并求y 的最大值;如图2.若翻折后点D 落在BC 边上.求过点P 、B 、E 的抛物线的函数关系式;在(2)的情况下.在该抛物线上是否存在点Q.使△PEQ 是以PE为直角边的直角三角形?若不存在.说明理由;若存在.求出点Q的坐标.10. (济宁市)如图.先把一矩形ABCD纸片对折.设折痕为MN.再把B点叠在折痕线上.得到△ABE.过B点折纸片使D点叠在直线AD上.得折痕PQ.求证:△PBE∽△QAB;你认为△PBE和△BAE相似吗?如果相似给出证明.如不相似请说明理由;如果沿直线EB折叠纸片.点A是否能叠在直线EC上?为什么?11.(威海市)如图.四边形ABCD为一梯形纸片.AB∥CD.AD=BC.翻折纸片ABCD.使点A与点C重合.折痕为EF.已知CE⊥AB.(1)求证:EF∥BD;(2)若AB=7.CD=3.求线段EF的长.12. (烟台市)生活中.有人喜欢把传送的便条折成形状.折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为2 6 cm.宽为xcm.分别回答下列问题:为了保证能折成图④的形状(即纸条两端均超出点P).试求x的取值范围.(2)如果不但要折成图④的形状.而且为了美观.希望纸条两端超出点P的长度相等.即最终图形是轴对称图形.试求在开始折叠时起点M与点A的距离(用x表示).13. 将平行四边形纸片ABCD按如图方式折叠.使点C与A重合.点D落到D′处.折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF.判断四边形AECF是什么特殊四边形?证明你的结论.14.(孝感市)在我们学习过的数学教科书中.有一个数学活动.其具体操作过程是:第一步:对折矩形纸片ABCD.使AD与BC重合.得到折痕EF.把纸片展开(如图1);第二步:再一次折叠纸片.使点A落在EF上.并使折痕经过点B.得到折痕BM.同时得到线段BN(如图2).请解答以下问题:(1)如图2.若延长MN交BC于P.△BMP是什么三角形?请证明你的结论.(2)在图2中.若AB=a.BC=b.a、b满足什么关系.才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP ?(3)设矩形ABCD的边AB=2.BC=4.并建立如图3所示的直角坐标系. 设直线BM′为y=kx.当∠M′BC=60°时.求k的值.此时.将△ABM′沿B M′折叠.点A是否落在EF上(E、F分别为AB、CD中点)?为什么?15.(邵阳市)如图①.△ABC中.∠ACB=90°.将△ABC沿着一条直线折叠后.使点A与点C重合(图②).(1)在图①中画出折痕所在的直线l.设直线l 与AB,AC分别相交于点D,E.连结CD.(画图工具不限.不要求写画法)(2)请你找出完成问题(1)后所得到的图形中的等腰三角形.(不要求证明)16.(济宁市)如图.先把一矩形ABCD纸片对折.设折痕为MN.再把B点叠在折痕线上.得到△ABE.过B点折纸片使D点叠在直线AD上.得折痕PQ. 求证:△PBE∽△QAB;你认为△PBE和△BAE相似吗?如果相似给出证明.如补相似请说明理由;(3)如果直线EB折叠纸片.点A是否能叠在直线EC上?为什么?17.(临安市)如图.△OAB 是边长为的等边三角形.其中O是坐标原点.顶点B在y轴正方向上.将△OAB 折叠.使点A落在边OB上.记为A′.折痕为EF.(1)当A′E//x轴时.求点A′和E的坐标;(2)当A′E//x轴.且抛物线经过点A′和E时.求抛物线与x轴的交点的坐标;(3)当点A′在OB上运动.但不与点O、B重合时.能否使△A′EF成为直角三角形?若能.请求出此时点A′的坐标;若不能.请你说明理由.18.(南宁市)如图.在锐角△ABC中.BC=9.AH⊥BC于点H.且AH=6.点D为AB边上的任意一点.过点D作DE∥BC.交AC于点E.设△ADE的高AF为x(0<x<6).以DE为折线将△ADE翻折.所得的△A′DE与梯形DBCE重叠部分的面积记为y (点A关于DE的对称点A′落在AH所在的直线上).(1)分别求出当0<x≤3与3<x<6时.y与x 的函数关系式;(2)当x取何值时.y的值最大?最大值是多少?19.(宁夏回族自治区)如图.将矩形纸片ABCD沿对角线BD 折叠.点C落在点E处.BE交AD于点F.连结AE.证明:(1)BF=DF;(2)AE∥BD.参考答案一、1.A 2.B 3.C 4.B 5.C 6.B二、7.64 8.50°三、9. 解:(1)由已知PB平分∠APD.PE平分∠OPF.且PD、PF重合.则∠OPE+∠APB=90°.又∠APB+∠ABP=90°.∴∠OPE=∠PBA.∴Rt△POE∽Rt△BPA.∴.即.∴.且当x=2时.y 有最大值.由已知.△PAB、△POE均为等腰直角三角形.可得P(1.0).E(0.1).B(4.3).……6分设过此三点的抛物线为y=ax2+bx+c.则∴y=.由(2)知∠EPB=90°.即点Q与点B重合时满足条件.直线PB为y=x-1.与y轴交于点(0.-1).将PB向上平移2个单位则过点E(0.1).∴该直线为y=x+1.由得∴Q(5.6).故该抛物线上存在两点Q(4.3)、(5.6)满足条件.10. 证明:(1)∵∠PBE+∠ABQ=180°-90°=90°.∠PBE+∠PEB=90°.∴∠ABQ=∠PEB.又∵∠BPE=∠AQB=90°.∴△PBE~△QAB. (2)∵△PBE~△QAB.∴∵B Q=P B.∴.又∵∠ABE=∠BPE=90°.∴△PBE~△BAE.(3)点A能叠在直线EC上.由(2)得.∠AEB =∠CEB.∴EC和折痕AE重合.11. 解:(1)证明:过C点作CH∥BD.交AB的延长线于点H;连结AC.交EF于点K.则AK=CK.∵AB∥CD.∴BH=CD.BD=CH.∵AD=BC.∴AC=BD=CH.∵CE⊥AB.∴AE=EH.∴EK是△AHC的中位线.∴EK∥CH.∴EF∥BD.(2)解:由(1)得BH∥CD.EF∥BD.∴∠AEF=∠ABD.∵AB=7.CD=3. ∴AH=10.∵AE=CE.AE=EH.∴AE=CE=EH=5.∵CE⊥AB.∴CH=5=BD.∵∠EAF=∠BAD.∠AEF=∠ABD.∴△AFE∽△ADB.∴.∴.12. 解:(1)由折纸过程知0<5x<26.,0<x<.(2)图④为轴对称图形.∴A M=.即点M与点A的距离是(13-x)cm.13. 证明:⑴由折叠可知:∠D=∠D′.CD=A D′.∠C=∠D′AE.∵四边形ABCD是平行四边形.∴∠B=∠D.AB=CD.∠C=∠BAD.∴∠B=∠D′.AB=AD′.∠D′AE=∠BAD.即∠1+∠2=∠2+∠3.∴∠1=∠3.∴△ABE ≌△AD′F.⑵四边形AECF是菱形.由折叠可知AE=EC.∠4=∠5.∵四边形ABCD是平行四边形.∴AD∥BC.∴∠5=∠6.∴∠4=∠6.∴AF=AE.∵AE=EC. ∴AF=EC.又∵AF∥EC.∴四边形AECF是平行四边形.∵AF=AE.∴四边形AECF是菱形.14. 解:(1)△BMP是等边三角形.证明:连结AN.∵EF垂直平分AB.∴AN = BN.由折叠知 AB = BN .∴AN = AB = BN. ∴△ABN为等边三角形.∴∠ABN =60°. ∴∠PBN =30°.又∵∠ABM =∠NBM =30°.∠BNM =∠A =90°.∴∠BPN =60°.∠MBP =∠MBN +∠PBN =60°.∴∠BMP =60°∴∠MBP =∠BMP =∠BPM =60°.∴△BMP为等边三角形 .(2)要在矩形纸片ABCD上剪出等边△BMP.则B C ≥BP.在Rt△BNP中. BN = BA =a.∠PBN =30°. ∴BP =.∴b≥.∴a≤b .∴当a≤b时.在矩形上能剪出这样的等边△BMP.(3)∵∠M′BC =60°. ∴∠ABM′=90°-60°=30°.在Rt△ABM′中.tan ∠ABM′ =. ∴tan3 0°=. ∴AM′ =.∴M′(.2). 代入y=kx中 .得k== .设△ABM′沿BM′折叠后.点A落在矩形ABCD内的点为A′.过A′作AH ⊥BC交BC于H.∵△A′BM′ ≌△ABM′. ∴∠A′BM′=∠AB M′=30°, A′B = AB =2.∴∠A′BH=∠M′BH-∠A′BM′=30°.在Rt△A′BH中.A′H =A′B =1.BH= .∴.∴A'落在EF上.(图2)(图3)15.解:(1)如图.等腰三角形DAC.16.(1)证明:∵∠PBE +∠ABQ =180°-90°=90°.∠PBE +∠PEB =90°.∴∠ABQ =∠PEB.又∵∠BPE =∠AQB.∴△PBE ∽△QAB.(2)∵△PBE ∽△QAB.∴.∵BQ =PB.∴.又∵∠ABE =∠BPE =90°.∴△PBE ~△BAE.(3)点A 能折叠在直线EC 上.由(2)得.∠AEB =∠CEB.∴EC 和折痕AE 重合.17. 解:(1)由已知可得∠A'OE=60o , A'E=A E.由A′E//x 轴,得△OA'E 是直角三角形.设A′的坐标为(0.b ).则AE=A'E=b,OE=2b.∵b+2b=2+,∴b=1.∴A'、E 的坐标分别是(0.1)与(.1).(2)因为A'、E 在抛物线上.所以所以 函数关系式为y=.由=0得,.与x轴的两个交点坐标分别是(-.0)与(.0).(3)不可能使△A'EF成为直角三角形.∵∠FA'E=∠FAE=60o,若△A'EF成为直角三角形,只能是∠A'EF=90o或∠A'FE=90o.若∠A'EF=90o,利用对称性,则∠AEF=90o, A'、E、A三点共线.O与A重合.与已知矛盾.同理若∠A'FE=90o也不可能.所以不能使△A′EF成为直角三角形.18. 解:(1)①当0<x≤3时.由折叠得到的△A'ED落在△ABC内部如图10(1).重叠部分为△A'ED.∵DE∥BC,∴∠ADE=∠B.∠AED=∠C.∴△ADE∽△ABC.∴.∴.即.又∵FA'=FA=x,∴y=DE·A'F=·x·x.∴(0<x≤3).②当3<x<6时.由折叠得到的△A'ED有一部分落在△ABC外.如图10(2).重叠部分为梯形EDPQ.∵FH=6-AF=6-x,A'H=A'F-FH=x-(6-x)=2x-6,又∵DE∥PQ,∴△A'PQ∽△A'DE.∴.∴∴.(2)当0<x≤3时.y的最大值;当3<x<6时.由,可知当x=4时.y的最大值y2=9.∵y1<y2.∴当x=4时.y有最大值y最大=9.19. 证明:(1)能正确说明∠ADB=∠EBD(或△ABF≌△EDF),∴BF=DF.(2)能得出∠AEB=∠DBE(或∠EAD=∠BDA),∴AE∥BD.。

2022年中考数学专题复习 折叠题(含解析)

2022年中考数学专题复习 折叠题(含解析)

2022年中考数学专题复习:折叠题1.如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF 折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有以下四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S△BEF=3S△DEF.其中,将正确结论的序号全部选对的是〔〕A.①②③B.①②④C.②③④D.①②③④解答:解:∵四边形ABCD是矩形,∴∠D=∠BCD=90°,DF=MF,由折叠的性质可得:∠EMF=∠D=90°,即FM⊥BE,CF⊥BC,∵BF平分∠EBC,∴CF=MF,∴DF=CF;故①正确;∵∠BFM=90°﹣∠EBF,∠BFC=90°﹣∠CBF,∴∠BFM=∠BFC,∵∠MFE=∠DFE=∠CFN,∴∠BFE=∠BFN,∵∠BFE+∠BFN=180°,∴∠BFE=90°,即BF⊥EN,故②正确;∵在△DEF和△CNF中,,∴△DEF≌△CNF〔ASA〕,∴EF=FN,∴BE=BN,但无法求得△BEN各角的度数,∴△BEN不一定是等边三角形;故③错误;∵∠BFM=∠BFC,BM⊥FM,BC⊥CF,∴BM=BC=AD=2DE=2EM,∴BE=3EM,∴S△BEF=3S△EMF=3S△DEF;故④正确.应选B.点评:此题考查了折叠的性质、矩形的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.2.如图,将矩形ABCD的一个角翻折,使得点D恰好落在BC边上的点G处,折痕为EF,假设EB为∠AEG的平分线,EF和BC的延长线交于点H.以下结论中:①∠BEF=90°;②DE=CH;③BE=EF;④△BEG和△HEG的面积相等;⑤假设,那么.以上命题,正确的有〔〕A.2个B.3个C.4个D.5个解答:解:①由折叠的性质可知∠DEF=∠GEF,∵EB为∠AEG的平分线,∴∠AEB=∠GEB,∵∠AED=180°,∴∠BEF=90°,故正确;②可证△EDF∽△HCF,DF>CF,故DE≠CH,故错误;③只可证△EDF∽△BAE,无法证明BE=EF,故错误;④可证△GEB,△GEH是等腰三角形,那么G是BH边的中线,∴△BEG和△HEG的面积相等,故正确;⑤过E点作EK⊥BC,垂足为K.设BK=x,AB=y,那么有y2+〔2y﹣2x〕2=〔2y﹣x〕2,解得x1=y〔不合题意舍去〕,x2=y.那么,故正确.故正确的有3个.应选B.点评:此题考查了翻折变换,解答过程中涉及了矩形的性质、勾股定理,属于综合性题目,解答此题的关键是根据翻折变换的性质得出对应角、对应边分别相等,然后分别判断每个结论,难度较大,注意细心判断.3.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD 于F点,假设CF=1,FD=2,那么BC的长为〔〕A.3B.2C.2D.2解答:解:过点E作EM⊥BC于M,交BF于N,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形,∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM,∵∠ENG=∠BNM,∴△ENG≌△BNM〔AAS〕,∴NG=NM,∴CM=DE,∵E是AD的中点,∴AE=ED=BM=CM,∵EM∥CD,∴BN:NF=BM:CM,∴BN=NF,∴NM=CF=,∴NG=,∵BG=AB=CD=CF+DF=3,∴BN=BG﹣NG=3﹣=,∴BF=2BN=5,∴BC===2.应选B.点评:此题考查了矩形的判定与性质、折叠的性质、三角形中位线的性质以及全等三角形的判定与性质.此题难度适中,注意辅助线的作法,注意数形结合思想的应用.4.如图,两个正方形ABCD和AEFG共顶点A,连BE,DG,CF,AE,BG,K,M分别为DG和CF的中点,KA的延长线交BE于H,MN⊥BE于N.那么以下结论:①BG=DE且BG⊥DE;②△ADG 和△ABE的面积相等;③BN=EN,④四边形AKMN为平行四边形.其中正确的选项是〔〕A.③④B.①②③C.①②④D.①②③④解答:解:由两个正方形的性质易证△AED≌△AGB,∴BG=DE,∠ADE=∠ABG,∴可得BG与DE相交的角为90°,∴BG⊥DE.①正确;如图,延长AK,使AK=KQ,连接DQ、QG,∴四边形ADQG是平行四边形;作CW⊥BE于点W,FJ⊥BE于点J,∴四边形CWJF是直角梯形;∵AB=DA,AE=DQ,∠BAE=∠ADQ,∴△ABE≌△DAQ,∴∠ABE=∠DAQ,∴∠ABE+∠BAH=∠DAQ+∠BAH=90°.∴△ABH是直角三角形.易证:△CWB≌△BHA,△EJF≌△AHE;∴WB=AH,AH=EJ,∴WB=EJ,又WN=NJ,∴WN﹣WB=NJ﹣EJ,∴BN=NE,③正确;∵MN是梯形WGFC的中位线,WB=BE=BH+HE,∴MN=〔CW+FJ〕=WC=〔BH+HE〕=BE;易证:△ABE≌△DAQ〔SAS〕,∴AK=AQ=BE,∴MN∥AK且MN=AK;四边形AKMN为平行四边形,④正确.S△ABE=S△ADQ=S△ADG=S▱ADQG,②正确.所以,①②③④都正确;应选D.点评:当出现两个正方形时,一般应出现全等三角形.图形较复杂,选项较多时,应用排除法求解.5.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,MN∥AB,MC=6,NC=,那么四边形MABN的面积是〔〕A.B.C.D.解答:解:连接CD,交MN于E,∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,∴MN⊥CD,且CE=DE,∴CD=2CE,∵MN∥AB,∴CD⊥AB,∴△CMN∽△CAB,∴,∵在△CMN中,∠C=90°,MC=6,NC=,∴S△CMN=CM•CN=×6×2=6,∴S△CAB=4S△CMN=4×6=24,∴S四边形MABN=S△CAB﹣S△CMN=24﹣6=18.应选C.点评:此题考查了折叠的性质、相似三角形的判定与性质以及直角三角形的性质.此题难度适中,解此题的关键是注意折叠中的对应关系,注意数形结合思想的应用.6.如图,D是△ABC的AC边上一点,AB=AC,BD=BC,将△BCD沿BD折叠,顶点C恰好落在AB边的C′处,那么∠A′的大小是〔〕A.40°B.36°C.32°D.30°解答:解:连接C'D,∵AB=AC,BD=BC,∴∠ABC=∠ACB=∠BDC,∵△BCD沿BD折叠,顶点C恰好落在AB边的C′处,∴∠BCD=∠BC'D,∴∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D,∵四边形BCDC'的内角和为360°,∴∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D==72°,∴∠A=180°﹣∠ABC﹣∠ACB=36°.应选B.点评:此题考查了折叠的性质,解答此题的关键是掌握翻折前后的对应角相等,注意此题的突破口在于得出∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D,根据四边形的内角和为360°求出每个角的度数.7.如图,△ABC中,∠CAB=∠B=30°,AB=2,点D在BC边上,把△ABC沿AD翻折使AB 与AC重合,得△AB′D,那么△ABC与△AB′D重叠局部的面积为〔〕A.B.C.3﹣D.解答:解:过点D作DE⊥AB′于点E,过点C作CF⊥AB,∵△ABC中,∠CAB=∠B=30°,AB=2,∴AC=BC,∴AF=AB=,∴AC===2,由折叠的性质得:AB′=AB=2,∠B′=∠B=30°,∵∠B′CD=∠CAB+∠B=60°,∴∠CDB′=90°,∵B′C=AB′﹣AC=2﹣2,∴CD=B′C=﹣1,B′D=B′C•cos∠B′=〔2﹣2〕×=3﹣,∴DE===,∴S阴影=AC•DE=×2×=.应选A.点评:此题考查了折叠的性质,等腰三角形的性质、直角三角形的性质以及特殊角的三角函数问题.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用,注意掌握折叠前后图形的对应关系.8.如图,△ABC中,∠CAB=∠B=30°,AB=,点D在BC边上,把△ABC沿AD翻折,使AB与AC重合,得△AED,那么BD的长度为〔〕A.B.C.D.解答:解:作CF⊥AB于点F.∵∠CAB=∠B∴AC=BC,∴BF=AB=,在直角△BCF中,BC==2,在△CDE中,∠E=∠B=30°,∠ECD=∠CAB+∠B=60°,DE=BD,∴∠CDE=90°,设BD=x,那么CD=DE=2﹣x,在直角△CDE中,tanE===tan30°=,解得:x=3﹣.应选B.点评:此题考查了图形的折叠,以及三线合一定理、三角函数,正确理解折叠的性质,找出图形中相等的线段、相等的角是关键.9.如图,在Rt△ABC中,∠C=90°,AC=,BC=1,D在AC上,将△ADB沿直线BD翻折后,点A落在点E处,如果AD⊥ED,那么△ABE的面积是〔〕A.1 B.C.D.解答:解:∵∠C=90°,AC=,BC=1,∴AB==2,∴∠BAC=30°∵△ADB沿直线BD翻折后,点A落在点E处,∴BE=BA=2,∠BED=∠BAD=30°,DA=DE,∵AD⊥ED,∴BC∥DE,∴∠CBF=∠BED=30°,在Rt△BCF中,CF==,BF=2CF=,∴EF=2﹣,在Rt△DEF中,FD=EF=1﹣,ED=FD=﹣1,∴S△ABE=S△ABD+S△BED+S△ADE=2S△ABD+S△ADE=2×BC•AD+AD•ED=2××1×〔﹣1〕+×〔﹣1〕〔﹣1〕=1.应选A.点评:此题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了勾股定理和含30度的直角三角形三边的关系.。

折叠几何综合专题---16道题目(含答案)

折叠几何综合专题---16道题目(含答案)

折叠几何综合专题---16道题目(含答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN01如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E 处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG,GF,AF之间的数量关系,并说明理由;(3)若AG=6,EG=25,求BE的长.(1)证明:由折叠性质可得,EF =FD ,∠AEF =∠ADF =90°,∠EFA =∠DFA ,EG =GD ,∵EG ∥DC ,∴∠DFA =∠EGF , ∴∠EFA =∠EGF ,∴EF =EG =FD =GD ,∴四边形EFDG 是菱形;(2)解:EG 2=12GF ·AF .理由如下: 如解图,连接ED ,交AF 于点H ,∵四边形EFDG 是菱形,∴DE ⊥AF ,FH =GH =12GF ,EH =DH =12DE , ∵∠FEH =90°-∠EFA =∠FAE ,∠FHE =∠AEF =90°, ∴Rt △FEH ∽Rt △FAE ,∴EFAF =FHEF ,即EF 2=FH ·AF ,又∵FH =12GF ,EG =EF ,∴EG 2=12GF ·AF ;(3)解:∵AG =6,EG =25,EG 2=12AF ·GF ,∴(25)2=12(6+GF )·GF ,解得GF =4或GF =-10(舍),∴GF =4,∴AF =10.∵DF =EG =25,∴AD =BC =AF 2-DF 2=45,DE =2EH =2EG 2-(12GF )2=8,∵∠CDE +∠DFA =90°,∠DAF +∠DFA =90°,∴∠CDE =∠DAF ,∵∠DCE =∠ADF =90°,∴Rt △DCE ∽Rt △ADF ,∴EC DF =DE AF ,即EC 25=810,∴EC =855,∴BE =BC -EC =1255.02如图,将矩形ABCD 沿对角线BD 对折,点C 落在E 处,BE 与AD 相交于点F ,若DE =4,BD =8.(1)求证:AF =EF ;(2)求证:BF 平分∠ABD .证明:(1)在矩形ABCD 中,AB =CD ,∠A =∠C =90°, ∵△BED 是△BCD 对折得到的,∴ED =CD ,∠E =∠C ,∴ED =AB ,∠E =∠A ,(2分)又∵∠AFB =∠EFD ,∴△ABF ≌△EDF (AAS),∴AF =EF ;(4分)(2)在Rt △BCD 中,∵DC =DE =4,BD =8,∴sin ∠CBD =DC BD =12, ∴∠CBD =30°,(5分)∴∠EBD =∠CBD =30°,∴∠ABF=90°-30°×2=30°,(7分)∴∠ABF=∠EBD,∴BF平分∠ABD.(8分)03把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F 重合(E、F两点均在BD上),折痕分别为BH、DG。

中考数学题型复习题型三几何图形综合计算类型二折叠问题课件【优质ppt版本】

中考数学题型复习题型三几何图形综合计算类型二折叠问题课件【优质ppt版本】

再见
2019/11/20

4 7
,∵GQ∥BC,∴△DGQ∽△DBC,
∴GQDQDG4,∴ BC DC DB 7
DQ 4

4 7

GQ 4

∴DQ=GQ= 1
7
6

∴FQ=DQ-DF= 16 2 2 ,
7
7
∴S△H′GF=S梯形H′GQP-S△H′PF-S△GQF=
1 ( 4 1 6 ) ( 4 1 6 ) 1 4 ( 4 2 ) 1 2 1 6 4 . 2 3737233 277
【解析】如解图,∵DF=FC,DC=4,∴DF=FC=2,∵四边形
ABCD是正方形,∴∠ADC=∠BAD=90°,在Rt△ADF中,AD
=4,∴AF=4222 2 5 ,同理可得:BD=45 ,∵AB∥DF,
∴△ABH∽△FDH,∴
BH DH
=2,∴DH=
4
3
2
叠得:DH′=DH= 4 2,∠ADH′=∠ADH=45°, 3
∴ AD = AK = 4 , 设 EC = x , 则 BE = 4 - x , AE = 4 + x , 在
Rt△ABE中,由勾股定理得:42+(4-x)2=(4+x)2,解得x=1,
∴BE=3,EC=1,∵AD∥BC,∴△AGD∽△EGB,
∴ DG AD 4 ,∴ D G BG EB 3 D B
题型三 几何图形综合计 算
类型二 折叠问题
典例精讲
例2 如图,正方形ABCD的边长为4,点E是BC上的一点,连 接AE,AF平分∠DAE交DC于点F,连接BD分别交AE,AF于 点G,H,将△ADH沿直线AD翻折,点H落在点H′处,连接 GH′,H′F,FG,若DF=FC,则△H′GF的面积是___4 _____.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学几何图形折叠试题典题及解答一、选择题1.(德州市)如图,四边形ABCD为矩形纸片.把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF.若CD=6,则AF等于()A.4B.3C.4D.82.(江西省)如图,将矩形ABCD纸片沿对角线BD折叠,使点C落在C′处,BC′交AD于E,若∠DBC=22.5°,则在不添加任何辅助线的情况下,图中45°的角(虚线也视为角的边)有()A.6个B.5个C.4个D.3个3.(乐山市)如图,把矩形纸条ABCD沿EF,GH同时折叠,B,C两点恰好落在AD边的P 点处,若∠FPH=90°,PF=8,PH=6,则矩形ABCD的边BC长为()A.20B.22C.24D.304.(绵阳市)当身边没有量角器时,怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图,已知矩形ABCD,我们按如下步骤操作可以得到一个特定的角:(1)以点A所在直线为折痕,折叠纸片,使点B落在AD 上,折痕与BC交于E;(2)将纸片展平后,再一次折叠纸片,以E所在直线为折痕,使点A 落在BC上,折痕EF交AD于F.则∠AFE =()A.60°B.67.5°C.72°D.75°5. (绍兴市)学习了平行线后,小敏想出了过己知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图(1)~(4)).从图中可知,小敏画平行线的依据有()①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①②B.②③C.③④D.①④6.(贵阳市)如图6-1所示,将长为20cm,宽为2cm的长方形白纸条,折成图6-2所示的图形并在其一面着色,则着色部分的面积为()A.34cm2 B.36cm2C.38cm2 D.40cm2二、填空题7.(成都市)如图,把一张矩形纸片ABCD沿E F折叠后,点C,D分别落在C′,D′的位置上,EC′交AD于点G.已知∠EFG=58°,那么∠B EG°.8. (苏州市)如图,将纸片△ABC沿DE折叠,点A落在点A′处,已知∠1+∠2=100°,则∠A的大小等于____________度.三、解答题9.(荆门市)如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合).现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF重合.设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;在(2)的情况下,在该抛物线上是否存在点Q,使△P EQ是以PE为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.10. (济宁市)如图,先把一矩形ABCD纸片对折,设折痕为MN,再把B点叠在折痕线上,得到△ABE.过B点折纸片使D点叠在直线AD上,得折痕PQ.求证:△PBE∽△QAB;你认为△PBE和△BAE相似吗?如果相似给出证明,如不相似请说明理由;如果沿直线EB折叠纸片,点A是否能叠在直线EC 上?为什么?11.(威海市)如图,四边形ABCD为一梯形纸片,AB∥CD,AD=BC.翻折纸片ABCD,使点A与点C重合,折痕为EF.已知CE⊥AB.(1)求证:EF∥BD;(2)若AB=7,CD=3,求线段EF的长.12. (烟台市)生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为2 6 cm,宽为xcm,分别回答下列问题:为了保证能折成图④的形状(即纸条两端均超出点P),试求x的取值范围.(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点A的距离(用x表示).13. 将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.14.(孝感市)在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1);第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2).请解答以下问题:(1)如图2,若延长MN交BC于P,△BMP 是什么三角形?请证明你的结论.(2)在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP ?(3)设矩形ABCD的边AB=2,BC=4,并建立如图3所示的直角坐标系. 设直线BM′为y=kx,当∠M′BC=60°时,求k的值.此时,将△ABM′沿BM′折叠,点A是否落在EF上(E、F分别为AB、CD中点)?为什么?15.(邵阳市)如图①,△ABC中,∠ACB=90°,将△ABC沿着一条直线折叠后,使点A与点C 重合(图②).(1)在图①中画出折痕所在的直线l.设直线l 与AB,AC分别相交于点D,E,连结CD.(画图工具不限,不要求写画法)(2)请你找出完成问题(1)后所得到的图形中的等腰三角形.(不要求证明)16.(济宁市)如图,先把一矩形ABCD纸片对折,设折痕为MN,再把B点叠在折痕线上,得到△ABE.过B点折纸片使D点叠在直线AD上,得折痕PQ. 求证:△PBE∽△QAB;你认为△PBE和△BAE相似吗?如果相似给出证明,如补相似请说明理由;(3)如果直线EB折叠纸片,点A是否能叠在直线EC上?为什么?17.(临安市)如图,△OAB 是边长为的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB 折叠,使点A落在边OB上,记为A′,折痕为EF.(1)当A′E//x轴时,求点A′和E的坐标;(2)当A′E//x轴,且抛物线经过点A′和E时,求抛物线与x轴的交点的坐标;(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.18.(南宁市)如图,在锐角△ABC中,BC=9,AH⊥BC于点H,且AH=6,点D为AB边上的任意一点,过点D作DE∥BC,交AC于点E.设△ADE的高AF为x(0<x<6),以DE为折线将△ADE翻折,所得的△A′DE与梯形DBCE重叠部分的面积记为y(点A关于DE的对称点A′落在AH所在的直线上).(1)分别求出当0<x≤3与3<x<6时,y与x 的函数关系式;(2)当x取何值时,y的值最大?最大值是多少?19.(宁夏回族自治区)如图,将矩形纸片ABCD沿对角线B D折叠,点C落在点E处,BE交AD于点F,连结AE.证明:(1)BF=DF;(2)AE∥BD.参考答案一、1.A 2.B 3.C 4.B 5.C 6.B二、7.648.50°三、9. 解:(1)由已知PB平分∠APD,PE平分∠OPF,且PD、PF重合,则∠OPE+∠APB= 90°.又∠APB+∠ABP=90°,∴∠OPE=∠PBA.∴Rt△POE∽Rt△BPA.∴.即.∴.且当x=2时,y 有最大值.由已知,△PAB、△POE均为等腰直角三角形,可得P(1,0),E(0,1),B(4,3).……6分设过此三点的抛物线为y=ax2+bx+c ,则∴y=.由(2)知∠EPB=90°,即点Q与点B重合时满足条件.直线PB为y=x-1,与y轴交于点(0,-1).将PB向上平移2个单位则过点E(0,1),∴该直线为y=x+1.由得∴Q(5,6).故该抛物线上存在两点Q(4,3)、(5,6)满足条件.10. 证明:(1)∵∠PBE+∠ABQ=180°-90°=90°,∠PBE+∠PEB=90°,∴∠ABQ=∠PEB.又∵∠BPE=∠AQB=90°,∴△PBE~△QAB.(2)∵△PBE~△QAB ,∴∵B Q=P B,∴.又∵∠ABE=∠BPE=90°,∴△PBE~△BAE.(3)点A能叠在直线EC上.由(2)得,∠AE B=∠CEB,∴EC和折痕AE重合.11. 解:(1)证明:过C点作CH∥BD,交AB的延长线于点H;连结AC,交EF于点K,则AK=CK.∵AB∥CD,∴BH=CD,BD=CH.∵AD=BC,∴AC=BD=CH.∵CE⊥AB,∴AE=EH.∴EK是△AHC的中位线.∴EK∥CH.∴EF∥BD.(2)解:由(1)得BH∥CD,EF∥BD,∴∠AEF=∠ABD.∵AB=7,CD=3,∴AH=10.∵AE=CE,AE=EH,∴AE=CE=EH=5.∵CE⊥AB,∴CH=5=BD.∵∠EAF=∠BAD,∠AEF=∠ABD,∴△AFE∽△ADB.∴.∴.12. 解:(1)由折纸过程知0<5x<26,,0<x <.(2)图④为轴对称图形,∴A M =.即点M与点A的距离是(13-x)cm.13. 证明:⑴由折叠可知:∠D=∠D′,CD=A D′,∠C=∠D′AE.∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,∠C=∠BAD.∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD,即∠1+∠2=∠2+∠3.∴∠1=∠3.∴△ABE ≌△AD′F.⑵四边形AECF是菱形.由折叠可知AE=EC,∠4=∠5.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠5=∠6.∴∠4=∠6.∴AF=AE.∵AE=EC,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.∵AF=AE,∴四边形AECF是菱形.14. 解:(1)△BMP是等边三角形.证明:连结AN.∵EF垂直平分AB,∴AN = BN.由折叠知AB = BN ,∴AN = AB = BN,∴△ABN为等边三角形.∴∠ABN =60°. ∴∠PBN =30°.又∵∠ABM =∠NBM =30°,∠BNM =∠A =9 0°.∴∠BPN =60°.∠MBP =∠MBN +∠PBN =60°.∴∠BMP =60°∴∠MBP =∠BMP =∠BPM =60°.∴△BMP为等边三角形 .(2)要在矩形纸片ABCD上剪出等边△BMP,则BC ≥BP.在Rt△BNP中,BN = BA =a,∠PBN =30°,∴BP =. ∴b≥. ∴a≤b .∴当a≤b时,在矩形上能剪出这样的等边△BMP.(3)∵∠M′BC =60°,∴∠ABM′=90°-60°= 30°.在Rt△ABM′中,tan∠ABM′ =. ∴tan3 0°=. ∴AM′ =.∴M′(,2). 代入y=kx中,得k== .设△ABM′沿BM′折叠后,点A落在矩形ABCD 内的点为A′.过A′作AH ⊥BC交BC于H.∵△A′BM′ ≌△ABM′,∴∠A′BM′=∠ABM′=3 0°, A′B = AB =2.∴∠A′BH=∠M′BH-∠A′BM′=30°.在Rt△A′BH中,A′H =A′B =1 ,BH=,∴.∴A'落在EF上.(图2)(图3)15.解:(1)如图.等腰三角形DAC.16.(1)证明:∵∠PBE+∠ABQ=180°-90°=90°,∠PBE+∠PEB=90°,∴∠ABQ=∠PEB.又∵∠BPE=∠AQB,∴△PBE∽△QAB.(2)∵△PBE∽△QAB,∴. ∵B Q=P B,∴.又∵∠ABE=∠BPE=90°,∴△PBE~△BAE.(3)点A能折叠在直线EC上.由(2)得,∠AEB=∠CEB,∴EC和折痕AE 重合.17. 解:(1)由已知可得∠A'OE=60o , A'E= AE.由A′E//x轴,得△OA'E是直角三角形.设A′的坐标为(0,b),则AE=A'E=b,OE=2b.∵b+2b=2+,∴b=1.∴A'、E的坐标分别是(0,1)与(,1).(2)因为A'、E在抛物线上,所以所以函数关系式为y =.由=0得,.与x轴的两个交点坐标分别是(-,0)与(,0).(3)不可能使△A'EF成为直角三角形.∵∠FA'E=∠FAE=60o,若△A'EF成为直角三角形,只能是∠A'EF=90o或∠A'FE=90o.若∠A'EF=90o,利用对称性,则∠AEF=90o, A'、E、A三点共线,O与A重合,与已知矛盾.同理若∠A'FE=90o也不可能.所以不能使△A′EF成为直角三角形.18. 解:(1)①当0<x≤3时,由折叠得到的△A'ED落在△ABC内部如图10(1),重叠部分为△A'ED.∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∴△ADE∽△ABC.∴.∴,即.又∵FA'=FA=x,∴y=DE·A'F=·x·x.∴(0<x≤3).②当3<x<6时,由折叠得到的△A'ED有一部分落在△ABC外,如图10(2),重叠部分为梯形EDPQ.∵FH=6-AF=6-x, A'H=A'F-FH=x-(6-x)=2x-6,又∵DE∥PQ,∴△A'PQ∽△A'DE.∴.∴∴.(2)当0<x≤3时,y的最大值;当3<x<6时,由,可知当x=4时,y的最大值y2=9.∵y1<y2,∴当x=4时,y有最大值y最大=9.19. 证明:(1)能正确说明∠ADB=∠EBD(或△ABF≌△EDF),∴BF=DF.(2)能得出∠AEB=∠DBE(或∠EAD=∠BD A),∴AE∥BD.。

相关文档
最新文档