物理化学第1-2章课后答案(傅献彩_第五版)(南京大学化学化工学院)

合集下载

《物理化学(第五版,傅献彩)》课后习题及答案

《物理化学(第五版,傅献彩)》课后习题及答案

热力学第一定律
1mol,T1,
p1=2×101.325kPa V1=11.2dm3
pT=常数 可逆
(1)T1=(p1V1)/(nR)=273K
∵ p1T1 p2T2 c

2
101325
2
101325 0.0112 8.314
K
4
101325T2
1mol,T2 p2=4×101.325kPa
V2
T2 136.6K
n, T1=293K, p1=p V1=3dm3
p1=p2
n,T2=353K p2
V2
n 101.325 3 mol 0.125mol 8.314 293
U
n
353
C 293 p,m
R
dT
0.125
353.2 18.96 3.26 103 T
293.2
dT
0.125 18.996353
V2
8.314 136.6 4 101325
m3
2.8 103 m3
(2) U
nCV ,m T2
T1
1
3 2
8.314(136.6
273)J
1701J
H 15 8.31(4 136.6 273)J 2835J 2
(3)W pdV c d( nRT T ) nR dT 2 2nRdT
T pT
T
W 2nR(T2 T1 ) 2 8.31(4 136.6 273)J 2268J 14.设有压力为 p,温度为 293K 的理想气体 3dm3,在等压下加热,直到最后的温度为 353K 为止。计算过程中的 W、ΔU、ΔH、和 Q。已知该气体的等压热容为: Cp,m=(27.28+3.26×10-3T)J·K-1·mol-1。 解:

关于物理化学课后答案傅献彩_第五版)

关于物理化学课后答案傅献彩_第五版)

第二章热力学第一定律L如果一个系统从环境吸收了40 J的热,而系统的热力学能却增加了200 J,问系统从环境得到了多少功?如杲该系统在膨胀过程对环境作了10 kJ的功,同时收了28 kJ的热,求系统的热力学能变化值.解:根据山=Q+W热力学第一定律,可知W=^J-Q (系统从环境吸热・Q>0)= (200-40)J=160JW=Q+W (系统对环境做功W<0)= (28-10)kJ-I8kJ.2.有10 mol的气体(设为理想气体八压力为1000 kP触温度为300 K*分别求岀等温时下列过程的功:⑴在空气压力为100 kPa时,体积胀大1血山⑵在空气压力为100 kP白时矽胀到气体压力也是100 kl靳(3)等温可逆膨胀至气体的压力为100 kPa.解:(1)外压始终维持恒定,系统对环境做功w=-p r^y^-100X103PaXlX10'3m3= -100j.=-A(V2-V I)=-Wmol X & 314-J •mol'1 *K_I X3OOKX1 OOkPa (一側驚)=一N 25 X12 J.(3)等温可逆膨胀:W=—『pJVJv i = -nRT\n^r"航i伊由心F推得}lOmolX&314]*molT - K-1 X300KXln lOOOkP 日lOOkPa图2—6=一5・ 74X104J.3.1 mol 单原子理想气体始态(1)的温度为273 K,体积为22.4 dm 3,经历如下三步,又叵 到始态,请计算每个状态的压力、Q ,W 和(1) 等容可逆升温由始态(1)到546K 的状态(2);(2) 等温(546K)可逆膨胀由状态(2)到44. 8 dm 3的状态(3);(3) 经等压过程由状态(3)回到始态仃).解:(1)等容可逆升温过程如图2-7. 546k, 1 mol, 44.8 X10-W图2-7W=_ 以△▼=()M/=Q +W=Q.= J ; nCv.ro dT=lmolX-|x& 314 ・ J ・ mol'1 ・ K"1 X(546-273)K=34O4.58J.(2) 等温可逆膨胀过程JJ=0 W= -TI RT In ~ lmolX & 314 J ・ mo 「・ K"1 Xln ||^X546K=-3146. 50JQ=-W=3146. 50J.(3) 等压过程lrQ Ql X'3M Jj jnol ' ' K ' 4-44, 8)X IQ-3m 3=2269. 72J (*R+R)X(273 K-546 K) =jX& 314J ・ mor 1 XK -1 X (-273)KXlmol=-5674. 31J=〃MJ=Q+W=(-5674. 31+2269. 72)J=-3404. 59J.4.在291 K 和100 kPa 下,1 mol Zn(s)溶于足量稀盐酸中,置换出1 mol H 2(g),并放热152 kJ.若以Zn 和盐酸为系统,求该反应所做的功及系统热力学能的变化.解:Zn( s)+2 HC1 一ZnCl 2 + H 2(g)546k,lmol,22.4 [T] nRT vT(V1-V2) T J丁nC hm dT22.4X10F(2)同理根据等温可逆过程中W=-nRT ln^— W41. 85X103J可得丁= ------ 了 = ---------------------- i----- 而T = 1093.05K.nR In 护2molX & 314 J • mol-1• K_1 In p:8.在100 kPa及423 K时,将1 mol NH3(g)等温压缩到体积等于10 dm3,求最少需做多少功?(1)假定是理想气体;⑵假定符合van der Waals 方程式.已知van der Waals 常数a=0. 417 Pa • m4• moL ,6=3. 71 X 10~5m3• molT.解:(1)假定为理想气体,那么气体在等温可逆压缩中做功最小W=-nRTv\= -lmolX& 314 J ・ mol-1・ K_1 X423 KXln 無器畔=4405. 74J可根据理想气体状态方程Vi 刃鴛閔;P;LX423K=35X 10-3m6代入上式方可求解.⑵假定符合van der Waals方程,方程整理后,可得代入数据V2.—3・ 472X ICT?必4-4.17X10~6V w-1.547X 1O-10 =0解三次方程后得V w=35X10-3m3=4385. 21J.9.已知在373 K和100 kPa压力时,1 kg比0⑴的体积为1.043 dm\l kg H2O(g)的体积为1677dm3,H2O⑴的摩尔汽化焙变值△獅弘=40・69 kJ・mor1.当1 mol出0(1)在373 K和外压为100 kPa时完全蒸发成H2O(g),试求:(1)蒸发过程中系统对环境所做的功;•(2)假定液态水的体积可忽略不计,试求蒸发过程中系统对环境所做的功,并计算所得结果的相对误3假定把蒸汽看作理想气体,且略去液态水的体积,求系统所做的功;解:(1)蒸发过程中系统对环境做功W=-pg—匕)=-100X103PaX(1677X 10~3-1.043XIO"3)m3・ kg_1X(l8.0X10_s)kg=-3016. 72J.5解释何故蒸发的焙变大于系统所作的功.6 求(1)中变化的—Um和△vpHm;(2)假设水的体积可忽略•则匕=0W=-AV f = -100X103PaX1677X10-3kg*1• m3 X18X10"3kg=-3018. 60J□鸟驀3跻⑵&100%=0.062%・(3)把水蒸气看作理想气体,则可使用理想气体状态方程pV=nRT且忽略液态水的体积,则匕=0W =—仪匕=—nRT= -lmolX& 314J • moP1• K"1 X373 K=_3101.12J.(4)Q>・fn = Sp H m=40. 69kJ • mor1、U =Q+W=40・ 69kJ ・ moLXlmoIX 1()3+(-3016. 72)J叩m n lmol=37. 67X103J ・ mor1.(5)在瘵发过程中,用于系统对环境做膨胀功的部分很少,吸收的大部分热量用于提高系统的热力学10.1 mol单原子理想气体,从始态:273 K,200 kPa,到终态323 K,100 kPa,通过两个途径:(1)先等压加热至323 K,再等温可逆膨胀至100 kPa;(2)先等温可逆膨胀至100 kPa,再等压加热至323 K.请分别计算两个途径的Q,W,W和AH,试比校两种结果有何不同,说明为什么.解:⑴因为单原子理想气体Cv.m=#R,Cp.m=|~R过程如图2—&图2—8①等压升温= -^(T2-T1) = -lmolX& 314 J • mol"1• K"1 X(323~273)K=-415. 7J②等温可逆△Hi =Q] = $ nC^m dT=lmolXyX& 314 J • moL • L (323—273)K=1039. 257dT=lmolXyX8.314 J ・ mol"1 - K_1 =623. 55J.W2 = ~nRT ln^ = -nRT ln^ = -lmolX& 314 J • mol-1• K-1X323 KXln弯= -1861. 39 J y\ pz100 =0» = 0,Q = —W2 = 1861・39JW=W;+W2 = -2277. 09JQ=Q+Q=290O 64J+山2=623. 55J△H=AHi -F A H2=1039. 25J.= -lmolX& 314 J ・ moL ・X273KXln 需=一1573. 25J^JJ\ =0>AH I =0Q=-W\ =1573. 25J.②等压升温W2 = -p e (V2-V x ) = -nRCT2-T }) = -\molX & 314 J • mol"1 - K'1 (323-273)K=-415. 7J=1 molX jX8.314 J ・ moL ・ K"1 X (323~273)K=1039. 25J山2 = J : nCy,ro dT=l molXyX& 314 J ・ moL ・ ^*=623. 55JW=W|+W2 = -198& 95JQ=Q+Q=2612.5JMJ=MJ 】+M/2=623・ 55J△H=AH 】+A H2 = 1039. 25J.比较两种结果,M 和AH 值相同,而Q 和W 值不同.说明Q 和W 不是状态函数,它们的数值与所经 过的途径和过程有关.而山和AH,是状态函数,无论经过何种途径,只要最终状态相同,W 和的数 值必相等.11.273 K,压力为5X105Pa 时,N2(g )的体积为2. 0 dm 3,在外压为100 kPa 压力下等温膨胀,直到N (g )的压力也等于100 kPa 为止.求过程中的和Q.假定气体是理想气体.解:该过程为恒定外压等温膨胀W=O.AH=0W=-A (V 2-V I )(理想气体状态方程pV=nRT )=-100 X W kPa ( 篇严 A' -2X10~3m 3Q =-W=800J. 12. 0. 02 kg 乙醇在其沸点时蒸发为气体.已知蒸发热为858 kJ • kg 。

(NEW)傅献彩《物理化学》(第5版)笔记和课后习题(含考研真题)详解

(NEW)傅献彩《物理化学》(第5版)笔记和课后习题(含考研真题)详解

目 录第1章 气 体1.1 复习笔记1.2 课后习题详解1.3 名校考研真题详解第2章 热力学第一定律2.1 复习笔记2.2 课后习题详解2.3 名校考研真题详解第3章 热力学第二定律3.1 复习笔记3.2 课后习题详解3.3 名校考研真题详解第4章 多组分系统热力学及其在溶液中的应用4.1 复习笔记4.2 课后习题详解4.3 名校考研真题详解第5章 相平衡5.1 复习笔记5.2 课后习题详解5.3 名校考研真题详解第6章 化学平衡6.1 复习笔记6.2 课后习题详解6.3 名校考研真题详解第7章 统计热力学基础7.1 复习笔记7.2 课后习题详解7.3 名校考研真题详解第8章 电解质溶液8.1 复习笔记8.2 课后习题详解8.3 名校考研真题详解第9章 可逆电池的电动势及其应用9.1 复习笔记9.2 课后习题详解9.3 名校考研真题详解第10章 电解与极化作用10.1 复习笔记10.2 课后习题详解10.3 名校考研真题详解第11章 化学动力学基础(一)11.1 复习笔记11.2 课后习题详解11.3 名校考研真题详解第12章 化学动力学基础(二)12.1 复习笔记12.2 课后习题详解12.3 名校考研真题详解第13章 表面物理化学13.1 复习笔记13.2 课后习题详解13.3 名校考研真题详解第14章 胶体分散系统和大分子溶液14.1 复习笔记14.2 课后习题详解14.3 名校考研真题详解第1章 气 体1.1 复习笔记一、气体分子动理论1.理想气体理想气体:在任何压力、任何温度下都符合理想气体状态方程pV=nRT 的气体。

理想气体状态方程中,p为气体压力,单位是Pa;V为气体的体积,单位是m3;n为物质的量,单位是mol;T为热力学温度,单位是K;R是摩尔气体常数,。

2.气体分子动理论的基本公式(1)气体分子运动的微观模型①气体是大量分子的集合体;②气体分子不断地作无规则的运动,均匀分布在整个容器之中;③分子彼此的碰撞以及分子与器壁的碰撞是完全弹性的。

最新物理化学第1-2章课后答案(傅献彩_第五版)(南京大学化学化工学院)

最新物理化学第1-2章课后答案(傅献彩_第五版)(南京大学化学化工学院)

第二章热力学第一定律建筑词典大全附中文详细解释I第一节一般术语1. 工程结构building and civil engineering structures房屋建筑和土木工程的建筑物、构筑物及其相关组成部分的总称。

2. 工程结构设计design of building and civil engineering structures在工程结构的可靠与经济、适用与美观之间,选择一种最佳的合理的平衡,使所建造的结构能满足各种预定功能要求。

3. 房屋建筑工程building engineering一般称建筑工程,为新建、改建或扩建房屋建筑物和附属构筑物所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。

4. 土木工程civil engineering除房屋建筑外,为新建、改建或扩建各类工程的建筑物、构筑物和相关配套设施等所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。

5. 公路工程highway engineering为新建或改建各级公路和相关配套设施等而进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。

6. 铁路工程railway engineering为新建或改建铁路和相关配套设施等所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。

7. 港口与航道工程port ( harbour ) and waterway engineering为新建或改建港口与航道和相关配套设施等所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。

8. 水利工程hydraulic engineering为修建治理水患、开发利用水资源的各项建筑物、构筑物和相关配设施等所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。

9. 水利发电工程(水电工程)hydraulic and hydroelectric engineering以利用水能发电为主要任务的水利工程。

物理化学课后答案傅献彩第五版南京大学化学化工学院

物理化学课后答案傅献彩第五版南京大学化学化工学院

热 力 学 第L 如果-个系统从环境吸收了如J 的热,而系统的热力学能却增加r 200 n 问系统从环境得到r 妾少 功?如果该系统<t 膨脈过程对环境作了 10 KJ 的功•同时收了 2« KJ 的热*求系统的热力学施变化值. 解;根据∆U=Q^W 热力学第一定律.可知W r -=∆Lf -Q (系统从环境吸热,QAo)= (200-40)J = 16OJΔΠ=Q÷W (系筑对环境做功MVtD= (28-10)kJ≡18kJ,2, 冇10 πκl 的气体(设为理想气休)■压力为Kx)O kP 酣温度为300 K •分别求出等温时下列过程的功' O )在空气压力为IoOkP 日时.体积胀大I dm½(2) 在空气压力为100 kPa 时•膨胀到气体压力也是IOO kPa ;(3) 等温可逆膨胀至气体的压力为IOo kPa.解:(D 外压始终维持恒定'系统对环境做功W-=-A∆V1(X)XlO J PaXlX 10^3m 3= — 100」*一 E 牛由沖«*>--IOmoixa. 314 J * mol~, ∙ K-I X300KXln IOmOl,300 K IOOokl⅛.V 1 IOmOL 300 KIOOkPa ⅛V;S 2-6^-PΛV 1~VOTIRTI \4 )=-1OnlO1XB, 314 * J ∙ TnOr I ∙ K^l ×30°KX 100^(i⅛-ιδ⅛)=-^ 25XIQ 4J*&尊温可≡K --f : MV一 PE nRT 2 = ~nRT In= -5. 74XIO 4 J. ■3. 1 mcl 单原子理想气体,Cv"∙∣R.始态⑴的温度为273 K,体积为22.4 dπ?,经历如下三步•又叵 到始态•请计算每个状杰的压力、Q ・W 和2.(1) 等容可逆升温由始态(1〉到546K 的状态(2卄(2) 等温(546K)可逆膨胀由状态(2)到44. 8 dm j 的状杰(3卄(3) 经等压过程由状态(3)回到始态(1).解,(1)尊容可逆升温过程如图2-7. 546k,lmol. 44.8×10⅛5图2-7W-~A∆V=0∆L∕=Q÷W≡=Q = J : nCv.m <lT=lmol×-∣-×& 314 ・ J ・ mol"・ KTX(546-273)K=34O4. 58J.(2)等温可逆膨胀过程∆U=0 W≈-∏RT In^ = -ITnol×& 314 J ・ mol^, ∙ K~, Xln ∣∣r ∣×546K=-3146. 50JQ=-W=3146∙ 50J∙ (3〉等压过程W = -P t ∙ ∆V=-vΓ(VI_v :)1I∏212⅛J14 J_LmQLL∙ K J ×273K χc22 4_44 S)X 10-3rn J = 2269. 72J nC fi .m dT ="(∙∣∙R+R)X(273 K -546 K)∆LΓ=Q*W= (-5674. 31+2269. 72)J = -3404. 59J.4. 在29】K 和IOO kPa 下・1 mol Zn(S)溶于足就稀盐酸中•置换出1 mol H, (g).并放热152 kJ.若以Zn和盐酸为系统,求该反应所做的功及系统热力学能的变化. 解:Zn(S)+2HCl —ZnCl 2 ÷ H 2 (g)22∙4X10fQ= -y×8∙314J ∙ moΓ, XK*1 X(-273)KXlmol≡-5674. 31J 5461ςlmol,22,4×10W [T]在291 K-IOOkPa的条件下发生以上反应•产生Hz(g)W=-P r(V J-V I )== — />, =_ p. τ^~ = -nRT(.p,≈ p= IOOkl,a)≡ - Imol X & 3)4 J ∙ moΓ,•KTX291 K=-2419. 37J该反应为放热反应>Q<0.Q=-152X103J∆σ=Q÷W=-(152× IO3+2439. 37)J = -154∙ 42X103J∙5在298 K时,有2 mol N2(g),始态体积为15 dm3.保持温度不变•经下列三个过程膨胀到终态体积为50 dn?,计算各过程的∆U f^H t W和Q的值.设气体为理想气体.(1)自由膨胀;(2)反抗恒定外压100 kPa膨胀;(3)可逆膨胀.解:(1)自由膨胀过程为尊熔过程AH=O由于A=O W=-P.V=O同理∙∆H=Δl7+∆(pV)可推出∆LΓ=O又根据∆U=Q÷W可知Q=O.(2)反抗恒定外压膨胀W=-P e(V2-V l) =-100×103 Pa(50-15) × 10^8m3 = -3500J因为理想气体的U和H都只是温度的函数•等温下∆U=0.∆H-0,Q- W=35OOJ.(3)等温可逆膨胀W =-∫pdV = 一HRT In 普=一2τnol X & 314 J ・moΓ1・ K-I X 298 KXIn 誇=-5965. 86 J2=Q÷W,等温过程∆L∕=O.∆H=OQ=-W=5965. 86 J.6•在水的正常沸点(373. 15 K,101. 325 kPa),有1 mol H2CXD变为同温、同压的H l O(g),已知水的摩尔汽化焙变值为‰=40. 69 kJ・TnOrLiS计算该变化的Q∆U,∆H的值各为多少.解:相变在373.15K,101. 325kPa等温等压下进行,AH=QQ= H. =40. 69kJ ∙ moΓ1×lmol≡=40. 69kJW--^(V g-V r)--TtPT--ImoIX& 314J ∙ mol 订∙ Kβl×373K≡-3. IkJ ∆U=Q÷W=(40. 69-3.1)kg=37. 59kJ.7.理想气体等温可逆膨胀,体积从匕膨胀大到】0匕,对外作f 41.85 kJ的功,系统的起始压力为202.65 kPa⑴求始态体积VZ(2)若气体的Ift为2 mol.试求系统的温度.解,1)等温可逆过程W≈-nRT In^V r)理想气体状态方程pV=nRT两式联合求解PVI =InV =0. 089m ∖202. 65×103Pa41.85×1O 3J Vl=曲(2)同理根据笥温可逆过程中W=-nRTIn存W 41.85 × IO3J "iz可得T= ------------V- ------------------------------------------- :一i∩v;-1°93∙ 05K.nR In 护2mol× & 314 J ∙ mol 1∙ K In&在100 kPa及423 K时閑1 mol NH j(g)等温压缩到体积等于10 dm3,求最少需做多少功?(1)假定是理想气体,(2)假定符合Van der WaHIS 方程式.已知Van der WaaIS 常数α = 0∙ 417 Pa ∙ m4∙ moL"=3∙ 71X 10"5m3∙ moΓ6.解:(1)假定为理想气体,那么气体在等温可逆压缩中做功最小W≈-nRT In 务= -ltnoI×& 314 J ・moΓ,∙ K-l×4Z3 KXIn 35 χ lo⅞'=MQ5, ?4J可根据理想气体状态方程V严警=—X8,314wop√κ—23 K =s35X Io-Jm3 代入上式方可求解.(2)假定符合Van der WaalS方程•方程整理后•可得(6÷T)÷V-7-⅞≡0代入数据Vi-3. 472×10∙t Vl÷4.17× IO-6V flt-L 547×lO',o=O解三次方程后得V m=35×10-3m3= 疑三篇一曲(炳一吉)=0. 417Pa ・m∙ ∙ moΓ> ×12× (5⅛厂5⅛?)4385. 21J.9.巳知在373 K和100 kPa压力时,1 kg H2O(I)的体枳为1. 043 dm∖ 1 kg H20(g)的体积为1677dm3,H2O(I)的摩尔汽化熔变值JpH fn=MO. 69 kJ・moΓ1.当1 mol HQ(I)在373 K和外压为】00 kPa时完全蒸发成H2O(g).试求:(1)蒸发过程中系统对环境所做的功;(2)假定液态水的体积可忽略不计,试求蒸发过程中系统对环境所做的功•并计算所得结果的相对谋3假定把蒸汽看作理想气体,且略去液态水的体积,求系统所做的功;解:<1)«发过程中系统对环境做功W=-A(V<-½)= -100×10,Pa×(1677×10-,-1.043×10"s)m s・⅛~,×(18.0×10^3)kg=-3016. 72J.5解释何故蒸发的熔变大于系统所作的功.6 求(1)中变化的^U a和(2) 假设水的体枳可忽略∙W!J ½=0W=-P •匕= -100X103P8X1677XKΓ'kgT ∙ ∏? X18XlO -'kg=-3O18∙ 6OJ (二眇鹫盍嚮 72)J X ]00% =0 062%.(3) 把水蒸气看作理想气体•则可使用理想弐体状态方程PV=HRT且忽略液态水的体积,则V Z =OW≈-p^V g ≈-nRT= -lmol×8.314J ∙ moΓ, ∙ R -,×373 K= 一3101. 12J.(4) Q ,ιa = ∆r MI Hm = 40. 69kJ ∙ πx>Γ1A ” _Q-J rW 40. 69kJ ・ moL XlmolX103 + (-3016. 72)J 4U in - ---------------- T=S J ------------------------- = 37. 67 X IO 3J ・ moΓl .(5)仝蕉发过程中•用于系统对环境做膨胀功的部分很少•吸收的夬部分热量用于提岛系统的热力学10. 1 mol 单原子理想气体,从始态:273 K.200 kPa,到终态323 K,100 kAu 通过两个途径:(1〉先等压加热至323 K,再尊温可逆膨胀至IOO kPa,(2)先等温可逆膨胀至IOO kPa,再等压加热至323 K.请分别计算两个途径的Q∙W,2和AH,试比校两种结果有何不同•说明为什么.解:⑴因为单原子理想气体Gj=∙∣R,C,rn =今R 过程如图2—&①等压升温W I =_P ,(S_S=_P (呼^_呼^)= -M ∕?(^-T I ) = -ImOlX8. 314 J ∙ moΓl ∙ KrX (323—273)K= — 415∙ 7JHC Arni dT=Imol×γ×8. 314 J ∙ moΓl ∙ K l (323-273)K=1039. 257 心=J : MCv,m dT=ImolXyX8.314 J ・ moL ・ KTM623.55J.②等温可逆总=-叔Tl 唸= -hnolX8. 314 J ・ moL ・ KU 323 KXln 需= -1861∙ 39 J∆LΛ ≡O∙∆Hf =Of Q 2 =-W 2 = 1861. 39JW = W 】+WZ =-2277∙ 09JQ=Ql 卜Q=29OO∙ 64J ∆U=∆IΛ+∆IΛ = 623∙ 55J ∆H=∆Wι +∆H 2 = 1039. 25J.Wz≈~nRT InImOl323 KIOOkPa①等温可逆Vy I =^Tln⅛ = →T Ing≡-lmol×& 314 J ∙ moΓ, ∙ KTX273KXln 需=一 1573∙ 25J∆Uι ==0∙∆Hι =0Q=-Wl= 1573∙ 25J.②等压升温VV 2 = -A (½-V 1) =-n ^(T 2-T 1 J--ImolX& 314 J ∙ mcΓ, ∙ K "】(323—273)K≡= — 415∙ 7J△H2=Q" = J ;: nC pt .dT=1 TnOlX 孑X8.314 J ∙ moΓ1 ∙ KTX(323—273)K=IO39∙ 25J∆U t ≈ P rtC v .m dT=l mo ∣X⅜×& 314 J ∙ moΓl ∙ K^,=623. 55J 儿 2W=W l ÷W 2 = -198& 95J Q=Q+Q = 2612∙ 5J∆U=∆LΓ1 +∆IΛ =623. 55J∆H≡∆Hι ÷∆H 2 = 1039. 25J.比较两种结杲・2和'H 值相同•而Q 和W 值不同.说明Q 和W 不是状态函数•它们的数值与所经 过的途径和过程有关.而2和3H.是状态函数,无论经过何种途径•只要最终状态相同.2和∆H 的数 值必相等.11.273 K,压力为5×10s Pa^.N 2(g)的体积为2.0 dπ?.在外压为IOO kPa 压力下等温膨胀•宜到M (g >的压力也等于IOO kPa 为止.求过程中的Vy,∆M,∆H 和Q 假定气体是理想气体•解:该过程为恒定外压等温膨胀∆U=0∙∆H=0W=-PAVZ-VX y )Q=-W=800J.12.0.02 kg 乙醇在其沸点时蒸发为气体.巳知蒸发热为85E kJ ・kg",蒸气的比容为0. 607 m j ・ 治一'.试求过程的∆U,AH∙W 和Q(计算时略去液体的体积).H IGHSOH(I)I [p],[τ] ∣C 2H 5OH(g)p 、Tb图 2-10P∙Tb 图2-9(理想气体状态方稈PV=HRT)此蒸发过程为等温等压可逆过程∆H=Q Λ≡O. 02kgX858kJ ∙ kg -l =17.16kJ=-p f v g (忽略液体的体积)=-IOOX IO 3PaXO. 02kgX0. 607 m 3 ∙ kgT = -1214JMJ=Q+W= 17. 16×103 + (-1214J) = 15946J∙13. 373 K∙压力为100kI⅛时,LOgH 2O(I)经下列不同的过程变为373 KJOokPa 的出0@〉•请分别 求出各个过程的∆LΓ.∆H,W 和Q 值.⑴在373 KJoO kPa 压力下H 2O(I)变成同温、同压的汽;(2) 先在373 K ・外压为50 kPa 下变为汽,然后加压成373 KJOO kPa 的汽$(3) 把这个H 2O(I)突煞放进恒温373 K 的真空箱中•控制容积使终态压力为100 kPa 的汽.已知水的 N 化热为 ZZ59 kJ ∙ kg l .解:(1)水住同温同压的条件下蒸发∆H≈Q, = l×10-1kg×2259kJ ∙ kg 1=2∙26kjW≈-pV β (忽略液体体积)= _nRT∆U=Q+W=2∙ 26 × IO 3 J+(~ 172J) ≡2088J.图 2-11 [p] AHl=Q 、= 1 × IoTX 2259kJ ∙ k f Γl =2. 26kJWl = -PY l = -WRT= -172J∆Uι =Ql ÷W ∣ =2088J[C AU 2 = 01 ∆H 2 ≡0. W*≡ ~ n RT In^ = - nRT In y ∖PI 一⅛⅛¾X3∙314 J ・ mol- ∙ KT X373 KXln 鑰= 119J、 Q=-W2 = -119JW≈W l ^W z ~-53JQ=Q+Q=214U∆U=NΛ+∆IΛ=2088J∆H=∆H 3 ÷∆H: =2. 26X ]03J.(3) 在真空箱中"∙=0∙故W=O由∆U.∆H 为状态函数•即只奥最终状态相同,则数值相等 ∆H=2. 26×103J∙ W=Q+W=Q= 2088J.14. 1 mol 单原子理想气体•始态为200 kPa. 11. 2 dn?,经PT=储数的可逆过程(即过程中PT=誉數)■ 压缩到终杰为400 kPa.已知气;体的CV tm = -IR 试求 l∙0X107⅛g 18×10β,kg∙ moΓlX&314 J ∙ moΓx ∙ K -I X373KH-172J (2)373K∙ H 2CXD [/>] 50kPa 373K> H 2CXg) CTJ 50kPa373K>H 2O(g) IOOkPa(1) 终态的体积和温度;(2) ∆L r 和 M(3)所做的功•解:(1)根据PT ■常数,则PITI-P I T2丁 =ATl __________________ _________ _____ ______________2 PZ PZ 400ICPaF =航乃_ ImolX& 314 J ・ moL ・ KTXl34.7K gχ 10-3m3PZ Zd • •⑵单原子理想气体CV.,m =J-R2=J ; nCv,m dT=nC v ,m (.T z -T l ) = ImolXyX& 314J ・ mol~,・ KTX(134. 7—269. 4)K=-1679. 84J △H = r nC^dT=nC,.m (T 2-Tχ>JT I= ImoIX--X& 314 J ∙∙tnoΓ, ∙ KTX(134. 7—269. 4)K=-2799∙ 74J.⑶由/「D 丁两式可推出V=曙∖pV^nRT eW=PdVM-J ; £ ・?^XdT=-2nR(7⅛-T 1)= -2×lmol×& 314 J ∙ TnOr l ∙ KTX(134.7—269・ 4>K=2239∙ 79J.15. 设有压力为IOO kPa 、温度为293 K 的理想气体3.0 Bm 3 ,在尊压下加热,直到最后的温度为353 K 为止•计算过程中W.3l7.∆H 和Q.已知该气体的等压摩尔热容为:Q lnI = (27. 28÷3. 26×10^3T∕K)J ・ K~1 ∙ πκ>Γ,.解:该过程为等压升温过程△H=Qp — J ; n C,.m ATC,ιn =(27. 28+3. 26X10-J T)J ・ KT ・ moΓ,∆H =∏Γ27. 28(T 2-T 1)+y×3. 26×10^,(7l-71)]=0.123×[27. 28X(353—293>+* X3. 26X10^X(3532—293J]=209. IJIOO XlO 净X 3 X10Tm3 _8?314 j~∙ τnoΓ1 ∙ K*1 ×^93K理想气体等压过程普=书 ,3X¾^353K =3 6χ 10-3m3(½-V 1 ) = -100× 10, Pa× (3.6-3) X 10-1m 3≡-6DjQ=Q+W=209∙ 1J -6OJ=149∙ 1J∙16. 在1200 KaOO kPa 压力下,有1 mol CaCO (S)完全分解为CaO(S)和CO 2(g),吸热180 kJ.计算过 程的W,∆L ∖∆H 和Q 设气体为理想气体.AV l "c 1 c 2θOX103Pa×11.2×10-3m 3 匕 ⅛ 2°OkP a 石拠314 J=TnO 产T0 = ^. IK400X10讥 RT l =0.】23mol解:CaCO3(S)-^-Cao(S)+CO2(g)⅛化学方程式可知ImOl OCO J(S)分解可生成ImOI CQ(g),计算过程中忽略CaCOa (s)> CaCXs)的体积.w≈ -P f V g≡ -HKT=≡ -ImolX& 314 J ∙ moΓl∙ K*1×12∞K=-9976. 8JQ=180×103J=∆H∆L∕≡Q÷H r=180× IO j J÷(-9976. 8)J≡170×103kJ・17 •证明:(霁),=—〃(霁)「并证明对于理想气体有(黑)广0・(勞)广0・证W:(l)已知H"¾7+z>U •U=H-PV(紮广(霁)厂(锡辽理想气体CP仅是温度函数C产(黑)*故(畀)广G-P(霁)严立.(2)dH-(IH)Vdτ+(IH)Td V理想气体等温过程∆H=O,∆T=O,故dH=O,d:T= O故(霍)∕V=0 等温彩胀或等温压缩∙dVHO所以(黑)广O 成立.⑶ Λ7=(S)V dr÷(^)Λ理想G体等温过程∆LΓ=O,∆T=O,同理ΛJ=O,dT=O由(2)可知dV≠O所以(需)广O成立.由于S(霁)v故,(寫)T=S陽(畀)J = [齐(影)订严他证明:(需),=C,(黑)厂〃—歌[(制厂町证明:(1)U=U(P t V)H⅛J÷∕>V dH=ΛJ÷pdV÷Vdp =(韵严+ (黑)严+ pdV-hVdp 等圧过程dH=(5V)/V+pdV两边同除以dT (霁)广(軌(歌+P(歌提取相同的(霁),収因为C严(霁力所以Cr執[(韵,+打所叫執“-/>(執成立•⑵ H=H[75 dH-(W)∕τ÷(lj)Λ同上题,可知dH=dU÷∕xlv÷VdΛ=dU÷VdZ>(等体积过程)联立等式•两边同除以Crr又由于C 严(黑), CV=(^)V 代人上式,整理后得—3 = -(霁)』(制广可故・证明完毕・19.在标准压力下•把一个极小的冰块投人0.1 kg.268 K 的水中•结栗使系统的温度变为273 K,并有 一定数槓的水凝结成冰•由于过稈进行得很快•可以看作是绝热的•已知冰的溶解热为333. 5 kJ ・kg-> •在 268〜273 K 之间水的比热为4. 21 kJ ・K"・kg^Λ(1) 写出系统物杰的变化•并求出∆H, (2) 求析出冰的质fit.解:(1)在p∙的条件下•此过程为绝热尊压过程故AH=Qp=O. ⑵设析出冰为∙rkg∙那么水为(0∙ l -χ)kg t 如图2-12.268 kQN kg HI O(D图 2-12∆H=∆H ∣ +∆H2 + ∆H3同种物质同温同压下变化AHs ・0・故∆H -∆H ∣ +∆H: ∆Hι +∆W2i =0O. IkgX<2IkJ ∙ K -I ∙ kg ∙,×(273-268)K+(-333.5kJ ∙ kg*1)Xkg=O x=6. 31kg.20.1 mol N 2(g)∙在298 K 和IookPa 压力下•经可逆绝热过程压缩到5 dm 3.试计算(设气体为理想气 (DN√g )的遇后温度, (2) N 2(g )的最后压力; (3) 需做多少功・C解:(1)Imol N 2为双原子分子7=沙= W- = I.42KImOl 气体为理想气体•符合理想气体状态方程 V_迟石 JmoIM& 314 J ∙ mo ∣τ ∙ KTX298 心“心心 VL 例- IOoXlO 3Pa-0.02448m理想气体绝热可逆过程中的过程方民式:TV-I =^数 T I v I L ^I = T 2v 2,4*1298K×<0. 02448)(M = Tl (0. 005)°∙4 Γ2=b62. SK. (2) 同理=X k« H J o(J) [ (0.1∙x)kg H I o(O 273K I 273 K0.1kg H j 0(∕)273IOOxIo j Pa×<O. 02448)1∙4= ∕>2×(0. 005)I∙4∕⅛=924×103kPa.(3)理想气体绝热可逆过程中的功:W "仇S-PlV F]LI■= nCv.m(T2-T)) = ImolXy X& 314 J ・ moL ・ K^1 X(562. 5-298)K=5497. 63J.21.理想气体经可逆多方过程膨胀•过程方程式为PV =C•式中C,”沟为常数.n>l.⑴若/J=2,l mol气体从W膨胀大到匕•温度由T, ≡573 K到T2≈m K •求过稈的功W:(2〉如果气体的Cv.w = 20.9 J・C・moΓ,•求过程的Qz和∆H.解:(】)过程方程式PS=Cm=2∙p=磊W=-[: NV=―匸:翁dV=C(舟一#)=野一響=0S-PX=HR耳一“R蘇=HR(T-T I) = ImoIx & 314 J∙ πκ)Γl∙ K'1 (473~573)K=-831. 4J(2)∆U^ F » C^dT= n Cv.m(T2 ~T3) == 1 molX20. 9J ∙ KT∙(473—573)K=-2090jJ T lC"=G∙u n+R=(20∙9+& 314)J ∙ TnoIτ ∙ Kβl=29.21J ∙ moΓ1∙ K l△H= f 2n C p.f∏dT=n CP^ (T2— Ti)J T I= ImOlX29.21 J ・ moL ・ KTX(473-573)K=-2921J∆U=Q+W(热力学第一定律)Q=∆U-W≡=-2090j-(-83L 4j)≡=-125& 6J.22.在298 K时•冇一定量的单原子理想气体(CV.m = 1.5/?),从始态2000 kPa及20 dm3经下列不同过程,膨胀到终态压力为100 kFa・求各过程的M∕,AH,Q及附. |(1)等温可逆膨胀;(2)绝热可逆膨胀;(3〉以5= I. 3的多方过程可逆膨胀•试在P-V图上画出三种膨胀功的示意图•并比较三种功的大小.解:单原子理想气体・3=号R∙C,m=号R,Z=詮=号I图2—13F a相U圧分大卡砂,_內匕_ 2000X103P8X20X107∏?_, 1, I理想气体状心方程n- RTI-8. 314 J ・moΓl∙ K1X298K~"∙ 14m°1(L)等温可逆膨胀∆U=0,∆H=0W≈-nRT∖n^≈-tιRT In^ (理想气体状态方Spι⅛=p2V2) P2= -16. 14mol×& 314 J ・ mol~,・ K^1×298K -119. 79kJ2=Q+W r=O Q=-W==I19. 79kJ.(2)绝热可逆膨胀Q=O理想气体绝热可逆过程方程式Pi-j TV = P2-TVp1<H>τJ=p1<ι-4>τ3(2000)∙i (298T =(IoO)一专T2IΓ2=89.91K理气绝热过程中W ≡nCv.m<T2-Tι)= 16∙ 14 molXyX8.314 J ∙ moΓ,∙ K*,(89. 91-298)K--4L 88X10,J ∆U≈Q+W≈W≈-41.88X1O3J *∆H=n C h^(-T i) = I6.14 mol×y X& 314 J ∙ moΓl∙ KT ×(89. 91-298)K=-69. 81XIO3J.(3〉多方可逆过程与绝热可逆过程方程式相似故aτ√≡z>21-*τ/(2000)73 (298)】」=(IOO) ^3T2k3T2 = 149. 27KW=器(号一TJ= 16.14molX 普詔]•型T匕KT(149. 27-298)Kn—66. 53kJ∆U=n CV t m ( T: ^~ Ti) = 16.14mol×-∣∙×8. 314 J ・moΓ 1•KTX(149. 27-298)K=-29. 94kJ∆H=nCn.m(T2-T l) = l6.14mol×y X& 314 J ∙ moΓ,•KTX(149. 27-298)K=-49∙ 89kJQ=Q+W(热力学第一定律)Q=∆U-W r=-29. 94kJ一(一66∙ 53kJ) = 36∙ 59kJ.(4)等温可逆膨胀∕>∣½≡p2½求出V2=0. 4m3绝热可逆膨胀∕>1V ∣4 =∕>2v 2i 求出V 2=O. 12m 3 多方过程可逆膨胀Zh⅛, s = ^V 2, 3求出V 2=O. 2 通过0(1)〜(3)的计算,可知杯,如图2-14.23.1 mol 单原子理想气体从始态298 K∙200 kPa.经下列途径使体积加倍•试计算每种途径的终态圧 力及各过程的Q ,W 及 W 的值,画出P-V 示意图,并把2和W 的值按大小次胖排列.(1) 等温可逆膨胀) (2) 绝热可逆膨胀;(3) 沿着^∕Pa=1.0×10*V.∕(dm j ・moΓl )÷6的途牲可逆变化. 解:1 mol 单原子理想气体 C^.β = -∣R.Q.1B = -I-R(1)等温可逆膨胀W=OW=—nRT In^ = -ImQIX& 314 J ・ moL ・ KTX298KXln 孝=-1717. 32J Q=-W=I717. 32J. (2)绝热可逆膨胀Q=OPIVI r ≡P J V J Z *故 Q= ”】(令)≡=200×103Pa伕X2χ連21-镇=鬻=7.7K= ImOlX 售 X8∙314 J ∙ InOr l ∙ K*1 (187. 7-Z98)K= -1375. 55J.V2=2Vι=24.78X10"3m 3p∕Pa≡ 1. OXIO 4V fII (Clm 3 ∙ TnOr l )+6代入数值•求解 6 值 2OOX1O 3 = 1.O× IO 4 × 12. 39+6 6=76100p 2=l× IO 4 XV 2 +∂=1 XIO 4 X24. 78+76100= 32390O(Pa)T =AV2=3239OQFaX24∙ 78X1OT 2~ nR -ImOIx& 314 J ∙ moL ∙ K -'W =_匸 PdV=-£2 (1.0×104V w +6)dV= -[y ×1. 0×104× (Vl-V4)÷76100× (V 2-⅛ )]=^3245. 56J∆U≡ΛCv,m (T 2-Tι)(3)V 1=讐=S 喙蘇3—2.咖E= 965. 4KK 2-15=63. OOXlO 3Pa=1 mol×4×&314 J ∙ moΓl ∙ KTX(965∙ 4-298)K=8323∙ 15J∆LΓ=Q÷H rQ≈∆U -W≈↑1. 57×1O 3J.(4)比较可得W3>W l >W 2f>随丁变大而变大p 3>∕h>p2册力学能变化 4>A3>∆LL,如图2 — 16. 24.某一热BL 的低温热源为313 K,若高温热源分别为: (1) 373 K (在大气压力下水的沸点”(2) 538 K (是压力为5. OXlO 6Pa 下水的沸点)・ 试分别计算热机的理论转换系数.解:(1)热机效3-⅞-I 1-κ=16.08%.T^TX298 K-273 K “一“ ^LT T Wl 273 K 八 33DkJ ∙ I QJ 人 1ICg —30. 68kj系统和环境中得到30. 68kJ 的功.26.有如下反应,设都在298 K 和大气压力下进行,请比较各个反应的2与的大小,并说明这差 别主要是什么因素造成的.(1) C lZ H 22C>1(蔗糖)完全燃烧;(2) CI O H ft (蔡,s)完全氧化为苯二甲酸 C βH 4(COOH 2)(S)I (3) 乙醇的完全燃烧;(4) FbS(S)完全氯化为 Eb(XS)和 5(⅛(gλ解:反应条件为 298 K, 100× IO 3Pa 压力下进行 Δ.H ro (T) = Δ<LΓm (T)+∆^T (1) C 12Hno ne + 1202(g>^12CO l (g)+llH2θ(l) An= 12—12=0 ∆H -∆L∕. (2) Δn<0∆H<∆U.(3) C 2 H 5OH÷3(⅛ (g)-2O⅛ (g) +3H 2O Δn<0 ∆H<∆L7.(4) 2Pbs÷3(⅛ ------- 2PbO+2SC⅛ Δn<0 ∆H<∆L7差别的主要因索在于反应前后气体的物质的虽差M fiiB 当 Δn<0 时.∆H<ΔU 当 Δn>0 时,∆H>∆U.27.0. 500 g 正庚烷放在弹形热量计中,燃烧后温度升高2. 94 K.若热量计本身及其附件的热容量为8. 177 kJ ・K-I •计算298 K 时正庚烷的摩尔燃烧焙(凰热计的平均泯度为298 K).解:GHw(l) + llQ(g)竺 7CO⅛(g)+8H2θ<l)TA373 K(2)热机效率 7=¾^ = 538KzpJS =41 82%.T K 538 K25某电冰箱内的温度为273 K ・空温为298 K ・今欲使1 kg 273 K 的水变 成冰,何最:少需做多少功?已知273 K 时冰的融化热为335 kJ ・kg-*.解:冷冻系数尸籌 W=丑匚耳Q 图 2-16止庚烷燃烧放热反应 ∆U=Q =—& 177kJ ∙ K 1 ×298 K=-24.0lkJ A f U =—= --------- 二?4. O^jeJ --------- = —4817 6kJ ・ mol 勺 d5 π 0∙5X]07⅛g 4*∙wu Inol100. 2 XIr rJ kg ∙ moΓl 正庚烷摩尔燃烧熔ΔcH w (GHιβ∙298K∙z>∙) = Δet∕ιn +∆zιRT= -4817.6kJ ∙ moΓ,+(7-ll)×8.314 kJ ∙ mol"1 ∙ X 10~ X298K=-4827. 5kJ ∙ moΓ,.2&根据下列反应在298.15 K 时的熔变值•计算AgCI(S)的标准摩尔生成给Δ H 紅AgChS,29& 15 K). (1) Afco(4+2HCl(g)—2AgCl(s) + H 2O(l) Δr W∙.ι(29& 15 K) - 32l.9 kJ ∙ moΓ,∣ (2) 2Ag(S)+*Q f (g)-Ag 2(Xs) (3) -∣ H 2 ⅛)+∙∣CI 2 <g)_HCKg) (4) H 2(g)+yO 2(g)-H 2CXI) 解:Ag( S) ÷~-C ∣2( g)—AgCl(S)经(I)Xy+(2)×y÷(3)-(4)×-∣这个计算过程方可得到Δl HX(AgCl,s.29& 15K) = *Δ,H"298. 15K)+*ΔJ H^(29& 15K) + ∆r ‰ 入、吐=×(-324.9)÷y ×(-30. 57) + (-92.31)—*(-285. 84) JkJ ・ mol~, = -127. 13kJ ・ moΓ1.29. 在29& 15 K 及IookPa 压力时•设环丙烷、石零及氢气的燃烧熔∆r ^(298.15 K)分别为一2092 kJ ・moΓ∖-393.8 kJ ・moL 及一285. 84 kJ ・moL.若已知丙烯QH<(g)的标准摩尔生成焙为Δl Hl <298. 15 K) = 2O. SO kJ ・ mol~l .试求:(1) 环丙烷的标准摩尔生成焙4HS,(29& 15 K)I(2) 环丙烷异构化变为丙烯的摩尔反应焙变值Δr HX(298. 15 K). 解:(1 )3C( 5)+3H 2 (g)-C 3 H e (g) ∆r Ht(C 3He,298.15K) = - Y vH∆c Wζ(β)B= -[∆C H; (GHs(g)∙29 & 15K)—3'H :MC(S) .29 & 15K)-3∆eW(H t (g)∙29 & 15K)] = -[-2092-3X(-393. 8) — 3X( — 285∙ 84)]kJ ∙ moΓl =53.08kJ ∙ moΓ∖ (2)C 1H β =GCH=CH2XHl =3(GCH=CH?・298∙ 15K)-Δ(Hζl (GHχ298∙ ISK)= 20. SokJ ∙ moΓ1 —53. 08kJ ∙ moΓ1 = —32. 58kJ ∙ mol~,.30. 根据以下数据•计算乙酸乙商的标准摩尔生成焙(CH J C(XXZ 2H 5.1.29& 15 K) CH3αX)H(l)÷G H 5OH(I)=CH 3CCXX^ H S (1) + H 2O(1) Δf Hζ(29& 15 K) = -9. 20 kJ ∙ TnOr l乙酸和乙醉的标准障尔燃烧席Δt Hζ(298∙15 K)分别为:-874. 54 kJ ・moL 和一1366 kJ ・TnOΓ,, CO z (g),HτO(l)的标准摩尔生成熔分别为:一393・51 kJ ・moL 和一285. 83 kJ ・moΓ,.解:先求出ClhCCKJH(I)和GHsOH(I)的标准摩尔生成焙. CH 3C∞H+2Cλ —2CQ+2Hg∆r‰(29 8. 15 K)--30. 57 kJ ・ moL) ∆r‰(298. 15 K>-92. 31 kJ ・ m 。

物理化学课后答案解析(傅献彩_第五版)

物理化学课后答案解析(傅献彩_第五版)

范文范例 精心整理 word 完美格式
范文范例 精心整理 word 完美格式
范文范例 精心整理 word 完美格式
范文范例 精心整理 word 完美格式
范文范例 精心整理 word 完美格式
范文范例 精心整理 word 完美格式
范文范例 精心整理 word 完美格式
范文范例 精心整理 word 完美格式
范文范例 精心整理 word 完美格式
范文范例 精心整理
第三章 热力学第二定律
word 完美格式
范文范例 精心整理 word 完美格式
范文范例 精心整理 word 完美格式
范文范例 精心整理 word 完美格式
范文范例 精心整理 word 完美格式
范文范例 精心整理 word 完美格式
范文范例 精心整理 word 完美格式
范文范例 精心整理 word 完美格式
范文范例 精心整理 word 完美格式
范文范例 精心整理 word 完美格式
范文范例 精心整理 word 完美格式
范文范例 精心整理 word 完美格式
范文范例 精心整理 word 完美格式
范文范例 精心整理 word 完美格式
范文范例 精心整理 word 完美格式
范文范例 精心整理 word 完美格式
范文范例 精心整理 word 完美格式
范文范例 精心整理 word 完美格式
范文范例 精心整理 word 完美格式
范文范例 精心整理 word 完美格式
范文范例 精心整理 word 完美格式
范文范例 精心整理
第二章 热力学第一定律
word 完美格式
范文范例 精心整理 word 完美格式
范文范例 精心整理 word 完美格式

物理化学傅献彩第五版复习题答案

物理化学傅献彩第五版复习题答案

物理化学傅献彩第五版复习题答案物理化学是化学学科中的一个重要分支,它结合了物理学的原理来研究物质的性质和变化。

傅献彩教授的《物理化学》第五版是许多高校化学专业学生的必修教材。

以下是根据该教材复习题的一些参考答案,供同学们复习参考:第一章热力学基础1. 描述热力学第一定律和第二定律的物理意义。

- 第一定律,即能量守恒定律,表明能量不能被创造或消灭,只能从一种形式转换为另一种形式,或从一个系统转移到另一个系统。

- 第二定律,表明在自发过程中,系统的熵总是增加,这意味着自然界倾向于向更加无序的状态发展。

2. 解释什么是熵,并给出熵变的计算方法。

- 熵是系统无序程度的度量,通常用于描述系统的热力学状态。

熵变可以通过等压或等容过程的积分来计算,例如:\(\Delta S = \int \frac{dQ}{T}\)。

第二章化学平衡1. 简述勒夏特列原理。

- 勒夏特列原理指出,如果一个处于平衡状态的系统受到外部条件的改变(如压力、温度或浓度的改变),系统会自发调整以抵消这种改变,从而重新达到平衡。

2. 描述化学平衡常数及其表达式。

- 化学平衡常数是一个衡量反应在平衡状态下各组分浓度的比值的常数,表达式通常为:\(K = \frac{[C]^c[D]^d}{[A]^a[B]^b}\),其中\(a, b, c, d\)是各组分的系数。

第三章相平衡1. 解释拉乌尔定律及其适用范围。

- 拉乌尔定律指出,在理想溶液中,溶剂的蒸汽压力与其摩尔分数成正比。

该定律适用于理想溶液,即溶质和溶剂之间没有相互作用力的溶液。

2. 描述相图的基本概念及其在物理化学中的应用。

- 相图是表示不同相态(如固体、液体、气体)在不同条件下的共存关系的图形。

在物理化学中,相图用于描述和预测物质在不同温度和压力下的相变行为。

第四章电化学1. 定义法拉第定律及其在电化学中的应用。

- 法拉第定律描述了在电解过程中,通过电极的物质量与通过电极的电荷量成正比的关系。

《物理化学》第五版-(傅献彩主编)复习题答案--(全)

《物理化学》第五版-(傅献彩主编)复习题答案--(全)
微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享 第一章 气 体
微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享1
微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享 微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享2
微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享 微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享11
微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享 微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享12
微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享
第十一章 表面现象
微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享45
微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享 微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享46
微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享 第三章 热力学第二定律
微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享9
微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享 微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享10
微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享 微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享13
微信搜索【大四学长】免费VIP版安卓苹果实用工具,学习资料,电脑软件分享

《物理化学(第五版,傅献彩)》课后习题及答案

《物理化学(第五版,傅献彩)》课后习题及答案

压蒸发热为 40.63kJ·mol-1。当 1mol 液态水,在 373K 和外压为 p时完全蒸发成水蒸气时,
试求:
(1)蒸发过程中体系对环境所作的功。
(2)假定液态水的体积略而不计,试求蒸发过程中的功,并计算所得结果的百分误差。
(3)假定把蒸气看作理想气体,且略去液态水的体积,求体系所作的功。
(4)求(1)中变化的△vapHm 和△vapUm。 (5)解释何故蒸发热大于体系所作的功。
T V
0
T
16.证明:
U V
p
C p
T V
p
p
证:
U V
p
H V
P
p
=
H T
T p V
p
p
=
CP
T V
p
p
证明: CP
CV
p T
V
Hp
T
V
证: CP
CV
HT
U = H p T V T
P
HT
V T
dT P
Hp
T dP
H T
V
H T
解:
Zn (s)+2 H+= Zn2++ H2(g)
VH2
RT p
8.314 291 m3 101325
0.024m 3
W pV pVg nRT 8.314 291J 2419.4J
△rUm=(Q+W)/ =(-152-2.42)kJ·mol-1
3 . 在 373.2K 和 p压力下,使 1molH2O(l)汽化。已知水在气化时吸热 40.69kJ·mol-1。
P
Hp
T Tp
V
代入上式

物理化学-傅献彩-上册习题答案.(DOC)

物理化学-傅献彩-上册习题答案.(DOC)

第二章 热力学第一定律思考题.:1. 一封闭系统,当始终态确定后:(a )当经历一个绝热过程,则功为定值;(b )若经历一个等容过程,则Q 有定值:(c )若经历一个等温过程,则热力学能有定值:(d )若经历一个多方过程,则热和功的和有定值。

解释:始终态确定时,则状态函数的变化值可以确定,非状态函数则不是确定的。

但是热力学能U 和焓没有绝对值,只有相对值,比较的主要是变化量。

2. 从同一始态A 出发,经历三种不同途径到达不同的终态:(1)经等温可逆过程从A→B ;(2)经绝热可逆过程从A→C ;(3)经绝热不可逆过程从A→D 。

试问:(a )若使终态的体积相同,D 点应位于BC 虚线的什么位置,为什么(b )若使终态的压力相同,D 点应位于BC 虚线的什么位置,为什么,参见图12p p (a)(b)图 2.16.解释: 从同一始态出发经一绝热可逆膨胀过程和一经绝热不可逆膨胀过程,当到达相同的终态体积V 2或相同的终态压力p 2时,绝热可逆过程比绝热不可逆过程作功大,又因为W (绝热)=C V (T 2-T 1),所以T 2(绝热不可逆)大于T 2(绝热可逆),在V 2相同时,p=nRT/V,则p 2(绝热不可逆)大于 p 2(绝热可逆)。

在终态p 2相同时,V =nRT/p ,V 2(绝热不可逆)大于 V 2(绝热可逆)。

不可逆过程与等温可逆过程相比较:由于等温可逆过程温度不变,绝热膨胀温度下降,所以T 2(等温可逆)大于T 2(绝热不可逆);在V 2相同时, p 2(等温可逆)大于 p 2(绝热不可逆)。

在p 2相同时,V 2(等温可逆)大于 V 2(绝热不可逆)。

综上所述,从同一始态出发经三种不同过程,当V 2相同时,D 点在B 、C 之间,p 2(等温可逆)>p 2(绝热不可逆)> p 2(绝热可逆)当p 2相同时,D 点在B 、C 之间,V 2(等温可逆)> V 2(绝热不可逆)>V 2(绝热可逆)。

物理化学思考题及参考答案——傅献彩

物理化学思考题及参考答案——傅献彩

物理化学思考题目录第一章热力学第一定律 (2)第二章热力学第二定律 (6)第三章统计热力学初步 (10)第四章溶液 (13)第五章相平衡 (16)第六章化学平衡 (20)第七章电解质溶液 (22)第八章可逆电池的电动势及其应用 (25)第九章电解与极化作用 (29)第十章化学动力学基础 (32)第十一章界面现象 (36)第十二章胶体分散体系与大分子溶液 (38)第一章热力学第一定律1、为什么第一定律数学表示式dU=δQ-δW 中内能前面用微分号d,而热量和功的前面用δ符号?答:因为内能是状态函数,具有全微分性质。

而热量和功不是状态函数,其微小改变值用δ表示。

2、公式H=U+PV中H > U,发生一状态变化后有ΔH =ΔU +Δ(PV),此时ΔH >ΔU吗?为什么?答:不一定。

因为Δ(PV)可以为零、正数和负数。

3、ΔH = Qp , ΔU = Qv两式的适用条件是什么?答:ΔH = Qp此式适用条件是:封闭系等压非体积功为零的体系。

ΔU = Qv此式适用条件是:封闭系等容非体积功为零的体系。

(1)状态确定后,状态函数的值即被确定。

答:对。

(2)状态改变后,状态函数值一定要改变。

答:不对。

如:理想气体等温膨胀过程,U和H的值就不变化。

(3)有一个状态函数值发生了变化,状态一定要发生变化。

答:对。

4、想气体绝热向真空膨胀,ΔU=0,ΔH=0对吗?答:对。

因理想气体绝热向真空膨胀过程是一等温过程。

5、恒压、无相变的单组分封闭体系的焓值当温度升高时是增加、减少还是不变?答:增加。

6、当体系将热量传递给环境后,体系的焓值是增加、不变还是不一定改变?答:不一定改变。

7、等温等压进行的某化学反应,实验测得T1和T2时的热效应分别为Δr H1和Δr H2,用基尔霍夫公式验证时,发现数据不相等。

为什么?解:用基尔霍夫公式计算的Δr H m,1和Δr H m,2是反应物完全变成产物时的值。

而Δr H1和Δr H2是该化学反应达到平衡时实验测得的值。

物理化学傅献彩上册习题答案(供参考)

物理化学傅献彩上册习题答案(供参考)

第二章热力学第一定律思考题.:1. 一封闭系统,当始终态确定后:(a)当经历一个绝热过程,则功为定值;(b)若经历一个等容过程,则Q有定值:(c)若经历一个等温过程,则热力学能有定值:(d)若经历一个多方过程,则热和功的和有定值。

解释:始终态确定时,则状态函数的变化值可以确定,非状态函数则不是确定的。

但是热力学能U和焓没有绝对值,只有相对值,比较的主要是变化量。

2. 从同一始态A出发,经历三种不同途径到达不同的终态:(1)经等温可逆过程从A→B;(2)经绝热可逆过程从A→C;(3)经绝热不可逆过程从A→D。

试问:(a)若使终态的体积相同,D点应位于BC虚线的什么位置,为什么?(b)若使终态的压力相同,D点应位于BC虚线的什么位置,为什么,参见图解释:从同一始态出发经一绝热可逆膨胀过程和一经绝热不可逆膨胀过程,当到达相同的终态体积V2或相同的终态压力p2时,绝热可逆过程比绝热不可逆过程作功大,又因为W(绝热)=C V(T2-T1),所以T2(绝热不可逆)大于T2(绝热可逆),在V2相同时,p=nRT/V,则p2(绝热不可逆)大于p2(绝热可逆)。

在终态p2相同时,V =nRT/p ,V2(绝热不可逆)大于V2(绝热可逆)。

不可逆过程与等温可逆过程相比较:由于等温可逆过程温度不变,绝热膨胀温度下降,所以T2(等温可逆)大于T2(绝热不可逆);在V2相同时,p2(等温可逆)大于p2(绝热不可逆)。

在p2相同时,V2(等温可逆)大于V2(绝热不可逆)。

综上所述,从同一始态出发经三种不同过程,当V2相同时,D点在B、C之间,p2(等温可逆)>p2(绝热不可逆)>p2(绝热可逆)当p2相同时,D点在B、C之间,V2(等温可逆)>V2(绝热不可逆)>V2(绝热可逆)。

总结可知:主要切入点在温度T上,绝热不可逆做功最小。

补充思考题C p,m是否恒大于C v,m?有一个化学反应,所有的气体都可以作为理想气体处理,若反应的△C p,m>0,则反应的△C v,m也一定大于零吗?解释:(1)C p,m不一定恒大于C v,m。

物理化学思考题全集解答-配套高教第五版-南大傅献彩

物理化学思考题全集解答-配套高教第五版-南大傅献彩


ΔU=QV
12.为什么对于理想气体,公式ΔU= nCV,mdT 可用来计算任一过程的ΔU, 并不受定容条件的限制? 答:因为对理想气体,U=f(T),内能仅是温度的函数,从始态出发,不论经什么过程, 达到不同的终态,只要始终态温度分别相同,ΔU 就一定相同。所以公式ΔU= CV,mdT 并不受定容条件的限制。
Байду номын сангаас
公式:nB(ξ)=nB(0)+νBΔξ nB(0)=10mol 按方程式:N2+3H2→2NH3, nN2(3.57)=10-(-1)×3.57=6.43mol 按方程式: N2+ H2→NH3, n'N2(7.14)=10-(-1/2)×7.14=6.43mol 两者结果相同。 15. 根据 Qp,m=QV,m+∑νB(g)RT,Qp,m 一定大于 QV,m 吗?为什么?举例说明。 答:Qp,m 不一定大于 QV,m,其大小比较取决于 ∑νB(g) 的符号,若∑νB(g)>0, 则 Qp,m> QV,m,但若 ∑νB(g)<0, Qp,m<QV,m 例如:H2(g)+ O2(g)—→H2O(l) ΔHm=Qp=-285.9 kJ·mol-1 ∑νB(g)=-1.5<0 QV,m=Qp,m-∑νB(g)RT=-285.8×103+1.5×8.314×298=-282 kJ·mol-1 Qp,m<QV,m 又例如:Zn(s)+H2SO4(aq)—→ZnSO4(aq)+H2(g)↑ Qp,m=-177.9 kJ·mol-1 ∑νB(g)=1>0 QV,m=Qp,m-∑νB(g)RT=-177.9×10-3-8.314×298=-180.37 KJ·mol-1 Qp,m>QV,m 16.“稳定单值的焓值等于零” ; “化合物摩尔生成热就是 1mol 该物质所具有的焓值” 对吗?为什么? 答:不对。稳定单质的焓值并不等于零。但可以说标准状态下稳定单质的规定焓值等 于零,人为规定标准状态下,稳定单质的生成焓,即规定焓为 0。化合物的摩尔生 成热不是 1mol 物质所具有的焓的绝对值,而是相对于生成它的稳定单质的焓的相 对值。即是以标准状态下稳定单质生成热为零作基线,得出的相对值。 17. 证明由键焓计算反应的 ΔHm 的公式是:ΔrHm=(-∑ni i)(反应物-产物) 答:化合物的ΔfH =∑ni(ΔH 原子)-(∑nj j) 而反应热效应 ΔrHm=∑νB(ΔHm,f )B=∑νB[∑ni(ΔH 原子)-∑(nj j)]B =∑νB(∑niΔH 原子)B-∑νB(∑nj j)B 因组成产物与反应物的元素相同,且各种原子的数目也相等, 即 ∑νB(∑niΔH 原子)B=0 便有ΔHm=-∑νB(∑nj j)B =-∑νB(∑nj j)B(反应物)-∑νB(∑nj j)(产物) 若将反应物的计量系数νB 考虑为正值,则上式(-∑νB(∑nj j)B(反应物),便成为 ∑νB(∑nj j)B(反应物),再将一个 B 分子中的j键数 nj 乘上方程式中反应物的计 量系数ν,便是该反应方程中反应物总j键数 nj,改写为 ni,键焓 i,那么, 反应物的总键焓值便为(∑ni i)(反应物)。同理对产物的计量系数考虑为正值, 则为 (∑ni i)(产物)。便得:ΔHm=(∑ni i)(反应物)-(∑ni i)(产物) 。 18. 反应 A(g)+2B(g)—→C(g) 的ΔrHm(298.2K)>0,则此反应进行时必定吸热, 对吗? 为什么? 答:不对。只有在等压下,无非体积功时,Qp=ΔHm,ΔHm>0,故 Qp>0,体系必定 吸热。但在有非体积功,或者非等压条件下,ΔHm≠Qp ,ΔHm>0,Qp 可以小于 0, 等于 0,不一定吸热。例如,绝热容器中 H2 与O2 燃烧,ΔHm>0,但 Q=0, 不吸热。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档