(word完整版)高一数学必修四第一章测试题

合集下载

【优质文档】高一数学必修4第一章测试题及答案

【优质文档】高一数学必修4第一章测试题及答案
=
sin ( sin ) ( cot )
=-tan
------------10
由 sin
3
= 可知
5
是第三象限或者第四象限角。
所以 tan = 3 或 3 44
3
即所求式子的值为
4
-------------14
19.(本小题 15 分)
分 分
解:令 t=cosx, 则 t [ 1,1]
-------------2
3
21. 用图像解不等式。 (16 分 )
① sin x 1 2
② cos 2x 3 2
4
参考答案
一、选择题(每小题 5 分,共 60 分)
1----6 、 BBDCBA 7----12 、 CCDCAB
二、填空题(每小题 6 分,共 30 分)
13. |
2
16.
13
n ,n Z 2
17. 2
14. -660
,2k 5 , k Z ----------8

6
6
( 2)、图略
-------------11

由图可知:不等式的解集为 k
, k 11 , k Z ---------16

12
12
《试卷编写说明》 本试卷三角函数的大框架下,主要借助正弦函数和余弦函数这两种模型,从函数的定义域、值
6
域、单调性、奇偶性,特别是新学习内容 ----- 周期性出发,以这五个方面为主要内容而命制。
二、填空题(每小题 6 分,共 30 分)
13. 终边在坐标轴上的角的集合为 _________.
14. 时针走过 1 小时 50 分钟,则分钟转过的角度是 ______.

高一数学必修四第一章测试题

高一数学必修四第一章测试题

1.与32︒-角终边相同的角为( )A . 36032k k Z ︒︒⋅+∈, B. 360212k k Z ︒︒⋅+∈, C . 360328k k Z ︒︒⋅+∈, D. 360328k k Z ︒︒⋅-∈, 2. 半径为1cm ,中心角为150o 的弧长为( )A .cm 32B .cm 32πC .cm 65D .cm 65π3.点A(x,y)是300°角终边上异于原点的一点,则yx值为( ) A.3 B. - 3 C. 33 D. -334.下列函数中属于奇函数的是( )A. y=cos(x )2π+B. sin()2y x π=- C. sin 1y x =+ D.cos 1y x =-5.要得到函数x y sin =的图象,只需将函数⎪⎭⎫ ⎝⎛-=3sin πx y 的图象 ( )A. 向左平移3π B. 向右平移3π C. 向左平移32π D. 向右平移32π6. 已知点(sin cos tan )P ααα-,在第一象限,则在[02π],内α的取值范围是( ) A.π3π5ππ244⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭U ,, B.ππ5ππ424⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭U ,, C.π3π53ππ2442⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭U ,, D.ππ3ππ424⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭U ,,7. 函数2sin(2)6y x π=+的一条对称轴是( )A. x = 3πB. x = 4πC. x = 2πD. x = 6π8. 函数)32sin(π-=x y 的单调递增区间是( )A .5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦Z k ∈ B .52,21212k k ππππ⎡⎤-++⎢⎥⎣⎦Z k ∈C .5,66k k ππππ⎡⎤-++⎢⎥⎣⎦ Z k ∈ D .52,266k k ππππ⎡⎤-++⎢⎥⎣⎦Z k ∈9.已知函数sin()(0,)2y x πωϕωϕ=+><的部分图象如图所示,则此函数的解析式为( ) A .sin(2)2y x π=+ B .sin(2)4y x π=+C .sin(4)2y x π=+ D .sin(4)4y x π=+ 10.在函数22sin ,sin ,sin(2),cos()323x y x y x y x y ππ===+=+中,最小正周期为π的函数的个数是( )A. 1个B. 2个C. 3个D.4个11.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于( )A.2B. 1C. 0D.2-12.设a 为常数,且1>a ,[0,2x ∈π],则函数1sin 2cos )(2-+=x a x x f 的最大值为( ).A.12+aB.12-aC.12--aD.2a二、填空题(每小题5分,共20分)13. 设角α的终边过点(4,3)P t t -(,0)t R t ∈>且,则2sin cos αα+=14. 函数1y tan 34x π⎛⎫=- ⎪⎝⎭的定义域为15.求使sin 2α>成立的α的取值范围是16 关于函数f(x)=4sin ⎪⎭⎫⎝⎛+3π2x (x ∈R),有下列论断:①函数y=f(x)的表达式可改写为y=4cos(2x-π6);②函数y=f(x)的最小正周期为2π;③函数y=f(x)的图象关于点⎪⎭⎫⎝⎛-0 6π,对称; ④函数y=f(x)的图象可由y=4sin2x 向左平移3π个单位得到. 其中正确的是 .(将你认为正确的论断的序号都填上) 三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 17. (本小题满分10分)(1)化简;已知=αsin 21-,且α是第四象限角,求αcos 、αtan 的值.19.(本小题满分12分)已知tan 1tan 1αα=--,求(1)21sin sin cos ααα+的值;(2)设222sin ()sin (2)sin()322()cos ()2cos()f πθθθθθθπ++π-+--=π+--,求()3f π的值.21(本小题满分12分)已知函数a x x +-=)62sin(2)(f π.(1)求函数f(x)的最小正周期; (2)求函数f(x)的单调递减区间;(3)若]2,0[x π∈时,f(x)的最小值为-2,求a 的值.1.Tan(2x-3π)≤1,则该不等式的解集为______----- 2.把函数f (x )=sin(2x-3π)的图像向左平移3π个单位,再将图像上各点的横坐标变为原来的一半,那么所得的图像的函数表达式为______3.若3π弧度的圆心角所对的弦长为2,这个圆心角所夹的扇形面积是_______4.函数f (x )=2sin(x-3π)(x ]0,[π-∈)的单调递增区间是__________5.若f (x )=2sin(wx+3π)的最小正周期为T ,且T ),(42∈,则正整数w 的最大值是_____________7已知a>0,函数f (x )=-1)(5]2,0[,2)62sin(2≤≤-∈+++x f x b a x a 时,当ππ(1)求常数a ,b 的值(2)设g(x)=)2(π+x f ,且lgg(x)>0,求g(x)的单调区间18.已知sina,cosa 是方程0)12(52522=+++-t t x t x 的两根且a 为锐角,求t 的值19.设函数f(x)=sin(2x+ϕ)(0<<-ϕπ),y=f(x)图像的一条对称轴是直线x=8π (1)求ϕ的值(2)求函数y=f(x)的单调增区间20.已知函数f(x)=2sin(2x-3π)+1,]2,4[x ππ∈(1)求f (x )的最大值和最小值(2)若不等式|f(x)-m|<2,在]2,4[x ππ∈上恒成立,求实数m 的取值范围。

高一数学必修4第一章综合检测题

高一数学必修4第一章综合检测题

第一章综合检测题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.若α是第二象限角,则180°-α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角[答案] A[解析] α为第二象限角,不妨取α=120°,则180°-α为第一象限角.2.sin(-600°)=( )A.12B.32 C .-12 D .-32 [答案] B3.已知角α的终边经过点P (3,-4),则角α的正弦值为( ) A.34 B .-4 C .-45 D.35 [答案] C[解析] x =3,y =-4,则r =x 2+y 2=5, 则sin α=y r =-45.4.函数y =tan ⎝ ⎛⎭⎪⎫x -π4的定义域是( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π4B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-π4C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x ≠k π+π4,k ∈ZD.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+3π4k ∈Z[答案] D[解析] 要使函数有意义,则有x -π4≠π2+k π,k ∈Z ,即x ≠3π4+k π,k ∈Z .5.已知sin(π+α)=13,则cos ⎝ ⎛⎭⎪⎫3π2-α等于( )A .-13 B.13 C .-33 D.33[答案] B[解析] sin(π+α)=-sin α=13,则sin α=-13,cos ⎝ ⎛⎭⎪⎫3π2-α=-sin α=13. 6.函数y =sin ⎝ ⎛⎭⎪⎫2x +π6的一个单调递减区间为( ) A.⎝ ⎛⎭⎪⎫π6,2π3 B.⎝ ⎛⎭⎪⎫-π3,π6 C.⎝ ⎛⎭⎪⎫-π2,π2 D.⎝ ⎛⎭⎪⎫π2,2π3 [答案] A[解析] 令π2+2k π≤2x +π6≤3π2+2k π(k ∈[]),整理得π6+k π≤x ≤2π3+k π,所以仅有⎝ ⎛⎭⎪⎫π6,2π3是单调递减区间.7.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ等于( ) A .-43 B.54 C .-54 D.45[答案] D[解析] sin 2θ+sin θcos θ-2cos 2θ =sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=tan 2θ+tan θ-21+tan 2θ=45. 8.将函数y =sin(x -π3)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向右平移π3个单位,得到的图象对应的解析式是( )A .y =sin 12xB .y =sin(12x -π2)C .y =sin(12x -π6)D .y =sin(2x -π6)[答案] B[解析] y =sin(x -π3)――→横坐标伸长为原来的2倍y =sin(12x -π3)错误!y=sin[12(x -π3-π3]=sin(12x -π2).9.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π2(x ∈R ),下面结论错误的是( )A .函数f (x )的最小正周期为2πB .函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数 C .函数f (x )的图象关于直线x =0对称 D .函数f (x )是奇函数[答案] D[解析] ∵f (x )=sin ⎝ ⎛⎭⎪⎫x -π2=-cos x (x ∈R ), ∴T =2π,在⎣⎢⎡⎦⎥⎤0,π2上是增函数. ∵f (-x )=-cos(-x )=-cos x =f (x ).∴函数f (x )是偶函数,图象关于y 轴即直线x =0对称. 10.已知某帆船中心比赛场馆区的海面上每天海浪高度y (米)可看作是时间t (0≤t ≤24,单位:小时)的函数,记作y =f (t ),经长期观测,y =f (t )的曲线可近似地看成是函数y =A cos ωt +b ,下表是某日各时的浪高数据:A .y =12cos π6t +1B .y =12cos π6t +32C .y =2cos π6t +32D .y =12cos6πt +32[答案] B[解析] ∵T =12-0=12,∴ω=2πT =2π12=π6.又最大值为2,最小值为1,则⎩⎪⎨⎪⎧A +b =2,-A +b =1,解得A =12,b =32,∴y =12cos π6t +32.11.已知函数f (x )=A cos(ωx +φ)的图象如图所示,f ⎝ ⎛⎭⎪⎫π2=-23,则f (0)等于( )A .-23B .-12 C.23 D.12[答案] C[解析] 首先由图象可知所求函数的周期为T =2⎝ ⎛⎭⎪⎫11π12-7π12=2π3,故ω=2π2π3=3.将⎝ ⎛⎭⎪⎫11π12,0代入解析式, 得A cos ⎝ ⎛⎭⎪⎫3×11π12+φ=0,即cos ⎝ ⎛⎭⎪⎫11π4+φ=0,∴11π4+φ=π2+2k π,k ∈Z , ∴φ=-9π4+2k π(k ∈Z ).令φ=-π4,代入解析式得f (x )=A cos ⎝ ⎛⎭⎪⎫3x -π4.又∵f ⎝ ⎛⎭⎪⎫π2=-23, ∴f ⎝ ⎛⎭⎪⎫π2=-A sin π4=-22A =-23∴A =232,∴f (0)=232cos ⎝ ⎛⎭⎪⎫-π4=232cos π4=23.12.已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点M (3π4,0)对称,且在区间[0,π]上是单调函数,则ω+φ=( )A.π2+23B.π2+2 C.π2+32 D.π2+103[答案] A[解析] 由于f (x )是R 上的偶函数,且0≤φ≤π,故φ=π2.图象关于点M (3π4,0)对称,则f (3π4)=0,即sin(3π4ω+π2)=0,所以cos 3ωπ4=0.又因为f (x )在区间[0,π]上是单调函数,且ω>0, 所以ω=23.故ω+φ=π2+23.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.某人的血压满足函数式f (t )=24sin160πt +110,其中f (t )为血压,t 为时间,则此人每分钟心跳的次数为________.[答案] 8014.化简1-2sin4cos4=________. [答案] cos4-sin4[解析] 原式=sin 24+cos 24-2sin4cos4=(sin4-cos4)2=|sin4-cos4|.则sin4<cos4,所以原式=cos4-sin4.15.定义在R 上的函数f (x )既是偶函数,又是周期函数.若f (x )的最小正周期是π,且当x ∈[0,π2]时,f (x )=sin x ,则f (5π3)的值为________.[答案] 32[解析] ∵T =π,∴f (5π3)=f (π+2π3)=f (23π)=f (π-π3)=f (-π3)=f (π3)=32.16.已知函数f (x )=sin ⎝ ⎛⎭⎫2x -π4,在下列四个命题中:①f (x )的最小正周期是4π;②f (x )的图象可由g (x )=sin2x 的图象向右平移π4个单位长度得到;③若x 1≠x 2,且f (x 1)=f (x 2)=-1,则x 1-x 2=k π(k ∈Z ,且k ≠0); ④直线x =-π8是函数f (x )图象的一条对称轴.其中正确命题的序号是________(把你认为正确命题的序号都填上).[答案] ③④[解析] f (x )的最小正周期是T =2π2=π,所以①不正确;f (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π8, 则f (x )的图象可由g (x )=sin2x 的图象向右平移π8个单位长度得到,所以②不正确;当f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4=-1时,有2x -π4=-π2+2k π(k ∈Z ),则x =-π8+k π(k ∈Z ),又x 1≠x 2,则x 1=-π8+k 1π(k 1∈Z ),x 2=-π8+k 2π(k 2∈Z ),且k 1≠k 2,所以x 1-x 2=(k 1-k 2)π=k π(k ∈Z 且k ≠0),所以③正确;当x =-π8时,f (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫-π8-π4=-1,即函数f (x )取得最小值-1,所以④正确.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)设f (θ)= 2cos 3θ+sin 2(2π-θ)+sin (π2θ)-32+2sin 2(π2+θ)-sin (3π2-θ),求f (π3)的值.[解析] 解法一:f (π3)=2cos 3π3+sin 2(2π-π3)+sin (π2+π3)-32+2sin 2(π2+π3)-sin (32π-π3)=2cos 3π3+sin 25π3+sin 5π6-32+2sin 25π6-sin7π6=2×18+34+12-32+2×14+12=-12.解法二:∵f (θ)=2cos 3θ+sin 2θ+cos θ-32+2cos 2θ+cos θ =2cos 3θ+1-cos 2θ+cos θ-32+cos θ+2cos 2θ=2cos 3θ-2-(cos 2θ-cos θ)2+cos θ+2cos 2θ =2(cos 3θ-1)-cos θ(cos θ-1)2+2cos 2θ+cos θ=(cos θ-1)(2cos 2θ+cos θ+2)2cos 2θ+cos θ+2=cos θ-1,∴f (π3)=cos π3-1=-12.18.(本题满分12分)(2011~2012·山东济南一模)已知sin θ=45,π2<θ<π.(1)求tan θ;(2)求sin 2θ+2sin θcos θ3sin 2θ+cos 2θ的值. [解析] (1)∵sin 2θ+cos 2θ=1,∴cos 2θ=1-sin 2θ=925.又π2<θ<π, ∴cos θ=-35.∴tan θ=sin θcos θ=-43. (2)sin 2θ+2sin θcos θ3sin 2θ+cos 2θ=tan 2θ+2tan θ3tan 2θ+1=-857.19.(12分)已知x ∈[-π3,2π3],(1)求函数y =cos x 的值域;(2)求函数y =-3sin 2x -4cos x +4的值域.[解析] (1)∵y =cos x 在[-π3,0]上为增函数,在[0,2π3]上为减函数,∴当x =0时,y 取最大值1; x =2π3时,y 取最小值-12.∴y =cos x 的值域为[-12,1].(2)原函数化为:y =3cos 2x -4cos x +1, 即y =3(cos x -23)2-13,由(1)知,cos x ∈[-12,1],故y 的值域为[-13,154].20.(本题满分12分)已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫12x +π4-1,x ∈R . 求:(1)函数f (x )的最小值及此时自变量x 的取值集合; (2)函数y =sin x 的图象经过怎样的变换得到函数f (x )=3sin ⎝ ⎛⎭⎪⎫12x +π4-1的图象? [解析] (1)函数f (x )的最小值是3×(-1)-1=-4,此时有12+π4=2k π-π2,解得x =4k π-3k π2(k ∈Z ), 即函数f (x )的最小值是-4,此时自变量x 的取值集合是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =4k π-3π2,k ∈Z . (2)步骤是:①将函数y =sin x 的图象向左平移π4个单位长度,得到函数y =sin ⎝ ⎛⎭⎪⎫x +π4的图象; ②将函数y =sin ⎝ ⎛⎭⎪⎫x +π4的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y =sin ⎝ ⎛⎭⎪⎫12x +π4的图象; ③将函数y =sin ⎝ ⎛⎭⎪⎫12x +π4的图象上所有点的纵坐标伸长为原来的3倍(横坐标不变),得到函数y =3sin ⎝ ⎛⎭⎪⎫12x +π4的图象; ④将函数y =3sin ⎝ ⎛⎭⎪⎫12x +π4的图象向下平移1个单位长度,得函数y =3sin ⎝ ⎛⎭⎪⎫12+π4-1的图象. 21.(本题满分12分)已知函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的周期为π,且图象上一个最低点为M (2π3,-2). (1)求f (x )的解析式;(2)当x ∈[0,π12]时,求f (x )的最值.[解析] (1)由最低点为M (2π3,-2),得A =2. 由T =π,得ω=2πT =2ππ=2. 由点M (2π3,-2)的图象上,得2sin(4π3+φ)=-2, 即sin(4π3+φ)=-1. 所以4π3+φ=2k π-π2,(k ∈Z ). 故φ=2k π-11π6(k ∈Z ). 又φ∈(0,π2), 所以φ=π6.所以f (x )=2sin(2x +π6). (2)因为x ∈[0,π12],所以2x +π6∈[π6π3]. 所以当2x +π6=π6,即x =0时,f (x )取得最小值1; 当2x +π6=π3,即x =π12时,f (x )取得最大值 3. 22.(本题满分12分)已知f (x )=2sin(2x +π6)+a +1(a 为常数). (1)求f (x )的单调递增区间;(2)若当x ∈[0,π2]时,f (x )的最大值为4,求a 的值; (3)求出使f (x )取得最大值时x 的取值集合.[解析] (1)由2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,得k π-π3≤x ≤k π+π6,k ∈Z ,所以f (x )的单调递增区间为[k π-π3,k π+π6](k ∈Z ).(2)当x ∈[0,π2]时,2x +π6∈[π6,76π], 故当2x +π6=π2,即x =π6时,f (x )有最大值a +3=4,所以a =1. (3)当sin(2x +π6)=1时f (x )取得最大值, 此时2x +π6=2k π+π2,k ∈Z ,即x =k π+π6,k ∈Z ,此时x 的取值集合为{x |x =k π+π6,k ∈Z }.。

数学必修四第一章试卷(含答案).

数学必修四第一章试卷(含答案).

必修四第一章姓名:___________班级:___________考号:___________ 一、单选题1.若sin cos 0αα⋅<,则α的终边在( ) A .第一或第二象限 B .第一或第三象限C .第一或第四象限D .第二或第四象限 2.sin (﹣285°)=( ) A .624- B .624--C .624+ D .624+-3.已知sinx +cosx =15(0≤x <π),则tanx 的值等于( ). A .-34 B .-43C .34D .434.若tan 3α=,则2sin cos 3cos()-5cos 2ααπαα+-- 的值为( )A .12B .1-2C .514D .74-5.化简12sin 50cos50-︒︒的结果为( )A .sin50cos50︒-︒B .cos50sin50︒-︒C .sin50cos50︒+︒D .sin50cos50-︒-︒ 6.sin110cos40cos70sin320︒︒+︒︒=( ) A .12B .32C .12-D .32-7.设函数()()002f x Asin x A πωϕωϕ⎛⎫=+ ⎪⎝⎭>,>,<的部分图象如图所示,则f (0)=( ) A .3 B .32C .2D .1 8.函数f (x )=lg (1+2cosx )的定义域为( ) A .-2233k k ππππ⎛⎫++ ⎪⎝⎭,()k Z ∈ B .22-2233k k ππππ⎛⎫++ ⎪⎝⎭, ()k Z ∈C .-2266k k ππππ⎛⎫++ ⎪⎝⎭, ()k Z ∈D .22263k k ππππ⎛⎫++⎪⎝⎭, ()k Z ∈9.下列函数中,最小正周期为π,且图象关于直线x =3π对称的是( )A .sin(2)6y x π=+B .sin(2)3y x π=+ C .sin(2)3y x π=- D .sin(2)6y x π=-10.把函数sin 2)6y x π=+(的图象沿x 轴向右平移4π个单位,再把所得图象上各点的纵坐标不变,横坐标变为原来的12,可得函数()y g x = 的图象,则()g x 的解析式为( ) A .()sin(4)12g x x π=-B .()sin(4)6g x x π=-C .()sin(4)3g x x π=-D .2()sin(4)3g x x π=-11.已知函数f (x )=cos 23x πω⎛⎫+⎪⎝⎭(x ∈R ,ω>0)的最小正周期为2π,为了得到函数g (x )=sin ωx 的图象,只要将y =f (x )的图象( )A .向左平移76π个单位长度 B .向右平移76π个单位长度 C .向左平移724π个单位长 D .向右平移724π个单位长度12.要得到函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数2cos2y x =的图象 A .向左平移3π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向右平移6π个单位长度 二、填空题 13.若扇形的面积为38π、半径为1,则扇形的圆心角为____________. 14.已知α 为第三象限角,则2α所在的象限是_________________. 15.设0a <,角θ的终边与单位圆的交点为(3,4)P a a -,那么sin 2cos θθ+值等于_________________. 16.已知1sin cos 5θθ-=,则sin cos θθ的值是__________. 三、解答题17.已知sin()3cos(2)0απαπ---=. (1)求tan α的值;(2)求333sin ()5cos (3)33sin ()2πααππα-+--的值.18.已知函数()sin cos cos sin 22x x x x f x ππ⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭,x ∈R . (1)求12f π⎛⎫⎪⎝⎭的值; (2)求函数()f x 的单调递增区间.19.函数23()sin cos 3sin 2f x x x x ωωω=⋅-+(0>ω)的部分图象如图所示. (1)求ω的值; (2)求()f x 在区间,33ππ⎡⎤-⎢⎥⎣⎦的最大值与最小值.20.已知函数()sin(2)f x x φ=+是奇函数,且02φπ<<. (1)求φ;(2)求函数f (x )的单调增区间.21.(1)利用“五点法”画出函数1()sin()26f x y x π==+在长度为一个周期的闭区间的简图. 列表:126x π+x y(1)作图:(2)并说明该函数图象可由sin (R)y x x =∈的图象经过怎么变换得到的.(3)求函数()f x 图象的对称轴方程.22.已知函数2()23cos sin(π2)f x x x =+-. (Ⅰ)求函数()f x 的最小正周期. (Ⅱ)求函数()f x 在ππ,66⎡⎤-⎢⎥⎣⎦上的最值. (Ⅲ)求函数()f x 在π0,2⎡⎤⎢⎥⎣⎦上的单调区间.参考答案1.D 【解析】 【分析】分sin 0α>,cos 0α<和sin 0α<,cos 0α>两种情况讨论得解. 【详解】若sin 0α>,cos 0α<,则α的终边在第二象限; 若sin 0α<,cos 0α>,则α的终边在第四象限, 故选D. 【点睛】本题主要考查三角函数在各象限的符号,意在考查学生对该知识的理解掌握水平和分析推理能力. 2.C 【解析】 【分析】利用诱导公式化简sin (﹣285°)可得:sin (﹣285°)=sin (45°+30°),利用两角和的正弦公式计算得解。

高中数学必修四第一章测试题

高中数学必修四第一章测试题

高中数学必修四第一章测试题题目一:选择题1. 设函数f(x) = 2x^2 + 3x - 4,求f(2)的值。

A. 8B. 10C. 12D. 142. 已知a = 3,b = -2,若2a - b = k,则k的值为:A. 4B. 6C. 8D. 103. 设函数g(x) = x^3 - 2x^2 + x,求g(-1)的值。

A. 3B. -1C. -3D. -54. 设函数h(x) = 2x + 1,求h^(-1)(x)的表达式。

A. 2x - 1B. 1 - 2xC. (x - 1)/2D. (1 - x)/25. 已知点A(2,3),点B(x,5)与点C(4,7)共线,求x的值。

A. 1B. 2C. 3D. 4题目二:计算题1. 计算下列各式的值:(注:将结果化简到最简形式)(1)3(2 + 4) - 5(1 - 6)(2)2^3 × 4^2 ÷ (8 × 4^(-1))(3)(4^2)^(-1) × (2^(-2))^3(4)(1 + 2 + ⋯ + 100) ÷ (1 + 2/3 + ⋯ + 100/101)2. 求解以下线性方程组:(1)2x + 3y = 74x - y = 1(2)3x - 2y = 8x + 4y = -33. 已知三角形ABC,AB = 5,AC = 6,BC = 7,求三角形的面积。

4. 已知函数f(x) = x^2 + 3x - 2与y轴交于点A,与x轴交于点B和点C.(1)求函数f(x)的图像在x轴上的截距。

(2)求线段AC的长度。

5. 某企业为员工制定奖金方案:员工的基本工资为3000元,销售额达到或超过10万元则额外奖励3%的销售额,销售额未达到10万元则不额外奖励。

(1)某员工的销售额为12万元,他的实际工资是多少?(2)如果某员工的销售额为8万元,他的实际工资是多少?题目三:证明题1. 证明:对于任意实数a和b,有(a + b)^2 = a^2 + 2ab + b^2。

人教A版数学必修4第一章测试题(一).doc

人教A版数学必修4第一章测试题(一).doc

高中数学学习材料马鸣风萧萧*整理制作云南省昭通市实验中学必修4第一章测试题(一)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列各角中与0330角的终边相同的是 ( )A .0510 B .0150 C . 060- D .0390-2.已知α为第三象限角,则2α所在的象限是 ( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限3.扇形的周长是16,圆心角是2rad ,则扇形的面积是 ( ) A .16 B .32 C .π16 D .π324.α是第二象限角,)5,(x P 为其终边上一点,且x 42cos =α,则αs i n 的值为 ( ) A .410 B .46 C .42 D .410- 5.已知0tan .cos <θθ,那么角θ是 ( )A .第一或第二象限B .第二或第三象限C .第三或第四象限D .第一或第四象限6.若21tan =α,)2,(ππα∈,则αcos 的值等于 ( ) A .553-B .552-C .553D .55-7.化简)cos 1)(tan 1sin 1(ααα-+的结果是 ( ) A .αsin B .αcos C .αsin 1+ D .αcos 1+8.1717cos sin 44ππ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭的值是 ( )A .2B .2-C .0D .229.函数)42sin()(π+=x x f 的单调减区间为 ( )A .∈++k k k ],85,8[ππππZ B .∈++k k k ],285,82[ππππZC .∈+-k k k ],8,83[ππππZD .Z k k k ∈+-],82,832[ππππ10.函数)32sin(2)(π+=x x f 的最大值及取最大值时x 的集合为( )A .2,}2|{π=x x B .2,},22|{Z k k x x ∈+=ππC .2,},12|{Z k k x x ∈+=ππD .2-,},125|{Z k k x x ∈+-=ππ11.要得到函数2sin 35y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数2sin3y x =的图象( )A .向左平移5π个单位B .向右平移5π个单位 C .向左平移15π个单位 D .向右平移15π个单位12.函数)||,0,0)(sin(πϕωϕω<>>+=A x A y 的图象如右,则函数的解析式是( )A .)652sin(2π-=x yB .)652sin(2π+=x yC .)62sin(2π-=x yD .)62sin(2π+=x y二、填空题:本大题共4小题,每小题5分,共20分。

高一数学必修四第一章综合能力检测

高一数学必修四第一章综合能力检测

第一章综合能力检测一、选择题(本大题共12个小题,每小题5分,共60分) 1.下列等式成立的是( ) A .sin π3=12 B .cos 5π6=-12 C .sin(-7π6)=12 D .tan 2π3= 3答案:C解析:sin π3=32,cos 5π6=-32,tan 2π3=-3, sin(-7π6)=12.2.函数y =45sin(2x +π3)的图像( ) A .关于原点对称 B .关于点(-π6,0)对称 C .关于y 轴对称 D .关于直线x =π6对称 答案:B3.如果sin(π+A )=-12,那么cos(32π-A )的值是( ) A .-12 B.12 C .-32 D.32答案:A解析:由sin(π+A )=-12,得sin A =12,则cos(32π-A )=-sin A =-12.4.函数y =sin(ωx +φ)(x ∈R ,ω>0,0≤φ<2π)的部分图像如图,则( )A .ω=π2,φ=π4 B .ω=π3,φ=π6 C .ω=π4,φ=π4 D .ω=π4,φ=5π4 答案:C解析:依图像可知,T 4=3-1=2,∴T =8,ω=2πT =π4.将点(1,1)代入y =sin(π4x +φ)中,得1=sin(π4+φ).∴π4+φ=π2,∴φ=π4.5.设0≤x ≤2π,使sin x ≥12且cos x <22同时成立的x 值是( ) A.π6≤x ≤5π6 B.π6≤x ≤74π C.5π6≤x ≤74π D.π4<x ≤56π答案:D解析:由正弦曲线得sin x ≥12时,x ∈[π6,56π];由余弦曲线得cos x <22时,x ∈(π4,74π),∴sin x ≥12且cos x <22时,x ∈(π4,56π].6.若函数y =sin(2x +θ)的图像向左平移π6个单位后恰好与y =sin2x 的图像重合,则θ的最小正值是( )A.4π3B.π3 C.5π6 D.5π3答案:D解析:将y =sin(2x +θ)的图像左移π6个单位得y =sin[2(x +π6)+θ]=sin(2x +π3+θ),故π3+θ=2k π,k ∈Z ,因此θ的最小正值为5π3.7. [2011·陕西卷]设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则y =f (x )的图像可能是( )答案:B解析:由f (-x )=f (x )得,f (x )为偶函数,所以图像关于y 轴对称. 又f (x +2)=f (x )得f (x )的周期为2,故选B.8. 令a =sin(π-1),b =sin2,c =cos1,则它们的大小顺序是( ) A .a >b >c B .b >a >c C .c >b >a D .c >a >b 答案:B解析:c =sin(π2+1),且π>π2+1>π-1>2>π2,又y =sin x 在[π2,π]上是减函数,∴sin(π2+1)<sin(π-1)<sin2,即c <a <b .9.已知f (x )=cos2x -1,g (x )=f (x +m )+n ,则使g (x )为奇函数的实数m ,n 的可能取值为( )A .m =π2,n =-1 B .m =π2,n =1 C .m =-π4,n =-1 D .m =-π4,n =1答案:D解析:显然n =1, ∴g (x )=cos(2x +2m ).∵g (x )为奇函数,∴cos2m =0,∴2m =k π+π2. 经检验D 符合条件.10.已知f (x )=sin(2x +φ)的一个单调区间是[π3,5π6],则φ的一个值是( )A .-π6 B.π6 C .-π2 D.π2答案:A解析:排除法,若φ=±π2,f (x )=±cos2x 不合题意,若φ=π6,也不适合题意,故选A.11.下列命题正确的个数是( ) ①函数y =sin|x |不是周期函数;②函数y =tan x 在定义域内是增函数; ③函数y =|cos 2x +12|的周期是π2; ④函数y =sin(5π2+x )是偶函数. A .0 B .1 C .2 D .3答案:B解析:用排除法将错误说法淘汰.对于①,从其图像可以说明其不是周期函数;对于②,∵0<π,而tan0=tanπ,∴y =tan x 在定义域内不是增函数;对于③,y =|cos2(x +π2)+12|=|12-cos2x |≠|cos2x +12|,因此π2不是y =|cos2x +12|的周期;对于④,f (x )=sin(5π2+x )=sin(2π+π2+x )=cos x ,显然是偶函数.12. [2011·辽宁卷]已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图像如图,则f (π24)=( )A. 2+ 3B. 3C. 33D. 2- 3答案:B解析:由图像可知:T 2=3π8-π8=π4,即T =π2. 所以ω=2.由图像知,图像过点(3π8,0), 所以0=A tan(2×3π8+φ), 即34π+φ=k π(k ∈Z ).所以φ=k π-3π4(k ∈Z ),又|φ|<π2, 所以φ=π4,再由图像过点(0,1), 所以A =1,则f (x )=tan(2x +π4), 故f (π24)=tan(2×π24+π4)=tan π3= 3.二、填空题(本大题共4个小题,每小题5分,共20分) 13.函数y =sin(π6-2x )的单调递减区间是________. 答案:[k π-π6,k π+π3],k ∈Z解析:∵y =sin(π6-2x )=-sin(2x -π6),∴令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,∴k π-π6≤x ≤k π+π3,k ∈Z .14.y =lg(cos x -sin x )的定义域是________. 答案:(2k π-34π,2kx +π4)(k ∈Z )解析:由cos x -sin x >0知,cos x >sin x ,由单位圆知2k π-34π<x <2k π+π4.15.如下图是函数y =A sin(ωx +φ)+k (|φ|<π2)在一个周期内的图像,那么这个函数的一个解析式是______.答案:y =3sin(2x +π3)-1解析:由图可知A =3,k =-1,ω=2,且当x =-π6时,sin(2x +φ)=0,又|φ|<π2,故φ=π3.16.已知函数f (x )=2sin ωx (ω>0)在区间[-π3,π4]上的最小值是-2,则ω的最小值是________.答案:32解析:函数f (x )=2sin ωx (ω>0)在区间[-π3,π4]上的最小值是-2,则ωx 的取值范围是[-ωπ3,ωπ4],∴-ωπ3≤-π2,或ωπ4≥3π2,∴ω≥32,即ω的最小值等于32.三、解答题(本大题共6个小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)17. (本小题满分10分)设tan(α+8π7)=a , 求sin (15π7+α)+3cos (α-13π7)sin (20π7-α)-cos (α+22π7)的值. 解:原式=sin (π+8π7+α)+3cos (α+8π7-3π)sin (4π-8π7-α)-cos (α+8π7+2π) =-sin (8π7+α)-3cos (α+8π7)-sin (8π7+α)-cos (α+8π7) =tan (8π7+α)+3tan (8π7+α)+1=a +3a +1. 18. (本小题满分12分)[2011·浙江卷]已知函数f (x )=A sin(π3x +φ),x ∈R ,A >0,0<φ<π2,y =f (x )的部分图像如图所示,P 、Q 分别为该图像的最高点和最低点,点P 的坐标为(1,A ).求f (x )的最小正周期及φ的值. 解:(1)由题意得,T =2ππ3=6.因为P (1,A )在y =A sin(π3x +φ)的图像上, 所以sin(π3+φ)=1. 又因为0<φ<π2, 所以φ=π6.19.(本小题满分12分)函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的图像与x 轴的交点中,相邻两个交点之间的距离为π2,且图像上一个最低点为M (2π3,-2).(1)求f (x )的解析式;(2)当x ∈[π12,π2]时,求f (x )的值域. 解:(1)由最低点为M (2π3,-2)得A =2.由x 轴上相邻两个交点之间的距离为π2得T 2=π2,即T =π, ∴ω=2πT =2ππ=2.由点M (2π3,-2)在图像上得2sin(2×2π3+φ)=-2, 即sin(4π3+φ)=-1, 故4π3+φ=2k π-π2,k ∈Z ,∴φ=2k π-116π. 又φ∈(0,π2),∴φ=π6,故f (x )=2sin(2x +π6). (2)∵x ∈[π12,π2],∴2x +π6∈[π3,7π6], 当2x +π6=π2,即x =π6时,f (x )取得最大值2; 当2x +π6=7π6,即x =π2时,f (x )取得最小值-1, 故f (x )的值域为[-1,2].20.(本小题满分12分)[2011·福建卷]已知等比数列{a n }的公比q =3,前3项和S 3=133.(1)求数列{a n }的通项公式;(2)若函数f (x )=A sin(2x +φ)(A >0,0<φ<π)在x =π6处取得最大值,且最大值为a 3,求f (x )的解析式.解:(1)由q =3,S 3=133得a 1(1-33)1-3=133,解得a 1=13.所以a n =13×3n -1=3n -2. (2)由(1)知a n =3n -2,所以a 3=3. 因为函数f (x )的最大值为3,所以A =3. 因为当x =π6时,f (x )取得最大值,所以sin(2×π6+φ)=1,又0<φ<π,故φ=π6.所以函数f (x )的解析式为f (x )=3sin(2x +π6).21.(本小题满分12分)已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)为偶函数,且其图像上相邻的一个最高点和最低点之间的距离为4+π2.(1)求函数f (x )的表达式;(2)若sin α+f (α)=23,求2sin 2(3π-α)tan (3π+α)的值. 解:(1)∵f (x )为偶函数,∴sin(-ωx +φ)=sin(ωx +φ),即2sin ωx cos φ=0恒成立,∴cos φ=0,又0≤φ≤π,∴φ=π2.又其图像上相邻的一个最高点和最低点之间的距离为4+π2,设其最小正周期为T ,则T 2=4+π2-22=π.∴T =2π,∴ω=1,∴f (x )=cos x .(2)∵原式=2sin 2αtan α=2sin αcos α,又sin α+cos α=23,∴1+2sin αcos α=49,∴2sin αcos α=-59,即原式=-59.22.(本小题满分12分)设函数f (x )=2sin(2x +π4)+2.(1)用“五点法”作出函数f (x )在一个周期内的简图;(2)求函数f (x )的周期、最大值、最小值及当函数取最大值和最小值时相应的x 值的集合;(3)求函数f (x )的单调递增区间;(4)说明函数f (x )的图像可以由y =sin x (x ∈R )的图像经过怎样的变换而得到.解:(1)列表:函数图像如下图:(2)周期T =π,f (x )max =2+2,此时x ∈{x |x =k π+π8,k ∈Z }.f (x )min =2-2,此时x ∈{x |x =k π+58π,k ∈Z }.(3)函数f (x )的单调递增区间为:[k π-38π,k π+π8](k ∈Z ).(4)先将y =sin x (x ∈R )的图像向左平移π4个单位长度,然后将所得图像上各点的横坐标缩小为原来的12(纵坐标不变),再将所得图像上各点的纵坐标伸长为原来的2倍(横坐标不变),最后将所得图像向上平移2个单位长度,就可得到f(x)=2sin(2x+π4)+2的图像.。

(完整word)高中数学必修四第一章测试题

(完整word)高中数学必修四第一章测试题

必修四第一章复习题一、选择题(本大题共12小题,每题5分,共60分)1.下列说法中,正确的是( )A .第二象限的角是钝角B .第三象限的角必大于第二象限的角C .-831°是第二象限角D .-95°20′,984°40′,264°40′是终边相同的角2.若点(a,9)在函数y =3x 的图象上,则tan a π6的值为( ) A .0 B.33 C .1 D. 33.若|cos θ|=cos θ,|tan θ|=-tan θ,则θ2的终边在( )A .第一、三象限B .第二、四象限C .第一、三象限或x 轴上D .第二、四象限或x 轴上4.如果函数f (x )=sin(πx +θ)(0<θ<2π)的最小正周期是T ,且当 x =2时取得最大值,那么( )A .T =2,θ=π2B .T =1,θ=πC .T =2,θ=πD .T =1,θ=π25.若sin ⎝ ⎛⎭⎪⎫π2-x =-32,且π<x <2π,则x 等于( ) A.43π B.76π C.53π D.116π6.已知a 是实数,而函数f (x )=1+a sin ax 的图象不可能是( )7.将函数y =sin x 的图象向左平移φ(0≤φ<2π)个单位长度后,得到y =sin ⎝ ⎛⎭⎪⎫x -π6的图象,则φ=( ) A.π6 B.5π6 C.7π6 D.11π68.若tan θ=2,则2sin θ-cos θsin θ+2cos θ的值为( ) A .0 B .1 C.34 D.549.函数f (x )=tan x 1+cos x的奇偶性是( ) A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数10.函数f (x )=x -cos x 在(0,+∞)内( )A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点cos A )=m ,lg 11-cos A =n ,则lgsin A B .m -nD.12(m -n ) C , 对称;②函数f (x )在区间⎝ ⎛⎭⎪⎫-π12,5π12内是增函数; ③由y =3sin2x 的图象向右平移π3个单位长度可以得到图象C ,其中正确命题的个数是( )A .0B .1C .2D .3二、填空题(本大题共4小题,每题5分,共20分.将答案填在题中横线上)13.已知sin ⎝ ⎛⎭⎪⎫α+π2=13,α∈⎝ ⎛⎭⎪⎫-π2,0,则tan α=________. 14.函数y =3cos x (0≤x ≤π)的图象与直线y =-3及y 轴围成的图形的面积为________.15.已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.16.给出下列命题:①函数y =cos ⎝ ⎛⎭⎪⎫23x +π2是奇函数; ②存在实数x ,使sin x +x =2;③若α,βα<β,则tan α<tan β;④x =π8是函数y =sin ⎝ ⎛⎭⎪⎫2x +5π4的一条对称轴; ⑤函数y =sin ⎝⎛⎭⎪⎫2x +π3的图象关于点⎝ ⎛⎭⎪⎫π12,0成中心对称. 其中正确命题的序号为__________.小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知方程sin(α-3π)=2cos(α-4π),求sin (π-α)+5cos (2π-α)2sin ⎝ ⎛⎭⎪⎫3π2-α-sin (-α)的值.18.(12分)在△ABC 中,sin A +cos A =22,求tan A 的值.19.(12分)已知f (x )=sin ⎝⎛2x (1)求函数f (x )(2)求函数f (x )(3)函数f (x )换得到?20.(12分)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象过点P ⎝ ⎛⎭⎪⎫π12,0,图象与P 点最近的一个最高点坐标为⎝ ⎛⎭⎪⎫π3,5. (1)求函数解析式;(2)求函数的最大值,并写出相应的x 的值;(3)求使y ≤0时,x 的取值范围.21.(12分)已知cos ⎝ ⎛⎭⎪⎫π2-α=-2sin ⎝ ⎛⎭⎪⎫π2+β,且0<α<π22.(12分)已知函数f (x )=x 2+2x tan θ-1,x ∈[-1,3],其中θ∈⎝ ⎛⎭⎪⎫-π2,π2. (1)当θ=-π6时,求函数的最大值和最小值;(2)求θ的取值范围,使y =f (x )在区间[-1,3]上是单调函数(在指定区间为增函数或减函数称为该区间上的单调函数).。

必修四第一章测试卷(含答案)

必修四第一章测试卷(含答案)

必修四第一章单元练习一、选择题1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A.B.C 的关系是( )A .B=A ∩CB .B ∪C=C C .A CD .A=B=C2.下列各组角中,终边相同的角是( )A .π2k 与)(2Z k k ∈+ππB .)(3k 3Z k k ∈±πππ与C .ππ)14()12(±+k k 与 )(Z k ∈D .)(66Z k k k ∈±+ππππ与3.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( )A .2B .1sin 2C .1sin 2D .2sin 4. 已知)20(παα<<的正弦线与余弦线相等,且符号相同,那么α的值为( )A .ππ434或B .ππ4745或 C .ππ454或 D .ππ474或5. 已知αααααtan ,5cos 5sin 3cos 2sin 那么-=+-的值为( )A .-2B .2C .1623 D .-1623 6、已知34tan =x ,且x 在第三象限,则=x cos ( )A.54 B. 54- C. 53 D.53-7. 1sin 、1cos 、1tan 的大小关系为( )A .1tan 1cos 1sin >> B .1cos 1tan 1sin >>C .1cos 1sin 1tan >>D .1sin 1cos 1tan >>8. 设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于 ( )A .33B .-33 C .3 D .-39. 函数)4sin(π+=x y 在下列哪个区间为增函数.( )A .]4,43[ππ-B .]0,[π-C .]43,4[ππ-D .]2,2[ππ-10. 函数)42sin(log 21π+=x y的单调减区间为( )A .)(],4(Z k k k ∈-πππ B .)(]8,8(Z k k k ∈+-ππππC .)(]8,83(Z k k k ∈+-ππππD .)(]83,8(Z k k k ∈++ππππ11. 函数)252sin(π+=x y的图象的一条对称轴方程是( )A .2π-=xB .4π-=x C .8π=xD .π45=x12.已知)2cos()(),2sin()(ππ-=+=x x g x x f ,则下列结论中正确的是 ( ) A.函数)(x g x f y⋅=)(的周期为π2 B.函数)()(x g x f y ⋅=的最大值为1C.将)(x f 的图像向左平移2π单位后得)(x g 的图像D.将)(x f 的图像向右平移2π单位后得)(x g 的图像二、填空题13、函数()sin(2)3f x x π=-的图象向左平移3π个单位,再将图像上的横坐标缩短为原来的12,那么所得图像的函数表达式为__________________. 14、已知21tan -=x ,则1cos sin 3sin 2-+x x x =______. 15、设)cos()sin()(21απαπ+++=x n x m x f ,其中m 、n 、1α、2α都是非零实数,若,1)2004(=f 则=)2005(f .16.函数])32,6[)(8cos(πππ∈-=x x y的最小值是必修四第一章单元练习答题卷一、选择题二、填空题13.____________________ 14.____________ 15.______________ 16._________________三、解答题 17、若xx x x x tan 2cos 1cos 1cos 1cos 1-=+---+, 求角x 的取值范围.18、已知),0(πθ∈,且137cos sin -=+θθ,求θtan 。

(word版)高一数学必修四第一章测试题

(word版)高一数学必修四第一章测试题

宣威市第九中学第一次月考 高一数学试卷本试卷分第一卷选择题和第二卷非选择题两局部,总分值 150分,时间120分钟.第一卷(选择题共60分)一.选择题〔每题5分,共60分〕1.与32角终边相同的角为〔〕号学A .k36032,kZ B.k36212,kZC .k360328,kZD. k360 328,kZ2.半径为1cm ,中心角为150o 的弧长为〔〕A .2cmB.2 c mC .5cmD .5cm3363.点A(x,y)是300°角终边上异于原点的一点,那么y值为()名x姓3A.3B.-3C.D.-334.以下函数中属于奇函数的是〔〕A. y=cos(x )B. ysin(x)C. ysinx1 D. y cosx 12 2级5.要得到函sinx 的图象,只需将函数sinx 的图象 〔 〕数y y班3A.向左平移B.向右平移C.向左平移2D.向右平移233336. 点P(sin cos,tan )在第一象限,那么在[0,2π]内的取值范围是〔〕A.C.π3π5,Uπ,π44π3π53,Uπ,π2 4 42B.D.ππU5,π,π24ππ3,π,π247 .函数y2sin(2x)的一条对称轴是〔〕A.x=B.x=4C.x=2D.x=68 .函数ysin(2x)的单调递增区间是〔〕3A.12k,5kZB.2k,52k kZ 121212C.6k,5k kZD.2k,52k kZ 666y9.函数ysin(x )(0,)的局部1 2图象如下列图,那么此函数的解析式为〔〕A.ysin(2x)B.ysin(2x)O37x488C.ysin(4x)D.y sin(4x)1410.在函数ysinx,ysinx,ysin(2x2),ycos(x2)中,最小正周期为的323函数的个数是()个个个个11.设f(x)是定义域为R,最小正周期为3的函数,假设f(x)cosx,(x),22sinx,(0x那么f(15)等于〔〕4A .2B.1 C.0D.2 221 2.设为常数,且a1,x[0,2,那么函数()cos22sin1〕fx x ax的最大值为〔. A.2a1 B.2a1C.2a1D.a2第二卷(非选择题共90分)二、填空题〔每题5分,共20分〕1 3.设角α的终边过点P(4t,3t)(tR,且t0),那么2sincos=1 4.函数ytan1x的定义域为341 5.求使sin3成立的的取值范围是216关于函数f(x)=4sin 2xπ(x∈R),有以下论断:①函数y=f(x)的表达式可改写为y=4cos(2x-π);6②函数y=f(x)的最小正周期为2π;③函数y=f(x)的图象关于点π对称;,6④函数y=f(x)的图象可由y=4sin2x向左平移个单位得到..(3)其中正确的选项是将你认为正确的论断的序号都填上一、选择题〔每题5分,共60分〕12345678910111 2二、填空题〔每题5分,共20分〕13、14 、15 、16 、三、解答题〔共70分,解容许写出文字说明,证明过程或演算步骤〕〔本小题总分值10分〕(1)化简12sin100cos1001cos2170;cos3500(2)sin 1是第四象限角,求cos、tan的值.,且218.〔本小题总分值12分〕sincos1,其中是ABC的一个内角.51〕求sincos的值;2〕判断ABC是锐角三角形还是钝角三角形;〔3〕求sin cos 的值.19.〔本小题总分值12分〕tan1,求〔1〕1tansin2的值;1sincossin2()sin2(2)sin()3〔2〕设f()22cos()2,求f()的值.cos2()320.〔本小题总分值12分〕函数f(x)2sinx sinx,0x2.假设方程f(x)m有两个不同的实数根,求实数m的取值范围.21〔本小题总分值12分〕函数f(x)2sin(2x)a.6〔1〕求函数f(x)的最小正周期;〔2〕求函数f(x)的单调递减区间;(3)假设x[0,]时,f(x)的最小值为-,求的值. 2222.〔本小题总分值12分〕函数yAsin(x)(A0,0,||)的一段图象如下列图,根2据图象求:〔1〕f(x)的解析式;y〔2〕函数f(x)的图象可以由函数ysinx(x R)的图象经过怎样的变换得到?3512x123。

(完整版)高中数学必修四第一章测试(可编辑修改word版)

(完整版)高中数学必修四第一章测试(可编辑修改word版)

3 2 22 2232 第一章 基本初等函数(Ⅱ)的测试时间:120 分钟 满分:150 分一、选择题(本大题共 12 小题,每小题 5 分,共 60 分)1.(2016·陕西延川县期中)半径为 π cm ,中心角为 120°的弧长为 ( ) π A.3π2cm B. 32π cm C. 3 12π2 cm D. 3cm 3π2.(2016·桂林全州学段考)如果 sin(π+A )=-2,那么 cos ( 2-A )等于( )1 A .-2 1 B.2C. D.- 3.若点 P (sin2,cos2)是角 α 终边上一点,则角 α 的终边所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限4右.图是函数 f (x )=A sin ωx (A >0ω,>0)一个周期的图象则,f (1)+f (2)+f (3) +f (4)+f (5)+f (6)的值等于()A. B.C .2+D .27πsin 10cosπ 5.给出下列各函数值:①sin100°;②cos(-100°);③tan(-100°);④ 17π .其中符号为负的是()A .①B .②C .③D .④ tan 9 π16.把函数 y =sin (x +6)图象上各点的横坐标缩短为原来的2倍(纵坐标不变),再将图象π向右平移3个单位,那么所得图象的一条对称轴方程为( )π A. x =-2 π B. x =-4 π C. x =8 1 πD. x =47.(2016·山西大同一中测试)若 0<α<2π,且 sin α< ,cos α> ,利用三角函数线得到角 α2 的取值范围是()π ππ5π π5πA.(-3,3)B.(0,3)2sin αcos α-cos αC.( 3 ,2π)D.(0,3)∪( 3 ,2π)8.化简 + 2 - - 2 等于( )1 sin α sin α cos α11 A .tan α B.C .-tan αD .-tan αtan α32 2π ππ 5π 2π 2π9. 设 a =sin 7 ,b =cos 7 ,c =tan 7 ,则()A .a <c <bB .a <b <cC .b <c <aD .b <a <cπ10.(2016·上海高考)设 a ∈R ,b ∈[0,2π].若对任意实数 x ,都有 sin (3x -3)=sin(ax +b ),则满足条件的有序实数对(a ,b )的对数为() A .1B .2C .3D .411.已知函数 f (x )=A sin(ωx +φ)+m (A >0,ω>0)的最大值是 4,最小值是 0,该函数的π π图象与直线 y =2 的两个相邻交点之间的距离为4,对任意的 x ∈R ,满足 f (x )≤|A sin (12ω+φ)|+m ,且 f (π)<f (4),则下列符合条件的函数的解析式是() π7πA .f (x )=2sin (4x +6)+2B .f (x )=2sin (2x + 6 )+2π7πC .f (x )=2sin (4x +3)+2D .f (x )=2sin (4x + 6)+212.(2016·山西榆社中学期中)函数 f (x )=A sin(ωx +φ)(A ,ω,φ 是常数,A >0,ω>0)的部分图象如图所示,下列结论:π①最小正周期为 π;②将 f (x )的图象向左平移6个单位,所得到的函数是偶函数;12π 14π 5π ③f (0)=1; ④f ( 11 )<f ( 13); ⑤f (x )=-f( 3-x ).其中正确的是( )A .①②③B .②③④C .①④⑤D .②③⑤二、填空题(本大题共 4 小题,每小题 5 分,共 20 分) 13.sin(-120°)cos1 290°+ cos(-1 020°)sin(-1 050°)=.14.(2016·河南灵宝高级中学期中)已知函数 f (x )=3sin (ωx -6)(ω>0)和 g (x )=2cos(2x +φ)+1 的图象的对称轴完全相同,若 x ∈[0,2],则 f (x )的取值范围是.221+2sin(3π-α)cos(α-3π)sin(α-2 )-1-sin2(2 +α)3π5π32ππ2π15.(2016·河南洛阳八中月考)函数y=f(cos x)的定义域为[2kπ-6,2kπ+3 ](k∈Z),则函数y=f(x)的定义域为.sin x+cos x+|sin x-cos x|16.已知函数f(x)=2,则下列结论正确的是.π①f(x)是奇函数;②f(x)的值域是[-,1];③f(x)是周期函数;④f(x)在[0,2]上递增.三、解答题(本大题共6 小题,共70 分)17.(10 分)化简,其中角α 的终边在第二象限.18.(12 分)已知函数y=A sin(ωx+φ)的部分图象如图所示(ω>0),试求它的表达式.1 19.(12 分)(2016·山西大同一中期中)已知α 是一个三角形的内角,且sinα+cosα=.5(1)求tanα 的值;1(2)用tanα 表示2 -并求其值.2sin αcos αx π20.(12 分)(2016·银川九中期中)已知函数f(x)=3sin(2+6)+3.(1)用五点法画出这个函数在一个周期内的图象;(必须列表)(2)求它的振幅、周期、初相、对称轴方程;(3)说明此函数图象可由y=sin x 在[0,2π]上的图象经怎样的变换得到.21.(12 分)设函数f(x)=sin(2ωx+3)++a(其中ω>0,a∈R),且f(x)的图象在y 轴右[ ]ππ3 66.A 依题意得,经过图象变换后得到的图象相应的解析式是 y =sin [2(x -π)+π]=sin 7π侧的第一个最低点的横坐标为 6.(1) 求 ω 的值;π 5π(2) 如果 f (x )在区间 - , 上的最小值为3,求 a 的值.22.(12 分)已知函数 f (x )=log a cos (2x -3)(其中 a >0,且 a ≠1).(1) 求它的定义域;(2) 求它的单调区间;(3)判断它的奇偶性;(4)判断它的周期性,如果是周期函数,求出它的周期.2π 2π2详解答案1.D 120°= 3 ,∴弧长为 3,故选 D.1 1 3π12.A sin(π+A )=-2,∴sin A =2,cos ( 2 -A )=-sin A =-2,故选 A. 3.D ∵2 弧度是第二象限角∴sin2>0,cos2<0. ∴点 P 在第四象限,∴角 α 的终边在第四象限,故选 D.2π π πx4.A 易知 A =2,由ω =8,得 ω=4,∴f (x )=2sin 4,又由对称性知,原式=f (1)= π = 2,故选 A.2sin 45.B ①sin100°>0;②cos(-100°)=cos100°<0;③tan(-100°)=-tan100°>0;④∵sin7π7π 17π sin 10cosπ 10>0,cosπ=-1,tan 9<0,∴ 17π >0.其中符号为负的是②,故选 B. tan 93 6(2x -2)=π-cos2x ,注意到当 x =-2时,y =-cos(-π)=1,此时 y =-cos2x 取得最大值,因此π直线 x =-2是该图象的一条对称轴,故选 A .32 3 4π ( )( 33 3 π 2π7.D 如图示,满足 sin α< 的角 α 为(0,3)∪( 3 ,2π),满足1 π 5π cos α>2的角 α 为(0,3)∪( 3 ,2π),所以符π 5π合条件的角 α 为(0,3)∪( 3 ,2π),故选 D.8.B 原式= cos α(2sin α-1) 1-cos 2α+sin 2α-sin αcos α(2sin α-1) cos α(2sin α-1) = =2sin 2α-sin α 1= .故选 B. tan αsin α(2sin α-1) 5π 2π 2π9.D a =sin 7 =sin 7 <tan 7=c .2π π 2π 3π cos 7 =sin (2- 7 )=sin 14, 3π 2π 3π 2π∵14< 7 ,∴sin 14<sin 7.故 b <a <c . π π10.B sin (3x -3)=sin (3x -3+2π)=5π 5π ππ 4π sin (3x + 3 ),(a ,b )=(3, 3 ),又 sin (3x -3)=sin [π-(3x -3)]=sin (-3x + 3 ),(a ,b )= (-3, 3 ),因为 b ∈[0,2π],所以只有这两组.故选 B.π 2π π 11.D 由题意得Error!解得Error!由题可知周期 T =2,由T = ω =2得 ω=4,于是函π π π数 f (x )=2sin(4x +φ)+2.又由题可知 x = 是函数的对称轴,故 4× +φ=k π+ , 则 φ=k π+12 12 2π π 6(k ∈Z ),又因为 f (π)<f(4),验证选项 A 、D ,可得选项 D 正确.7π π 7π7π 3π12.C 由图象可知,A =2,T =(12-3)×4=π,∴ω=2,当 x =12时,2×12+φ= 2,∴φ= π π π,∴f (x )=2sin 2x + 故①正确;f (0)=2sin = 3,故③不正确,故选 C.13.1解析:原式=-sin120°cos210°+cos60°sin30°= 3 1 1 - 2× - )+ × =1.2 2 2331 23π π 3π 3 2π π解析:由题可知,f (x )与 g (x )的周期相同,∴T = 2 =π,∴ω=2,则 f (x )=3sin (2x -6), 当 0≤x ππ π 5π≤2x - 3 f (x )≤3. ≤2时,-6 6≤ 6 ,∴- ≤ 15.[-2,1]π 2π 1 1解析:∵2k π-6≤x ≤2k π+ 3 ,k ∈Z .∴-2≤cos x ≤1.∴f (x )的定义域为[-2,1].16.②③解析:f (x )=Error!∴f (x )的图象如图所示.依据图象可知②③正确.17. 解 : 原 式 = 1+2sin[2π+(π-α)]cos[(α-π)-2π] -sin( 2 -α)- 1-sin 2[2π+(2+α)]1+2sin (π-α)cos (α-π) (cos α-sin α)2 = = .cos α- 1-cos 2α∵α 是第二象限角,∴sin α>0,cos α-sin α<0. sin α-cos αcos α-|sin α| 于是,原式= - =-1.cos α sin αT 5π π π 2π18.解:∵2= 6 - = ,ω>0,∴T =π,ω= T =2.3 2 π π 2π ∵图象过点(3,0),∴f (3)=A sin ( 3 +φ)=0, 2π∴ 3+φ=2k π+π,k ∈Z , π令 k =0,得 φ=3.又图象过点(0, ),由 A sin (2 × 0+ )= 得,A = 3. 2 3 2π∴所求表达式为 y = sin (2x +3).19.解:(1)已知 α 是一个三角形的内角,∴0<α<π,sin α>0.3 24 2 - 2 22 2- 4 7 2 -2 π2 π1 1 24由sin α+cos α= ,得 1+2sin αcos α= ,∴2sin αcos α=- ,∴cos α<0,∴(sin α-cos α)2=1-5 25 2549 7 4 32sin αcos α= ,∴sin α-cos α= .∴sin α= ,cos α=- ,25 5 5 54∴tan α=- . 31 sin 2α+cos 2αtan 2α+1(-3)2+1 251 25 (2) = = = sin α cos α sin α cos α tan α 120.解:(1)列表(-3)2-1 = .∴ = .sin α cos α 7x π - 3 2π 3 5π 3 8π 3 11π 3 x π+ 2 6 0 π 2π 3π 2 2π y3633π x π π 2π (2) 周期 T =4π,振幅 A =3,初相 φ=6,由 + =k π+ ,得 x =2k π+ (k ∈Z )即为对称轴方程;2 6 23π π(3) ①由 y =sin x 的图象上各点向左平移 φ=6个长度单位,得 y =sin (x +6)的图象;②由 y =sin (x +6)的图象上各点的横坐标伸长为原来的 2 倍(纵坐标不变),得 y =sinx π(2+6)的图象;x π③由 y =sin (2+6)的图象上各点的纵坐标伸长为原来的 3 倍(横坐标不变),得 y =3sinx π(2+6)的图象;x πx π④由 y =3sin (2+6)的图象上各点向上平移 3 个长度单位,得 y =3sin (2+6)+3 的图象.7π π 3π 121.解:(1)依题意知,2× 6 ω+3= 2 ⇒ω= .(2)由(1)知 f (x )=sin (x +3)+ +a ,32 3+1 π π π 5π π 7π又当 x ∈[-3, 6 ]时,x +3∈[0, 6 ],1 π故-2≤sin (x +3)≤1,π 5π 1 从而 f (x )在[-3, 6 ]上取最小值-2++a . 1 3 因此- + +a = 3,解得 a = .222πππππ22.解:(1)由题意知 cos (2x -3)>0,∴2k π-2<2x -3<2k π+2(k ∈Z ).即 k π-12<x <k π+5ππ5π 12(k ∈Z ).故定义域为(k π-12,k π+12)(k ∈Z ).π π2π π(2)由 2k π≤2x -3≤(2k +1)π(k ∈Z ),得 k π+6≤x ≤k π+ 3 (k ∈Z ).即 cos (2x -3)的单调π 2π 减区间为[k π+6,k π+ 3]ππ π π(k ∈Z ).由 2k π-π≤2x -3≤2k π(k ∈Z ),得 k π-3≤x ≤k π+6(k ∈Z ).即 cos (2x -3)的单π π调增区间为[k π-3,k π+6](k ∈Z ).π πππ5π∴函数 u =cos (2x -3)在(k π-12,k π+6](k ∈Z )上是增函数,在[k π+6,k π+12)(k ∈Z )上 是减函数. ∴当 a >1 时,f (x )的单调增区间为 π π(k π-12,k π+6](k ∈Z ). π 5π单调减区间为[k π+6,k π+12)(k ∈Z ).当 0<a <1 时,f (x )的单调增区间为π 5π[k π+6,k π+12)(k ∈Z ),单调减区间为π π(k π-12,k π+6](k ∈Z ).(3)∵f (x )的定义域不关于原点对称, ∴函数 f (x )既不是奇函数,也不是偶函数.(4)∵f (x +π)=log a cos [2(x +π)-3]=log a cos (2x -3)=f (x ).∴函数 f (x )的周期为 T =π.。

高一人教A版必修四数学第一章检测试题

高一人教A版必修四数学第一章检测试题

必修四第一章检测一、选择题1.函数f(x)=ln x−2x的零点所在的大致区间是() A.(1,2) B.(e,3) C.(2,e) D.(e,+∞)解析:f(1)=ln 1−21=−2<0,f(2)=ln 2−22=ln 2e<ln 1=0,f(e)=ln e−2e=1−2e>0,f(3)=ln 3−23>0,则f(2)f(e)<0,所以函数f(x)=ln x−2x的零点所在的大致区间是(2,e).答案:C2.sin(-600°)=()A.12B.√32C.-12D.-√32答案:B3.函数y=tan(x-π4)的定义域是()A.{x|x≠π4} B.{x|x≠-π4} C.{x|x≠kπ+π4,k∈Z} D.{x|x≠kπ+3π4,k∈Z}解析:要使函数有意义,则有x-π4≠π2+kπ,k∈Z,即x≠3π4+kπ,k∈Z.答案:D4.若角α是第二象限角,则点P(sin α,cos α)在()A.第一象限B.第二象限C.第三象限D.第四象限解析:∵α是第二象限角,∴sin α>0,cos α<0,∴点P(sin α,cos α)在第四象限.故选D.答案:D5.已知sin(α-π4)=13,则cos(π4+α)等于()A.2√23B.-2√23C.13D.-13解析:cos(π4+α)=sin[π2-(π4+α)]=sin(π4-α)=-sin(α-π4)=-13.答案:D6.函数y=sin (2x +π6)的一个单调递减区间为( ) A.(π6,2π3) B.(-π3,π6) C.(-π2,π2) D.(π2,3π2)解析:令π2+2k π≤2x+π6≤3π2+2k π(k ∈Z ),整理得π6+k π≤x ≤2π3+k π,所以四个选项仅有(π6,2π3)是单调递减区间.答案:A7.下列四个函数中,以π为最小正周期,且在区间(π2,π)内为减函数的是( ) A .y=sin 2xB .y=2|cos x|C .y=-tan xD .y=cos x2解析:选项A 中,当x ∈(π2,π)时,2x ∈(π,2π),则y=sin 2x 在(π2,π)内不是减函数,排除选项A;选项B 中,结合y=2|cos x|的图象可知它在(π2,π)内是增函数,排除选项B;选项D 中,T=2π12=4π,排除选项D;很明显,y=tan x 在(π2,π)内是增函数,则y=-tan x 在(π2,π)内是减函数,故选C . 答案:C8.为了得到函数y=sin(2x+1)的图象,只需把函数y=sin 2x 的图象上所有的点( ) A .向左平行移动12个单位长度 B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度 解析:∵y=sin(2x+1)=sin 2(x +12),∴需要把y=sin 2x 图象上所有的点向左平移12个单位长度即得到y=sin(2x+1)的图象. 答案:A9.函数y=2sin (πx 6-π3)(0≤x ≤9)的最大值与最小值之和为( ) A.2-√3B.0C.-1D.-1-√3解析:由0≤x ≤9,可得-π3≤π6x-π3≤7π6,所以-√3≤2sin (π6x -π3)≤2,所以最大值为2,最小值为-√3,最大值与最小值之和为2-√3. 答案:A10.已知函数f (x )=A sin(ωx+φ)+B 的一部分图象如图,若A>0,ω>0,|φ|<π2,则( )A .B=4B .φ=π6C .ω=1D .A=4解析:由图象得,{A +B =4,-A +B =0,∴{A =2,B =2.又T=4(5π12-π6)=π,∴ω=2. ∴2×π6+φ=π2,∴φ=π6.答案:B11.函数y=2sin (π6-2x)(x ∈[0,π])为增函数的区间是 ( ) A .[0,π3]B .[π12,7π12]C .[π3,5π6] D .[5π6,π]解析:由2x-π6∈[2kπ+π2,2kπ+3π2](k ∈Z ),得k π+π3≤x ≤k π+5π6,又x ∈[0,π],∴x ∈[π3,5π6].答案:C12.设ω是正实数,函数f (x )=2cos ωx 在[0,2π3]上单调递减,则ω的值可以是( )A .12B .2C .3D .4解析:因为函数f (x )=2cos ωx 在[0,T2]上单调递减,所以要使函数f (x )=2cos ωx (ω>0)在[0,2π3]上单调递减,则2π3≤T 2,即T ≥4π3,所以T=2πω≥4π3,解得ω≤32.结合选项知,ω的值可以是12.故选A . 答案:A 二、填空题13.已知cos (π6-α)=23,则sin (α-2π3)= .解析:∵sin (π3+α)=sin [π2-(π6-α)]=cos (π6-α)=23,∴sin (α-2π3)=sin [(π3+α)-π]=-sin (π3+α)=-23. 答案:-2314.设函数f (x )=sin(ωx+φ)(ω>0,0<φ<π)图象的相邻两条对称轴之间的距离为π2,且函数y=f (x +π2)为偶函数,则f (x )的解析式为 .解析:由题设知12T=π2,所以T=π,所以ω=2πT =2,又y=f (x +π2)为偶函数,所以函数f (x )的图象关于直线x=π2对称,所以sin(π+φ)=1或sin(π+φ)=-1. 因为0<φ<π,所以φ=π2. 所以f (x )=sin (2x +π2)=cos 2x. 答案:f (x )=cos 2x15.已知函数f (x )=sin (2x -π4),下列四个命题:①f (x )的最小正周期是4π;②f (x )的图象可由g (x )=sin 2x 的图象向右平移π4个单位长度得到; ③若x 1≠x 2,且f (x 1)=f (x 2)=-1,则x 1-x 2=k π(k ∈Z ,且k ≠0); ④直线x=-π8是函数f (x )图象的一条对称轴.其中正确命题的序号是 (把你认为正确命题的序号都填上). 解析:f (x )的最小正周期是T=2π2=π,所以①不正确; f (x )=sin [2(x -π8)],则f (x )的图象可由g (x )=sin 2x 的图象向右平移π8个单位长度得到,所以②不正确;当f (x )=sin (2x -π4)=-1时,有2x-π4=-π2+2k π(k ∈Z ), 则x=-π8+k π(k ∈Z ),又x 1≠x 2,则x 1=-π8+k 1π(k 1∈Z ),x 2=-π8+k 2π(k 2∈Z ),且k 1≠k 2,所以x 1-x 2=(k 1-k 2)π=k π(k ∈Z ,且k ≠0),所以③正确;当x=-π8时,f (x )=sin [2(-π8)-π4]=-1,即函数f (x )取得最小值-1,所以④正确. 答案:③④16.已知函数f (x )={2x ,x <2,且x ≠0,-(x -3)2+2,x ≥2,若关于x 的方程f(x)−k =0有唯一一个实数根,则实数k 的取值范围是____________________.解析:在平面直角坐标系内画出f (x )的图象,如图所示:当直线y=k 与y=f (x )图象交于一点时,k 的取值范围是k ∈[0,1)∪(2,+∞). 答案:[0,1)∪(2,+∞) 三、解答题17.(1)求值:sin 2120°+cos 180°+tan 45°-cos 2(-330°)+sin(-210°); (2)化简:(sinα-1sinα)(cosα-1cosα)(tanα+1tanα).解:(1)原式=(√32)2-1+1-cos230°+sin 30°=(√32)2-1+1-(√32)2+12=12.(2)原式=sin 2α-1sinα·cos 2α-1cosα·(sinαcosα+cosαsinα)=-cos 2αsinα·-sin 2αcosα·1sinαcosα=1. 18.已知sin θ=45,π2<θ<π.(1)求tan θ;(2)求sin 2θ+2sinθcosθ3sin 2θ+cos 2θ的值.解:(1)∵sin 2θ+cos 2θ=1,∴cos 2θ=1-sin 2θ=925.又π2<θ<π,∴cos θ=-35.∴tan θ=sinθcosθ=-43.(2)sin 2θ+2sinθcosθ3sin 2θ+cos 2θ=tan 2θ+2tanθ3tan 2θ+1=-857.19.已知函数f (x )=3sin (12x +π4)-1,x ∈R .(1)求函数f (x )的最小值及此时自变量x 的取值集合;(2)函数y=sin x 的图象经过怎样的变换得到函数f (x )=3sin (12x +π4)-1的图象?解:(1)函数f (x )的最小值是3×(-1)-1=-4,此时有12x+π4=2k π-π2(k ∈Z ),解得x=4k π-3π2(k ∈Z ), 即函数f (x )的最小值是-4,此时自变量x 的取值集合是{x |x =4kπ-3π2,k ∈Z}.(2)步骤:①将函数y=sin x 的图象向左平移π4个单位长度,得到函数y=sin (x +π4)的图象;②将函数y=sin (x +π4)的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y=sin (12x +π4)的图象;③将函数y=sin (12x +π4)的图象上所有点的纵坐标伸长为原来的3倍(横坐标不变),得到函数y=3sin (12x +π4)的图象;④将函数y=3sin (12x +π4)的图象向下平移1个单位长度,得函数y=3sin (12x +π4)-1的图象.20.已知函数y=A sin(ωx+φ)(A>0,ω>0,|φ|<π)的一段图象如图所示.(1)求此函数的解析式; (2)求此函数在(-2π,2π)内的递增区间. 解:(1)由图可知,其振幅为A=2√3,因为T2=6-(-2)=8, 所以周期为T=16,所以ω=2πT =2π16=π8,此时解析式为y=2√3sin (π8x +φ).因为点(2,-2√3)在函数y=2√3sin (π8x +φ)的图象上,所以π8×2+φ=2k π-π2(k ∈Z ), 所以φ=2k π-3π4(k ∈Z ).又|φ|<π,所以φ=-3π4.故所求函数的解析式为y=2√3sin (π8x -3π4).(2)由2k π-π2≤π8x-3π4≤2k π+π2(k ∈Z ),得16k+2≤x ≤16k+10(k ∈Z ), 所以函数y=2√3sin (π8x -3π4)的递增区间是[16k+2,16k+10](k ∈Z ).当k=-1时,递增区间为[-14,-6];当k=0时,递增区间为[2,10],与定义区间求交集得此函数在(-2π,2π)内的递增区间为(-2π,-6]和[2,2π). 21.已知sin α+cos α=-15.(1)求sin (π2+α)·cos (π2-α)的值;(2)若π2<α<π,且角β的终边经过点P (-3,√7),求1sin (π-α)+1cos (π+α)+2cos (-β-2π)的值. 解:(1)∵sin α+cos α=-15,∴(sin α+cos α)2=125,即1+2sin αcos α=125,∴sin (π2+α)·cos (π2-α)=sin α·cos α=-1225.(2)由(1)得,(sin α-cos α)2=1-2sin αcos α=4925.又π2<α<π,∴sin α-cos α>0,∴sin α-cos α=75. 又∵角β的终边经过点P (-3,√7),∴cos β=-34,∴1sin (π-α)+1cos (π+α)+2cos (-β-2π)=1sinα−1cosα+2cosβ=cosα-sinαsinα·cosα+2cosβ=3512−83=14.22.已知函数f (x )=a sin (2ωx +π6)+a2+b (x ∈R ,a>0,ω>0)的最小正周期为π,函数f (x )的最大值是74,最小值是34.(1)求ω,a ,b 的值;(2)指出f (x )的单调递增区间.解:(1)由函数的最小正周期为π,得2π2ω=π,∴ω=1.又f (x )的最大值是74,最小值是34, 则{a +a2+b =74,-a +a2+b =34,解得{a =12,b =1.(2)由(1)知f (x )=12sin (2x +π6)+54.当2k π-π2≤2x+π6≤2k π+π2(k ∈Z ),即k π-π3≤x ≤k π+π6(k ∈Z )时,f (x )单调递增,∴f (x )的单调递增区间为[kπ-π3,kπ+π6](k ∈Z ).。

人教版高一数学必修四测试题(含详细答案)

人教版高一数学必修四测试题(含详细答案)

高一数学试题(必修4) (特别适合按14523顺序的省份) 必修4 第一章 三角函数(1)一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A∩CB .B ∪C=CC .A CD .A=B=C22120s i n 等于 ( ) A 23±B 23C 23-D 21 3.已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为( )A .-2B .2C .2316 D .-23164.下列函数中,最小正周期为π的偶函数是 ( )A.y=sin2xB.y=cos 2xC .sin2x+cos2x D. y=x x 22tan 1tan 1+-5 若角0600的终边上有一点()a ,4-,则a 的值是 ( )A 34B 34-C 34± D36. 要得到函数y=cos(42π-x )的图象,只需将y=sin 2x的图象 ( ) A .向左平移2π个单位 B.同右平移2π个单位C .向左平移4π个单位 D.向右平移4π个单位7.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将 整个图象沿x 轴向左平移2π个单位,沿y 轴向下平移1个单位,得到函数y=21sinx 的图象则y=f(x)是 ( )A .y=1)22sin(21++πx B.y=1)22sin(21+-πx C.y=1)42sin(21++πx D. 1)42sin(21+-πx8. 函数y=sin(2x+25π)的图像的一条对轴方程是 ( ) A.x=-2π B. x=-4π C .x=8πD.x=45π9.若21cos sin =⋅θθ,则下列结论中一定成立的是 ( )A.22sin =θ B .22sin -=θC .1cos sin =+θθD .0cos sin =-θθ10.函数)32sin(2π+=x y 的图象( )A .关于原点对称B .关于点(-6π,0)对称C .关于y 轴对称D .关于直线x=6π对称 11.函数sin(),2y x x R π=+∈是 ( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数C .[,0]π-上是减函数D .[,]ππ-上是减函数 12.函数2cos 1y x =+的定义域是 ( ) A .2,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ B .2,2()66k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ C .22,2()33k k k Z ππππ++∈⎡⎤⎢⎥⎣⎦D .222,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦二、填空题:13. 函数])32,6[)(8cos(πππ∈-=x x y 的最小值是 . 14 与02002-终边相同的最小正角是_______________15. 已知,24,81cos sin παπαα<<=⋅且则=-ααsin cos . 16 若集合|,3A x k x k k Z ππππ⎧⎫=+≤≤+∈⎨⎬⎩⎭,{}|22B x x =-≤≤, 则B A =_______________________________________三、解答题:17.已知51cos sin =+x x ,且π<<x 0. a) 求sinx 、cosx 、tanx 的值. b) 求sin 3x – cos 3x 的值.18 已知2tan =x ,(1)求x x 22cos 41sin 32+的值 (2)求x x x x 22cos cos sin sin 2+-的值19. 已知α是第三角限的角,化简ααααsin 1sin 1sin 1sin 1+---+20.已知曲线上最高点为(2,2),由此最高点到相邻的最低点间曲线与x 轴交于一点(6,0),求函数解析式,并求函数取最小值x 的值及单调区间必修4 第一章 三角函数(2)一、选择题:1.已知0tan ,0sin ><θθ,则θ2sin 1-化简的结果为 ( ) A .θcos B. θcos - C .θcos ± D. 以上都不对 2.若角α的终边过点(-3,-2),则 ( )A .sin α tan α>0B .cos α tan α>0C .sin α cos α>0D .sin α cot α>0 3 已知3tan =α,23παπ<<,那么ααsin cos -的值是 ( ) A 231+-B 231+- C 231- D 231+4.函数)22cos(π+=x y 的图象的一条对称轴方程是 ( )A .2π-=x B. 4π-=x C. 8π=x D. π=x5.已知)0,2(π-∈x ,53sin -=x ,则tan2x= ( ) A .247 B. 247- C. 724 D. 724-6.已知31)4tan(,21)tan(-=-=+παβα,则)4tan(πβ+的值为 ( )A .2 B. 1 C. 22D. 2 7.函数xx xx x f sin cos sin cos )(-+=的最小正周期为 ( )A .1 B. 2πC. π2D. π8.函数)32cos(π--=x y 的单调递增区间是 ( )A .)(322,342Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ B. )(324,344Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ C .)(382,322Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D. )(384,324Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ 9.函数x x y cos sin 3+=,]2,2[ππ-∈x 的最大值为 ( )A .1 B. 2 C. 3 D.23 10.要得到)42sin(3π+=x y 的图象只需将y=3sin2x 的图象( )A .向左平移4π个单位 B .向右平移4π个单位 C .向左平移8π个单位 D .向右平移8π个单位11.已知sin(4π+α)=23,则sin(43π-α)值为 ( )A.21 B. —21C. 23D. —2312.若).(),sin(32cos 3sin 3ππφφ-∈-=-x x x ,则=φ ( )A. 6π-B.6π C. 65π D. 65π-二、填空题13.函数tan 2y x =的定义域是14.)32sin(3π+-=x y 的振幅为 初相为15.求值:00cos20sin202cos10-=_______________ 16.把函数)32sin(π+=x y 先向右平移2π个单位,然后向下平移2个单位后所得的函数解析式为_____________2)322sin(--=πx y ___________________三、解答题17 已知1tan tan αα,是关于x 的方程2230x kx k -+-=的两个实根,且παπ273<<,求ααsin cos +的值18.已知函数x x y 21cos 321sin+=,求: (1)函数y 的最大值,最小值及最小正周期;(2)函数y 的单调递增区间19. 已知βαtan tan 、是方程04332=++x x 的两根,且)2,2(ππβα-∈、, 求βα+的值20.如下图为函数)0,0,0()sin(>>>++=ϕωϕωA c x A y 图像的一部分(1)求此函数的周期及最大值和最小值(2)求与这个函数图像关于直线2=x 对称的函数解析式必修4 第三章 三角恒等变换(1)一、选择题:1.cos 24cos36cos66cos54︒︒︒︒-的值为 ( )A 0 B12 C 32 D 12-2.3cos 5α=-,,2παπ⎛⎫∈ ⎪⎝⎭,12sin 13β=-,β是第三象限角,则=-)cos(αβ( )A 3365-B 6365C 5665D 1665- 3.设1tan 2,1tan x x +=-则sin 2x 的值是 ( )A 35B 34-C 34D 1- 4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为 ( )A 47-B 47C 18D 18-5.βα,都是锐角,且5sin 13α=,()4cos 5αβ+=-,则βsin 的值是 ( )A 3365B 1665C 5665D 63656. )4,43(ππ-∈x 且3cos 45x π⎛⎫-=- ⎪⎝⎭则cos2x 的值是 ( )A 725-B 2425-C 2425D 7257.在3sin cos 23x x a +=-中,a 的取值域范围是 ( )A 2521≤≤aB 21≤aC 25>aD 2125-≤≤-a 8. 已知等腰三角形顶角的余弦值等于54,则这个三角形底角的正弦值为 ( )A 1010B 1010-C 10103D 10103-9.要得到函数2sin 2y x =的图像,只需将x x y 2cos 2sin 3-=的图像 ( )A 、向右平移6π个单位 B 、向右平移12π个单位 C 、向左平移6π个单位 D 、向左平移12π个单位10. 函数sin 3cos 22x xy =+的图像的一条对称轴方程是 ( )A 、x =113πB 、x =53π C 、53x π=- D 、3x π=- 11.若x 是一个三角形的最小内角,则函数sin cos y x x =-的值域是 ( )A [2,2]-B 31(1,]2-- C 31[1,]2-- D 31(1,)2--12.在ABC ∆中,tan tan 33tan tan A B A B ++=,则C 等于 ( )A3π B 23π C 6π D 4π二、填空题:13.若βαtan ,tan 是方程04332=++x x 的两根,且),2,2(,ππβα-∈则βα+等于14. .在ABC ∆中,已知tanA ,tanB 是方程23720x x -+=的两个实根,则tan C = 15. 已知tan 2x =,则3sin 22cos 2cos 23sin 2x xx x+-的值为16. 关于函数()cos223sin cos f x x x x =-,下列命题: ①若存在1x ,2x 有12x x π-=时,()()12f x f x =成立; ②()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上是单调递增; ③函数()f x 的图像关于点,012π⎛⎫⎪⎝⎭成中心对称图像; ④将函数()f x 的图像向左平移512π个单位后将与2sin 2y x =的图像重合. 其中正确的命题序号 (注:把你认为正确的序号都填上)三、解答题:17. 化简000020cos 1)]10tan 31(10sin 50sin 2[+++18. 求)212cos 4(12sin 312tan 30200--的值.19. 已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值.20.已知函数22sin sin 23cos y x x x =++,求 (1)函数的最小值及此时的x 的集合。

人教A版高中数学必修四必修4第一章单元检测.doc.docx

人教A版高中数学必修四必修4第一章单元检测.doc.docx

高中数学学习材料马鸣风萧萧*整理制作2008年度第二学期必修4第一章单元检测高一数学一、选择题(每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A ∩CB .B ∪C=CC .A CD .A=B=C2.与-463°终边相同的角可表示为( ) A .k·360°+436°(k ∈Z ) B .k·360°+103°(k ∈Z ) C .k·360°+257°(k ∈Z ) D .k·360°-257°(k ∈Z )3、已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为( )A .-2B .2C .2316D .-23164、化简1160-︒2sin 的结果是( )A .cos160︒ B. cos160-︒ C .cos160±︒ D.cos160±︒ 5、若(cos )cos2f x x =,则(sin15)f ︒等于 ( )A .32-B .32C .12D . 12-6、要得到)42sin(3π+=x y 的图象只需将y=3sin2x 的图象( )A .向左平移4π个单位 B .向右平移4π个单位C .向左平移8π个单位D .向右平移8π个单位7、A 为三角形ABC 的一个内角,若12sin cos 25A A +=,则这个三角形的形状为( ) A. 锐角三角形 B. 钝角三角形 C. 等腰直角三角形 D. 等腰三角形 8、若cos 0θ>,且sin 20θ<,则角θ的终边所在象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限9、函数sin(),2y x x R π=+∈是( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数C .[,0]π-上是减函数 D .[,]ππ-上是减函数 10、函数2cos 1y x =+的定义域是( ) A .2,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ B .2,2()66k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ C .22,2()33k k k Z ππππ++∈⎡⎤⎢⎥⎣⎦D .222,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦二、填空题(每小题5分,共20分)11.已知tan 1α=-,且[0,)απ∈,那么α的值等于__________ 12、已知απβαππβαπ2,3,34则-<-<-<+<的取值范围是 . 13、)(x f 为奇函数,=<+=>)(0,cos 2sin )(,0x f x x x x f x 时则时 . 14、函数])32,6[)(8cos(πππ∈-=x x y 的最小值是 . 三、解答题(共80分.)15、(本大题满分12分)已知)0(51cos sin π<<-=+x x x ,求x tan 的值。

人教版高中数学必修4第一章单元测试(二)- Word版含答案

人教版高中数学必修4第一章单元测试(二)- Word版含答案

2018-2019学年必修四第一章训练卷 三角函数(二) 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.化简sin600︒的值是( )A .0.5B .0.5-C .3D .3- 2.若sin cos 0x x ⋅<,则角x 的终边位于( )A .第一、二象限B .第二、三象限C .第二、四象限D .第三、四象限3.函数tan 2xy =是( )A .周期为2π的奇函数B .周期为2π的奇函数 C .周期为π的偶函数 D .周期为2π的偶函数 4.已知4tan 53α⎛⎫--π=-⎪⎝⎭,则tan 3απ⎛⎫+ ⎪⎝⎭的值为( )A .-5B .5C .±5D .不确定5.已知函数y =2sin(ωx +φ)(ω>0)在区间[0,2π]的图象如图,那么ω等于( )A .1B .2C .12D .13 6.函数f (x )=cos(3x +φ)的图象关于原点成中心对称,则φ等于( ) A .2π- B .2k π-2π(k ∈Z) C .k π(k ∈Z) D .k π+π2(k ∈Z) 7.若sin cos 2sin cos θθθθ+=-,则sin cos θθ的值是( ) A .310- B .310 C .3±10 D .34 8.将函数y =sin x 的图象上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( ) A .y =sin 210x π⎛⎫- ⎪⎝⎭ B .y =sin 25x π⎛⎫- ⎪⎝⎭ C .y =sin 1210x π⎛⎫- ⎪⎝⎭ D .y =sin 1220x π⎛⎫- ⎪⎝⎭ 9.将函数y =sin(x -θ)的图象F 向右平移3π个单位长度得到图象F ′,若F ′的一条对称轴是直线x =4π,则θ的一个可能取值是( )此卷只装订不密封 班级姓名准考证号考场号座位号A.512πB.-512πC.1112πD.-1112π10.已知a是实数,则函数f(x)=1+a sin ax的图象不可能是()11.在同一平面直角坐标系中,函数y=cos322xπ⎛⎫+⎪⎝⎭(x∈[0,2π])的图象和直线y=12的交点个数是()A.0 B.1 C.2 D.412.设a=sin 57π,b=cos27π,c=tan27π,则()A.a<b<c B.a<c<b C.b<c<a D.b<a<c 二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.如果cosα=15,且α是第四象限的角,那么cos2απ⎛⎫+⎪⎝⎭=________.14.设定义在区间0,2π⎛⎫⎪⎝⎭上的函数y=6cos x的图象与y=5tan x的图象交于点P,过点P作x轴的垂线,垂足为P1,直线PP1与函数y=sin x的图象交于点P2,则线段P1P2的长为________.15.函数y=A sin(ωx+φ)(A、ω、φ为常数,A>0,ω>0)在闭区间[-π,0]上的图象如图所示,则ω=________.16.给出下列命题:(1)函数y=sin|x|不是周期函数;(2)函数y=tan x在定义域内为增函数;(3)函数y=|cos2x+12|的最小正周期为2π;(4)函数y=4sin32x⎛π⎫⎪⎝⎭+,x∈R的一个对称中心为,06π⎛⎫-⎪⎝⎭.其中正确命题的序号是________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知α是第三象限角,()()()()3sin cos tan22tan sinfααααααππ⎛⎫⎛⎫-+π-⎪ ⎪⎝⎭⎝⎭--π-π-=.(1)化简f(α);(2)若31cos25α⎛⎫-π=⎪⎝⎭,求f(α)的值.18.(12分)已知4sin2cos3sin5cosθθθθ-+=611,求下列各式的值.(1)2225cossin2sin cos3cosθθθθθ+-;(2)1-4sinθcosθ+2cos2θ.19.(12分)已知sinα+cosα=15.求:(1)sinα-cosα;(2)sin3α+cos3α.20.(12分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<2π)的部分图象如图所示.(1)求函数f (x )的解析式;(2)如何由函数y =2sin x 的图象通过适当的变换得到函数f (x )的图象,写出变换过程.21.(12分)函数y =A sin(ωx +φ)(A >0,ω>0,0≤φ≤2π)在x ∈(0,7π)内只取到一个最大值和一个最小值,且当x =π时,y max =3;当x =6π,y min =-3. (1)求出此函数的解析式; (2)求该函数的单调递增区间; (3)是否存在实数m ,满足不等式Asin(φ)>Asin(+φ)?若存在,求出m 的范围(或值),若不存在,请说明理由.22.(12分)已知某海滨浴场海浪的高度y(米)是时间t(0≤t≤24,单位:小时)的函数,记作:y=f(t),下表是某日各时的浪高数据:(1)根据以上数据,求函数y=A cosωt+b的最小正周期T,振幅A及函数表达式;(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8∶00时至晚上20∶00时之间,有多少时间可供冲浪者进行运动?2018-2019学年必修四第一章训练卷三角函数(二)答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【答案】D【解析】sin 600sin 60︒=-︒=.故选D .2.【答案】C3.【答案】B4.【答案】A5.【答案】B【解析】由图象知2T =2π,T =π,∴2πω=π,ω=2.故选B .6.【答案】D【解析】若函数f (x )=cos(3x +φ)的图象关于原点成中心对称,则f (0)=cos φ=0, ∴φ=k π+π2,(k ∈Z).故选D .7.【答案】B【解析】∵sin cos tan 12sin cos tan 1θθθθθθ++==--,∴tan θ=3.∴sin θcos θ=22sin cos sin cos θθθθ+=2tan tan 1θθ+=310.故选B .8.【答案】C【解析】函数y =sin x 向右平移10π个单位长度,y =sin 10x π⎛⎫- ⎪⎝⎭横坐标伸长到原来的2倍,纵坐标不变,得y =sin 1210x π⎛⎫- ⎪⎝⎭.故选C .9.【答案】A【解析】将y =sin(x -θ)向右平移3π个单位长度得到的解析式为y =sin 3x θ⎡π⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦=sin 3x θπ⎛⎫-- ⎪⎝⎭.其对称轴是x =4π,则4π-3π-θ=k π+2π(k ∈Z) ∴θ=-k π-712π(k ∈Z).当k =-1时,θ=512π.故选A . 10.【答案】D 【解析】图A 中函数的最大值小于2,故0<a <1,而其周期大于2π.故A 中图象可以是函数f (x )的图象.图B 中,函数的最大值大于2,故a 应大于1,其周期小于2π,故B 中图象可以是函数f (x )的图象.当a =0时,f (x )=1,此时对应C 中图象,对于D 可以看出其最大值大于2,其周期应小于2π,而图象中的周期大于2π,故D 中图象不可能为函数f (x )的图象.故选D . 11.【答案】C 【解析】函数y =cos 322x π⎛⎫+ ⎪⎝⎭=sin 2x ,x ∈[0,2π],图象如图所示,直线y =12与该图象有两个交点.故选C . 12.【答案】D 【解析】∵a =sin 57π=sin 57π⎛⎫π- ⎪⎝⎭=sin 27π.27π-4π=828π-287π>0. ∴4π<27π<2π.又α∈,42ππ⎛⎫ ⎪⎝⎭时,sin α>cos α.∴a =sin 27π>cos 27π=b . 又α∈0,2π⎛⎫ ⎪⎝⎭时,sin α<tan α.∴c =tan 27π>sin 27π=a .∴c >a .∴c >a >b .故选D .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【解析】∵α是第四象限的角且cos α=15.∴sin α,∴cos 2α⎛⎫ ⎪⎝π⎭+=-sin α.14.【答案】23【解析】由6cos 5tan y x y x =⎧⎨=⎩消去y 得6cos x =5tan x .整理得6cos 2x =5sin x ,6sin 2x +5sin x -6=0,(3sin x -2)(2sin x +3)=0,所以sin x =23或sin x =-32(舍去).点P 2的纵坐标y 2=23,所以|P 1P 2|=23.15.【答案】3【解析】由函数y =A sin(ωx +φ)的图象可知:2T =(-3π)-(-23π)=3π,∴T =23π.∵T =2ωπ=23π,∴ω=3.16.【答案】(1)(4)【解析】本题考查三角函数的图象与性质.(1)由于函数y =sin|x |是偶函数,作出y 轴右侧的图象,再关于y 轴对称即得左侧图象,观察图象可知没有周期性出现,即不是周期函数;(2)错,正切函数在定义域内不单调,整个图象具有周期性,因此不单调;(3)由周期函数的定义1cos 2()22f x x f x π⎛⎫=≠⎭+ ⎪⎝+,∴2π不是函数的周期;(4)由于06f π⎛⎫= ⎪⎝⎭,故根据对称中心的意义可知,06π⎛⎫- ⎪⎝⎭是函数的一个对称中心,故只有(1)(4)是正确的.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】(1)见解析;(2.【解析】(1)()()()()3sin cos tan 22tan sin f ααααααππ⎛⎫⎛⎫-+π- ⎪ ⎪⎝⎭⎝⎭--π-π-=()()sin sin tan 2tan sin αααααπ⎛⎫--- ⎪⎝⎭=- cos sin tan tan si c s n o αααααα=-=-. (2)∵3cos 2α⎛⎫-π ⎪⎝⎭=3cos 2α⎛⎫π- ⎪⎝⎭=-sin α=15.∴sin α=-15. ∵α是第三象限角,∴cos α.∴f (α)=-cos α. 18.【答案】(1)1;(2)-15. 【解析】由已知4sin 2cos 3sin 5cos θθθθ-+=611,∴4tan 23tan 5θθ-+=611.解得:tan θ=2. (1)原式=25tan 2tan 3θθ+-=55=1. (2)原式222222sin 4sin cos 3cos sin 4sin cos 3cos sin cos θθθθθθθθθθ=-+++=- 22tan 4tan 31tan θθθ-+=+=-15. 19.【答案】(1)±75;(2)37125. 【解析】(1)由sin α+cos α=15,得2sin αcos α=-2425, ∴(sin α-cos α)2=1-2sin αcos α=1+2425=4925,∴sin α-cos α=±75. (2)sin 3α+cos 3α=(sin α+cos α)(sin 2α-sin αcos α+cos 2α) =(sin α+cos α)(1-sin αcos α), 由(1)知sin αcos α=-1225且sin α+cos α=15,∴sin 3α+cos 3α=15×12125⎛⎫+ ⎪⎝⎭=37125. 20.【答案】(1)f (x )=2sin 26x π⎛⎫+ ⎪⎝⎭;(2)见解析. 【解析】(1)由图象知A =2.f (x )的最小正周期T =4×5126ππ⎛⎫- ⎪⎝⎭=π, 故ω=2T π=2.将点,26π⎛⎫ ⎪⎝⎭代入f (x )的解析式得sin 3ϕπ⎛⎫+ ⎪⎝⎭=1,又|φ|<2π,∴φ=6π,故函数f (x )的解析式为f (x )=2sin 26x π⎛⎫+ ⎪⎝⎭.(2)变换过程如下:y =2sin x 图象向左平移6π个单位得y =2sin 6x π⎛⎫+ ⎪⎝⎭,又所有点的横坐标缩短为原来的12且纵坐标不变得y =2sin 26x π⎛⎫+ ⎪⎝⎭.21.【答案】(1)y =3sin 13510x π⎛⎫+ ⎪⎝⎭;(2)[]104,10Z ()k k k π-ππ+∈π;(3)存在,见解析.【解析】(1)由题意得A =3,12T =5π⇒T =10π,∴ω=2T π=15.∴y =3sin 15x ϕ⎛⎫+ ⎪⎝⎭,由于点(π,3)在此函数图象上,则有3sin 5ϕπ⎛⎫+ ⎪⎝⎭=3,∵0≤φ≤2π,∴φ=2π-5π=310π.∴y =3sin 13510x π⎛⎫+ ⎪⎝⎭.(2)当2k π-2π≤15x +310π≤2k π+2π时,即10k π-4π≤x ≤10k π+π时,原函数单调递增.∴原函数的单调递增区间为[]104,10Z ()k k k π-ππ+∈π.(3)m 满足2223040m m m ⎧-++≥⎪⎨-+≥⎪⎩,解得-1≤m ≤2.∵-m 2+2m +3=-(m -1)2+4≤4,∴, 同理.由(2)知函数在[-4π,π]上递增, 若有:Asin(φ)>Asin(φ),m >12成立即可,所以存在m ∈(12,2],使Asin(φ)>Asin(φ)成立.22.【答案】(1)12,12,1cos 126y t π=+;(2)上午9∶00至下午3∶00.【解析】(1)由表中数据知周期T =12,∴ω=2T π=212π=6π,由t =0,y =1.5,得A +b =1.5.由t =3,y =1.0,得b =1.0. ∴A =0.5,b =1,∴1cos 126y t π=+. (2)由题知,当y >1时才可对冲浪者开放,∴1cos 126t π+>1, ∴cos 6t π>0,∴2k π-2π<6πt <2k π+2π,即12k -3<t <12k +3.① ∵0≤t ≤24,故可令①中k 分别为0,1,2,得0≤t <3或9<t <15或21<t ≤24. ∴在规定时间上午8∶00至晚上20∶00之间,有6个小时时间可供冲浪者运动, 即上午9∶00至下午3∶00.。

人教版数学必修四第一章自我检测正规版

人教版数学必修四第一章自我检测正规版

人教版数学必修四第一章自我检测(可以直接使用,可编辑优秀版资料,欢迎下载)第一章 三角函数一、选择题 1.已知 为第三象限角,则2α所在的象限是( ).A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限2.若sin θcos θ>0,则θ在( ). A .第一、二象限 B .第一、三象限 C .第一、四象限D .第二、四象限3.sin 3π4cos 6π5tan ⎪⎭⎫⎝⎛3π4-=( ).A .-433B .433C .-43 D .43 4.已知tan θ+θtan 1=2,则sin θ+cos θ等于( ).A .2B .2C .-2D .±25.已知sin x +cos x =51(0≤x <π),则tan x 的值等于( ).A .-43B .-34C .43D .346.已知sin >sin ,那么下列命题成立的是( ). A .若,是第一象限角,则cos >cosB .若,是第二象限角,则tan>tanC .若,是第三象限角,则cos >cosD .若,是第四象限角,则tan>tan7.已知集合A ={|=2k π±3π2,k ∈Z },B ={|=4k π±3π2,k ∈Z },C ={γ|γ=k π±3π2,k ∈Z },则这三个集合之间的关系为( ).A .A ⊆B ⊆C B .B ⊆A ⊆C C .C ⊆A ⊆BD .B ⊆C ⊆A8.已知cos(+)=1,sin=31,则sin的值是( ).A .31B .-31C .322D .-322 9.在(0,2π)内,使sin x >cos x 成立的x 取值范围为( ).A .⎪⎭⎫ ⎝⎛2π ,4π∪⎪⎭⎫⎝⎛4π5 ,π B .⎪⎭⎫⎝⎛π ,4π C .⎪⎭⎫⎝⎛4π5 ,4πD .⎪⎭⎫ ⎝⎛π ,4π∪⎪⎭⎫ ⎝⎛23π ,4π5 10.把函数y =sin x (x ∈R )的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的21倍(纵坐标不变),得到的图象所表示的函数是( ).A .y =sin ⎪⎭⎫⎝⎛3π - 2x ,x ∈RB .y =sin ⎪⎭⎫⎝⎛6π + 2x ,x ∈RC .y =sin ⎪⎭⎫⎝⎛3π + 2x ,x ∈RD .y =sin ⎪⎭⎫⎝⎛32π + 2x ,x ∈R二、填空题11.函数f (x )=sin 2 x +3tan x 在区间⎥⎦⎤⎢⎣⎡3π4π ,上的最大值是 .12.已知sin =552,2π≤≤π,则tan= .13.若sin ⎪⎭⎫ ⎝⎛α + 2π=53,则sin ⎪⎭⎫⎝⎛α - 2π= .14.若将函数y =tan ⎪⎭⎫ ⎝⎛4π + x ω(ω>0)的图象向右平移6π个单位长度后,与函数y =tan ⎪⎭⎫⎝⎛6π + x ω的图象重合,则ω的最小值为 .15.已知函数f (x )=21(sin x +cos x )-21|sin x -cos x |,则f (x )的值域是 .16.关于函数f (x )=4sin ⎪⎭⎫⎝⎛3π + 2x ,x ∈R ,有下列命题:①函数 y = f (x )的表达式可改写为y = 4cos ⎪⎭⎫⎝⎛6π - 2x ;②函数 y = f (x )是以2π为最小正周期的周期函数; ③函数y =f (x )的图象关于点(-6π,0)对称;④函数y =f (x )的图象关于直线x =-6π对称.其中正确的是______________.三、解答题17.求函数f (x )=lgsin x +1cos 2-x 的定义域.18.化简:(1))-()+(-)++()+()-(-)++(-αααααα︒︒︒︒180cos cos 180tan 360tan sin 180sin ;(2))-()+()-()++(πcos πsin πsin πsin n n n n αααα(n ∈Z ).19.求函数y =sin ⎪⎭⎫⎝⎛6π - 2x 的图象的对称中心和对称轴方程.20.(1)设函数f (x )=xa x sin sin +(0<x <π),如果 a >0,函数f (x )是否存在最大值和最小值,如果存在请写出最大(小)值;(2)已知k <0,求函数y =sin 2 x +k (cos x -1)的最小值.参考答案一、选择题 1.D解析:2k π+π<<2k π+23π,k ∈Z ⇒k π+2π<2α<k π+43π,k ∈Z . 2.B解析:∵ sin θcos θ>0,∴ sin θ,cos θ同号.当sin θ>0,cos θ>0时,θ在第一象限;当sin θ<0,cos θ<0时,θ在第三象限.3.A解析:原式=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-3πtan 6πcos 3πsin =-433.4.D解析:tan θ+θtan 1=θθcos sin +θθsin cos =θθcos sin 1=2,sin cos=21.(sin θ+cos θ)2=1+2sin θcos θ=2.sin+cos =±2.5.B解析:由 得25cos 2 x -5cos x -12=0.解得cos x =54或-53.又 0≤x <π,∴ sin x >0.⎩⎨⎧1=cos +sin51=cos +sin 22x x x x若cos x =54,则sin x +cos x ≠51,∴ cos x =-53,sin x =54,∴ tan x =-34.6.D 解析:若,是第四象限角,且sin >sin ,如图,利用单位圆中的三角函数线确定,的终边,故选D .7.B解析:这三个集合可以看作是由角±3π2的终边每次分别旋转一周、两周和半周所得到的角的集合.8.B解析:∵ cos(+)=1,∴ +=2k π,k ∈Z .∴=2k π-.∴ sin =sin(2k π-)=sin(-)=-sin =-31.9.C解析:作出在(0,2π)区间上正弦和余弦函数的图象,解出两交点的横坐标4π和45π,由图象可得答案.本题也可用单位圆来解.10.C(第6题`)解析:第一步得到函数y =sin ⎪⎭⎫⎝⎛+3πx 的图象,第二步得到函数y =sin ⎪⎭⎫ ⎝⎛+3π2x 的图象.二、填空题 11.415.解析:f (x )=sin 2 x +3tan x 在⎥⎦⎤⎢⎣⎡3π4π ,上是增函数,f (x )≤sin 23π+3tan3π=415.12.-2. 解析:由sin =552,2π≤≤πcos =-55,所以tan=-2.13.53.解析:sin ⎪⎭⎫ ⎝⎛α + 2π=53,即cos =53,∴ sin ⎪⎭⎫ ⎝⎛α - 2π=cos=53.14.21.解析:函数y =tan ⎪⎭⎫ ⎝⎛4π+x ω (ω>0)的图象向右平移6π个单位长度后得到函数y =tan ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛4π+6π-x ω=tan ⎪⎭⎫ ⎝⎛ωω6π-4π+x 的图象,则6π=4π-6πω+k π(k ∈Z ),ω=6k +21,又ω>0,所以当k =0时,ωmin =21.15.⎥⎦⎤⎢⎣⎡221 ,-. 解析:f (x )=21(sin x +cos x )-21|sin x -cos x |=⎩⎨⎧)<()(x x x x x x cos sin sin cos ≥sincos 即 f (x )等价于min{sin x ,cos x },如图可知,f (x )max =f ⎪⎭⎫ ⎝⎛4π=22,f (x )min =f (π) =-1.16.①③.解析:① f (x )=4sin ⎪⎭⎫ ⎝⎛+3π2x =4cos ⎪⎭⎫ ⎝⎛--3π22πx=4cos ⎪⎭⎫⎝⎛+-6π2x=4cos ⎪⎭⎫⎝⎛-6π2x .② T =22π=π,最小正周期为π.③ 令 2x +3π=k π,则当 k =0时,x =-6π,∴ 函数f (x )关于点⎪⎭⎫⎝⎛0 6π-,对称. ④ 令 2x +3π=k π+2π,当 x =-6π时,k =-21,与k ∈Z 矛盾.∴ ①③正确. 三、解答题17.{x |2k π<x ≤2k π+4π,k ∈Z }.解析:为使函数有意义必须且只需⎪⎩⎪⎨⎧-② 0 ≥1 cos 2① >0 sin x x(第15题)(第17题)先在[0,2π)内考虑x 的取值,在单位圆中,做出三角函数线.由①得x ∈(0,π),由②得x ∈[0,4π]∪[47π,2π].二者的公共部分为x ∈⎥⎦⎤⎝⎛4π0,.所以,函数f (x )的定义域为{x |2k π<x ≤2k π+4π,k ∈Z }.18.(1)-1;(2) ±αcos 2.解析:(1)原式=αααααα cos cos tan tan sin sin -+--=-ααtan tan =-1.(2)①当n =2k ,k ∈Z 时,原式=)-()+()-()++(π2 cos π2sin π2sin π2sin k k k k αααα=α cos 2.②当n =2k +1,k ∈Z 时,原式=])+-([])++([])+-([]+)++([π12 cos π12sin π12sin π12sink k k k αααα=-αcos 2.19.对称中心坐标为⎪⎭⎫⎝⎛0 ,12π + 2πk ;对称轴方程为x =2πk +3π(k ∈Z ).解析:∵ y =sin x 的对称中心是(k π,0),k ∈Z , ∴ 令2x -6π=k π,得x =2πk +12π.∴ 所求的对称中心坐标为⎪⎭⎫⎝⎛0 ,12π + 2πk ,k ∈Z . 又 y =sin x 的图象的对称轴是x =k π+2π,∴ 令2x -6π=k π+2π,得x =2πk +3π.∴ 所求的对称轴方程为x =2πk +3π (k ∈Z ).20.(1)有最小值无最大值,且最小值为1+a ; (2)0. 解析:(1) f (x )=xa x sin sin +=1+xasin ,由0<x <π,得0<sin x≤1,又a>0,所以当sin x=1时,f(x)取最小值1+a;此函数没有最大值.(2)∵-1≤cos x≤1,k<0,∴k(cos x-1)≥0,又sin2x≥0,数学必修一 第一章教学质量检测卷时间:120分钟 总分:150分 命题者:WL一、选择题(分512⨯) 1、下列各组对象(1)接近于0的数的全体; (2)王明的所有好朋友;(3)中宁一中全校学生全体; (4)正三角形的全体;(5)平面上到原点的距离等于1的点的全体; (6)2的近似值的全体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宣威市第九中学第一次月考
高一数学试卷
本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟.
第Ⅰ卷(选择题 共60分)
一.选择题(每小题5分,共60分) 1.与32︒-角终边相同的角为( )
A .
36032k k Z ︒︒⋅+∈, B. 360212k k Z ︒︒⋅+∈, C .
360328k k Z ︒︒⋅+∈, D. 360328k k Z ︒︒⋅-∈, 2. 半径为1cm ,中心角为150o 的弧长为( )
A .cm 3
2
B .
cm 32π
C .cm 6
5
D .
cm 6

3.点A(x,y)是300°角终边上异于原点的一点,则
y
x
值为( ) A.3 B. - 3 C. 33 D. -3
3
4.下列函数中属于奇函数的是( )
A. y=cos(x )2π+
B. sin()2
y x π
=- C. sin 1y x =+ D.cos 1y x =-
5.要得到函数x y sin =的图象,只需将函数⎪⎭⎫ ⎝⎛
-=3sin πx y 的图象 ( )
A. 向左平移
3π B. 向右平移3
π C. 向左平移32π D. 向右平移32π
6. 已知点(sin cos tan )P ααα-,在第一象限,则在[02π],
内α的取值范围是( ) A.π3π
5
ππ244
⎛⎫⎛⎫
⎪ ⎪⎝
⎭⎝

U ,, B.ππ
5
ππ424
⎛⎫⎛⎫
⎪ ⎪⎝
⎭⎝

U ,, C.π3π
5
3
ππ2442
⎛⎫⎛⎫ ⎪ ⎪⎝
⎭⎝

U ,, D.ππ
3
ππ424
⎛⎫⎛⎫ ⎪ ⎪⎝
⎭⎝

U ,,
7. 函数2sin(2)6
y x π
=+的一条对称轴是( )
A. x = 3π
B. x = 4π
C. x = 2π
D. x = 6π
8. 函数)3
2sin(π
-=x y 的单调递增区间是( )
A .5,1212k k ππππ⎡⎤
-++⎢⎥⎣⎦ Z k ∈ B .52,21212k k ππππ⎡⎤
-++⎢⎥⎣⎦ Z k ∈ C .5,66k k ππππ⎡⎤
-++⎢⎥⎣⎦
Z k ∈ D .52,266k k ππππ⎡⎤
-++⎢⎥⎣⎦
Z k ∈
9.已知函数sin()(0,)2
y x π
ωϕωϕ=+><
的部分
图象如图所示,则此函数的解析式为( ) A .sin(2)2y x π=+ B .sin(2)4y x π=+
C .sin(4)2y x π
=+ D .sin(4)4y x π
=+ 10.在函数22sin ,sin ,sin(2),cos()323
x y x y x y x y ππ
===+=+中,最小正周期为π的函数的个数是( )
A. 1个
B. 2个
C. 3个
D.4个
11.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)
(),2
sin ,(0)
x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4
f π
-等于( )
B. 1
C. 0
D.12.设a 为常数,且1>a ,[0,2x ∈π],则函数1sin 2cos )(2-+=x a x x f 的最大值为( ).
A.12+a
B.12-a
C.12--a
D.2a
第Ⅱ卷(非选择题 共90分)
二、填空题(每小题5分,共20分)
13. 设角α的终边过点(4,3)P t t -(,0)t R t ∈>且,则2sin cos αα+=
14. 函数1
y tan 34x π⎛⎫=- ⎪⎝⎭的定义域为
15.
求使sin α>
成立的α的取值范围是 16 关于函数f(x)=4sin ⎪⎭


⎛+3π2x (x ∈R),有下列论断:
①函数y=f(x)的表达式可改写为y=4cos(2x-π
6
); ②函数y=f(x)的最小正周期为2π;
③函数y=f(x)的图象关于点⎪⎭

⎝⎛-0 6
π,
对称; ④函数y=f(x)的图象可由y=4sin2x 向左平移3
π
个单位得到. 其中正确的是 .(将你认为正确的论断的序号都填上) 一、选择题(每小题5分,共60分)
二、填空题(每小题5分,共20分)
13、 14、 15、 16、
三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 17. (本小题满分10分)
(1) ;
(2)已知=αsin 2
1-
,且α是第四象限角,求αcos 、αtan 的值.
18.(本小题满分12分)已知5
1
cos sin =
+θθ,其中θ是ABC ∆的一个内角. (1)求θθcos sin 的值;
(2)判断ABC ∆是锐角三角形还是钝角三角形; (3)求θθcos sin -的值.
19.(本小题满分12分)已知tan 1tan 1
α
α=--,求(1)2
1sin sin cos ααα+的值;
(2)设222sin ()sin (2)sin()3
22()cos ()2cos()
f πθθθθθθπ
++π-+--=π+--,求()3f π的值.
20.(本小题满分12分)已知函数()2sin sin f x x x =+,02x π≤≤. 若方程m x f =)(有两个不同的实数根,求实数m 的取值范围.
21(本小题满分12分)已知函数a x x +-=)62sin(2)(f π

(1)求函数f(x)的最小正周期; (2)求函数f(x)的单调递减区间;
(3)若]2
,0[x π
∈时,f(x)的最小值为-2,求a 的值.
22.(本小题满分12分)函数)2
||,0,0)(sin(πϕωϕω<>>+=A x A y 的一段图象如图所示,根
据图象求:(1))(x f 的解析式;
(2)函数)(x f 的图象可以由函数sin ()y x x R =∈ 的图象经过怎样的变换得到?。

相关文档
最新文档