聚合物的屈服与断裂
高分子物理——聚合物的屈服与断裂
一、玻璃态高聚物的拉伸
(1)屈服点
应力达到一个极大值,屈服应力 (2)断裂方式(材料破坏有二种方式)
脆性断裂:屈服点之前发生的断裂
断裂表面光滑
不出现屈服
韧性断裂:在材料屈服之后的断裂(明显屈
服点和颈缩现象)
北京理工大学
断裂表面粗糙
(3)应变软化和应变硬化
应变软化:在拉伸过程中,应力随应变的增 大而下降
PVC在室温、图中表明的应变速率下测得的应力-应变曲线
随着拉伸速度提高,聚合物的模量增加,屈 服应力、断裂强度增加,断裂伸长率减少
• 柔性很大的链在冷却成玻璃态时,分子 之间堆砌得很紧密,在玻璃态时链段运 动很困难,要使链段运动需要很大的外 力,甚至超过材料的强度,刚性大,冷 却时堆砌松散,分子间相互作用力小, 链段活动余地较大,这种高聚物在玻璃 态时具有强迫高弹而不脆,脆点低, Tb,Tg间隔大,另外如果刚性太大,链段 不能运动,也不出现高弹形变。
0 exp(
RT )
对于某一种高聚物存在一个特征温度(Tb),只 要温度低于Tb,玻璃态高聚物就不能发展强迫高 弹形变。玻璃态高聚物只有处在Tb到Tg的温度范 围内,才能在外力作用下实现强迫高弹形变。
北京理工大学
外力 E a 拉伸速率 0 exp( ) 结构 RT 柔性高分子链:在玻璃态时呈现脆性。Tb≈Tg 刚性高分子链:较刚性:易出现受(强)迫 高弹性,脆点较低,Tb与Tg间隔较大。 高刚性:链段运动更加困难,Tb与Tg也很接 近。 分子量 分子量较小时,在玻璃态堆砌较紧密,呈现 脆性,Tb~Tg较接近。 当分子量增加到一定程度以后,Tb与Tg差距拉 大,直到达到临界值 北京理工大学
(B)受(强)迫高弹形变:材料在屈服后出现了
聚合物的断裂与强度2
应力强度因子K1
临界应力强度KIc
裂纹 稳定
11.3.4 增强 Reinforcement
增强途径
Filler 填料
•活性粒子( Powder) C ,SiO2
•纤维 Fiber
——脆化温度,脆化点
在一定速率下(不同 温度)测定的断裂应 力和屈服应力,作断 裂应力和屈服应力随 温度的变化曲线
断裂应力
屈服 应力
断裂应力和屈服应力谁对应变速率更敏感?
脆性断裂和韧性断裂判断
T<Tb, 先达到b,
脆性断裂
T >Tb, 先达到y,
韧性断裂
Application 对材料一般使用温度为哪一段? ——T >Tb
共聚酯, 聚芳酯Xydar, Vector, Rodrum
增强机理:热致液晶中的液晶棒状分子在共混物 中形成微纤结构而到增强作用。由于微纤结构是 加工过程中由液晶棒状分子在共混物基体中就地 形成的,故称做“原位”复合增强。
11.3.5 聚合物的韧性与增韧
(1) 冲击强度 Impact strength
极性基团或氢键 有支链结构 适度交联 结晶度大 双轴取向 加入增塑剂
外界因素
温度高
冲击强度i 即韧性
应变速率大
(3) 聚合物的增韧
(a) 橡胶增韧塑料
橡胶 增韧 塑料
e.g PVC+CPE,PP+EPDM (三元乙丙橡胶)
增韧效果取决于分散相相畴大小和界面粘接力,即两者相容性.
橡胶增韧塑料的增韧机理
15000MPa
理论值
分子间滑脱
第八章聚合物的屈服和断裂
第八章聚合物的屈服和断裂一、基本概念1、韧性破坏;脆性破坏;脆化温度2、强迫高弹形变;冷流;细颈3、银纹;屈服;银纹屈服;剪切屈服4、拉伸强度;抗弯强度;弯曲模量;冲击强度;硬度5、应变诱发塑料─橡胶转变6、应变软化现象;应变变硬化现象7、银纹;裂缝;应力集中二、选择题1、下列高聚物中,拉伸强度最高的是( )A,低密度聚乙烯B,聚苯醚C,聚甲醛2、非晶态聚合物作为塑料使用的最佳温度区间为( )A,Tb---Tg B,Tg---Tf C,Tg以下3、甲乙两种聚合物材料的应力---应变曲线如图所示, 其力学性能类型和聚合物实例分别为( )A,甲聚合物:硬而强,硬聚氯乙稀;乙聚合物:软而韧,聚异戊二稀B,甲聚合物:硬而脆,聚甲基丙稀酸甲酯;乙聚合物:软而弱,聚丁二稀C,甲聚合物:硬而强,固化酚醛树酯;乙聚合物:软而韧 ,聚合物凝胶D,甲聚合物:硬而脆,硬聚氯乙稀;乙聚合物:软而弱,聚酰胺4、韧性聚合物单轴拉伸至屈服点时,可看到剪切带现象,下列说法错误的是()。
A、与拉伸方向平行B、有明显的双折射现象C、分子链高度取向D、每个剪切带又由若干个细小的不规则微纤构成5、拉伸实验中,应力-应变曲线初始部分的斜率和曲线下的面积分别反映材料的()。
A、拉伸强度、断裂伸长率B、杨氏模量、断裂能C、屈服强度、屈服应力D、冲击强度、冲击能6、在聚甲基丙烯酸甲酯的拉伸试验中,温度升高则()。
A、σB升高、εB降低,B、σB降低、εB升高,C、σB升高、εB升高,D、σB降低、εB降低,7、聚苯乙烯在张应力作用下,可产生大量银纹,下列说法错误的是()。
A、银纹是高度取向的高分子微纤构成。
B、银纹处密度为0,与本体密度不同。
C、银纹具有应力发白现象。
D、银纹具有强度,与裂纹不同。
8、杨氏模量、冲击强度、应变、切变速率的量纲分别是()。
A、N/m2, J/m2, 无量纲, S-1,B、N, J/m, 无量纲, 无量纲C、N/m2, J, 无量纲, 无量纲D、N/m2, J, m, S-19、可较好解释高抗冲聚苯乙烯(HIPS)增韧原因的为()。
高分子物理 高分子物理 聚合物的屈服和断裂
? 拉伸速度,链柔性,分子量也是影响因素。
7.1.3结晶高聚物的拉伸
? 拉伸曲线可以分为三阶段: ? 第一阶段应力随应变线性
地增加,至屈服点
? 第二阶段的应力 —应变曲
线表现为应力几乎不变, 而应变不断增加
? 第三阶段应力又随应变的
增加而增大直到断裂点
? 结晶聚合物的大形变,就本质上说也是高
d? ' ? ? ' d? ?
(2 ) d? ' d?
有一个值
(3) d? ' 有二个值 d?
(2 )
(3 )
7 .3 聚合物的断裂理论和理论强度
? 韧性材料在受到较大应力,或经受变形时,
可以发生屈服,吸收大量的能量,它使聚 合物材料在实际应用中可以发生较大的变 形或承受较大的冲击而不破坏。
? 外力超过一定限度,聚合物材料会发生韧
7.1.2玻璃态聚合物的强迫高弹形变
? 强迫高弹形变:为了区别于普通的高弹形变,玻
璃态高聚物屈服点以后材料的大形变的称为强迫 高弹形变。
? 实验证明,松弛时间与应力之间有如下关系
?
?
?
0
exp
?? ?
?
E ? a?
RT
?? ?
? 增加应力、提高温度都将使链段运动的松
弛时间缩短。
? 高弹形变条件:断裂应力大于屈服,即 T在Tb
7.2.2 真应力—应变曲线及其屈服判据
? 假定试样变形时体积
不变,则拉伸时实际 受力的截面积为
A ? A0l0 l
?
真应力:
? '?
F
? (1 ? ?)?
A
? 屈服点:
第六章 聚合物的屈服与断裂
二、结晶态聚合物的应力-应变曲线 同样经历五个阶段, 不同点是第一个转 折点出现“细颈 化”,接着发生冷 拉,应力不变但应 变可达500%以上。 结晶态聚合物在拉 伸时还伴随着结晶 形态的变化。
整个曲线可分为三个阶段:
1、应力随应变线性地增加,试样被均匀拉长, 伸长率可达百分之几到十几,到y点后,试样 截面开始变得不均匀,出现一个或几个“细 颈”,即进入第二阶段。 2、细颈与非细颈部分的横截面积分别维持不 变,而细颈部不断扩展,非细颈部分逐渐缩短, 直到整个试样完全变细为止。在第二阶段的应 变过程中应力几乎不变,最后,进入第三阶段。 3、即成颈的试样又被均匀拉伸,此时应力又 随应变的增加而增大直到断裂为止。
2.屈服机理
(1)银纹屈服 银纹:很多高聚物,尤其是玻璃态透明高聚物(PS、 PMMA、PC)在储存过程及使用过程中,往往 会在表面出现像陶瓷的那样,肉眼可见的微细 的裂纹,这些裂纹,由于可以强烈地反射可见 光,看上去是闪亮的,所以又称为银纹crage。 在拉伸应力的作用下高聚物中某些薄弱部位, 由于应力集中而产生的空化条纹形变区。
强度:材料所能承受的应力(指材料承受外 力而不被破坏)(不可恢复的变形也属被破坏) 的能力 )。 韧性:材料断裂时所吸收的能量
受 力 方 式
简单拉伸
F
简单剪切
F θ
均匀压缩
l0
F
F
受 力 特 点 弹 性 模 量 柔 量
外力F是与截面垂 外力F是与界面平行,材料受到的是围压 直,大小相等,方 大小相等,方向相 力。 向相反,作用在同 反的两个力。 一直线上的两个力。 杨氏模量:
E
切变模量:
G=
体积模量:
B P PV 0 V
聚合物的屈服与断裂
强迫高弹形变产生的原因或玻璃态下链段的运动是如何发生的?
松弛时间与应力的关系:?=?0
exp?? ?
?
E-??
kT
??? ?
E-链段运动活化能
?-材料常数
? 由上式可见, ? 越大, 越小,即外力降低了链段在外
力作用方向上的运动活化能,因而缩短了沿力场方向的松
弛时间,当应力增加致使链段运动松弛时间减小到与外力
处于玻璃态的非晶聚合物在拉伸过程中 屈服点后产生 的较大应变,移去外力后形变不能回复。若将试样温度
升到其Tg附近,该形变则可完全回复,因此它在 本质上
仍属高弹形变,并非粘流形变,是由高分子的链段运动 所引起的。 这种形变称为强迫高弹形变又称塑性形变
讨论玻璃态聚合物的强迫高弹形变和橡胶高弹形变的异同:
.
.
..
?1 ? ?2 ? ?3 ? ?4
即增加应变速率与
降低温度的效应是
等效的。
(3) 环境压力
研究发现,对许多非晶聚合 物,如PS、PMMA 等,其脆韧转变行为还与环境压力有关。
右图可见,PS在低环境压力 (常压)下呈脆性断裂特点, 强度与断裂伸长率都很低。随 着环境压力升高,材料强度增 高,伸长率变大,出现典型屈 服现象,材料发生脆-韧转变。
作用时间同一数量级时,链段开始由蜷曲变为伸展,产生
强迫高弹变形。
也就是在外力的作用下,非晶聚合物中本来被冻结的链段 被强迫运动,使高分子链发生伸展,产生大的形变。但由于聚 合物仍处于玻璃态,当外力移去后,链段不能再运动,形变也
就得不到回复,只有当温度升至 Tg附近,使链段运动解冻,形
变才能复原。
强迫高弹形变的定义
Point of elastic limit 弹性极限点
5. 高聚物的力学性能
L
L
N
H
(1)温度
(1)
(3)
应力
(2)
(4)
应变
(2)应变速率
(1)
(3)
应力
(2)
(4)
应变
强迫高弹形变的定义
处于玻璃态的非晶聚合物在拉伸过程中屈服点后产生
的较大应变,移去外力后形变不能回复。若将试样温度
升到其 Tg 附近,该形变则可完全回复,因此它在本质上 仍属高弹形变,并非粘流形变,是由高分子的链段运动 所引起的。 这种形变称为强迫高弹形变。
Stress
Yield stress
(4)断裂强度 (5)断裂伸长率 (6)断裂韧性
Strain
以应力应变曲线测定的韧性
d
量纲=Pam/m=N/m2 m/m= J/m3
材料在屈服点之前发生的断裂称为脆性断裂 brittle fracture ; 在屈服点后发生的断裂称为韧性断裂 ductile fracture 。
5.1.2细颈
1)细颈的形成原因
本质:剪切力作用下发生塑性流动 A0 F F
F
F
Fn F α F 正应力 0 A0 切向力 A Fs
A0 斜截面面积 A sin
F
法向力 Fn=F·sinα
Fs=F·cosα
A
法应力: n Fn 0 sin 2 切应力: S FS 0 sin cos 1 0 sin 2
A
plastic deformation 塑性形变
Strain hardening 应变硬化
A E A
O
A y
B
图 非晶态聚合物在玻璃态的应力-应变曲线
高分子物理课件8聚合物的屈服和断裂
解:=0, n=0
=45, s=0/2
0=30MP 0=40MP
先,拉断
(2).已知材料的最大抗张强度为30MP,最大抗剪强度为
10MP,试问此材料是受张力破坏还是剪切作用下形变?
解:=0, n=0
0=30MP
=45, s=0/2 0=20MP
先,发生形变
8 聚合物的屈服和断裂
Shear bana
在细颈出现之 前试样上出现 与拉伸方向成 45角的剪切滑 移变形带
8 聚合物的屈服和断裂
(3) Crazing 银纹
银纹现象为聚合物所特有,它是聚合物在张应力作用下, 于材料某些薄弱地方出现应力集中而产生局部的塑性形 变和取向,以至于在材料表面或内部垂直于应力方向上 出现长度为100µm、宽度为10 µm左右、厚度约为1 µm 的微细凹槽的现象
(a) Different
T
temperature
T
Temperature Example-PVC,Tg=80℃ Results
a: T<<Tg b: T<Tg
0°C 0~50°C
脆断 屈服后断
c: T<Tg (几十度)
50~70°C
韧断
d: T接近Tg
70°C
无屈服
8 聚合物的屈服和断裂
(b) Different strain rate
要 非常迅速。 特 ➢屈服应力对应变速率和温度都敏感。 征 ➢屈服发生时,拉伸样条表面产生“银纹”或“剪切
带”,继而整个样条局部出现“细颈”。
8 聚合物的屈服和断裂
Strain softening 应变软化
弹性变形后继续施加载荷,则产生塑性形变,称为 继续屈服,包括: ➢应变软化:屈服后,应变增加,应力反而有稍许 下跌的现象,原因至今尚不清楚。 ➢呈现塑性不稳定性,最常见的为细颈。 ➢塑性形变产生热量,试样温度升高,变软。 ➢发生“取向硬化”,应力急剧上升。 ➢试样断裂。
高分子物理习题库1
第一章 高分子链的结构一、 概念构型 构象 均方末端距 链段 全同立构 无规立构二、选择答案1、高分子科学诺贝尔奖获得者中,( )首先把“高分子”这个概念引进科学领域。
A 、H. Staudinger,B 、K.Ziegler, G .Natta,C 、P. J. Flory,D 、H. Shirakawa2、下列聚合物中,( )是聚异戊二烯(PI)。
A 、 CCH 2n CH CH 23B 、O C NH O C NH C 6H 4C 6H 4n C 、 CH Cl CH 2n D 、OC CH 2CH 2O O n O C3、链段是高分子物理学中的一个重要概念,下列有关链段的描述,错误的是( )。
A 、高分子链段可以自由旋转无规取向,是高分子链中能够独立运动的最小单位。
B 、玻璃化转变温度是高分子链段开始运动的温度。
C 、在θ条件时,高分子“链段”间的相互作用等于溶剂分子间的相互作用。
D 、聚合物熔体的流动不是高分子链之间的简单滑移,而是链段依次跃迁的结果。
4、下列四种聚合物中,不存在旋光异构和几何异构的为( )。
A 、聚丙烯,B 、聚异丁烯,C 、聚丁二烯,D 、聚苯乙烯5、下列说法,表述正确的是( )。
A 、工程塑料ABS 树脂大多数是由丙烯腈、丁二烯、苯乙烯组成的三元接枝共聚物。
B 、ABS 树脂中丁二烯组分耐化学腐蚀,可提高制品拉伸强度和硬度。
C 、ABS 树脂中苯乙烯组分呈橡胶弹性,可改善冲击强度。
D 、ABS 树脂中丙烯腈组分利于高温流动性,便于加工。
6、下列四种聚合物中,链柔顺性最好的是( )。
A 、聚氯乙烯,B 、聚氯丁二烯,C 、顺式聚丁二烯,D 、反式聚丁二烯7、在下列四种聚合物的晶体结构中,其分子链构象为H 31螺旋构象为( )。
A 、聚乙烯,B 、聚丙烯,C 、聚甲醛,D 、聚四氟乙烯8、在热塑性弹性体SBS 的相态结构中,其相分离结构为( B )。
A 、 PS -连续相,PB -分散相; B 、PB -连续相,PS -分散相;B 、 P S 和PB 均为连续相; D 、PS 和PB 均为分散相9、自由基聚合制得的聚丙烯酸为( )聚合物。
何曼君《高分子物理》(第3版)笔记和课后习题(含考研真题)详解(第7~10章)【圣才出品】
存在一个特征的温度 Tb,只要温度低于 Tb,玻璃态聚合物就不能发展强迫高弹形变, 而发生脆性断裂,这个温度称为脆化温度。玻璃态聚合物只有处在 Tb 到 Tg 之间,才能在外 力作用下实现强迫高弹形变。
③作用力的速度 对于相同的外力来说,拉伸速度过快,强迫高弹形变来不及发生,或者强迫高弹形变得 不到充分的发展,试样发生脆性断裂;拉伸速度过慢,线型玻璃态聚合物会发生一部分黏性 流动;只有在适当的拉伸速度下,玻璃态聚合物的强迫高弹性才能充分表现出来。 (4)强迫高弹形变产生的条件 ①温度:Tb~Tg ②施力:σy≥σb 当应力增加到一定值(屈服应力)时,相应链段运动的松弛时间降到 与外力的作用时间相当,被冻结的高分子链段即能响应产生大的形变,可见增加应力与升高 温度对松弛时间的影响是相同的。
4.硬弹性材料的拉伸 (1)硬弹性材料的定义 易结晶的聚合物熔体,在较高的拉伸应力场中结晶时,可以得到具有很高弹性的纤维或 薄膜材料,其弹性模量比一般橡胶要高得多,这类聚合物称为硬弹性材料。 (2)硬弹性材料的应力-应变行为
5 / 84
圣才电子书 十万种考研考证电子书、题库视频学习平台
图 7-3 结晶聚合物拉伸过程应力-应变曲线及试样外形变化示意 (2)结晶聚合物的拉伸与玻璃态聚合物的拉伸的比较 ①相似之处 都经历弹性变形、屈服(成颈)、发展大形变以及应变硬化、断裂等阶段,大形变在室 温时都不能自发回复,而加热后都能回复原状,本质上两种拉伸过程造成的大形变都是链段 运动所导致的高弹形变。 ②区别 产生冷拉的温度范围不同,玻璃态聚合物的冷拉温度区间是 Tb 至 Tg,结晶聚合物为 Tb 至 Tm;晶态聚合物的拉伸过程伴随着比玻璃态聚合物拉伸过程复杂得多的分子凝聚态结构 的变化,后者只发生分子链的取向,不发生相变,前者还包含有结晶的破坏、取向和再结晶 等过程。
高分子科学-第8章 聚合物的屈服与断裂讲解
聚合物的断裂
脆性断裂 :屈服点前断裂 韧性断裂 :屈服点后断裂
12
8.1.2 影响应力-应变曲线的因素
1. 温度
1
曲线1: T《Tg ,硬玻璃态,键长 键角的变化,形变小,高模量——
2
3
T
脆性断裂
4
曲线2.3: Tb<T<Tg,软玻璃态:
出现强迫高弹形变,外力除
16
玻璃态聚合物与结晶聚合物的拉伸比较
相似:
都经历弹性形变、屈服、发展大形变、应变硬化、断裂等阶段。
其中大形变在室温时都不能自发回复,加热后可回复,故本质 上两种拉伸造成的大形变都是强迫高弹形变——“冷拉”。
区别:
(1)产生冷拉的温度范围不同,
非晶态Tb~Tg
结晶态Tb~Tm
(2)玻璃态聚合物在冷拉过程中凝聚态只发生分子链的 取向不发生相变;晶态聚合物还包含结晶的破坏、取向 和再结晶等过程(相变)。
屈服
(链段开 始运动)
应变硬化
(分子链沿 外力取向形 变不可回复)
应变软化
(链段运动)
冷拉(强
迫高弹形变)
7
强迫高弹形变
玻璃态高聚物在屈服点后大外力作用下发生的大形变,本质与橡胶的高弹 形变一样都是链段运动引起的,并不是分子链的滑移,只不过表现形式有差别。 由于聚合物处在玻璃态,形变在停止拉伸后无法自动恢复,但是如果让温度升 到Tg附近形变又可恢复。
(1)温度:Tb~Tg
0
exp
E
RT
温度越低
链段运动的松 强迫高弹形变 弛时间τ越大
必须使用更 大外力
存在一个特征温度Tb,如果低于该温度,玻璃态高聚物不 能发生强迫高弹形变,而只会发生脆性断裂,该温度称为
何曼君《高分子物理》(第3版)配套题库【课后习题】第7章 聚合物的屈服和断裂 【圣才出品】
第7章聚合物的屈服和断裂1.试比较非晶态聚合物的强迫高弹性、结晶聚合物的冷拉、硬弹性聚合物的拉伸行为和嵌段共聚物的应变诱发塑料一橡胶转变,从结构观点加以分析,并指出其异同点。
答:(1)玻璃态聚合物在大外力的作用下发生的大形变其本质与橡胶的高弹形变一样,但表现形式却有差别,此称为非晶体态聚合物的强迫高弹性。
强迫高弹性主要是由聚合物的结构决定的。
强迫高弹性的必要条件是聚合物要具有可运动的链段,通过链段的运动使链的构象改变。
所以分子链不能太柔软,否则在玻璃态是由于分子堆砌的很紧密而很难运动;同时分子链的刚性也不能太大,刚性太大分子链不能运动。
(2)结晶聚合物的冷拉:第一阶段,应力随应变线性的增加试样被均匀的拉长,到达一点后,截面突然变得不均匀,出现细颈。
第二阶段,细颈与非细颈部分的截面积分别维持不变,而细颈部分不断扩展,非细颈部分逐渐缩短,直至整个试样完全变细为止。
第三阶段,成颈后的试样重新被均匀的拉伸,应力又随应变的增加而增加直到断裂点。
在外力的作用下,分子在拉伸方向上开始取向,结晶聚合为中的微晶也进行重排,甚至在某些晶体可能破裂成较小的单位,然后再去向的情况下再结晶。
(3)硬弹性聚合物的拉伸行为:易结晶的聚合物熔体,在较高的拉伸应力场中结晶时,可以得到具有很高弹性的纤维或薄膜材料,而其弹性模量比一般橡胶却要高的多。
E.S.Clark提出一种片晶的弹性弯曲机理。
由于在片晶之间存在由系带分子构成的连接点,是使硬弹材料在收到张力时,内部晶片将发生弯曲和剪切弹性变形,晶片间被拉开,形成网格状的结构,因而可以发生较大的形变,而且变形越大,应力越高,外力消失后,靠晶片的弹性回复,网格重新闭合,形变可大部分回复。
(5)嵌段共聚物的应变诱发塑料—橡胶转变:材料在室温下像塑料,在外力的作用下,能够发生很大的形变,移去外力后也能很快的回复。
如果接着进行第二次拉伸,则会像橡胶的拉伸过程材料呈现高弹性。
经拉伸变为橡胶的试样,在室温下放置较长的时间又能回复拉拉伸前的塑料性质。
高分子物理第八章
E i A
摆锤式冲击实验:简支梁;悬臂梁。 单位 :KJ/m2;J/m
北京理工大学
(4)硬度
衡量材料表面抵抗机械压力的能力。 与材料的抗张强度和弹性模量有关。 硬度实验方法很多,加荷方式有动载法和静载法两类。 有布氏、洛氏和邵氏等名称。
实验是以平稳的载荷将直径D一定的 硬刚球压入试样表面,保持一定时间 使材料充分变形,并测量压入深度h, 计算试样表面凹痕的表面积,以单位 面积上承受的载荷公斤/毫米2)为材 料的布氏硬度
第八章 聚合物的屈服和断裂(Yielding and fracture of polymers )
主要内容
前言 8.1 聚合物的塑性和屈服 8.2 聚合物的断裂和强度
教学Байду номын сангаас容:
聚合物的应力—应变曲线 聚合物的屈服 聚合物的断裂与强度
重点要求:
会从聚合物应力——应变曲线获取信息;掌握屈服和断裂现象 及其机理;韧性和强度的影响因素及增韧、增强方法和机理。
15
试样在拉伸过程的变化过程
颈缩阶段:“细颈”扩张,应力变化很小,应变大幅度增加
弹性形变-屈服-应变软化-冷拉-应变硬化-断裂
高模量、小变形 键长、键角运动
可恢复
受迫高弹形变
链段运动
粘流 分子链运动
玻璃态,不可恢复,需Tg以上退火处理恢复。
受迫高弹形变
1)定义:玻璃态高聚物在大外力的作用下发生的大形变; 2)条件:在Tg以下10℃(或更低)左右 3)机理:在大外力的帮助下,玻璃态高聚物本来被冻结的 链段开始运动,即在外力的帮助下,高分子链的伸展提供 了大变形,这时由于在Tg以下,即使外力除去也不能自发回 复。
高分子物理第八章 聚合物的屈服和断裂
后球晶产生形变。晶区形变是应力作用使原有的结晶结构破坏,
球晶、片晶被拉开分裂成更小的结晶单元,分子链从晶体中被 拉出、伸直,沿着拉伸方向排列形成的
第八章 聚合物的屈服和断裂
影响拉伸行为的外部因素
结晶的影响
结晶度
球晶大小
第八章 聚合物的屈服和断裂
第八章 聚合物的屈服和断裂
剪切带屈服机理
( 1 )剪切带是韧性聚合物在单向拉伸至屈服点 时出现的与拉伸方向成约 45°角倾斜的剪切滑移 变形带。 (2)剪切带的厚度约1µ m,在剪切带内部,高分 子链沿外力方向高度取向,剪切带内部没有空隙, 因此,形变过程没有明显的体积变化。 ( 3 )剪切带的产生与发展吸收了大量能量。同 时,由于发生取向硬化,阻止了形变的进一步发 展。 第八章 聚合物的屈服和断裂
第八章 聚合物的屈服和断裂
影响拉伸行为的外部因素
应变速率的影响
时温等效原理:
拉伸速度快 = 时间短
=温度低
第八章 聚合物的屈服和断裂
8.1.1.2 晶态聚合物
在Tm以下,适 当的拉伸速率下 拉伸得到的晶态 聚合物典型的应 力-应变曲线
成颈or冷拉
第八章 聚合物的屈服和断裂
结晶聚合物应力-应变曲线
8.1.5 银纹现象
银纹现象是聚合物在张应力的作用下,于材料某些薄弱部位出现
应力集中而产生局部的塑性形变和取向,以至在材料表面或者内
部垂直于应力方向上出现长度为 100um 、宽度为 10um 左右、厚 度为1um的细微凹槽或“裂纹”的现象。
第八章 聚合物的屈服和断裂
银纹
银纹的平面垂直于产生银纹的张应力,在张应力作用下,能产 生银纹的局部区域内,聚合物呈塑性形变,高分子链沿张应力 方向高度取向,并吸收能量。由于横向收缩不足以全部补偿塑 性伸长,导致银纹体内产生大量空隙。密度、折光指数降低。 第八章 聚合物的屈服和断裂
高聚物的结构与性能—玻璃态聚合物的屈服与断裂
第七章 聚合物的结构与性能
e (3)
e (4)
(3)材料强而韧:具高模量和抗张强度,断裂伸长率较大,
材料受力时,属韧性断裂。
以上三种聚合物由于强度较大,适于用做工程塑料。
(4)材料软而韧:模量低,屈服强度低,断裂伸长率大,断 裂强度较高,可用于要求形变较大的材料。
第七章 聚合物的结构与性能
e (5)
第七章 聚合物的结构与性能
7.8 玻璃态聚合物的屈服与断裂
b B
x
玻璃态聚合物被拉伸时, 典型的应力-应变曲线如右图:
应 y 力
在曲线上有一个应力出现极大
值的转折点B,叫屈服点,对 应的应力称屈服应力( y );
应变
eb
玻璃态聚合物的应力-应变曲线
在屈服点之前,应力与应变基本成正比(虎克弹性),经 过屈服点后,即使应力不再增大,但应变仍保持一定的伸长; 当材料继续被拉伸时,将发生断裂,材料发生断裂时的应力称 断裂应力( b ),相应的应变称为断裂伸长率(eb)。
第七章 聚合物的结构与性能
b B
x
应 y
力பைடு நூலகம்
应变
eb
玻璃态聚合物的应力-应变曲线
材料在屈服点之间发生的断裂称为脆性断裂;在屈服点后发
生的断裂称为韧性断裂。
在屈服点后出现的较大应变在移去外力后是不能复原的。但 是如果将试样温度升到其Tg附近,该形变则可完全复原,因此 它在本质上仍属高弹形变,并非粘流形变,是由高分子的链段 运动所引起的。--强迫高弹形变
第七章 聚合物的结构与性能
强迫高弹形变产生的原因 原因在于在外力的作用下,玻璃态聚合物中本来被冻结的链
段被强迫运动,使高分子链发生伸展,产生大的形变。但由于 聚合物仍处于玻璃态,当外力移去后,链段不能再运动,形变 也就得不到恢复原,只有当温度升至Tg附近,使链段运动解冻, 形变才能复原。这种大形变与高弹态的高弹形变在本质上是相 同的,都是由链段运动所引起。
2019年整理11级高分子物理7 聚合物的屈服和断裂精品资料
8/11/2019
43
8/11/2019
26
7.3.4 聚合物的理论强度
第三种情况,断裂时部分氢 键或范德华力的破坏。
估算出氢键和范德华键的拉 伸强度分别为400MPa和 120MPa,与实际测得的高 度取向纤维的强度是同数量 级。
8/11/2019
27
7.4 影响聚合物实际强度的因素
8/11/2019
28
7.4.1 聚合物本身结构的影响
2. 纤维状填料
纤维填料中使用最早的是各种天然纤维,如棉、 麻、丝及其织物等。后来,发展了玻璃纤维。
纤维填料在橡胶轮胎和橡胶制品中,主要作为 骨架,以帮助承担负荷。通常采用纤维的网状 织物,俗称为帘子布。
在热固性塑料中常以玻璃布为填料,得到得谓 玻璃纤维层压塑料,强度可与钢铁媲美。
8/11/2019
当原子热运动的无规热涨落能量超过束缚原子间的势 垒时,会使化学键离解,从而发生断裂。
承载寿命
= 0
exp
U
0
kT
B
拉伸应力
8/11/2019
20
7.3.3 微裂纹
微裂纹也称为银纹:聚合物在张应力作用下, 出现于材料的缺陷或薄弱处,与主应力方向 垂直的长条形微细凹槽。
长100μm、宽10μm、厚1μm
2a b
8/11/2019
max 0 1 2
c
2 0
c
b2/a
锐口的应力集中系数比钝 口的大得多。
32
7.4.3 应力集中的影响
8/11/2019
33
7.4.4 增塑剂的影响
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.1.2晶态聚合物的应力一应变曲线
一、晶态聚合物在单向拉伸时典型的应力-应变曲线
应 力
Y N A D
B
OA-普弹形变
YN-屈服,缩颈(应变变大,应力 下降)
ND-强迫高弹形变
O
应变
DB-细颈化试样重新被均匀拉伸, 应变随应力增加-应变硬化
结晶聚合物的应力-应变曲线
3)B点称为“断裂点“, “断裂强度 b”和“断裂伸长率 b”。 4)整个应力-应变曲线下的面积就是试样的断裂能。
A E A
从应力-应变曲线可以看出:以一定速率单轴拉伸非晶态聚合物, 其典型曲线可分成五个阶段: ①弹性形变区,从直线的斜率可以求出杨氏模量,从分子机理 来看,这一阶段的普弹性是由于高分子的键长、键角和小的运 动单元的变化引起的,移去外力后这部分形变会立即完全恢复。
8.1.1非晶态高聚物的应力-应变曲线 σ B
Y
σ
0
σ
y
B
ε εy 非晶态高聚物的应力-应变曲线
B
ε
一、非晶态高聚物的应力-应变曲线 σ
A
Y
B
y
0
σ εY
σ
εB
B
ε
我们先对这条曲线定义几个术语:
1) A点称为“弹性极限点”,A 弹性极限应变 ,A弹性极限应力 2)Y点称为“屈服点”,“屈服应力 y”和“屈服伸长εy”。
•屈服点以后,大多数高聚物呈现应变软化,有些还非常 迅速。
•屈服应力对应变速率和温度都敏感。
1. 剪切屈服现象及产生原因
剪切屈服:即在细颈发生前,试样表面出现与拉伸方向成45度 角的剪切带。(为什么?) 剪切带:韧性聚合物单轴拉伸 至屈服点时,可看到与拉伸方 拉伸中材料某个面受力分析 向成45°的剪切滑移变形带, 有明显的双折射现象,分子链 高度取向,剪切带厚度约1μm 左右,每个剪切带又由若干个 横截面A0, 受到的 细小的不规则微纤构成。 0 应力 0=F/A
在外力场作用下,材料内部的应力分布与应力变化十分 复杂,断裂和屈服都有可能发生,处于相互竞争状态。
★韧性材料拉伸时,斜截面上的最大切应力首先增加到材料的剪切强度,
因此材料屈服,并出现与拉伸方向成45°角的剪切滑移变形带。进一步 拉伸时,剪切带中由于分子链高度取向强度提高,暂时不发生进一步的 变形。而其边缘则进一步发生剪切变形。同样,在135°的斜截面上也 发生剪切变形,因而试样逐渐生成对称的细颈,直至细颈扩展至整个试 样。
强度的大小,“脆”是指无屈服现象而且断裂伸长很小,“韧”
是指其断裂伸长和断裂应力都较高的情况,有时可将断裂功作 为“韧性”的标志。
表1 五种应力-应变曲线的特征
类型
硬而脆 硬而强 强而韧 软而韧 软而弱
模量
高 高 高 低 低
拉伸 强度
中 高 高 中 低
屈服点
无 断裂点附近 高 无 低
伸长率
小(2%) 中(5%) 大100% 很大1000% 中
垂直应力下的分子链断裂(a) 和剪切应力下的分子链滑移(b)
材料抵抗外力的方式
两 种 抗张强度:抵抗拉力的作用 抗剪强度:抵抗剪力的作用
抗张强度什么面最大? =0, n=0
抗剪强度什么面最大? =45或135 , s=0/2 当应力0增加时,不同斜面上切向应力增大的幅度不同
讨论玻璃态聚合物的强迫高弹形变和橡胶高弹形变的异同:
相同点: 玻璃态聚合物在大应力条件下发生的这种高弹形变本质上与橡胶态 聚合物的高弹形变是相同的,它们都是由链段运动所导致的高弹形变。 不同点: (1)橡胶的高弹形变发生在Tg温度以上(橡胶态),链段本身就具有了运 动能力;因此在小应力下就可以发生大形变; (2)橡胶的高弹形变当外力去除后可以自动回复。 (3)玻璃态聚合物的高弹形变发生在Tg温度以下(玻璃态),链段本身不 具备运动能力,只是在很大的应力下使链段的运动解冻了,才可以发 生大形变,而且这种大形变只有当加热到Tg温度附近时才可以回复。
注意:(冷拉)强迫高弹形变,对于非晶聚合物,主要
是链段取向;对于结晶聚合物,主要是晶粒的变形。 这与两种拉伸过程造成的大形变都是链段运动所导致高 弹形变并不矛盾。
二、影响晶态聚合物拉伸行为的因素
(1) 球晶大小
(2) 结晶度
8.1.3应力一应变曲线类型
“软”和“硬”用于区分模量的低或高,“弱”和“强”是指
Conclusion: 典型非结晶聚合物拉伸时形变经历普弹形变、应变软化 (屈服)、塑性形变(plastic deformation )(强迫高弹形 变)、应变硬化四个阶段。
应力-应变曲线描述了材料在大外力作用下的形变规律。
从曲线上可得评价聚合物力学性能的参数:
聚合物的屈服强度 (Y点强度) 聚合物的屈服伸长率 (Y点伸长率) 聚合物的杨氏模量 (OA段斜率) 聚合物的断裂强度 (B点强度) 聚合物的断裂伸长 率(B点伸长率) 聚合物的断裂韧性 (曲线下面积)
凡 as an 的,容易发生韧性屈服的材料为韧性材料。
补充:
强迫高弹形变产生的条件:
温度:Tb~Tg
施力: b> y
总结剪切带的特点:
(1)剪切带是韧性聚合物在单向拉伸至屈服点时出
现的与拉伸方向成约45°角倾斜的剪切滑移变形带 (2)剪切带的厚度约1µ m,在剪切带内部,高分子 链沿外力方向高度取向������ 剪切带内部没有空隙, 因此,形变过程没有明显的体积变化 (3)剪切带的产生与发展吸收了大量能量。同时, 由于发生取向硬化,阻止了形变的进一步发展
二、影响聚合物拉伸行为的因素
(1) 温度
T T
a: T<<Tg b: T<Tg d: Tg以上
脆断 屈服后断
c: T<Tg 几十度
韧断
无屈服
Example-PVC
总之,
温度升高,材料逐步变软变韧,断裂强度下降,
断裂伸长率增加; ������ 温度下降,材料逐步变硬变脆,断裂强度增加,
断裂伸长率减小
A E A
②屈服(yield,又称应变软化点)点,超过了此点,冻结的 链段开始运动。材料发生屈服,试样的截面出现“细颈”。此 后随应变增大,应力不再增加反而有所下降——应变软化。 细颈:屈服时,试样出现的局部变细的现象。
E
A A
③强迫高弹形变区(冷拉阶段),随拉伸不断进行,细颈沿试样 不断扩展直到整个试样都变成细颈,材料出现较大变形。强迫高 弹形变本质上与高弹形变一样,是链段的运动,但它是在外力作 用下发生的。此时停止拉伸,去除外力形变不能恢复,但试样加 热到Tg附近的温度时,形变可以缓慢恢复。
强迫高弹形变产生的原因或玻璃态下链段的运动是如何发生的?
松弛时间与应力的关系: = 0 exp
E- E-链段运动活化能 kT
由上式可见,
越大,
-材料常数
越小,即外力降低了链段在外
力作用方向上的运动活化能,因而缩短了沿力场方向的松
弛时间,当应力增加致使链段运动松弛时间减小到与外力 作用时间同一数量级时,链段开始由蜷曲变为伸展,产生
as an
★脆性试样在最大切应力达到剪切强度之前,横截面上的法
向正应力已达到材料的拉伸强度,因此试样还来不及屈服就 断裂了,而且断面与拉伸方向相垂直。 as an
可以根据材料的本征强度对材料的脆、韧性规定一个判据: 凡 as an 的,发生破坏时首先为脆性断裂的材料为脆 性材料;
College of Materials Science and Engineering
Liaocheng University
聚合物的力学性能是其受力后的响应,如形变大小、形变的 可逆性及抗破损性能等。 在不同条件下聚合物表现出的力学行为: 小外力作用下聚合物表现为:高弹性、粘弹性和流动性 很大外力作用下表现为:极限力学行为(屈服、断裂) 强度:材料所能承受的最大载荷,表征了材料的受力极限,在 实际应用中具有重要的意义。 包括抗张强度、冲击强度、弯曲强度、压缩强度、硬度。
显然: σβs= -σas,这说明两个互相垂直的斜截面上的
切应力大小相等、方向相反,而且它们总是同时出现的,之和
是一定值σ0
本质上,法向应力与材料的抗拉伸能力有关,而抗拉伸能 力极限值主要取决于分子主链的强度(键能)。因此材料在 拉伸作用下发生破坏时,往往伴随主链的断裂。 切向应力与材料的抗剪切能力相关,极限值主要取决于分 子间内聚力。材料在剪切作用下发生屈服时,往往发生分子 链的相对滑移(下图)。
A E A
④应变硬化区,在应力的持续作用下,大量的链段开始运动, 并沿外力方向取向,使材料产生大变形,链段的运动和取向
最后导致了分子链取向排列,使强度提高。因此只有进一步
增大应力才使应变进一步发展,所以应力又一次上升——“应 变硬化”。
A E A
⑤断裂—试样均匀形变,最后应力超过了材料的断裂强度, 试样发生断裂。
曲线下 面积
小 中 大 大 中
实例
PS、PMMA、 酚醛 硬质PVC PA66、PC、 POM 软质PVC、硫 化橡胶 聚合物凝胶
§ 8. 2聚合物的屈服
屈 服 主 要 特 征
•高聚物屈服点前形变是完全可以回复的,屈服点后高聚 物将在恒应力下“塑性流动”,即链段沿外力方向开始取 向。 •高聚物在屈服点的应变相当大,屈服应变为10%-20%(与 金属相比)。
=0 =45 =90
n=0
n=0/2
s=0 s=0/2 s=0
n=0
对于试样中倾角为β= a+π/2的斜截面(它与第一个斜截面 相互垂直)进行同样处理,我们也可以得到:
σβn=σ0 Cos2β=σ0 Sin 2α