9.7乳状液,泡沫和气溶胶
乳状液(emulsion)
——界面张力差理论 一个界面膜必有两个面,故有两个σ。σ较 大的相易成为分散相。因这样可减少该面的面积,结果是在高σ这 边的液体就成了内相(分散相) ——乳状液制备工艺 例,玻璃类亲水性容器中乳化易形成O/W 型,塑料类亲油性容器中,易形成W/O型 ——相体积理论 量较多者易为分散相。界限:0.7402
(2)乳化炸药的主要组分 )
——无机盐的水溶液 热溶解于水形成 作为分散相,提供氧化剂,一般由硝酸铵加
——碳质燃料 作为分散介质,提供还原剂。粘度合适的石油产品 均可选作碳质燃料。选择原则:既要形成稳定的W/O乳状液,又要 使乳化系统在确定的温度下变得稠厚,不能流动:柴油、重油、机 油、凡士林、复合蜡等。多与乳化剂一起溶解后,再与氧化剂乳化 2012-5-2 13
关于答疑与考试
2012-5-2
14
请弹技02级全体同学 请弹技 级全体同学 接受江棂和白晨艳的衷心祝愿
祝大家 身体好,学习好,素质高 今后能为祖国的强盛,为自己美好的前 程努力工作
2012-5-2
2004年6月16日全部结束
15
2012-5-2 8
●电破乳 常用于W/O型乳状液的破乳:高压电场中,极 性乳化剂分子转向而降低界面膜的强度。同时,水滴极化后相互吸 引排成一串。当电压升至一定强度(一般在2000V/cm以上)时,小 液滴瞬间聚结成大水滴而破乳 ●表面活性剂破乳 是目前工业上最常用的破乳方法。选择 能强烈吸附于油—水界面上的表面活性剂,如异戊醇,顶走原来的 乳化剂,在油—水界面形成新膜,但新膜的强度比原乳化剂形成的 膜降低很多,因而容易失去稳定性而破乳。这种表面活性剂叫破乳 剂 ——除以上方法外,还有离心法、超声波法等。实际是多种方法 并用。如原油破乳,加热、电场和添加破乳剂三者同时进行
《胶体和乳状液》课件
不同点
胶体的分散相粒子大小在1-100nm之间,而乳状液中的液滴 大小通常在微米级别;胶体的稳定性相对较低,容易发生聚 沉,而乳状液的稳定性较高,可以在一定条件下保持稳定。
02
胶体的制备和性质
胶体的制备方法
01
02
03
研磨法
将固体物质研磨成细小颗 粒,然后分散在液体介质 中,形成胶体。
溶解法
将物质溶解在适当的溶剂 中,然后通过控制溶液的 浓度和温度等条件,制备 出胶体。
超声波法
利用超声波的振动能量将液体 破碎成微小液滴,形成乳状液
。
蒸馏法
将两种不相溶的液体加热至沸 腾,通过蒸馏作用分离出纯液
体。
化学反应法
通过化学反应生成两种不溶性 物质,再经过搅拌或研磨形成
乳状液。
乳状液的性质
分散相和分散介质
乳状液由分散相和分散介质组 成,分散相是小的液滴,分散
介质是连续的液体。
胶体和乳状液的破乳方法
物理破乳法
通过加热、搅拌、离心、电场、超声 波等物理手段,使胶体或乳状液中的 水滴或油滴发生聚结,从而破坏其稳 定性。
化学破乳法
通过添加化学试剂,如电解质、聚合 物、表面活性剂等,改变胶体或乳状 液的界面性质,使其失去稳定性。
破乳剂的应用与选择
破乳剂的应用
破乳剂广泛应用于石油、化工、制药、食品等领域,用于将油水分离,提高油品质量,回收油品等。
活性剂,可以增加分散相的稳定性。这些稳定剂可以提供电荷屏蔽、空
间位阻或增加界面张力等作用。
02
控制粒子或乳滴大小
通过控制制备过程中的条件,如搅拌速度、温度和时间,可以控制粒子
或乳滴的大小,从而影响其稳定性。较小的粒子或乳滴通常具有更高的
乳状液
1. 乳状液的定义及类型
由两种(或两种以上) ●定义 由两种(或两种以上)不互溶或部分互溶的液体形成的 分散系统,称乳状液。示例:牛奶、含水石油、乳化农药、 分散系统,称乳状液。示例:牛奶、含水石油、乳化农药、化妆 食品(如蛋黄酱)、 )、乳化炸药等皆属此类 品、食品(如蛋黄酱)、乳化炸药等皆属此类 乳状液中一相为水, 表示。 ●类型 乳状液中一相为水,用“W”表示。另一相为有机物, 表示 另一相为有机物, 如苯、苯胺、煤油,皆称为“ 表示。 如苯、苯胺、煤油,皆称为“油”,用“O”表示。油作为不连续 表示 相分散在水中, 水包油型, 表示; 相分散在水中,称水包油型,用O/W表示;水作为不连续相分 / 表示 散在油中, 油包水型, 表示。 散在油中,称油包水型,用W/O表示。多重型,例,W/O/W / 表示 多重型,
(3)破乳技术 )
——引入 工业生产中常遇到破乳问题, 如采出的原油是 / O 引入 工业生产中常遇到破乳问题,如采出的原油是W/ 型乳状液,必须破乳脱水后才能进炼油厂加工。 型乳状液,必须破乳脱水后才能进炼油厂加工。常用的破乳方法有
2012-4-23 10
在一些乳状液中添加无机盐会引起破乳作用, ●添加无机盐 在一些乳状液中添加无机盐会引起破乳作用, 对不同的乳化剂, 对不同的乳化剂,作用机理有所不同 ●温度变化 ——升温 可增加乳化剂的溶解度,降低在界面的吸附量,削 升温 可增加乳化剂的溶解度,降低在界面的吸附量, 弱保护膜;升温还可降低外相粘度,增加液滴碰撞机会, 弱保护膜;升温还可降低外相粘度,增加液滴碰撞机会,利于破乳 ——冷冻 也能破乳。非离子型乳化剂的乳状液在相转变温度 冷冻 也能破乳。 时处于不稳定状态, 时处于不稳定状态,不充分搅拌就会破乳 以碱性皂作为乳化剂的乳状液中添加酸, ●添加酸 以碱性皂作为乳化剂的乳状液中添加酸,皂变为脂 肪酸析出, 肪酸析出,失去乳化作用而破乳 用分散相易润湿的过滤材料过滤乳状液, ●过滤 用分散相易润湿的过滤材料过滤乳状液,液滴润湿过 滤材料聚集成薄膜,导致乳状液破坏。 滤材料聚集成薄膜,导致乳状液破坏。例,W/O型乳状液通过填 / 型乳状液通过填 充碳酸钙的过滤层, / 型乳状液通过塑料网 型乳状液通过塑料网, 充碳酸钙的过滤层,O/W型乳状液通过塑料网,都可能会引起破 乳
胶体的性质及其应用知识总结
胶体的性质及其应用经点答疑【学法旨要】1.本章知识的学法旨要是什么?由于胶体知识与学生以前所学化学知识有所不同,它研究的不是某种物质所特有的性质,而是物质的聚集状态表现的性质,对学生来说这是一个观察、研究物质的新角度,是较为陌生的领域。
为了便于学生了解,我们应结合丁达尔效应的演示实验入手,在学生较熟悉的溶液的基础上引出与溶液性质不同的另一类混合物——胶体。
在此并不用提丁达尔效应一词,只利用丁达尔效应向学生展示溶液与胶体的不同,起到点出课题的作用。
在知道了溶液、胶体、悬浊液和乳浊液等知识的基础上,来理解分散系的概念。
从而得出胶体的定义。
在了解了胶体与溶液的区别这一基础上,我们可通过实验进一步了解布朗运动、电泳、凝聚等胶体所具有的性质。
2.学习本章知识的目标是什么?学习本章知识应达到以下知识目标:(1)了解胶体及分散系的概念;(2)了解胶体与其他分散系的区别;(3)了解胶体的重要性质和应用。
【经点答疑】1.你知道什么是“分散系”吗?我们把一种或几种物质微粒分散在另一种物质中所形成的混合物称之为“分散系”,其中:被分散成微粒的物质为“分散质”,而微粒分布在其中的物质为“分散剂”。
2.你知道胶体体系的分类吗?分散质和分散剂有不同的聚集状态(固态、液态、气态),它们可以组合成不同的分散系。
对于两者都是气态的体系,实际上是气体混合物,其性质不属于胶体的范围,这里不讨论;对于气体分散到固体中或液体中的泡沫,及液体分散到液体中的乳状液,它们虽属粗分散系,但常包含于广义的胶体体系内,这里把它们与胶体一起进行分类、比较:液胶体和亲液胶体,胶体粒子为多个分子聚集体的是憎液胶体。
因其胶粒与分散剂(液体)不亲合(不溶)而得名。
从体系的热力学特点考虑,憎液胶体是热力学不稳定体系,是一相(分散质质点,)分布在另一相(分散剂介质)中的多相分散体系,体系中的界面(质点与介质之间的相界面)总是要减少,胶体质点趋向于聚集在一起,有发生聚沉而使分散体系破坏的倾向(粗分散体系更易如此)。
9.7乳状液,泡沫和气溶胶
二、泡沫
2. 消泡 物理消泡法: 升温或降温,照射,机械法(气流、超声波、过滤) 化学消泡法: 消泡剂改变pH、盐析、与发泡剂反应 作用机制有: (1) 起泡剂脱附 (2) 降低液膜粘度 (3) 抑止泡沫形成
三、气溶胶
1. 分类和粒径
按分散相分: 固体气溶胶 液体气溶胶 按形成方法分: 分散气溶胶 如固体粉碎(粉尘)、液体雾化 凝聚气溶胶 如烟、雾 粒径:10-7~10-4 m 气溶胶带电性质: 捕获大气中带电粒子而荷电,雷电与此有关。
2. 医药中应用 气雾剂:药物+抛射剂+附加剂 粉雾剂:药物微粒 3. 大气污染
再见!
返回
一ቤተ መጻሕፍቲ ባይዱ 乳状液
2.乳化剂的作用 ——稳定乳剂 (1) 降低界面张力:处于较低能量状态
(2) 形成界面膜:形成一定机械强度
(3) 形成双电层:电性斥力 (4) 固体粉末的稳定作用:形成良好界面膜
一、 乳状液
3.决定乳状液类型的因素 (1) 乳化剂的界面张力:
膜-水 大,膜向水相弯曲,易形成W/O型 膜-油 大,膜向油相弯曲,易形成O/W型
第七节 乳状液、泡沫和气溶胶
一、 乳状液
1.乳状液的类型
乳状液:不相溶的液体相互分散形成的系统 内相:被分散相 外相:分散介质 类型:水包油(O/W)、油包水(W/O)
水 油
油
水
鉴别类型方法: 稀释法 :能被水相稀释,为O/W型;能被油相稀释,为W/O型 染色法 :外相被油性染料染色,为W/O型; 外相被水性染料染色,为O/W型; 电导法:电导大,为O/W型;电导小,为W/O型
微乳与普通乳状液有二个显著不同:
(1) 微乳是热力学稳定系统 (2) 微乳外观均匀透明
遵义医学院药学专业《物理化学》教学大纲
四 教材:《物理化学》,人民卫生出版社,侯新朴主编,2003年第五版。
Ⅱ 正文
绪 论
一 教学目的 了解物理化学的任务和内容及在药学中的作用及学习方法。
二 基本要求 理解物理化学的任务和内容及在药学中的作用,理解理想气体的定义及微观模型,掌握理想气体状态方程式及其应用;掌握混合气体中组分气体分压分体积的概念及道尔顿定律;掌握实际气体的范德华方程。
三 教学内容 卡诺循环与卡诺定理,热力学第二定律、熵与熵增原理及熵变的计算、热力学第三定律及化学反应的熵变计算、Helmholtz函数与Gibbs函数、热力学第二定律的本质、纯物质两相平衡的Clapeyron方程、偏摩尔量、化学势。
第三章 化学平衡
一 教学目的 掌握化学反应的平衡条件和化学反应等温方程式,标准平衡常数及其应用、表示方法及计算,了解影响化学平衡的因素,标准吉布斯能变与平衡常数的关系,平衡组成的计算,平衡常数的测定方法及温度对其的影响,反应耦合原理。
二 基本要求 熟悉热力学第二定律的几种叙述方式及其意义;了解卡诺循环、热机效率及卡诺定理;理解熵变的定义式;了解克劳修斯不等式意义及热力学第二定律的联系;理解亥姆霍兹函数、吉布斯函数的定义,可在何种条件下作方向、限度的判据;)了解亥姆霍兹函数、吉布斯函数变化与过程中的最大功的联系;熟练计算各种过程中熵、亥姆霍兹函数、吉布斯函数等热力学函数的变化值;能用热力学第三定律计算纯物质的熵值;理解热力学基本方程和麦克斯韦关系式,其应用可做一般了解。了解混合物及溶液的区分和组成表示方法;掌握拉乌尔定律及其应用;掌握拉乌尔定律的适用对象;掌握亨利定律以及该定律的其他形式,理解亨利常数的单位;掌握亨利定律的适用对象;理解偏摩尔量的定义;了解不同组分同一偏摩尔量间的关系即集合公式和吉布斯-杜亥姆(Gibbs-Duhem)方程,同一组分不同偏摩尔量间的函数关系;理解化学势的定义,特别是 ;掌握化学势判据一般形式 ,了解此式适用条件;理解纯理想气体及理想气体混合物中任意组分B的化学势的表达式;理解真实气体化学势表达式及逸度的定义和逸度系数的概念;理解理想液态混合物的定义以及微观和宏观特征;理解理想液态混合物中任意组分B的化学势的表达式;掌握理想液态混合物的混合性质和平衡性质的有关计算;了解真实液态混合物对理想液态混合物的偏差;了解活度及活度系数的概念;理解理想稀溶液的定义,了解理想稀溶液的溶质、溶剂的化学势表达式;了解真实溶液对理想稀溶液的偏差,了解溶剂的活度和渗透系数、溶质的活度和活度系数的概念;掌握稀溶液的依数性 , ,及其应用条件。
胶体化学
37
高分子溶液
相 同 点 不 同 点
线度为10-9~10-7m
溶 胶
线度为10-9~10-7m
扩散慢
不能通过半透膜 真溶液,热力学稳定体系 稳定原因是溶剂化
扩散慢
不能通过半透膜 热力学不稳定体系 稳定原因是粒子带电
均相体系,丁达尔效应弱 多相体系,丁达尔效应强
对电解质稳定性大
粘度大
少量电解质能使粒子聚沉
FeCl3 3H 2O 沸水,搅拌 Fe(OH)3 3HCl
通常FeCl3过量,可形成带正电荷的胶体粒子。
6
如As2S3胶体制备:
As 2O3 3H 2O 2H3AsO3
饱和溶液
2H3AsO 3 As 2S3 6H 2O
通入H 2S
HS-为稳定剂(H2S过量),胶粒带负电。
(2) 极化程度大、易变形的离子优先被吸附。
25
§ 9.5
溶胶的稳定与聚沉
1. 溶胶的经典稳定理论— DLVO理论
憎液溶胶三个重要的稳定因素: 分散相粒子的带电、溶剂化作用及布朗运动
26
2.溶胶聚沉
聚沉:憎液溶胶中的分散相微粒相互聚 集、颗粒变大,进而发生沉淀的现象。 3. 电解质的聚沉作用 因胶粒带电,所以可用电解质中与胶粒 电性相反的离子与胶粒作用,使胶粒荷电数 下降,而发生聚沉。
胶体体系的光学性质
将一束光投射到胶体体系上,在与入射 光垂直的方向上可观察到一个发光的光柱(光 锥),这种现象称为丁达尔效应。
光
散射光
透射光
9
丁达尔现象实 质是光的散射。 丁达尔现象 又称乳光现象。
10
§ 9.3
1. 布朗运动
胶体体系的动力性质
胶体与表面化学课程大纲及重点
胶体与表面化学第一章绪论(2学时)1.1胶体的概念什么是胶体,胶体的分类1.2胶体化学发展简史1.3胶体化学的研究对象表面现象,疏液胶体,缔合胶体,高分子溶液。
重点:胶体、分散系统、分散相、分散介质的概念。
难点:胶体与表面化学在矿物加工工程中的作用及意义。
教学方法建议:启发式教学,引导学生对胶体及表面化学的兴趣。
第二章胶体与纳米材料制备(4学时)2.1胶体的制备胶体制备的条件和方法,凝聚法原理。
2.2胶体的净化渗析、渗透和反渗透。
2.3单分散溶胶单分散溶胶的定义及制备方法。
2.4胶体晶体胶体晶体的定义及制备方法2.5纳米粒子的制备什么是纳米材料,纳米粒子的特性及制备方法重点:胶体的制备、溶胶的净化、胶体晶体的制备。
难点:胶体制备机理。
教学方法建议:用多媒体教学,注重理论联系实际。
第三章胶体系统的基本性质(8学时)3.1溶胶的运动性质扩散、布朗运动、沉降、渗透压和Donnan平衡。
3.2溶胶的光学性质丁道尔效应和溶胶的颜色。
3.3溶胶的电学性质电动现象、双电层结构模型和电动电势(。
电势)3.4溶胶系统的流变性质剪切速度越切应力,牛顿公式,层流与湍流,稀胶体溶液的黏度。
3.5胶体的稳定性溶胶的稳定性、DLVO理论、溶胶的聚沉、高聚物稳定胶体体系理论。
3.6显微镜及其对胶体粒子大小和形状的测定显微镜的类型及基本作用重点:沉降、渗透压、电泳、电渗、。
电势的计算、双电层结构模型、DLVO理论、溶胶的聚沉。
难点:双电层结构模型。
教学方法建议:多媒体教学和板书教学相结合。
第四章表面张力、毛细作用与润湿作用(6学时)4.1表面张力和表面能净吸力和表面张力的概念、影响表面张力的因素、液体表面张力和固体表面张力的测定方法。
4.2液-液界面张力Anntonff规则、Good-Girifalco公式、Fowkes理论和液-液界面张力的测定。
4.3毛细作用与Laplace公式和Kelvin公式毛细作用,Laplace公式和Kelvin公式的应用,曲界面两侧的压力差及与曲率半径的关系,毛细管上升或下降现象,弯曲液面上的饱和蒸气压。
2013M-07胶体与界面化学-乳状液和泡沫
高。故O/W型乳状液中的油珠多数是带负电的,而
W/O型乳状液中的水珠则往往带正电。反离子形成
扩散双电层,热力学电势及较厚的双电层使乳状液
稳定。
22
乳状液的制备
转相乳化法
(1)将乳化剂先溶于油中加热,在剧烈搅拌下慢慢加入温
水,加入的水开始以细小的粒子分散在油中,是W/O型乳状
液,再继续加水,随着水的增加,乳状液变稠,最后转相变
理 向分散相,截面积大的一头留在
论 分散介质中。
2011
11
影响乳状液类型的因素
乳化剂分子构型
一价碱金属皂类,形状是:
水
亲水端为大头,作为乳化剂时,
油
容易形成O/W型乳状液。
二价碱金属皂类,极性基团 为:
亲水端为小头,作为乳化剂, 容易形成W/O型乳状液
油 水
例外:一价银肥皂,作为乳化剂形成W/O型乳状液12
27
乳状液的转型与破坏
乳状液的破坏
1.加热破乳
升温加速乳状液液珠的布朗运动使絮凝速率加快, 同时使界面粘度迅速降低,使聚结速率加快,有利于 膜的破裂。
2.高压电破乳
高压电场的破乳较复杂不能只看作扩散双电层
的破坏,在电场下液珠质点可排成一行,呈珍珠项
链式,当电压升到某一值时,聚结过程在瞬间完成。
2011
因为反应物分散成小液滴后,在每个液滴中反 应物数量较少,产生热量也少,并且乳状液对象界 面面积大,散热快,容易控制温度。
高分子化学中常使用乳液聚合反应,以制得较 高质量的反应物。
31
乳状液的应用
沥青乳状液
沥青的黏度很大,不便于在室温下直
接用于铺路面。若用阳离子型乳化剂将其
制成O/W型乳状液,则表观黏度大大降低,
胶 体
三、双电层理论
Helmhotz平板双电层理论 Gouy-Chapman扩散双电层理论
Stern吸附扩散双电层理论
ζ电势 Zeta potential (动电势): 在胶体粒子带电的表面与电解质溶液间有一滑动界面, 滑动界面上的电势称ζ电势。
第六节 胶体的稳定性
一、AgI胶团结构
二、溶胶的稳定性和聚沉
3.按分散相和分散介质的聚集状态可分为三类:
液溶胶,分散介质为液体,分散相为气体时形成气液 溶胶,如肥皂泡,灭火泡沫等;分散相为液体时形成 液液溶胶,如牛奶,石油等;分散相为固体时形成固 液溶胶,如泥浆,油漆等。 固溶胶,分散介质为固体。当气体分散在固体中形成 气固溶胶,如泡沫玻璃,泡沫塑料等;当液体分散在 固体中形成液固溶胶,如珍珠;当固体分散在固体中 形成固固溶胶,如有色玻璃,某些合金等。 气溶胶,分散介质为气体。当液体分散在气体中形成 液气溶胶,如云雾,当固体分散在气体中形成固气溶 胶,如烟尘等。气体与气体可无限混溶,不可能有气 气溶胶。
一、电动现象 electrokinetic phenomena 电泳 electrophoresis:液体中悬浮的固体胶粒在电场 中定向移动的现象。 电渗 electrosmosis:胶体粒子不动,液体方向移动。 流动电势streaming potential:电渗的反过程。 沉降电势sedimentation potential:电泳反过程. 二、溶胶粒子表面电荷的来源 电离作用 吸附作用 晶格取代 摩擦带电
(一)溶胶的稳定性 动力稳定性 胶粒带电的稳定作用 溶剂化的稳定作用 (二)溶胶的聚沉 聚沉coagulation:使溶胶分散度降低,分散相颗粒变 大,最后从介质中沉淀析出的现象。 聚沉值coagulation value:一定条件下,使溶胶全部聚 沉所需电解质的最低浓度。
胶体化学-复习要点资料
憎液溶胶的特性
A 特有的分散程度
粒子的大小在10-9~10-7 m之间,因而扩散较慢,不能透 过半透膜,渗透压低但有较强的动力稳定性和乳光现象。
B 多相不均匀性
具有纳米级的粒子是由许多离子或分子聚结而成,结 构复杂,有的保持了该难溶盐的原有晶体结构,而且粒子 大小不一,与介质之间有明显的相界面,比表面很大。
实例
<1nm 溶液
胶 体 1~100nm 分 散 系
溶胶
高分子 溶液
>100nm 粗分散系
小分子或离 子
均分快相散、相稳粒定子系扩统散、N液a等Cl水溶
胶粒
多相、热力学不 稳定系统、有相 Fe(OH)3 对稳定性、分散 溶胶等 相粒子扩散较慢
高分子
均分慢相散、相稳粒定子系扩统散、蛋液白等质溶
粗分散粒子
C 热力学不稳定性
因为粒子小,比表面大,表面自由能高,是热力学不稳 定体系,有自发降低表面自由能的趋势,即小粒子会自动 聚结成大粒子。
形成憎液溶胶的必要条件是: A 分散相的溶解度要小;
B 还必须有稳定剂存在,否则胶粒易聚结而 聚沉。
胶体化学的研究对象和意义
思考:与胶体界面现象相关的几个问题
•为什么自然界中液滴、气泡总是圆形的?为什 么气泡比液滴更容易破裂? •毛细现象为什么会产生? •人工降雨依据什么原理? •为什么会产生液体过热现象?加入沸石为什么 能消除过热现象? • 水在玻璃上能铺展,水银在玻璃上却形成液滴, 为什么? •活性碳为什么可以做防毒面具?冰箱除臭剂?
一、胶体的定义
1861年,英国科学家Thomas Graham提出胶体 (colloid)概念
扩散慢;不能透过半透膜……
<1nm
1~100nm >100nm
《物理化学》课程教学大纲(高职)
《物理化学》课程教学大纲(供高职药学、中药类专业使用)一、前言物理化学是药学、中药类的专业基础课。
本课程是在学生已经学过高等数学、物理学、无机化学、分析化学和有机化学的基础上,进一步系统地阐明化学变化的基本规律。
要求学生系统地掌握物理化学的基本原理、基本方法与基本技能,通过各个教学环节培养学生独立思考、独立分析和创新的能力,使之具有一定的分析和解决药学方面实际问题的能力,从而为进一步学好专业课程及今后从事药学、药物制剂工作和科学研究,奠定良好的化学理论基础。
物理化学内容非常丰富。
根据药学、药物制剂等专业的要求,本课程的任务是学习化学热力学、化学动力学、电化学、表面现象和胶体等基本内容。
本课程理论讲授共36学时,2学分。
物理化学实验在实验化学课程中进行。
理论教学主要通过课堂讲授,多媒体影视课件、习题课(或课堂讨论)、演算习题、自学及实验等教学形式,达到学习本课程的目的。
二、教学内容与要求绪论(一)教学目的与要求1、熟悉物理化学课程的研究对象、任务、内容及发展趋势。
2、了解物理化学在化学与药学中的地位和作用。
3、掌握物理化学的研究方法与学习方法。
(二)教学内容1、概述物理化学的研究对象和任务、内容和特点及发展趋势。
2、物理化学在化学与药学中的地位和作用(重点)。
3、物理化学的研究方法与学习方法(重点)。
(三)教学形式与方法采用课堂讲授、多媒体影视课件、讨论、自学等教学形式。
第一章热力学第一定律(一)教学目的与要求1、熟悉热力学的一些基本概念和可逆过程的意义及特点。
2、掌握热力学第一定律、内能和焓的概念。
掌握状态函数的定义和特性。
3、掌握热力学第一定律的常用计算Q、W、U∆和H∆的方法。
4、了解节流膨胀的概念和意义。
5、掌握应用生成焓及燃烧焓计算反应热的方法。
6.熟悉反应热与温度的关系。
(二)教学内容1、热力学概论,热力学研究的对象、内容,方法和特点。
2、热力学基本概念,体系与环境,体系的性质,状态与状态函数,过程与途径。
第七章 溶胶
湖南中医药大学物理化学教学课件
第四节 溶胶的动力学特征
反渗透现象 附加压力大于渗透压 在分散体系上方所施加 的压力大于渗透压,这 会导致分散体系中的溶 半透膜 剂向纯溶剂中转移,这 种现象称为反渗透现象。 分散体系 纯溶剂
应用: 利用反渗透现象淡化海水制取淡水。
湖南中医药大学物理化学教学课件
第四节 溶胶的动力学特征
四、沉降 定义: 分散相在重力作用下的下沉现象。 沉降平衡: 沉降作用 扩散作用 自上而下,浓度逐渐减小 与沉降作用相反
当沉降速度=扩散速度时,溶液中各部分浓度不再变化, 达到平衡。
湖南中医药大学物理化学教学课件
结果: 由上而下,浓度依次升高。
第五节 溶胶的电学性质
一、电动现象 电 泳:在电场力作用下,分散相粒子向一定方向移 动的现象。 电 渗: 在电场力作用下,液体对固定的固体表面电 荷作相对移动的现象。 流动电势:在外力作用下,液体沿着固体表面流动时产 生的电势。 沉降电势:在外力作用下,带电粒子相对于液体介质运 动时产生的电势。
湖南中医药大学物理化学教学课件
胶粒靠近时水化层受挤压变形造成弹性机械阻力
第六节 胶体的稳定性
三、溶胶的聚沉 定义: 溶胶分散度降低,分散相颗粒增大,最后从介 质中沉淀析出的现象称为聚沉。 电解质的聚沉作用 少量电解质起稳定作用 大量电解质使溶胶聚沉 聚沉值:使一定量的溶胶在一定时间内完全聚沉所需 电解质的最低浓度。
湖南中医药大学物理化学教学课件
对溶胶去聚沉作用的主要是反离子
第六节 胶体的稳定性
电解质聚沉的规律 ①反离子价数越高,对溶胶的聚沉能力就越强。 ② 同价态的离子聚沉能力相近,符合感胶离子序 H+>Cs+>Rb+>
物理化学-胶体分散系统
溶胶分类
按分散相与分散介质聚集状态分类(列举)
分散介质
分散相
气
液
固
气溶胶
雾
烟
液溶胶
灭火泡沫 牛奶、石油 油漆、泥浆
固溶胶
沸石
珍珠
有色玻璃
本章主要讨论的是液溶胶,特别是液液溶胶和固液溶胶
溶胶基本特性
高度分散性:与粗分散系统比具有相对稳定性,粒径 小,不易沉降,动力学上是稳定的。
多相性:为多相分散系统,存在相界面(相不均匀性), 而大分子溶液是均相的。
§9.1 溶胶的分类和基本特征 §9.2 溶胶的制备和净化 §9.3 溶胶的动力性质 §9.4 溶胶的光学性质 §9.5 溶胶的电学性质 §9.6 溶胶的稳定性和聚沉 §9.7 乳状液及微乳状液
第一节 溶胶的分类和基本特征
胶 体(colloid)
定义:分散相的粒径为1-100 nm之间的分散系统 特点:扩散慢,能通过滤纸但不能透过半透膜。 分类:
平衡时两侧化学势相等
可导出稀溶液的 = cRT ( c: mol/m3 )
范霍夫(Van’t Hoff)公式
= (W/VM)RT
p1
渗透压
渗= 透p1压
溶剂
溶液
半透膜 (只容许溶剂通过)
重力沉降与沉降平衡
溶胶粒子在外力场定向移动称沉降
沉降与扩散是两个相对抗的运动
沉降粒子浓集 扩散粒子分散
例如:金属镍纳米粒在低温下保持顺磁性
产品
Gd-DTPA Dimeglumine (钆喷酸葡胺)
Feridex I.V. (菲立磁)
描述
技术平台
MRI成像的顺磁性造影剂,可能缩短组织中质 子的T1及T2驰豫时间,从而增强图像的清晰度 和对比度。
气溶胶——精选推荐
气溶胶的产生及其在细胞培养中的注意事项1.气溶胶定义及其产生气溶胶是液态或固态微粒在空气中的悬浮体系。
它们能作为水滴和冰晶的凝结核(见大气凝结核、大气冰核)、太阳辐射的吸收体和散射体,并参与各种化学循环,是大气的重要组成部分。
雾、烟、霾、轻雾(霭)、微尘和烟雾等,都是天然的或人为的原因造成的大气气溶胶。
一般说来,半径小于1微米的粒子,大都是由气体到微粒的成核、凝结、凝聚等过程所生成;而较大的粒子,则是由固体和液体的破裂等机械过程所形成。
它们在结构上可以是均相的,也可以是多相的。
已生成的气溶胶在大气中仍然有可能再参加大气的化学反应或物理过程。
液体气溶胶微粒一般呈球形,固体微粒则形状不规则,其半径一般为10-3~102微米。
粒径在10-1~101微米的气溶胶在大气光学、大气辐射、大气化学、大气污染和云物理学等方面具有重要作用。
小粒径气溶胶的浓度受凝聚作用所限制,而大粒子的浓度则受沉降作用所限制。
微粒在大气中沉降的过程中,受的阻力和重力的作用达到平衡时,各种粒子的沉降速度不同。
2.生物安全柜生物安全柜(Biological safety cabinets,BSCs)是利用空气净化技术,实现第一道物理隔离的技术产品,是为操作原代培养物、菌毒株以及诊断性标本等具有感染性的实验材料时,用来保护操作者本人、实验室环境以及实验材料,使其避免暴露于上述操作过程中可能产生的感染性气溶胶和溅出物而设计的。
当操作液体或半流体,例如摇动、倾注、搅拌,或将液体滴加到固体表面上或另一种液体中时,均有可能产生气溶胶。
在对琼脂板划线接种、用吸管接种细胞培养瓶、采用多道加样器将感染性试剂的混悬液转移到微量培养板中、对感染性物质进行匀浆及涡旋振荡、对感染性液体进行离心以及进行动物操作时,这些实验室操作都可能产生感染性气溶胶。
由于肉眼无法看到直径小于5μm 的气溶胶以及直径为5~100μm 的微小液滴,因此实验室工作人员通常意识不到有这样大小的颗粒在生成,并可能吸入或交叉污染工作台面的其他材料。
乳状液和泡沫
石蜡 W/O乳化剂 润湿剂 洗涤剂 增溶剂 | |————| 聚乙二醇
O/W乳化剂
乳化效率
§7.5 乳化剂的分类与选择 用HLB值与乳化效率关系图作判定
HLB值
§7.5 乳化剂的分类与选择
表面活性剂在界面发生吸附:浓度达到一定程度后, 吸附膜强度较高
加入脂肪醇、脂肪酸或脂肪胺可显著提高界面膜的强 度和粘度。
§7.3 乳状液的稳定因素
固体粉末的稳定作用:界面膜强度
s固-油>s油-水+s固-水,固体完全处于水中 s固-水>s油-水+s固-油,固体完全处于油中 s油-水>s固-水+s固-油,固体处于油-水界面间,稳定作用
界面膜强度较高 有一最佳值
天然产物乳化剂:磷脂类、甾类、水水溶性树脂(阿 拉伯胶、胍胶)、海藻胶类等,通常与其他乳化剂混 用
固体粉末:
表面活性剂的HLB值
Griffin(格里芬)提出了用HLB(hydrophilelipophile balance,亲水亲油平衡)值来表示表面 活性剂的亲水性
变型:
乳化剂类型的变更 相体积影响 温度影响 电解质影响
破乳:絮凝——》聚结
絮凝
§7.8 乳状液的不稳定性——分层、变型、破乳
破乳方法:
加热 / 冷冻 高压电破乳 过滤破乳 化学破乳
取代破乳:加入新表面活性剂破坏原来界面膜, 新界面膜强度较低
§7.9 微乳液(自学)
微乳液:
转相温度(PIT):与HLB值大致呈线性关系
通过测量电导确定PIT O/W型:PIT较储存温度高20-60oC W/O型:PIT较储存温度低10-40oC
注册化工工程师执业资格基础考试大纲
注册化工工程师执业资格基础考试大纲公共基础考试科目和主要内容1.数学(考题比例20% )1.1 空间解析几何向量代数、直线、平面、柱面、旋转曲面、二次曲面和空间曲线等方面知识。
1.2 微分学极限、连续、导数、微分、偏导数、全微分、导数与微分的应用等方面知识,掌握基本公式,熟悉基本计算方法。
1.3 积分学不定积分、定积分、广义积分、二重积分、三重积分、平面曲线积分、积分应用等方面知识,掌握基本公式和计算方法。
1.4 无穷级数数项级数、幂级数、泰勒级数和傅立叶级数等方面的知识。
1.5 微分方程可分离变量方程、一阶线性方程、可降阶方程及常系数线性方程等方面的知识。
1.6 概率与数理统计概率论部分,随机事件与概率、古典概率、一维随机变量的分布和数字特征等方面的知识。
数理统计部分,参数估计、假设检验、方差分析及一元回归分析等方面的基本知识。
2.热力学(考题比例9% )2.1 气体状态参量、平衡态、理想气体状态方程、理想气体的压力和温度的统计解释。
2.2 功、热量和内能。
2.3 能量按自由度均分原理、理想气体内能、平均碰撞次数和平均自由程、麦克斯韦速率分布律。
2.4 热力学第一定律及其对理想气体等值过程和绝热过程的应用、气体的摩尔热容、焓。
2.5 热力学过程、循环过程。
2.6 热机效率。
2.7 热力学第二定律及其统计意义、可逆过程和不可逆过程、熵。
3.普通化学(考题比例14% )3.1 物质结构与物质状态原子核外电子分布、原子与离子的电子结构式、原子轨道和电子云概念、离子键特征、共价键特征及类型。
分子结构式、杂化轨道及分子空间构型、极性分子与非极性分子、分子间力与氢键。
分压定律及计算。
液体蒸气压、沸点、汽化热。
晶体类型与物质性质的关系。
3.2溶液溶液的浓度及计算。
非电解质稀溶液通性及计算、渗透压概念。
电解质溶液的电离平衡、电离常数及计算、同离子效应和缓冲溶液、水的离子积及pH、盐类水解平衡及溶液的酸碱性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微乳与普通乳状液有二个显著不同:
(1) 微乳是热力学稳定系统 (2) 微乳外观均匀透明
一、 乳状液
5.乳状液的破坏 破乳:乳状液的破坏 过程:分层、转相、破乳等不同阶段 原理:破坏乳化剂的保护作用,使油、水分离 方法: (1) 电解质:破坏双电层起
(2) 改变乳化剂的类型:类型转变过程中的不稳定性使之破坏
(3) 破坏保护膜:用机械强度弱的表面活性剂取代之 (4) 破坏乳化剂:加入反应的试剂,使乳化剂破坏或沉淀 (5) 其他:加热,高压电,离心,过滤等
二、泡沫
泡沫:气体为分散相的分散系统,属粗分散系统 1. 泡沫的形成 粒径:较大 类型: 相当于O/W 稳定结构:三泡结构 发泡剂:表面活性剂,如肥皂 2.泡沫的稳定性 (1) 增加液膜的粘度 (2) 增加液膜的电荷 (3) 增加液膜的“弹性”
(2) 乳化剂的溶解度 油水分配系数大,易形成O/W型 油水分配系数小,易形成W/O型 (3) 乳化剂的分子构型 如非极性的双碳氢链,空间障碍大,易形成W/O型 (4) 油-水的相体积比:体积分数大的液体倾向于作外相
一、 乳状液
4.微乳状液 微乳:粒径8~80 nm,制备时乳化剂用量占20%~30%, 并需加入了一些极性有机物作辅助剂 普通乳状液:粒径0.1~10 m,制备时乳化剂用量占1%~10%
二、泡沫
2. 消泡 物理消泡法: 升温或降温,照射,机械法(气流、超声波、过滤) 化学消泡法: 消泡剂改变pH、盐析、与发泡剂反应 作用机制有: (1) 起泡剂脱附 (2) 降低液膜粘度 (3) 抑止泡沫形成
三、气溶胶
1. 分类和粒径
按分散相分: 固体气溶胶 液体气溶胶 按形成方法分: 分散气溶胶 如固体粉碎(粉尘)、液体雾化 凝聚气溶胶 如烟、雾 粒径:10-7~10-4 m 气溶胶带电性质: 捕获大气中带电粒子而荷电,雷电与此有关。
第七
1.乳状液的类型
乳状液:不相溶的液体相互分散形成的系统 内相:被分散相 外相:分散介质 类型:水包油(O/W)、油包水(W/O)
水 油
油
水
鉴别类型方法: 稀释法 :能被水相稀释,为O/W型;能被油相稀释,为W/O型 染色法 :外相被油性染料染色,为W/O型; 外相被水性染料染色,为O/W型; 电导法:电导大,为O/W型;电导小,为W/O型
2. 医药中应用 气雾剂:药物+抛射剂+附加剂 粉雾剂:药物微粒 3. 大气污染
再见!
返回
一、 乳状液
2.乳化剂的作用 ——稳定乳剂 (1) 降低界面张力:处于较低能量状态
(2) 形成界面膜:形成一定机械强度
(3) 形成双电层:电性斥力 (4) 固体粉末的稳定作用:形成良好界面膜
一、 乳状液
3.决定乳状液类型的因素 (1) 乳化剂的界面张力:
膜-水 大,膜向水相弯曲,易形成W/O型 膜-油 大,膜向油相弯曲,易形成O/W型