求极限方法总结ppt课件

合集下载

《极限的运算》课件

《极限的运算》课件
重要的作用。
无穷小量的运算包括无穷小量的加法、 减法、乘法和除法。在运算过程中,无 穷小量可以与其他量进行加减乘除运算
,但需要注意运算结果的极限状态。
无穷小量在极限运算中常常用于等价变 换和泰勒展开等技巧,可以帮助我们简
化复杂的极限问题。
极限运算的注意事项
01
02
03
04
在进行极限运算时,需要注意 一些关键的点,以确保结果的
极限存在定理的证明方法
极限存在定理可以通过多种方法证明,如数学归纳法、反证法、直接证明法等 。这些方法都基于实数完备性定理,通过排除不可能的情况来证明极限的存在 。
极限存在定理的应用
函数极限的求解
极限存在定理是求解函数极限的基础 ,通过判断函数在某点的极限是否存 在,可以进一步研究函数的性质和变 化趋势。
极限的性质
极限具有一些重要的性质,如 唯一性、局部有界性、局部保 号性等。
这些性质在研究函数的极限行 为时非常重要,可以帮助我们 推导一些重要的结论和定理。
了解和掌握这些性质对于深入 理解极限的概念和应用极限的 方法具有重要意义。
02
极限的四则运算
极限的四则运算法则
加法法则
如果lim(x→a) f(x) = M1 和 lim(x→a) g(x) = M2,那么 lim(x→a) [f(x) + g(x)] = M1 + M2。
这种定义方式具有高度的严谨性 和精确性,是数学分析中研究函
数的重要基础。
极限的直观理解
极限的直观理解可以描述为函数在某一点附近的变化趋势。
当x逐渐接近这一特定点时,函数值会逐渐接近其极限值,或者保持一定的距离,或 者趋近于无穷。
这种变化趋势可以通过图形或表格进行可视化,帮助我们更好地理解极限的概念。

极限的四则运算PPT教学课件

极限的四则运算PPT教学课件

• 孔子并不像后来我国封建社会的统治者所吹捧、所神化的那 样,是什么不食人间烟火的“文宣王”“大成至圣先师”等 等,他也是一个有血有肉的现实社会中的人。
• 他赞美颜回安于贫困,又汲汲于追求富贵,甚至奔走于权贵 之门,国君召唤他,他等不及驾好车马,就赶快跑了去。
• 孔子对他的学生很严厉,批评起来不讲情面,他批评“宰予 昼寝”说:“朽木不可雕也,粪土之墙不可圬也”(《论 语·公冶长》);而有时对他的学生也很亲切
方法——因式分解法(再转化为代入法)
[注]:函数在某一点的极限,考察的是函 数值的变化趋势,与函数在这一点是否有定 义,是否等于在这一点处的函数值无关.故 本例可约去公因式x-1.
例2:(1)求lim x 1 1
x 0
x
(2)求 lim x( x 3 x
x 2)
——方法: 分子(分母)有理化法(与分子 分母同除x的最高次幂相结合)
x x 0
xx0
lim [f(x) g(x)] lim f(x) lim g(x) a b
x x 0
x x 0
x x 0
lim [f(x)• g(x)] lim f(x)• lim g(x) a • b
x x 0
x x 0
x x 0
lim
f(x)
lim f(x)
x x 0
a (b 0)
xx0 g(x) lim g(x) b
点评对“0 型” 或“ 0 ” 的极限,应通过 0 分 解 因 式 约 去 “ 零 因 子” 或 根 式 有 理 化
例3:(1)

lim
x
x
x2 2
x
1
1
(2)

lim

高三数学极限的四则运算PPT课件

高三数学极限的四则运算PPT课件

注: 极限的运算法则只能推广到有限多项,
无限时,要先求和(或积)再求极限
当项数
小结与反思:
1、本节知识结构
函数的极限 函数极限的四则运 算法则
数列的极限
Hale Waihona Puke 数列极限的四则运 算法则应用
求分式的极限 求无限项和的极限
2、思想方法反思
(1) 一般地,当分子分母是关于n的的多项式时,①若分子分母的 次数相同,这个分式在 的极限是分子与分母中最高次项的系数之 比; ②若分母的次数高于分子的次数,这个分式在 的极限是0 ( 2) 求 的函数极限问题转化为求 的数列极限问题 (3) 当项数无限时,要先求和(或积)再求极限
变式练习:
(1)已知 =2 , 求a的值 ( 6 )
(2)求 (3) 若 -4 2 a=_____b=_______
的极限( , 则

注:
求 列极限问题
的函数极限问题转化为求
的数
例题2、求下列极限
(1 )
(2)
方法:分子,分母同除以 绝对值 最大的 底数的n次方
例3 、
思考:对比解1、解2,判断哪种解法正确,并分析原因
2、上述法则对 的情况仍然成立。
求某些函数在某一点 x=x0处的极限值时,只 要把x=x0代入函数的解 析式中,就得到极限 值.这种方法叫代入法.
当用代入法时,分子、 分母都为 0 ,可对分子、 分母因式分解,约去公 因式来求极限.就是先要 对原来的函数进行恒等 变形.称因式分解法.
数列极限的四则运算: 如果 那么
问题1:函数
你能否直接看出函数值的变化趋势? 问题2:如果不能看出函数值的变化趋势, 那么怎样才能把问题转化为已知能求的函数 极限?转化的数学方法与依据是什么?

极限的四则运算PPT优秀课件

极限的四则运算PPT优秀课件
2.4极限的四则运算(1)
求下列函数的极限:
1、lim 1 x x
2、lim x 1 x x
3、lim ( x 1) x1
4、lim a x x
5、lxim1 x23x2 2xx211 6、lx im x23x2 2xx211
7、lx im x23x3 2xx211 8、lx im x23x4 2xx211
97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔·普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉·彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔·卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰·罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳·厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝·C·科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔·卡内基] 110.每天安静地坐十五分钟·倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克·佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根·皮沙尔·史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。

考研高数总复习函数的极限(讲义)PPT课件

考研高数总复习函数的极限(讲义)PPT课件
无穷小是函数极限的必要条件,即如果函数在某点的极限存在,那么函数在该点的值必定是无穷小。
无穷小与函数极限的关系是相互依存的,无穷小是函数极限的一种表现形式,而函数极限又是无穷小的 一种表现形式。
无穷小在求极限中的应用
利用无穷小的性质,可以将复杂的函数极限转化为简单的无穷小量,从而 简化计算过程。
在求函数极限时,可以利用等价无穷小替换,将复杂的函数表达式替换为 简单的无穷小量,从而得到更易处理的极限表达式。
利用极限的四则运算法则,消去零因子,化 简函数形式,再求极限。
利用两个重要极限求解
利用重要极限$lim_{x to 0} frac{sin x}{x} = 1$求解:当函数 形式为$frac{sin x}{x}$时,可以利用此重要极限求解。
利用重要极限$lim_{x to infty} frac{1}{x} = 0$求解:当函数 形式为$frac{1}{x}$时,可以利用此重要极限求解。
考研高数总复习函数的极限(讲义 )ppt课件
contents
目录
• 函数极限的基本概念 • 函数极限的求解方法 • 函数极限的应用 • 函数极限的深入理解 • 总结与展望
01 函数极限的基本概念
函数极限的定义
1 2
函数极限的定义
当自变量趋近某一特定值时,函数值的变化趋势。
函数极限的表示方法
lim f(x) = A,表示当x趋近于某个值时,f(x)趋 近于A。
THANKS FOR WATCHING
感谢您的观看
在物理学中,函数极限被用来描述物体运动的速度、加速度等概念;在 工程中,函数极限被用来描述信号的变化趋势;在经济中,函数极限被
用来描述市场的变化趋势。
通过对函数极限的学习,我们可以更好地理解和应用这些概念,为未来 的学习和工作打下坚实的基础。

《极限定理教学》课件

《极限定理教学》课件

02
无穷小和无穷大在极限理论中有 着重要的应用,如极限的定义、 性质和计算等。
06
极限定理的深化理解
极限定理的几何解释
极限定理的几何解释
通过几何图形和图形的变化趋势,深入 理解极限的概念和性质。例如,通过观 察函数图像的变化趋势,理解函数在某 点的极限值。
VS
动态演示
利用动画或动态图演示函数的变化趋势, 帮助学生直观地理解极限的概念。
注意事项
强调在求幂函数的极限时需要注意 的要点,例如n不能为负数且分母不 能为零等。
指数函数的极限
指数函数的形式
指数函数的一般形式为a^x( a>0且a≠1),其极限值取决于a
的值。
举例说明
通过具体例子演示如何求指数函 数的极限,例如求lim(x->∞) a^x的极限值,其中a>1和 0<a<1的情况。
在微积分中,极限的应用可以帮助我们更好地理解微积分 的本质和思想,解决微积分中的问题,如求解函数的极值 、求解定积分等。
04
极限的运算
极限的四则运算
极限的四则运算法则
注意事项
极限的四则运算法则是极限运算的基 础,包括加法、减法、乘法和除法的 极限运算规则。
强调在运用极限的四则运算法则时需 要注意的要点,例如分母不能为零等 。
左极限与右极限
根据函数在某点处的左右两侧的变化 趋势,可以将极限分为左极限和右极 限。
单侧极限与双侧极限
根据函数在某点处是否只有一个方向 上的变化趋势,可以将极限分为单侧 极限和双侧极限总结词
单调有界定理是极限理论中的基本定理之一,它表明如果一 个数列单调递增且有上界或单调递减且有下界,则该数列收 敛。
无穷大的定义与性质

高数极限运算法则课件

高数极限运算法则课件

极限四则运算法则
加法运算法则
若两函数在某点的极限存在,则它们的和在 该点的极限也存在,且等于两函数极限的和

减法运算法则
若两函数在某点的极限存在且不为零,则它 们的积在该点的极限也存在,且等于两函数
极限的积。
乘法运算法则
若两函数在某点的极限存在,则它们的差在 该点的极限也存在,且等于被减数函数极限 与减数函数极限的差。
泰勒公式定义
泰勒公式是用多项式逼近一个函数的方法,将一个函数表示为一个无穷级数。
泰勒公式性质
泰勒公式具有唯一性、收敛性和可微性等性质,其中收敛性是指当n趋近于无穷大时, 泰勒级数的和趋近于原函数。
泰勒公式在求极限中的应用举例
利用泰勒公式求极限
对于一些复杂的函数极限,可以通过泰勒公 式将其展开为多项式形式,从而简化求极限 的过程。
柯西收敛准则
数列 {xn} 收敛的充分必要条件是:对于任意给定的正数 ε,总存在正整数 N, 使得当 m>N 以及对于任意的正整数 p,都有 |xm+p−xm|<ε 成立。
应用举例
利用柯西收敛准则判断级数是否收敛,如判断 ∑n=1∞ann! 的收敛性,其中 {an} 是单调减少且趋于零的数列。
04
无穷小量与无穷大 量的关系
在同一变化过程中,如果函数 $f(x)$是无穷小量,且函数 $g(x)$是有界量,那么函数 $f(x)g(x)$也是无穷小量;如果 函数$f(x)$是无穷大量,且函 数$g(x)$是有界量但不为零, 那么函数$frac{1}{f(x)g(x)}$也 是无穷小量。
02
极限运算法则
03
无穷大量的性质与运算
无穷大量具有可加性、可乘性 、同阶无穷大等性质,可以通 过取对数等方法转化为无穷小 量进行计算。

极限运算法则【高等数学PPT课件】

极限运算法则【高等数学PPT课件】

3
( x 2)( x 1)

lim
x1
(
x

1)(
x2

x

1)
x2

lim
x 1
x2

x

1
1
定理7 (复合函数的极限运算法则)
设 lim uu0
f (u)
A,函数u ( x)当x

x0时的极限存在
0
且等于u0,即
lim
x x0
(
x)

u0
,
但在U
(
x0
)内(
x)
x2
x
2
x3 1 3x
5
.
解 lim( x 2 3x 5) lim x 2 lim 3x lim 5
x2
x2
x2
x2
(lim x)2 3 lim x lim 5
x2
x2
x2
22 3 2 5 3 0,
lim x2
(3)
lim
f
(x)

A ,
其中B 0.
g(x) B
推论1 如果 lim f ( x)存在,而c为常数,则 lim[cf ( x)] c lim f ( x).
推论2 如果 lim f ( x)存在,而n是正整数,则
lim[ f ( x)]n [lim f ( x)]n .
例1

lim
例6 求 lim sin x . x x
解 当x 时, 1 为无穷小,
x
而sin x是有界函数.
lim sin x 0. x x

《利用导数求极限》课件

《利用导数求极限》课件

导数的计算
导数可以通过极限的定 义和求导规则进行计算。
求极限的方法
1
曲线特征法
利用函数图像的特征,通过观察图像来推断函数的极限值。
2
夹逼准则法
通过将函数夹在两个其他函数之间,来确定函数的极限值。
3
极限的运算法则
利用极限的运算法则,对函数进行运算,从而求得函数的极限。
用导数求极限
1
极限的定义及性质
后续学习建议
给出一些建议,如何进 一步学习和应用导数和 极限的知识。
**注意:本PPT课件仅作为学 习交流使用,请勿商用或复制 传播。**
常见函数的导数 求法
学习常见函数的导数求解 方法,以及导数与极限的 关系。
结合导数和极限 的例题分析
通过具体的例题分析,综 合运用导数和极限的知识, 解决复杂的极限问题。
总结
导数与极限的关系
导数是极限的一种特殊 情况,导数可以帮助我 们求解函数的极限值。
导数在极限中的应用
通过导数的概念和性质, 可以更好地和基本性质,了解极限的特点和运算规则。
2
极限存在的必要条件
了解函数极限存在的必要条件,以及如何判断函数是否存在极限。
3
利用导数求左右极限及无穷极限
通过导数的知识和极限的定义,来求解函数的左右极限和无穷极限。
示例分析
常见函数的极限 求法
介绍常见函数如常数函数、 幂函数和指数函数的极限 求解方法。
利用导数求极限
这是一份关于如何利用导数求极限的PPT课件。通过本课件,你将回顾导数的 概念,学习不同的求极限方法,并了解如何用导数求极限,最后总结导数与 极限的关系。
导数的概念回顾
导数的定义
导数是函数在某一点的 变化率,表示函数在该 点的切线的斜率。

极限四则运算PPT教学课件

极限四则运算PPT教学课件

p n
n
n
3) 利用1),2)的结果, 说明圆面积公式S R2
例6:1) 已知首项为a , 公比 1
为q(0 | q | 1)的无穷递缩等
比数列的前n项和为S , n
求 lim
S n
n
R O rn
2)如图, 在直角坐标平面内, 动点P由原点O出发,
沿x轴正方向前进a个单位, 到达P点, 接着沿y轴 1
lim l k l k n
a0nl a1nl1 al b0nk b1nk1 bk
a0 b0
不存在
练习:P88 1,2
P90 1,2
例3:求下列极限
1 23 n
lim n
n2
1/2
lim [ 4 7 3n 1 ]
n n(n 1) n(n 1)
n(n 1)
3/2
lim [ 1 1
x x0
lim [ f ( x)]n [lim f ( x)]n (n N )
x x0
x x0
注:1、上述法则可推广到有限个函数的加,减,乘,除。
2、上述法则对 x 的情况仍然成立。
例1: 求下列函数的极限。
பைடு நூலகம்
1、lim x1
2x2 x3
x 2x2
1 1
2、lim x1
x 11 x2
3、lim x
2x2 x2
3x 1
4、lim x
tan
2x

tan(
4
x)
4
5、lim x( x2 1 x2 1) 6、lim (1 1 )100
x
x
x
数列极限的四则运算:
如果
lim
a n

高等数学课件1-6极限的运算法则

高等数学课件1-6极限的运算法则
n
1 2

1 4
2
...
2
1 2
n
)
2、 lim
( x h) x h
h 0
3、 lim (
x1
1 1 x

3 1 x
3
)
$1-6极限运算法则
21
4、 lim
1 x 3 2
3
x 8
x
x x x)
5、 lim (
x
x
x x
6、 lim
2 4
x1
lim
x 2x 3
2
x1
4x 1

0 3
0.
由无穷小与无穷大的关系,得
lim 4x 1 x 2x 3
2 x1
.
$1-6极限运算法则
7
例3 求 lim
x 1
2
x1
x 2x 3
2
.
(与P60例2同类)
.
解 x 1时 , 分子 , 分母的极限都是零
例5 求 lim 解x
2x 3x 5
3 2
x
7x 4x 1
3 2
.
(与P61例6同类)
.
时 , 分子 , 分母的极限都是无穷大
3
(

型)
先用 x 去除分子分母
, 分出无穷小
, 再求极限 .
lim
2x 3x 5
3 2
2 lim
x
3 x 4 x

lim[ f ( x )] [lim f ( x )] .
n n
类似有数列极限的四则运算法则(P59Th 6)

极限的求法总结.ppt

极限的求法总结.ppt

lim 1 (1 1 ) 1 n 2 2n 1 2

lim(
x1
1 x 1

2
x2

) 1
lim( 1 2 ) lim( x 1 2 ) x1 x 1 x2 1 x1 x2 1 x2 1

lim
x1
x 1 x2 1

lim
x1
x
1 1

1 2
x0
x0
左右极限存在且相等,
故 lim f ( x) 1. x0
y y 1 x
1
o
y x2 1 x
8.分子(母)有理化求极限
【说明】分子或分母有理化求极限,是通过有理化化去无理式。
例 求极限 lim ( x2 3 x2 1) x
lim (
x
x2 3

0ab,00当,当n n
m, m,
,当n m,

无穷小分出法:以分母中自变量的最高次幂除分 子,分母,以分出无穷小量,然后再求极限.
练习1 练习2
求 lim 2x 2 5x 1. x1 x 2 4x 8
求 lim 2n 1 . n n2 n
练习3 练习4
lim (2x 3)20 (3x 2)30
x
(2x 1)50
lim (2x 1)4 (x 1)78
x
(x 1)82
lim x
x4
(2

1 x
)4

x78
(1
1 x
)78
x82 (1
1 x
)82
24
16
5.先变形再求极限
(利用求和化简,拆项技巧,合并化简等)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 利用极限的四则运算性质求极限 函数的和、差、积、商的极限等于函数极限的和、 差、积、商。 2. 换元法求极限 当一个函数的解析式比较复杂或不便于观察时,可 采用换元的方法加以变形。
.
3. 利用两个重要极限公式求极限 在利用重要极限求函数极限时,关键在于把要求的 函数极限化成重要极限标准型或者是它们的变形式。 若用到第一个重要极限来求极限时,往往要利用三 角公式对变量进行变形,设法化成标准型,如果是 用到第二个重要极限求极限时,有时要对自变量作 适当的代换,使所求的极限变成这一形式。
.
4. 利用无穷大和无穷小的性质求极限 在同一极限过程中,无穷大与无穷小互为倒数。 无穷小与常量、有界函数的乘积仍为无穷小。 5. 利用函数的连续性求极限 求连续函数极限时,极限和函数符号可以交换顺序。.源自 6. 利用等价无穷小的代换求极限
求两个无穷小量之比的极限时,分子,分母均可用等价 无穷小量之比的极限时,分子,分母均可用等价无穷小 量代替,从而使计算大大简化。
注意: 等价无穷小代换可以用于乘除运算的各因式,而 不能随意用于和差运算。
.
利用等价无穷小代换求函数的极限时,必须把分子 (或分母)看作一个整体,用整个分子(或分母)的等价无 穷小去代换。若分子(或分母)是两个等价无穷小之差, 就不能用各自的等价无穷小代换;若分子(或分母)不 是两个等价无穷小之差,就可以用各自的等价无穷小 代换。
.
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!感谢你的观看!
相关文档
最新文档