数学建模优秀论文
大学数学建模论文范文3000字(汇总5篇)

大学数学建模论文范文3000字第1篇一、小学数学建模_数学建模_已经越来越被广大教师所接受和采用,所谓的_数学建模_思想就是通过创建数学模型的方式来解决问题,我们把该过程简称为_数学建模_,其实质是对数学思维的运用,方法和知识解决在实际过程中遇到的数学问题,这一模式已经成为数学教育的重要模式和基本内容。
叶其孝曾发表《数学建模教学活动与大学数学教育改革》,该书指出,数学建模的本质就是将数学中抽象的内容进行简化而成为实际问题,然后通过参数和变量之间的规律来解决数学问题,并将解得的结果进行证明和解释,因此使问题得到深化,循环解决问题的过程。
二、小学数学建模的定位1.定位于儿童的生活经验儿童是小学数学的主要教学对象,因此数学问题中研究的内容复杂程度要适中,要与儿童的生活和发展情况相结合。
_数学建模_要以儿童为出发点,在数学课堂上要多引用发生在日常生活中的案例,使儿童在数学教材上遇到的问题与现实生活中的问题相结合,从而激发学生学习的积极性,使学生通过自身的经验,积极地感受数学模型的作用。
同时,小学数学建模要遵循循序渐进的原则,既要适合学生的年龄特征,赋予适当的.挑战性;又要照顾儿童发展的差异性,尊重儿童的个性,促进每一个学生在原有的基础上得到发展。
2.定位于儿童的思维方式小学生的特点是年龄小,思维简单。
因此小学的数学建模必须与小学生的实际情况相结合,循序渐进的进行,使其与小学生的认知能力相适应。
实际情况表明,教师要想使学生能够积极主动的思考问题,提高他们将数学思维运用到实际生活中的能力,就必须把握好儿童在数学建模过程中的情感、认知和思维起点。
我们以《常见的数量关系》中关于速度、时间和路程的教学为例,有的老师启发学生与二年级所学的乘除法相结合,使乘除法这一知识点与时间、速度和路程建立了关联,从而使_数量关系_与数学原型_一乘两除_结合起来,并且使学生利用抽象与类比的思维方法完成了_数量关系_的_意义建模_,从而创建了完善的认知体系。
优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文第1篇摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。
建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。
本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。
关键词:数学建模;高等数学;教学研究一、引言建模思想使高等数学教育的基础与本质。
从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。
但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。
其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。
二、高等数学教学现状高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。
他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。
同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。
但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。
因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。
三、将数学建模思想融入高等数学的重要性第一,能够激发学生学习高数的兴趣。
建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。
把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。
数学建模论文(最新9篇)

数学建模论文(最新9篇)大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。
数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。
因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和创新思维,提高其素质和创新能力,实现向素质教育的转化和深入。
一、数学建模的含义及特点数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学方法及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。
一般来说",数学建模"包含五个阶段。
1、准备阶段主要分析问题背景,已知条件,建模目的等问题。
2、假设阶段做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3、建立阶段从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4、求解阶段对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5、验证阶段用实际数据检验模型,如果偏差较大,就要分析假设中一些因素的合理性,修改模型,直至吻合或接近现实。
如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
二、加强数学建模教育的作用和意义(一)加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质数学修养和素质自然而然得以培养并提高。
(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。
数学建模论文(精选4篇)

数学建模论文(精选4篇)数学建模论文模板篇一1数学建模竞赛培训过程中存在的问题1.1学生数学、计算机基础薄弱,参赛学生人数少以我校理学院为例,数学专业是本校开设最早的专业,面向全国28个省、市、自治区招生,包括内地较发达地区的学生、贫困地区(包括民族地区)的学生,招收的学生数学基础水平参差不齐.内地较发达地区的学生由于所处地区的经济文化条件较好,教育水平较高,高考数学成绩普遍高于民族地区的学生.民族地区由于所处地区经济文化较落后,中小学师资力量严重不足,使得少数民族学生数学基础薄弱,对数学学习普遍抱有畏难情绪,从每年理学院新生入学申请转系的同学较多可以窥见一斑.虽然学校每年都组织学生参加全国大学生数学建模竞赛,但人数都不算多.从专业来看,参赛学生主要以数学系和计算机系的学生为主,间有化学、生科、医学等理工科学生,文科学生则相对更少.理工科类的学生基本功比较扎实,他们在参赛过程中起到了重要作用.文科学生数学和计算机功底大多薄弱,更多的只是一种参与.从年级来看,参赛学生以大二的学生居多;大一的学生已学的数学和计算机课程有限,基本功还有些欠缺;大三、大四的学生忙着考研和找工作,对数学建模竞赛兴趣不大.从参赛的目的来看,有20%左右的学生是非常希望通过数学建模提高自己的综合能力,他们一般能坚持到最后;还有50%的学生抱着试试看的态度参加培训,想锻炼但又怕学不懂,觉得可以坚持就坚持,不能则中途放弃;剩下的30%的学生则抱着好奇好玩的态度,他们大多早早就出局了.学生的参赛积极性不高,是制约数学建模教学及竞赛有效开展的不利因素.1.2无专职数学建模培训教师,培训教师水平有限,培训方法落后数学建模的培训教师主要由理学院选派数学老师临时组成,没有专职从事数学建模的教师.由于学校扩招,学生人数多,教师人数少,数学教师所承担的专业课和公共课课程多,授课任务重;备课、授课、批改作业占用了教师的大部分工作时间,并且还要完成相应的科研任务.而参加数学建模教学及竞赛培训等工作需要花费很多时间和精力,很多老师都没有时间和精力去认真从事数学建模的教学工作.培训教师队伍整体素质不够强、能力欠缺,指导起学生来也不是那么得心应手,且从事数学建模教学的老师每年都在调整,不利于经验的积累.另外,学校对参与数学建模教学及竞赛培训的教师的鼓励措施还不是十分到位和吸引人,培训教师对数学建模相关的工作热情不够,缺乏奉献精神.在2011年以前,数学建模培训主要采用教师授课的方式进行,但各位老师授课的内容互不联系.比如说上概率论的老师就讲概率论的内容,上常微分方程的老师就讲常微分的内容.学生学习了这些知识,不知道有什么用,怎么用,不能将这些知识联系起来转化为数学建模的能力.这中间缺少了很重要的一个环节,就是没有进行真题实训.结果就是学生既没有运用这些知识构建数学模型的能力,也谈不上数学建模论文写作的技巧.虽然学校年年都组织学生参加全国大学生数学建模竞赛,但结果却不尽如人意,获奖等次不高,获奖数量不多.1.3学校重视程度不够,相关配套措施还有待完善任何一项工作离开了学校的支持,都是不可能开展得好的,数学建模也不例外.在前些年,数学建模并没有引起足够的重视,学校盼望出成绩但是结果并不理想,对老师和学生的信心不足.由于经费紧张,并未专门对数学建模安排实验室,图书资料很少,学生用电脑和查资料不方便,没有学习氛围.每年数学建模竞赛主要由分管教学的副院长兼任组长,没有相应专职的负责人,培训教师去参加数学建模相关交流会议和学习的机会很少.学校和二级学院对参加数学建模教学、培训的老师奖励很少,学生则几乎没有.在课程的开设上也未引起重视,虽然理学院早在1997年就将数学实验和数学建模课列为专业必修课,但非数学专业只是近几年才开始列为公选课开设,且选修率低.2针对存在问题所采取的相应措施2.1扩大宣传,重视数学和计算机公选课开设,举办数学建模学习讨论班最近两年,学院组建了数学建模协会,负责数学建模的宣传和参赛队员的海选,通过各种方式扩大了对数学建模的宣传和影响,安排数学任课教师鼓励数学基础不错的学生参赛.同时邀请重点大学具有丰富培训经验的老师来做数学建模专题讲座,交流经验.学院重视数学专业的基础课程、核心课程的教学,选派经验丰富的老教师、青年骨干教师担任主讲,随时抽查教学质量,教学效果.严抓考风学风,对考试作弊学生绝不姑息;学生上课迟到、早退、旷课一律严肃处理.通过这些举措,学生学习态度明显好转,数学能力慢慢得到提高.学校有意识在大一新生中开设数学实验、数学建模和相关计算机公选课,让对数学有兴趣的学生能多接触这方面的知识,减少距离感.选用的教材内容浅显而有趣味,主要目的是让同学们感受到数学建模并非高不可攀,数学是有用的,增加学生学习数学的热情和参加数学建模竞赛的可能性.为了解决学生学习数学建模过程中的遇到的困难,学院组织老师、学生参加数学建模周末讨论班,老师就学生学习过程中遇到的普遍问题进行讲解,学生分小组相互讨论,尽量不让问题堆积,影响后续学习积极性.通过这些措施,参赛学生的人数比以往有了大的改观,参赛过程中退赛的学生越来越少,参赛过程中的主动性也越来越明显.2.2成立数学建模指导教师组,分批培养培训教师,改进培训方法近年来,学院开始重视对数学建模培训教师的梯队建设,成立了数学建模指导教师组.把培训教师分批送出去进修,参加交流会议,学习其它高校的经验,并安排老教师带新教师,培训教师队伍越来越稳定、壮大.从去年开始,理学院组织学生进行了为期一个月的暑期数学建模真题实训,从8月初到8月底,培训共分为7轮.学生首先进行三天封闭式真题训练———其次答辩———最后交流讨论.效果明显,学生的数学建模能力普遍得到了提高,学习积极性普遍高涨.9月份顺利参加了全国大学生数学建模竞赛.从竞赛结果来看,比以前有了比较大的进步,不管是获奖的等次还是获奖的人数上都取得了历史性突破.有了这些可喜的变化,教师和学生的积极性都得到了提高,对以后的数学建模教学和培训工作将起着极大的促进作用.除了这种集训,今后,数学建模还需要加强平时的教学和培训工作.2.3学校逐渐重视,加大了相关投入,完善了激励措施最近几年,学校加大了对数学建模教学和培训工作的相关投入和鼓励措施.安排了专门的数学建模实验室,配备了学院最先进的电脑、打印机等设备,购买了数学建模相关的书籍.划拨了数学建模教学和培训专项经费.虽然数学建模教学还没有计入教学工作量,但已经考虑计入职称评定的相关工作量中,对参加数学建模教学和培训的老师减少了基本的教学工作量,使他们有更多的时间和精力投入到数学建模的相关工作中去.对参加全国大学生数学建模竞赛获奖的老师和学生的奖励额度也比以前有了很大的提高,老师和学生的积极性得到了极大的提高.3结束语对我们这类院校而言,最重要的数学建模赛事就是一年一度的全国大学生数学建模竞赛了.竞赛结果大体可以衡量老师和学生的付出与收获,但不是绝对的,教育部组织这项赛事的初衷主要是为了促进各个院校数学建模教学的有效开展.如果过分的看重获奖等次和数量,对学校的数学建模教学和组织工作都是一种伤害.参赛的过程对学生而言,肯定是有益的,绝大多数参加过数学建模竞赛的学生都认为这个过程很重要.这个过程可能是四年的大学学习过程中体会最深的,它用枯燥的理论知识解决了活生生的现实中存在的问题,虽然这种解决还有部分的理想化.由于我校地处偏远山区,教育经费相对紧张,投入不可能跟重点院校的水平比,只能按照自身实际来.只要学校、老师、学生三方都重视并积极参与这一赛事,数学建模活动就能开展的更好.数学建模论文模板篇二培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。
数学建模论文(7篇)

数学建模论文(7篇)在学习、工作中,大家总少不了接触论文吧,论文可以推广经验,交流认识。
如何写一篇有思想、有文采的论文呢?为了帮助大家更好的写作数学建模论文模板,山草香整理分享了7篇数学建模论文。
计算数学建模是用数学的思考方式,采用数学的方法和语言,通过简化,抽象的方式来解决实际问题的一种数学手段。
数学建模所解决的问题不止现实的,还包括对未来的一种预见。
数学建模可以说和我们的生活息息相关,尤其是如今科技发达的今天。
数学建模应用领域超乎我们的想象,甚至达到无所不及的程度,随着数学建模在大学教学中的广泛使用,使数学建模不止成为一种学科,更重要的是指导新生代更好的利用现代科学技术,成为高科技人才,把我国人才强国,科教兴国的战略推向一个新的高度。
1.数学建模对教学过程的作用1.1数学建模引进大学数学教学的必要。
教学过程,是教师根据社会发展要求和当代学生身心发展的特点,借助教学条件,指导学生通过认识教学内容从而认识客观世界,并在此基础之上发展自身的过程,即教学活动的展开过程。
以往高工专的数学教学存在着知识单一,内容陈旧,脱离实际等缺陷,已经不能满足时代的发展,如今的数学教学过程不是单纯的传授数学学科知识,而是通过数学教学过程引导学生认识科学,理解科学,从而指导实践,促进学生的德智体美劳全面的进步和发展。
因此数学建模成为一门学科,被各大高等院校广泛引用和推广,其实数学建模不止应用在大学数学教学中,其他一切教学过程多可引进数学建模。
1.2数学建模在大学数学教学中的运用。
大学数学教师通过这个数学建模过程来引导学生解决问题和指导实践的能力。
再次建模结果对现实生活的指导,这是大学数学教学中数学建模所需要达到的效果和要求。
不再停留在理论学习,而是通过理论指导实践,从而为科学的进步和人才综合水平的提高提供可能。
2.数学建模对当代大学生的作用2.2数学建模对学生综合能力的提高数学建模是大学数学教师运用数学科学去分析和解决实际问题,在数学建模学习的过程中,大学生的数学能力得到提高,其分析问题、解决问题的能力得到提高,这对大学生毕业走向社会具有着重大意义。
数学建模竞赛优秀大学生论文

数学建模竞赛优秀大学生论文随着科学技术的高速发展,数学的应用价值越来越得到众人的重视,因此数学建模也被逐渐的引起重视了。
下面是店铺为大家整理的数学建模优秀论文,供大家参考。
数学建模优秀论文篇一:《数学建模用于生物医学论文》1数学建模的过程1.1模型准备首先要了解实际背景,寻找内在规律,形成一个比较清晰的轮廓,提出问题。
1.2模型假设在明确目的、掌握资料的基础上,抓住问题的本质,舍弃次要因素,对实际问题做出合理的简化假设。
1.3模型建立在所作的假设条件下,用适当的数学方法去刻画变量之间的关系,得出一个数学结构,即数学模型。
原则上,在能够达到预期效果的基础上,选择的数学方法应越简单越好。
1.4模型求解建模后要对模型进行分析、求解,求解会涉及图解、定理证明及解方程等不同数学方法,有时还需用计算机求数值解。
1.5模型分析、检验、应用模型的结果应当能解释已存的现象,处理方法应该是最优的决策和控制方案,所以,对模型的解需要进行分析检验。
把求得的数学结果返回到实际问题中去,检验其合理性。
如果理论结果符合实际情况,那么就可以用它来指导实践,否则需再重新提出假设、建模、求解,直到模型结果与实际相符,才能进行实际应用。
总之,数学建模是一项富有创造性的工作,不可能用一些条条框框的规则规定的十分死板,只要是能够做到全面兼顾、能抓住问题的本质、最终检验结果合理,都是一个好的数学模型。
2数学建模在生物医学中的应用2.1DNA序列分类模型DNA分子是遗传信息存储的基本单位,许多生命科学中的重大问题都依赖于对这种特殊分子的深入了解。
因此,关于DNA分子结构与功能的问题,成为二十一世纪最重大的课题之一。
DNA序列分类问题是研究DNA分子结构的基础,它常用的方法是聚类分析法。
聚类分析是使用数据建模简化数据的一种方法,它将数据分成不同的类或者簇,同一个簇中的数据有很大的同质性,而不同的簇中的数据有很大的相异性。
在对DNA序列进行分类时,需首先引入样品变量,比如说单个碱基的丰度、两碱基丰度之比等;然后计算出每条DNA序列的样品变量值,存入到向量中;最后根据相似度度量原理,计算出所有序列两两之间的Lance与Williams距离,依据距离的远近进行分类。
全国大学生数学建模竞赛论文范例

全国大学生数学建模竞赛论文范例摘要:本文通过对具体问题的深入研究,建立了数学模型并进行求解,旨在为相关领域提供有益的参考和决策支持。
文中首先对问题进行了详细的分析和阐述,然后构建了相应的数学模型,运用了列举所用的方法和工具等方法进行求解,最后对结果进行了分析和讨论,并提出了一些改进和优化的建议。
一、问题重述在当今社会,具体问题背景。
本次数学建模竞赛的问题是:详细描述问题。
需要我们通过建立合理的数学模型,来解决阐述问题的核心和关键,并得出具有实际意义的结论和建议。
二、问题分析为了有效地解决上述问题,我们首先对其进行了深入的分析。
从问题的性质来看,它属于定性问题的类型,如优化问题、预测问题等。
进一步分析发现,影响问题的主要因素有列举主要因素,这些因素之间可能存在着描述因素之间的关系,如线性关系、非线性关系等。
基于以上分析,我们决定采用列举解决问题的总体思路和方法的方法来建立数学模型。
三、模型假设为了简化问题并使模型更具可操作性,我们做了以下假设:假设 1:具体假设 1 的内容假设 2:具体假设 2 的内容假设 n:具体假设 n 的内容需要说明的是,这些假设在一定程度上简化了实际情况,但在后续的模型验证和改进中,我们会对其合理性进行检验和调整。
四、符号说明为了便于后续模型的建立和表述,我们对文中用到的符号进行如下说明:符号 1:符号 1 的名称和含义符号 2:符号 2 的名称和含义符号 n:符号 n 的名称和含义五、模型建立与求解(一)模型 1 的建立与求解基于前面的分析和假设,我们首先建立了模型 1。
详细描述模型 1 的数学表达式和原理通过求解模型 1 所使用的方法和工具,我们得到了模型 1 的解为:给出模型 1 的解(二)模型 2 的建立与求解为了进一步提高模型的精度和适用性,我们又建立了模型 2。
详细描述模型 2 的数学表达式和原理运用求解模型 2 所使用的方法和工具,解得模型 2 的结果为:给出模型 2 的解(三)模型的比较与选择对建立的多个模型进行比较和分析,从准确性、复杂性、适用性等方面综合考虑,最终选择了说明选择的模型作为最优模型。
数学建模优秀论文的范文

以下是一篇数学建模优秀论文的范文,供您参考:题目:基于支持向量机的分类模型研究引言:分类是数学建模中的一个重要问题,其在很多领域都有着广泛的应用。
支持向量机(SVM)是一种基于统计学习理论的分类算法,具有较好的泛化能力和鲁棒性,被广泛应用于图像分类、文本分类、生物信息学等领域。
本文旨在研究支持向量机在分类问题中的应用,并对其性能进行评估。
问题分析:分类问题的核心在于根据已知标签的数据集,训练出一个能够对未知数据进行分类的模型。
支持向量机是一种基于结构风险最小化原则的分类算法,其基本思想是将输入空间映射到高维特征空间,并在此空间中构建最大间隔分类器。
在支持向量机中,关键参数的选择和核函数的选取对模型的性能有着重要影响。
模型建立:支持向量机是一种基于统计学习理论的分类算法,其基本思想是在高维空间中构建一个超平面,将不同类别的数据分隔开。
该算法的核心在于寻找到一个能够将数据分隔开的最优超平面,使得分类间隔最大化。
在训练过程中,支持向量机会通过求解一个二次规划问题来寻找最优超平面。
模型求解:在模型训练过程中,我们采用了LIBSVM工具包来实现支持向量机。
LIBSVM是一种常用的支持向量机实现工具包,其提供了高效的求解算法和方便的接口。
在实验中,我们采用了交叉验证和网格搜索等方法来选择最优的参数组合,并对其进行评估。
结果分析:在实验中,我们采用了多种数据集来验证支持向量机的性能,包括图像分类、文本分类和生物信息学等领域的数据集。
实验结果表明,支持向量机在多个领域中都取得了较好的分类效果,其准确率、召回率和F1得分等指标均优于其他传统分类算法。
同时,我们还对其进行了误差分析,发现支持向量机具有较好的泛化性能和鲁棒性。
结论与展望:本文研究了支持向量机在分类问题中的应用,并对其性能进行了评估。
实验结果表明,支持向量机在多个领域中都取得了较好的分类效果,其准确率、召回率和F1得分等指标均优于其他传统分类算法。
同时,支持向量机还具有较好的泛化性能和鲁棒性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
论文标题摘要本文针对笔记本电脑的定价及选购这一问题,根据题目要求,选择6个品牌每个品牌6种型号的电脑,通过查找数据分析相关资料,综合运用曲线拟合和层次分析法等方法来建立模型,使问题得到很好的解决。
问题(1),选择的苹果、戴尔、惠普、东芝、联想(含THINKPAD)和宏基6个品牌的笔记本,通过对它们进行样本采集、数据处理分析,发现目前市场主流笔记本产品的价格定位规律为:①利用品牌效应大幅度提高产品价格。
②利用消费者注重产品功能而忽略硬件质量的误区,在产品功能上不断创新改进而在硬件材料上进行相应删减,以获得更的的利润空间。
③在产品上市初期,往往将售价定的较高,使其利润率达到30%左右,随着产品的更新换代,价格下降,当降到一定程度时,厂商停产并同时开发生产利润率更高的新产品。
问题(2),对问题(1)中已选中的品牌电脑,查找其价格以及国内所占市场份额的数据,用Matlab做出散点图并进行最小二乘曲线拟合,发现它们两者之间呈负相关性,符合指数曲线拟合。
随后分析广告投入对这种关系的影响从而建立罗杰斯帝克模型,画出相应图形,得到不同品牌的笔记本广告投入在一定范围内才起作用的,使产品的价格和市占率都提高了。
问题(3),就品牌、功能、价格等为准则,6种品牌36种型号的笔记本电脑为目标,针对不同的大学生消费群体的需求,用层次分析法进行求解,对于功能敏感型的顾客推荐购买宏基牌笔记本电脑,价格敏感型的顾客适合购买戴尔笔记本电脑,品牌敏感型的顾客适合购买苹果牌笔记本电脑。
最后,对该问题做了更深刻的探讨,对模型的优缺点进行评价。
关键词:曲线拟合灰色预测模型罗捷斯蒂克模型层次分析法一、问题的提出随着笔记本电脑在校园里的普及,各大笔记本厂商都已将学生视为巨大的潜在消费群体,在产品功能定位、价格定位上制定了相应的生产和销售策略。
现在,就此现象,请搜集数据,建立数学模型,回答以下问题:(1)从笔记本电脑品牌、外观、功能、质量等方面分析目前市场主流笔记本产品的价格定位规律。
这里主流产品以戴尔、惠普、东芝、联想(含THINKPAD)苹果、宏基等笔记本电脑现有市场主流型号为例。
(2)分析各品牌笔记本的价格策略与市场占有份额的关系,并指出广告投入对这种关系的影响。
(3)按照不同的购买力,不同的功能要求,建立数学模型进行分析,为大学生消费群体推荐你认为的理想笔记本电脑(品牌及型号)。
二、问题的分析在当前大学生成为笔记本电脑巨大的潜在消费群体的环境下,生产商根据消费人群的特点,在产品功能定位、价格定位上制定相应的生产销售策略是极为必要的。
对于问题(1),选取六种品牌的笔记本作为样本,通过查找随即得到他们当中各个型号的笔记本的配置、价格及上市时间等参数,针对笔记本的配置功能,确定评判标准。
选取CPU 主频率、内存大小、硬盘大小、显存大小、屏幕大小等5个指标,通过对各个指标进行评分来评判配置功能的好坏(满分为100)。
然后将配置功能所得分数相近的不同品牌笔记本进行价格比较,得到品牌效应对价格定位的影响 ;再将同一品牌配置情况不同的笔记本进行价格比较,得出配置功能对价格的影响。
而质量方面,则通过对各个品牌及它们各自的型号笔记本的材质进行分析得出结论。
一般来说,品牌好的产品其外观都是挺好的。
对于问题(2),各品牌笔记本的价格策略与市场占有率的关系会因为市占率的不同而不同。
一般情况下为:市占率分为独占状态、寡占状态、分散状态、影响状态和存在状态五个阶段,这五个阶段的价格策略是不同的。
而本文所选的6个品牌在中国笔记本市场的占有率大致处在影响状态阶段。
通过excel 和matlab 对数据进行处理,发现此阶段的市占率与价格策略呈负相关关系,用matlab 进行曲线拟合,得到相应的价格策略与市占率曲线函数表达式。
然后考虑广告投入对这种关系的影响。
因为根据经济学上的知识,广告投入与产生的效益满足一函数关系,即罗杰斯蒂克模型。
通过这个模型,求出广告投入对这种关系的影响。
对问题(3),根据不同大学生的不同需求,推荐不同类型的笔记本电脑。
首先,将大学生消费人群分为品牌敏感型、功能敏感型、价格敏感型三种,从而建立层次分析模型,为大学生消费群体推荐理想笔记本电脑。
三、基本假设①查到的数据都具有真实性。
②所选的品牌及型号具有代表性。
③品牌效应与广告费的关系为连续函数,但品牌效应有最大限度。
④人们一旦知道这种产品,就不会忘记。
⑤电脑市场稳定、近期不会出现较大波动。
四、定义符号说明(1)ij a :表示第i 种型号,第j 种指标(i =1,2,…n ;j=1,2,…n );(2)ij a W =(40 5 15 20 20):表示5种指标对应的权重满分;(3)i C :表示第i 类产品的得分;(4)C :表示每种类型电脑之间的分数差;(5)ij λ:表示第i 类机型的第j 项指标的实际得分与第j 项指标的满分比值;(6)()N m :表示广告投入为m 时,产生的品牌效应;(7)0N :表示初始品牌效应;(8)K :表示最大品牌效应;(9)0P :表示模型精度;(10)ε:表示相对误差。
五、模型的分析、建立及求解5.1.对于问题(1)的价格定位问题,首先考虑配置功能的影响,将配置功能量化。
考虑到ij a =( CPU 主频率、内存大小、硬盘大小、显存大小、屏幕大小)这五种指标的边际成本有明显差异,所以有必要按照边际成本的大小进行权重的分配。
最终确定CPU 主频率、内存、硬盘大小、显存、屏幕大小五种指标的权重分别为: ij a W =(40 5 15 20 20)i=1,2,…n j=1,2,…n.然后,根据权重标准对每种型号的笔记本打分,最后记下总分51ij i ij a j C W λ==∑ 1,2,...i n = 。
将六种品牌中,分数相近的型号放在一起,对其进行数据分析。
1)配置相近,品牌不同的电脑价位分析为了研究品牌效应在笔记本电脑市场上的影响,我们将分数相差(()||i i n C C C +=-< 5 1,2...i k =)的六种品牌的笔记本电脑放在一起,进行价格对比,如下图所示:图1 品牌与价格的关系图由上图可知,在配置相似的情况下,苹果电脑的价格明显比其他品牌要高,这足以彰显出苹果电脑巨大的品牌效应。
联想的thinkpad 紧随其后,由于其前身是IBM 公司旗下的品牌所以thinkpad 的品牌效应在大众消费者心目中的地位也是比较高的。
据以上分析,笔记本电脑的品牌在产品定价中起到了不小的作用。
2) 品牌相同,功能不同的电脑价位分析在品牌相同的情况下,不同功能配置的笔记本电脑的价位肯定有所区别,以联想thinkpad 为研究对象,我们抽取了六个配置得分不同的型号,将它们进行价格对比,如下图所示:图2 功能与价格的关系图这六种型号的笔记本电脑的性能配置依次增大,但其价格并没有依次上升。
例如,性能分最高的E40价格却比性能稍逊的T410要低,这违反了我们认为的功能越强大价格越高的常理。
所以,单从功能上来判断笔记本电脑的价格的方法是片面的,不完整的。
要解释这一问题,我们还应该考虑笔记本的质量。
3)考察电脑的质量这里所指的质量以笔记本电脑的材质作为考察对象。
通过查得的thinkpad 六种型号的参数资料,将六种型号的材质整理成下表:型号X201i SL410K R400 SL510 T410 E40顶盖镁合金ABS材料CFRP ABS材料CFRP ABS材料底壳同上同上同上同上镁合金同上侧墙同上同上GFRP 同上GFRP 同上注:1.ABS 工程塑料2.CFRP 碳纤维强化塑料3.GFRP 玻璃纤维强化塑料单位厚度承受相同的压力,形变程度由小到大依次为:CFRP<镁合金<GFRP<ABS 材料散热程度由大到小依次为:镁合金>CFRP>GFRP>ABS材料。
这也就解释了,为什么E40在六种型号电脑中性能最高而价格却很低,性能稍逊的T410价格却那么高。
关键还是两种型号所采用的材质不同。
E40采用的是价格低廉、性能一般的ABS材料,而T410所采用的CFRP和镁合金等材料,其质量要好很多,与此同时,产品的成本也随之上升。
4)考虑上市时间的影响以联想thinkpad的R400A52型号为研究对象。
它的上市时间为2009年2月份。
通过市场调查,得到这款电脑从上市至今的售价情况,见下图:图3 市场价位随时间变化关系图由图可见,R400A52在上市之初,达到7600元的高位,而经过一年半的时间,它的价格就下降了29%。
考虑到近一年来人民币通货膨胀的因素后,它是实际售价下降了近30%。
值得注意的是,这款电脑在今年4月份就停产。
通过市场调查了解到A52的停产原因并不是质量有问题,而是像笔记本电脑这种快速更新换代的IT 产品随着时间的推移,其价格会不断降低。
当价格降到生产厂商所规定的利润率以下的时候,该产品就会停产。
生产商转而生产利润空间更大的新产品。
例如,在R400A52停产的同时,thinkpad推出了利润空间更大的E40系列。
在性能上,E40有过之而无不及。
但在硬件配置上却明显不及R400,见下表:型号R400A52 E40材料碳纤维强化材料工程塑料蓝牙支持无WiFi 支持无这些硬件上的品质降低大幅度降低了E40成本。
这使得E40在价格上保持优势的同时又能保持巨大的利润空间。
通过以上分析可知笔记本生产商的定价策略为:1)利用品牌效应大幅度提高产品附加值。
2)利用消费者注重产品功能而忽略硬件质量的误区,在产品功能上不断创新和改善而在硬件材料上进行相应的删减,以获得更大的利润空间。
3)在产品上市初期,往往将售价定的较高,使其利润率达到30%左右。
随着产品的更新换代,价格的下降,当该产品的价格下降到一定程度的时候,厂商开始停产该产品转而生产利润率更高的新产品。
5.2.1.价格与市占率的关系模型对于问题(2),查找了历年的各品牌产品市占率,如下:品牌联想东芝惠普戴尔宏基苹果06年32.1 4.1 12.4 10.1 7.4 007年28.8 7 10.7 11.2 7 008年 27.3 10 11.5 15.5 6.3 0 09年 35.7 8 13.7 13.7 6.1 0 10年 28.7 15 1.1 9 3.6 0 均价(元) 4000 4300 4500 5000 6000 10005通过matlab 将价格与市占率的关系用最小二乘拟合求出,具体如下:1) 用matlab 求解出价格与市占率的关系图,如下:图4 价格与市占率关系图根据以上这幅图,假设占有率与价格的关系满足指数拟合函数关系,关系式为:bx y ae = (1)为了求出参数a 、b ,分别两边取对数,得:Iny Ina bx =+ (2)可以把上式(2)看作一次线性函数,A=(,b Ina ),使得62min 1(,)[()].i i i Q a b f x Iny ==-∑用解超定方程的方法求解,此时,126111x x R x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦已知有6组独立观测值:1,12266(),(,),...(,)x y x y x y ,通过matlab 求解得到参数2.2636 1.3a e ==,0.0009b =-,所以模型为:0.00091.3xy e-=相应的函数图像如下图:图5 价格与市占率关系图通过对图4 与图5的观察,发现拟合效果比较好。