液压动力元件及执行元件解析
液压执行元件各有什么用途
液压执行元件各有什么用途液压执行元件是液压系统中的核心部件,主要用于将液压能转化为机械能,实现各种工程机械的运动。
常见的液压执行元件包括液压缸、液压马达和液压伺服阀等。
它们各有不同的用途,具体如下:1. 液压缸:液压缸是最常见和应用广泛的液压执行元件,主要用于产生线性运动。
它通常由缸体、活塞、活塞杆和密封件等部件组成。
液压缸可用于各种工程机械,如挖掘机、铲车和推土机等,实现各种行程和推力的精确控制。
2. 液压马达:液压马达是将液压能转化为旋转运动的液压执行元件。
它通常由马达本体、齿轮或液压马达柱塞等组成。
液压马达广泛应用于各种需要转动运动的工程机械,如起重机、钻机和混凝土泵等。
3. 液压伺服阀:液压伺服阀是用于控制和调节液压系统中流量和压力的重要元件。
通过调节阀芯的位置和开口大小,实现对液压能的精确控制。
液压伺服阀广泛应用于液压系统中的动态控制和自动化控制系统。
4. 液压驻车制动器:液压驻车制动器主要用于工程机械和汽车等的停车制动。
它通过液压系统产生的压力来使制动器盘片紧密贴合,从而实现对车辆的牵制和停止。
5. 液力变矩器:液力变矩器是用于传递和调节动力的液压执行元件。
它通常由泵轮、涡轮和导向器等组成,可以实现变矩器的连续变比。
液力变矩器广泛应用于各种需要动力变速的工程机械和汽车等。
6. 液压传动件:液压传动件主要用于传递液压能和机械能的变换。
常见的液压传动件包括管路、接头和油管等。
液压传动件在液压系统中起到连接各个液压元件的作用,实现液压能的传递和分配。
总结来说,液压执行元件在工程机械、汽车等领域中起到至关重要的作用。
它们能够将液压能有效地转化为机械能,实现各种运动和动力传递。
液压执行元件的应用不仅提高了机械设备的工作效率和精度,还增加了操作的便利性和安全性。
学习任务2 液压传动系统动力和执行元件的学习
二、液压执行元件 (液压缸、液压马达)
1.液压缸
(1)活塞式液压缸 1)双杆式液压缸
(1)活塞式液压缸 1)双杆式活塞缸
活塞两端都有一根直径相等的活塞杆 伸出的液压缸称为双杆式活塞缸。
根据安装方式可分为缸筒固定式和活塞杆 固定式两种。
固定缸体时,工作台的往复 运动范围约为有效行程L的3 倍。
二、液压传动系统的组成
1)叶片泵具有结构紧凑、输出流量均匀、运转平稳、噪声小等优点。 2)自吸性和抗污染能力较差,结构复杂,造价高。 3)叶片泵多用于中高压液压系统中。
6.柱塞泵
柱塞泵是靠柱塞在缸体中做 往复运动造成密封容积的变 化来实现吸油与压油的。
柱塞泵的优点:
第一,构成密封容积的零件为圆柱形的柱塞和缸孔,加工方便,可 得到较高的配合精度,密封性能好,在高压下工作仍有较高的容积 效率。
当转子每转一周,每个工作空间要完成 两次吸油和压油, 称为双作用叶片泵。
这种叶片泵由于有两个吸油腔和两个压 油腔,并且各自的中心夹角是对称的,所 以作用在转子上的油液压力相互平衡, 因此双作用叶片泵又称为卸荷式叶片泵。
为了要使径向力完全平衡,密封空间数 (即叶片数)应当是双数。
(3)叶片泵的特点
视频
2.液压泵的主要性能参数 (1)压力 油液的压力是由油液的自重和油液受到外力作用而产生的。
由于油液自重而产生的压力一般很小,可忽略不计。 所以油液的压力为:
p--油液压强N/m2,也称帕(Pa) ; F一作用的外力,N; A-油液表面的承压面积,即活塞的有效作用面积, m2。
1)工作压力 实际工作时输出的压力。 压力取决于负载和管路上的压力损失,与液压泵的流量无关。
液压伺服控制液压动力元件
K ps
Kq K ce
ωr——惯性环节的转折频率
r
K ce k
Ap
2
1
k kh
K ce
Ap 2
1 k
1 kh
稳态时阀输入位移所引起的液压缸活塞的输出位移
外负载力作用所引起的活塞输出位移的减小量
k 1 时 kh
xp
Kq Ap
xv
K ce Ap 2
4
Vt
eK
ce
s 1FL
s
K ce k Ap 2
s2
总流量 = 推动活塞运动所需流量 + 经过活塞密封的内泄漏流量 + 经过活塞杆密封处的外泄漏流量 + 油液压缩和腔体变形所需的流量
4
流入液压缸进油腔的流量:
Q1
Ap
dx p dt
V1
e
dp1 dt
Ci ( p1
p2 ) Ce p1
从液压缸回油腔流出的流量:
Ap
Q2
Ap
dx p dt
V2
e
dp2 dt
V1 Ap
比例,其作用相当于一个线性液压弹簧,
V
总液压弹簧刚度为:
V2
F
kh
e
Ap
2
1 V1
1 V2
压力P
V左
总液压弹簧刚度是液压缸两腔液压弹簧刚度的并联。
18
当活塞处在中间位置时,液压弹簧刚度最小,当在两端时,V1 或V2为零,液压弹簧刚度最大。 液压弹簧与负载质量相互作用所构成系统的固有频率,中间位
QL Kq xv Kc pL
QL
Apsx p
( Vt
4e
s Ct ) pL
Ap pL (M t s2 Bps k )x p FL
最全液压系统学习资料(图解版)
单作用叶片泵:转子每转一周完成吸、排 油各一次。 双作用叶片泵:转子每转一周 完成吸、排油各二次。
双作用叶片泵与单作用叶片泵相比,其流 量均匀性好,转子体所受径向液压力基本 平衡。 双作用叶片泵一般为定量泵;单作 用叶片泵一般为变量泵。
动力元件(叶片泵)
顺序阀
顺序阀是一种 利用压力控制 阀口通断的压 力阀,因用于 控制多个执行 元件的动作顺 序而得名。
顺序阀的四种控制型式: 按控制油来源不同分内控和外控,按弹簧腔 泄漏油引出方式不同分内泄和外泄。
压力继电器
功用:根据系统压力变化,自动接通 或断开电路,实现程序控制或安全保 护。
五、流量控制阀
出流量的大小;改变电流信号极性,即可改变运动方向。
图形符号含义
位—用方格表示,几位即几个方格
通—↑
不通— ┴ 、┬
箭头首尾和堵截符号与一个方格有几个交点即 为几通.
p.A.B.T有固定方位,p—进油口,T—回油口
A.B—与执行元件连接的工作油口
弹簧—W、M,画在方格两侧。
常态位置:
(原理图中,油路应该连接在常态位置) 二位阀,靠弹簧的一格。 三位阀,中间一格。
换向阀是利用阀芯在阀体孔内作相对运动,使油路 接通或切断而改变油流方向的阀。
换向阀的分类
• 按结构形式可分:滑阀式、转阀式、球阀式。 • 按阀体连通的主油路数可分:两通、三通、四通…等。 • 按阀芯在阀体内的工作位置可分:两位、三位、四位等
。 • 按操作阀芯运动的方式可分:手动、机动、电磁动、液
液压系统的组成
一个完整的液压系统由五个部分组成 动力元件(如:油泵 ) 执行元件(如:液压油缸和液压马达 ) 控制元件(如:液压阀 ) 辅助元件(如:油箱、滤油器 等) 液压油 (如:乳化液和合成型液压油 )
常用液压元件结构及原理分析图文讲解
液压泵
液压马达
齿轮泵
齿轮泵是一种常用的液压泵,它的主要优点是结构简单,制造方便,价格低廉,体积小,重量轻,自吸性好,对油液污染不敏感,工作可靠;其主要缺点是流量和压力脉动大,噪声大,排量不可调。
齿轮泵被广泛地应用于采矿设备、冶金设备、建筑机械、工程机械和农林机械等各个行业。
内泄式
图5.14(a) 带卸荷阀的内泄式液控单向阀
2-主阀芯;3-卸荷阀芯; 5-控制活塞
1
2
3
4
5
6
A
B
K
(3)带卸荷阀的液控单向阀
若在控制口K加控制压力,先顶开卸荷阀芯3,B腔压力降低,活塞5继续上升并顶开主阀芯2,大量液流自B腔流向A腔,完成反向导通。此阀适用于反向压力很高的场合。
图2.3 外啮合齿轮泵的工作原理 1—泵体;2 —主动齿轮;3 —从动齿轮
泵体内相互啮合的主、从动齿轮与两端盖及泵体一起构成密封工作容积,齿轮的啮合点将左、右两腔隔开,形成了吸、压油腔。
当齿轮按图示方向旋转时,右侧吸油腔内的轮齿脱离啮合,密封腔容积不断增大,构成吸油并被旋转的轮齿带入左侧的压油腔。
(2)执行元件:把液体压力能转换成机械能以驱动工作机构的元件,执行元件包括液压缸和液压马达。
(3)控制元件:包括压力、方向、流量控制阀,是对系统中油液压力、流量、方向进行控制和调节的元件。如换向阀15即属控制元件。
(4)辅助元件:上述三个组成部分以外的其它元件,如:管道、管接头、油箱、滤油器等为辅助元件。
?
则,到底什么是液压传动呢?
液压传动系统的组成
动力元件
传动介质
控制元件
辅助元件
执行元件
液压传动系统的组成
液压元件介绍
液压元件介绍
液压元件是指组成液压系统的各类部件,通常可以分为四大类:
1. 动力元件:如液压泵,其作用是将原动机(通常是电动机或内燃机)提供的机械能转换为流体的液压能。
液压泵是液压系统中的动力源,负责提供压力和流量以驱动整个系统。
2. 执行元件:包括油缸和液压马达,它们是将液压能转换回机械能的元件,实现直线运动或旋转运动,完成各种动作和工作循环。
3. 控制元件:主要是各种阀门,如溢流阀、方向控制阀、速度控制阀等,用于调节和控制液压系统中的压力、流量和流向,从而实现对执行元件运动的精确控制。
4. 辅助元件:如油箱、过滤器、管路和接头等,这些元件虽然不直接参与能量转换,但在整个系统中起到连接、保护和支撑的作用,保证液压系统稳定可靠地运行。
此外,还有工作介质,通常是液压油,它作为传递能量的介质,在液压系统中流动,承受压力并传递动力。
综上所述,液压系统通过这些元件的协同工作,实现了能量的转换和控制,广泛应用于工业机械、工程机械等领域。
根据不同的应用需求,液压元件的种类和设计也会有所不同,以满足特定的功能和性能要求。
液压技术基础
5、辅助元件
液压辅助元件涉及密封件、油管、管接头、过滤器、蓄能器、油箱和 压力计等。
(1)密封件 密封件旳功用在于预防液压油旳泄漏、外部灰尘旳侵入,防止影响液 压系统旳工作性能及污染环境。 常用旳密封措施和密封件有间隙密封、O形密封圈、Y形密封圈和V形 密封圈及活塞环、密封垫圈等。 (2)油管和管接头 油管是用来连接液压元件和输送液压油,管接头则是油管与油管、油 管与液压元件之间旳可拆卸连接件。 常用旳油管有钢管、钢管、塑料管、尼龙管和橡胶软管等。 常用旳管接头有焊接式、螺纹式、扩口式、卡套式、法兰式及油路块等 (3)过滤器 过滤器旳作用是从油液中清除固体污染物。 过滤器按构造不同可分为网式、线隙式、纸芯式、烧结式和磁性过滤器。
4、液压控制阀
(2)压力控制阀 在液压系统中,控制工作液体压力旳阀称为压力控制阀。常用
旳压力阀有溢流阀、减压阀、顺序阀。 (3)流量控制阀
流量控制阀是靠变化工作开口旳大小来控制经过阀旳流量,从 而调整执行机构(液压缸或液压电动机)运动速度旳液压元件。常 用旳流量控制阀有一般节流阀、调速阀以及这些阀和单向阀、行程 阀等旳多种组合阀。
1.3.2 液压传动旳主要优缺陷
1、优点: (1)可实现大范围旳无级调速; (2)同功率比较时,液压传动具有质量轻、体积小、运动惯量小、
反应速度快等特点; (3)液压传动旳各元件,可根据需要以便、灵活地来布置; (4)操纵省力,控制以便,易于实现自动化或遥控; (5)易于实现过载保护; (6)工作介质一般采用矿物油,相对运动表面可自行测滑,所以可
3、液压泵与液压马达
(3)液压马达(液压电机) 液压马达是液压系统旳执行元件,它是将系统旳液压能转换为
旋转形式旳机械能。 齿轮电机旳构造特点:
液压动力单元
液压动力单元是一种将液压能转换成机械能的设备。
是由液压泵、油箱、液压控制阀、执行器件、油管等组成。
通过液体的压缩和流动,实现机械设备的动力控制。
在现代机械设备中有着广泛的应用,被称为现代机械的“心脏”。
本文将对的组成、工作原理、应用场景进行介绍。
一、的组成及工作原理1.组成主要由三部分组成,即液动元件、执行元件和控制元件。
其中,液动元件主要有油箱、液压泵等;执行元件主要有油缸、液压马达等;控制元件主要有液压阀、超压保护装置等。
2.工作原理的工作原理是利用液体的不可压缩性和液体的压力传导性来实现机械设备的运动。
主要通过液压泵将液体抽入油箱内,经过滤器之后,液体流入液压控制阀。
液压控制阀负责对液压系统进行控制,以实现机械设备的动力控制。
液体通过控制阀进入执行元件,推动油缸或驱动液压马达,实现机械设备的动力传递。
二、的应用场景在现代机械设备中有着广泛的应用。
常用于重型机械设备、船舶、工程机械、各类机床、自动化装置等方面,应用场景包括:1.冶金、石化、能源等领域可以应用于各种液压力机、振动器、电动机、工程机械等,常用于冶金、石化、能源等领域。
2.重型机械设备领域可以应用于各种重型机械设备,如大型挖掘机、装载机、起重机、压路机等。
3.船舶领域可以应用于船舶的主机、液压机械、舵机、缆绳机、排污器等。
4.自动化装置可以应用于各种自动化装置,如自动化冲床、卷板机、钻床等。
三、的优缺点1.优点可以承受大的压力和力矩,同时其输出力易于调节。
具有高效、准确、稳定的特点,与传统机械和电气传动相比,具有更高的控制精度。
可以高效地利用能源,最大限度地节约能源消耗,从而降低了生产成本。
2.缺点的构造复杂,维护困难。
的噪声和振动大,对环境有一定影响。
的渗漏是一个重要问题,需要严格控制。
四、结论在现代机械设备中有着广泛的应用,其优点在于可以承受大的压力和力矩,同时具有高效、准确、稳定的特点,易于调节和节约能源消耗。
但的缺点在于构造复杂、维护困难、噪声和振动大,以及对环境有一定影响,需要严格控制。
液压基础知识 液压元件简介讲解
液压泵的性能比较与选用(1)
性 能 种类 齿轮泵 内啮合齿轮泵
叶片泵 径向柱塞泵 斜轴泵 斜盘泵
额定压力 bar
最高300 最高300 最高70 最高100 350 450
额定转速 rpm
额定排量 cc
变量
500 - 6000 0.2 - 200 500 - 3000 3 - 250
1000 - 3000 0.5 - 100 1000 - 2000 5 - 100 500 - 3000 5 - 1000 500 - 3000 10 - 1000
液压基础知识
目录
一、液压系统组成简介 二、液压泵及液压马达简介 三、液压缸简介 四、控制阀简介 五、辅助元件简介 六、基本回路分析
一、液压系统基本组成简介
1. 动力装置:液压泵、防爆电机 2. 执行元件:液压马达、液压缸 3. 控制元件:方向阀、流量阀、压力阀 4. 辅助元件:过滤器、冷却器、油箱等。 5. 传动介质:液压油
符号
齿轮泵
液压泵
叶片泵
柱塞泵
7
液压泵分类
齿轮 叶片 柱塞
齿轮泵 螺杆泵 叶片泵 径向柱塞 轴向柱塞
外啮合齿轮泵 内啮合齿轮泵
摆线泵 螺杆泵 单作用叶片泵 双作用叶片泵 活塞偏心式 轴偏心式 斜盘式 斜轴式
定量泵 定量泵 定量泵 定量泵 定量 / 变量 定量泵 定量 / 变量 定量 / 变量 定量 / 变量 定量 / 变量
开式回路
如左图。执行元件的速度(或转速 )可以通过流量控制阀来调节。而 溢流阀可以防止系统过载,起安全 保护作用。
如右图。系统的动力元件换成了变 量泵,三位四通换向阀在中位时可 以使泵卸载。系统还加入了过滤器 、冷却器和其他辅助元件。
最全的液压传动基本知识图解
液压传动系统在工业领域的应用实例
轧机、连铸机等冶金机械中采用 液压传动系统,提供大扭矩、高 精度的动力输出。
飞机起落架、导弹发射装置等航 空航天设备中采用液压传动系统 ,满足高可靠性、高精度的要求 。
工程机械 冶金机械 农业机械 航空航天
挖掘机、装载机、叉车等工程机 械中广泛应用液压传动系统,实 现各种复杂动作。
02
液压传动基础知识
Chapter
液压油及其性质
01
02
03
液压油的作用
传递动力、润滑、冷却、 密封
液压油的性质
粘度、密度、压缩性、抗 磨性、抗氧化性、抗泡性
液压油的选用
根据系统工作压力、温度 范围、设备环境等因素选 择合适的液压油
液体静力学与动力学基础
液体静类
根据结构形式,液压马达可分为齿轮马达、叶片马达、柱塞马达等类型。根据 工作压力和排量大小,液压马达可分为低速大扭矩马达和高速小扭矩马达。
液压泵与液压马达的性能参数
01
液压泵的性能参数主要包括排量、压力、转速、效率和噪声等。排量是指泵每转 一周所排出油液的体积,压力是指泵出口处的油液压力,转速是指泵的旋转速度 ,效率是指泵输出功率与输入功率之比,噪声是指泵运转时产生的声音。
03
考虑液压缸和液压 阀的安装、调试和 维护的方便性。
04
在满足性能要求的 前提下,尽量选用 结构简单、性能稳 定、价格合理的产 品。
05
液压辅助元件及液压回路
Chapter
蓄能器、过滤器等辅助元件
储存能量
在液压系统中起到储存和释放能量的 作用,平衡系统压力。
吸收冲击
减小压力冲击对系统的影响,提高系 统稳定性。
,延长元件使用寿命。
液压系统组成
垂,造成密封件和导向 单边磨损,故其垂直使用 更有利。
25
柱塞式液压缸
工作时柱塞总受 压,因而它必须 有足够的刚度
塞只靠缸套支承 而不与缸套 接触, 这样缸套极易加 工,故适于做 长 行程液压缸;
26
伸缩式液压缸
18
执行元件(液压油缸和液压马达)
19
常用的液压缸的分类 液压缸
活塞式 柱塞式 伸缩式 摆动式
20
活塞杆液压缸
单活塞杆液压缸只有 一端有活塞杆。是一 种单活塞液压缸。
双作用缸其两端进出 口油口A和B都可通压 力油或回油,以实现 双向运动,故称为双 作用缸。
活塞杆液压缸
单活塞杆液压缸
双作用缸
4
齿轮泵的原理图
在一个紧密配合的 壳体内相互啮合旋 转,这个壳体的内 部类似“8”字形, 两个齿轮装在里面, 齿轮的外径及两侧 与壳体紧密配合
5
齿轮泵的原理图
挤出机的物料在吸入口进入两个齿轮中间,并充满这
一空间,随着齿的旋转沿壳体运动,最后在两齿啮合
时排出
6
齿轮泵的特点
齿轮泵对油液的要求最低,最早的时候因 为压力低,所以一般用在低压系统中,先 随着技术的发展,压力可以做到25MPa左 右,常用在廉价工程机械和农用机械方面, 当然在一般液压系统中也有用的,但是他 的油液脉动大,不能变量,好处是自吸性 能好。
有单叶片和双叶片两种形式。 定子块固定在缸体上,而叶片和转子连接
在一起。根据进油方向, 叶片将带动转子 作往复摆动。
29
液压马达的结构
30
第二节 小结
根据常用液压 1.活塞式
液压传动基础
1、叶片泵的工作原理
如下所示为叶片泵的工作原理,它主要由定子、 转子、叶片、配油盘、转动轴和泵体等组成。定 子内表面是由两段长半径圆弧和四段过渡曲线八 个部分组成,且定子和转子是同心的,转子旋转 时,叶片靠离心力和根部油压作用伸出紧贴在定 子的内表面上,两两叶片之间和转子的外圆柱面, 定子内表面及前后配油盘形成一个个密封工作容 腔。如图中转子逆时针方向旋转,密封工作腔的 容积在左上角和右下角处逐渐增大,形成局部真 空而吸油,在右上角和左下角处逐渐减小而压油, 吸油区和压油区之间有一估封油区把它们隔开。
粘度与温度的关系
液压油粘度对温度变化十分敏感,温度升高, 粘度下降。这种油的粘度随温度变化的性质称 为粘温特性。(上图是几种国产油的粘温图) 油液粘度的变化直接影响液压系统的性能和 泄漏量,因此希望粘度随温度的变化越小越好。
2、液体的可压缩性
液体受压力作用而使其体积发生变化的性 质,称为液体的可压缩性。矿物油可压缩 性约比钢大100~150倍。 对于一般的液压系统压力不高时,液体的可 压缩性很小,因此可以认为液体是不可压 缩的。
(三)、液压油的污染及其控制
1.污染的原因及危害
液压油受到污染,常常是液压系统发生故障的主要原因。工作液体 中的污染物来源包括:液压装置组装时残留下来的污染物(如切屑、 毛刺、型砂、磨粒、焊渣、铁锈等);从周围环境混入的污染物(如 空气、尘埃、水滴等);在工作过程中产生的污染物(如金属微粒、 锈斑、涂料剥离片、密封材料剥离片、水分、气泡以及工作液体变 质后的胶状生成物等)。
四、液压传动的优缺点
(一)、液压传动的主要优点 与机械传动、电气传动相比,液压传动具有以下优点: (1)液压传动的各种元件、可根据需要方便、灵活地来布置; (2)重量轻、体积小、运动惯性小、反应速度快; (3)操纵控制方便,可实现大范围的无级调速(调速范围达2000:1); (4)可自动实现过载保护; (5)一般采用矿物油为工作介质,相对运动面可自行润滑,使用寿命长; (6)很容易实现直线运动; (7)容易实现机器的自动化,当采用电液联合控制后,不仅可实现更高程度的自动控制 过程,而且可以实现遥控。 (二)、液压传动的主要缺点 (1)由于流体流动的阻力损失和泄漏较大,所以效率较低。如果处理不当,泄漏不仅污 染场地,而且还可能引起火灾和爆炸事故。 (2)工作性能易受温度变化的影响,因此不宜在很高或很低的温度条件下工作。 (3)液压元件的制造精度要求较高,因而价格较贵。 (4)由于液体介质的泄漏及可压缩性影响,不能得到严格的定比传动。 (5)液压传动出故障时不易找出原因;使用和维修要求有较高的技术水平。 (6)油液污染
液压伺服系统第5章液压动力元件
三、传递函数简化
Kq K ce Vt X v 2 1 Dm Dm 4 e K ce Xp s 2 2 h s 2 s 1 h h s TL
液压固有频率:
h
2 4 e Dm Vt J t
液压阻尼比:
Kce h Dm
二、方框图与传递函数:
根据阀控液压缸的基本方程进行拉氏变换得:
QL Kq X v Kc PL
Vt QL Ac sX c Ctc PL sPL 4 e Ac PL mt s 2 X c Bc sX c KX c FL
根据阀控液压缸的拉氏变换方程式绘出系统方框图。
BcVt 2 s Xc 2 4 e Ac
三、传递函数简化
(一)、无弹性负载 K=0:
Kq K ce Vt Xv 2 1 s FL Ac Ac 4 e K ce Xc Vt mt 2 K ce mt Vt Bc s 1 s s 2 2 2 4 e Ac Ac 4 e Ac
(二)、有弹性负载 K≠0:
Kq K ce Vt X v 2 1 s FL Ac Ac 4 e K ce Xc Vt mt 3 K ce mt Vt Bc 2 Vt K K ce K s s 1 s 2 2 A2 4 A2 4 e Ac2 4 A A e c e c c c
伯德图
Xc Xv s s 2 2 0 1 s 1 2 0 r 0
Kq Ac
K q Ac K ce K
Xc Xv K ce K s 2 2 h s s 1 2 2 A c h h
7-2液压传动-液压原件
换向阀的符号表示 一个换向阀的完整符号应具有工作位置数、通口数和在各工作位置上阀口的连通关系、控制方法以
及复位、定位方法等。
三位四通电磁换向阀
位:指阀与阀的切换工作位置数,用方格表示。
一位
二位
三位
位与通:“通”指阀的通路口数,即箭头“↑”或封闭符号 “⊥”与方格的交点数。 三位阀的中格、两位阀画有弹簧的一格为阀的常态位。常态位应绘出外部连接油口(格外短竖线)的 方格 。
优点
缺点
齿轮泵
结构简单,无须配流装置,价格低, 易产生振动和噪声,泄漏大,容积
工作可靠,维护方便,自吸性好,对 效率低,径向液压力不平衡。流量不
油的污染不敏感
可调
叶片泵
输油量均匀,压力脉动小,容积效 结构复杂,难加工,叶片易被脏物
率高
卡死
轴向柱塞泵
结构紧凑,径向尺寸小,容积效率 高
结构复杂,价格较贵
节流阀 调速阀
1.节流阀
节流阀常用节流口形式
针阀式节流口 三角槽式节流口
偏心式节流口 轴向缝隙式节流口
2.调速阀
由减压阀和节流阀串联而成的组合阀。
1-减压阀阀芯 2-节流阀阀芯 3-溢流阀
§6 液压辅助元件
一、过滤器 二、蓄能器 三、油管和管接头 四、油箱
一、过滤器
作用:保持油的清洁。
1-前端盖 2-活塞 3-缸体 4-后端盖 a-动密封 b-静密封
支
密
承
封
环
环
压环
4.液压缸的缓冲
目的:防止活塞在行程终了时,由于惯性力的作用与端盖发生撞击,影响设备的使用寿命。 原理:当活塞将要达到行程终点、接近端盖时,增大回油阻力,以降低活塞的运动速度,从而 减小和避免对活塞的撞击。
液压元件名称及作用
液压元件名称及作用
液压传动在现代机械中具有重要的地位,而液压元件是构成液压系统的重要部分。
以下是一些常见的液压元件名称及其在液压系统中的作用:
1. 液压泵:液压泵是液压系统的动力源,它能够将机械能转化为液压能,为液压系统提供压力油。
2. 液压马达:液压马达是液压系统的执行元件,它能够将液压能转化为机械能,驱动负载进行旋转或直线运动。
3. 液压缸:液压缸是液压系统的另一种执行元件,它能够将液压能转化为直线运动动能,驱动负载进行运动。
4. 液压阀:液压阀是液压系统中的控制元件,它能够控制液体的流动方向、流量和压力等参数,从而实现不同的动作控制。
5. 液压油箱:液压油箱是液压系统中的油液储存元件,它能够储存和供应足够的油液,为液压泵和液压马达提供必要的润滑和冷却。
6. 液压油管:液压油管是液压系统中的流体通道,它能够连接各个液压元件,使油液能够在系统中流动。
7. 密封件:密封件是液压系统中的重要元件,它能够防止油液泄漏和空气进入系统,保证系统的正常工作和稳定性。
8. 液压附件:液压附件包括各种接头、管夹、滤清器等,它们是辅助元件,用于安装、固定和保护液压元件,保证系统的正常运行。
以上是一些常见的液压元件名称及其在液压系统中的作用,了解这些元件的作用和特点,对于正确设计和维护液压系统具有重要意义。
液压传动的工作原理及组成知识讲解
三、图形符号
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
工作原理特点
(1)用具有一定压力的液体来传动;
(2) 传动过程中必须经过两次能量转换;
(3) 传动必须在密封容器内进行,而且容积要发 生变化。
二、液压传动系统的组成 以机床工作台液压系统为例
液压缸:带动工作台左 右往复运动;
油箱:储存液压油; 液压泵:由电动机驱动; 过滤器:去除杂质; 开停阀:起开停作用; 换向阀:改变工作台运 动方向。
机械齿轮传动皮带传动链轮传动电力电机作动力流体液体气体讨论2
液压传动的工作原理及组成
讨论2:
有哪几种传递运动和动力的方式?
机械(齿轮传动、皮带传动、 链轮传动) 传动Βιβλιοθήκη 类电力(电机作动力)
型
气体
流体
液力传动(液体的动能)
液体
液压传动(液体压力能)
液压传动:利用液体压力能实现运动和动力传动的方式。
一、 液压传动的工作原理
活塞右移:开停阀向左 换向阀向右
活塞左移:开停阀向左 换向阀向左
节流阀:调节输入液压 缸油液的流量;
溢流阀:将多余的油液排 回油箱;
泵的卸荷:油液直接排回 油箱,泵出口压力降为零, 工作台停止不动。
液压系统的组成:
1.动力元件:把机械能转 换成液压能(泵) 2.执行元件:把液压能转换 成机械能(缸、马达)
液压元件(液压泵、马达)
• 内啮合齿轮泵的缺点是齿形复杂,加工困难,价格较贵, 且不适合高压工况。
1.3 柱塞泵
柱塞泵是通过柱塞在柱塞孔内往复运动时密封工作容 积的变化来实现吸油和排油的。柱塞泵的特点是泄漏小、 容积效率高,可以在高压下工作。 轴向柱塞泵可分为斜盘式和斜轴式两大类。
1.3.1 斜盘式轴向柱塞泵
斜盘1和配油盘4不动,传动轴5带动缸体3、柱塞2一起转动。 传动轴旋转时,柱塞2在其沿斜盘自下而上回转的半周内逐
1.1 液压泵、马达概述
机械损失 机械损失是指因摩擦而造成的转矩上的损失。 对液压泵来说,泵的驱动转矩总是大于其理论上需要的驱动 转矩,设转矩损失为 T f ,理论转矩为 Tt ,则泵实际输入转矩 为 T Tt T f ,用机械效率 m 来表征泵的机械损失,则
Tt T m
1.1 液压泵、马达概述
q (6.66 ~ 7) zm 2 bnv
上式是齿轮泵的平均流量。实际上,在齿轮啮合过 程中,排量是转角的周期函数,因此瞬时流量是脉动的。 脉动的大小用脉动率表示。
q q 若用 q max 、 min 来表示最大、最小瞬时流量, 0 表示 平均流量,则流量脉动率为
q max q min q0
T Tt m
1.1 液压泵、马达概述
马达的机械损失
T Tt m
液压马达的总效率等于其容积效率和机械效率的乘积。
v m
液压泵、马达的容积效率和机械效率在总体上与油液的 泄漏和摩擦副的摩擦损失有关。
1.2 齿轮泵
齿轮泵是一种常用的液压泵,它的主要优点是结构简 单,制造方便,价格低廉,体积小,重量轻,自吸性好, 对油液污染不敏感,工作可靠;其主要缺点是流量和压力 脉动大,噪声大,排量不可调。
《液压与气动技术》液压动力元件
3.1 液压泵概述 3.1.1 液压泵的工作原理与特点
第 3 章 液压动力元件
1)应具有相应的配流机构,将吸、压油腔分开,保证液压泵有规律地吸、压油。 2)油箱必须和大气相通以保证液压泵吸油充分。 3.1.2 液压泵的分类
第 3 章 液压动力元件
3.1.3 液压泵的主要性能参数 1.压力 (1)工作压力p 液压泵工作时实际输出油液的压力称为工作压力。 (2)额定压力pn 液压泵在正常工作时,按试验标准规定连续运转的最高压力称为液压泵的额定压力。 (3)最高允许压力pm 在超过额定压力的情况下,根据试验标准规定,允许液压泵短时运行的最高压 力值,称为液压泵的最高允许压力。 2.排量和流量 (1)排量V 液压泵主轴每转一次,其密封容积发生变化所排出液体的体积称为液压泵的排量。 (2)理论流量qt 液压泵在不考虑泄漏的情况下,单位时间内所排出液体的体积称为理论流量。 (3)实际流量q 液压泵在某一工作压力下,单位时间内实际排出液体的体积称为实际流量。 (4)额定流量qn 液压泵在正常工作条件下,按试验标准规定(在额定压力和额定转速下)必须保证的 流量称为额定流量。
3.外啮合齿轮泵的结构问题与改进措施 (1)泄漏 外啮合齿轮泵容易产生泄漏的部位有3处:齿轮端面与端盖配合处、齿轮外圆与泵体配合 处及两个齿轮的啮合处,其中端面间隙处的泄漏影响最大,这是因为泵的端面泄漏的面积大、途径 短。
第 3 章 液压动力元件
(2)困油 为使齿轮能够平稳工作,要求齿轮的重合度大于1,这样在两对齿轮进入啮合的瞬间,在啮 合点之间形成一个独立的封闭空间,而一部分油液被困在其中。 (3)径向力不平衡 齿轮泵在工作时,因压油腔的压力大于吸油腔的压力,这样对齿轮和轴便会产生 不平衡的径向力,而且液压力越高,不平衡径向力就越大,它直接影响轴承的使用寿命。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳职业技术学院——液压与气动技术
2020年11月3日星期二
2. 2液压泵的主要性能和参数
例题2-1 某液压系统,泵的排量q=10m L/r,电机转速n= 1200rpm,泵的输出压力p=5Mpa 泵容积效率ηv=0.92, 总效率η=0.84,求:
1) 泵的理论流量; 2)泵的实际流量; 3)泵的输出功率; 4)驱动电机功率。
pQa 60
5 11.04 60
0.9(kw)
Pm
pac
0.9 0.84
1.07(kw)
深圳职业技术学院——液压与气动技术
2020年11月3日星期二
2. 2液压泵的主要性能和参数
泵性能指标公式记忆
理论转矩记住它 , 等于排量乘压差 . 理论流量记得住 , 等于排量乘转速 . 功率等于p 乘 q , 也等转矩乘转速 . 能流方向分得清 , 乘除效率不含糊 . 计算单位要统一 , 角度一律用弧度.
深圳职业技术学院——液压与气动技术
2020年11月3日星期二
2. 2液压泵的主要性能和参数
3、流量:为泵单位时间内排出的液体体积(L/min),有理论流量Qth 和实际流量Qac两种。
Qth qn (2-1)
式中:q — 泵的排ຫໍສະໝຸດ (L / r) n — 泵的转速(r/min)
Qac Qth Q (2-2)
2020年11月3日星期二
2. 3液压泵的结构
1、齿轮泵:液压泵中结构最 简单的一种,且价格便宜, 故在一般机械上被广泛使用; 齿轮泵是定量泵,可分为外 啮合齿轮泵和内啮合齿轮泵 两种。
1)外啮合齿轮泵:其的构造 和动作原理如图2-2所示。
深圳职业技术学院——液压与气动技术
2020年11月3日星期二
深圳职业技术学院——液压与气动技术
2020年11月3日星期二
2. 3液压泵的结构
1、齿轮泵:液压泵中结构最简 单的一种,且价格便宜,故在 一般机械上被广泛使用;齿轮 泵是定量泵,可分为外啮合齿 轮泵和内啮合齿轮泵两种。
1)外啮合齿轮泵:其的构造和 动作原理如图2-2所示。
深圳职业技术学院——液压与气动技术
1)外啮合齿轮泵:其的构造和动作原理如图2-2所示,它由 装在壳体内的一对齿轮所组成齿轮两侧有端盖罩住,壳体、 端盖和齿轮的各个齿间槽组成了许多密封工作腔。
深圳职业技术学院——液压与气动技术
2020年11月3日星期二
2. 2液压泵的主要性能和参数
解:1)泵的理论流量
Qth=q.n.10-3=10×1200×10-3=12 L/min
2) 泵的实际流量
Qac =Qth .ηv=12×0.92=11.04 L/min
3)泵的输出功率 4)驱动电机功率
Pac
2020年11月3日星期二
2. 2液压泵的主要性能和参数
5、泵的总效率、功率 泵的总效率(厄塔):
Pac — 泵实际输出功率
m .v
Pac PM
P — 电动机输出功率
M
泵的功率:
Pac
pQac 60
(kw)
式中:p — 泵输出的工作压力(MPa) Qac— 泵的实际输出流量(L /min),1L =103cm3。
液压与气动技术 第二单元 液压动力元件及执行元件
2005-1-20
教学内容:
液压泵的工作原理(重点) 液压泵的主要性能及参数(难点) 液压泵的结构 液压泵与电动机参数的选用 液压缸(重点) 液压马达
深圳职业技术学院——液压与气动技术
2020年11月3日星期二
2. 液压动力元件
液压系统是以液压泵作为向系统提供一定的流量 和压力的动力元件,液压泵由电动机带动将液压油从 油箱吸上来并以一定的压力输送出去,使执行元件推 动负载作功。
3)最高允许压力:在超过额定压力的条件下,根据试验准规定,允许液 压泵短暂运行的最高压力值,称为液压泵的最高允许压力,超过此压 力,泵的泄漏会迅速增加。
深圳职业技术学院——液压与气动技术
2020年11月3日星期二
2. 2液压泵的主要性能和参数
2、排量
排量是泵主轴每转一周所排出液体体积的理论值, 如泵排量固定,则为定量泵;排量可变则为变量泵。一 般定量泵因密封性较好,泄漏小,在高压时效率较高。
深圳职业技术学院——液压与气动技术
2020年11月3日星期二
2.1液压泵的工作原理
由于这种泵是依靠泵的密封 工作腔的容积变化来实现吸油和 压油的,因而称为容积式泵。
容积式泵的流量大小取决于 密封工作腔容积变化的大小和次 数。若不计泄漏,流量与压力无 关。
液压泵的分类方式很多,它 可按压力的大小分为低压泵、中 压泵和高压泵。也可按流量是否 可调节分为定量泵和变量泵。又 可按泵的结构分为齿轮泵、叶片 泵和柱塞泵,其中齿轮泵和叶片 泵多用于中、低压系统,柱塞泵 多用于高压系统。
2. 3液压泵的结构
1、齿轮泵:液压泵中结构最 简单的一种,且价格便宜, 故在一般机械上被广泛使 用;齿轮泵是定量泵,可 分为外啮合齿轮泵和内啮 合齿轮泵两种。
1)外啮合齿轮泵:其的构造 和动作原理如图2-2所示。
深圳职业技术学院——液压与气动技术
2020年11月3日星期二
2. 3液压泵的结构
1、齿轮泵:可分为外啮合齿轮泵和内啮合齿轮泵两种。
∆Q — 泵运转时,油会从高压区泄漏到低压区,是泵的泄漏损失。
深圳职业技术学院——液压与气动技术
2020年11月3日星期二
2. 2液压泵的主要性能和参数
4、容积效率和机械效率
泵的容积效率:
V
Qac Qth
泵的机械效率:
m
Tth Tac
Tth - 泵的理论输入扭矩
Tac - 泵的实际输入扭矩
深圳职业技术学院——液压与气动技术
观看动画。
深圳职业技术学院——液压与气动技术
2020年11月3日星期二
2.1液压泵的工作原理
液压泵正常工作的三个必备条件
➢ 必须具有一个由运动件和非运动件所构成的密闭容积;
➢ 密闭容积的大小随运动件的运动作周期性的变化,容积由小变 大——吸油,由大变小——压油;
➢ 密闭容积增大到极限时,先要与吸油腔隔开,然后才转为排油; 密闭容积减小到极限时,先要与排油腔隔开,然后才转为吸油。
深圳职业技术学院——液压与气动技术
2020年11月3日星期二
2. 2液压泵的主要性能和参数
1、压力
1)工作压力:液压泵实际工作时的输出压力称为工作压力。工作压力取 决于外负载的大小和排油管路上的压力损失,而与液压泵的流量无关。
2)额定压力:液压泵在正常工作条件下,按试验标准规定连续运转的最 高压力称为液压泵的额定压力。