彩色图像处理
计算机图像处理 第09章 彩色图像处理
下一页
home
上一页
图8.7 HSI彩色模型
(a)HSI彩色模型坐标系统
(b)HSI彩色三角形
下一页
home
上一页
下一页
home
上一页
• HIS色系-亮度分量I • I表示光照强度或称为亮度,它确定了像素 的整体亮度,而不管其颜色是什么。
下一页
home
上一页
• 亮度(I)效果示意图
下一页
home
• 色调(hue)
– 从一个物体反射过来的或透过物体的光波长 – 是由颜色种类来辨别的,如红、橙、绿。
• 色饱和度(saturation)
– 即色纯度,指颜色的深浅 – 例如:深红和浅红。
• 亮度(brightness)
– 颜色的明暗程度,从黑到白,主要受光源强弱影响。
下一页
home
上一页
8.1.2 三基色原理
– 与人的视觉特性比较接近。
• 重要性
– 消除了亮度成分V在图像中与颜色信息的联系
– 色调H和饱和度S分量与人的视觉感受密切相关。
下一页
home
上一页
图8.6 HSV颜色模型
绿
绿 ° 120
S H 0° 红
红 蓝 1 20 ° I
240 ° 蓝
0° 2 40 °
(a)HSV颜色模型
(b)颜色轮
(c)柱形彩色空间
(8.2a) (8.2b)
B' Tem p 1 B Tem p 1 Tem p2
•
G'
Tem p 1 G Tem p 1 Tem p2
下一页
home
上一页
5 B' 1 G ' 1 R' H1 3 B ' 3 G ' 5 R '
数字图像处理_实验报告书(八)彩色图像处理
rgb=cat(3,rgb_R,rgb_G,rgb_B);figure,imshow(rgb),title('RGB彩色图像');截图:(2)编写MATLAB程序,将一彩色图像从RGB空间转换为HIS空间,并观察其效果。
如例9.2所示。
程序:rgb=imread('LenaRGB.bmp');figure,imshow(rgb);rgb1=im2double(rgb);r=rgb1(:,:,1);g=rgb1(:,:,2);b=rgb1(:,:,3);I=(r+g+b)/3figure,imshow(I);tmp1=min(min(r,g),b);tmp2=r+g+b;tmp2(tmp2==0)=eps;S=1-3.*tmp1./tmp2;figure,imshow(S);tmp1=0.5*((r-g)+(r-b));tmp2=sqrt((r-g).^2+(r-b).*(g-b));theta=acos(tmp1./(tmp2+eps));H=theta;H(b>g)=2*pi-H(b>g);H=H/(2*pi);H(S==0)=0;figure,imshow(H);截图:(3)编写MATLAB程序,将一彩色图像在RGB空间进行彩色分割,并观察其效果。
如例9.11所示。
程序:rgb=imread('LenaRGB.bmp');figure,imshow(rgb);rgb1=im2double(rgb);r=rgb1(:,:,1);figure,imshow(r);g=rgb1(:,:,2);figure,imshow(g);b=rgb1(:,:,3);figure,imshow(b);r1=r;r1_u=mean(mean(r1(:)));[m,n]=size(r1);sd1=0.0;for i=1:mfor j=1:nsd1= sd1+(r1(i,j)-r1_u)*(r1(i,j)-r1_u);endendr1_d=sqrt(sd1/(m*n));r2=zeros(size(rgb1,1),size(rgb1,2));ind=find((r>r1_u-1.25*r1_d)&(r<r1_u+1.25*r1_d));r2(ind)=1;figure,imshow(r2);截图:(4)编写MATLAB程序,将一彩色图像在向量空间进行边缘检测,并观察其效果。
真彩色图像处理
第四部分真彩色增强一、真彩色增强方法图4.1 真彩色增强原理图1、对HSI图像亮度增强⑴、将R,G,B分量图转化为H,S,I分量图;⑵、利用对灰度图增强的方法增强其中的I分量图;⑶、再将结果转化为用R,G,B分量图来显示。
以上方法并不改变原图的彩色内容,但增强后的图看起来会有些不同。
这是因为尽管色调和饱和度没有变化,但亮度分量得到了增强,整个图会比原来更亮一些。
图4.3是基于matlab以增强亮度的方法进行真彩色增强的图像,其代码见附录(a)增强前图像(b)增强后图像图4.2 对HSI进行亮度增强结果结论:图(b)明显比图(a)要亮的多,在视觉效果上,图(b)比较让人觉得美好。
2、对HSI图像进行对比度增强图4.4是基于matlab以增强对比度的方法进行真彩色增强的图像,其代码见附录图4.3 对HSI增强对比度增强的结论:图(b)的视觉效果明显比图(a)要好的多,清晰的多,颜色比(a)要深。
3、对HSI图像进行亮度和饱和度的增强图4.5是基于matlab以增强亮度和饱和度的方法进行真彩色增强的图像,其代码见附录图4.4 对HSI图像进行增强结果结论:这是对前两个方法的综合,很显然,图(b)比图(a)要亮,要清晰,视觉效果比以上两种方法分别做要好的多。
二、直接在rgb空间对图像增强图4.6是基于matlab在rgb空间增强图像,其代码见附录图4.5 对RGB图像进行增强结果以下是基于matlab以增强亮度的方法进行真彩色增强的代码:%% 彩色图像亮度增强(执行速度较慢)clcclearfc = imread('E:\maomao.jpg');figure(1);imshow(fc)title('原始真彩色(256*256*256色)图像')fr = fc(:,:,1);fg = fc(:,:,2);fb = fc(:,:,3);% imshow(fr)% title('红色分量图像')% imshow(fg)% title('绿色分量图像')% imshow(fb)% title('蓝色分量图像')h = rgb2hsi(fc);H = h(:,:,1);S = h(:,:,2);I = h(:,:,3);I =I*1.5;% imshow(H)% title('色调分量图像')% imshow(S)% title('饱和度分量图像')% imshow(I)% title('亮度分量图像')h = cat(3,H,S,I);%cat函数是拼接数组的函数,这里将在第3维上进行拼接。
灰度图像处理vs彩色图像处理:适用领域和优缺点的比较
灰度图像处理vs彩色图像处理:适用领域和优缺点的比较随着数字图像技术的不断发展,图像处理领域也日益壮大,而图像的颜色信息是我们最直观的视觉感受之一。
因此,图像处理中最常见的便是对彩色图像进行处理。
但是,在实际的图像处理任务中,灰度图像有时也会被使用。
那么,灰度图像处理与彩色图像处理之间的关系和差异是什么呢?接下来,我们将详细讨论这两种图像处理技术的适用领域,以及各自的优缺点。
1.适用领域比较灰度图像处理灰度图像是一种仅包含黑、灰、白三种颜色的图像,它可以降低图像数据的复杂度,提高图像处理速度。
由于灰度图只需要处理单通道数据,因此在一些算法中,灰度图图像处理通常比彩色图像处理速度更快且计算成本更低。
同时,灰度图像处理技术不仅适用于图像增强、边缘检测等方面,还在计算机视觉领域中使用广泛,特别是在人脸识别、匹配、测量等领域。
彩色图像处理彩色图像处理则包含了RGB、HSV等多种色彩空间,可以更好地表现真实世界中的色彩信息,并能够更好的反应图像的细节和维度。
彩色图像处理技术被广泛应用于数字媒体、互联网影视和广告、航空航天等领域。
与灰度图像相比,彩色图像处理不但可以降低图像处理数据的复杂度,还能够表现具体的色彩信息,使得图像处理更加精准,更加全面。
2.优缺点比较灰度图像处理优点:(1)细节更加清晰。
由于灰度图像只有一种色调,因此图像的细节表现比彩色图像更加精准。
(2)处理速度快。
灰度图像处理通常只需要处理单通道数据,处理速度比彩色图像更快。
(3)计算成本更低。
灰度图像处理算法相对来说比较简单,因此计算成本更低。
缺点:(1)信息表达不完整。
由于灰度图像只有黑、灰、白三种颜色,因此它无法表现图像的色彩信息,限制了图像处理的深度和全面性。
(2)图像表现力较差。
灰度图像无法表现真实世界中色彩丰富的场景和细节。
彩色图像处理优点:(1)更加逼真。
由于考虑到色彩信息,彩色图像能够更加逼真地表现真实世界中的色彩和细节。
(2)图像处理深度更高。
第6章彩色图像处理资料
补充 YUV彩色空间
YUV是被欧洲电视系统所采用的一种颜色编 码方法(属于PAL) 。
Y为颜色的亮度 U 为色差信号,为红色的浓度偏移量成份 V 为色差信号,为蓝色的浓度偏移量成份 YUV格式有:4∶4∶4 ;4∶2∶2 ;
4∶1∶1 ;4∶2∶0
YUV与RGB间的转换
6.1 彩色基础 p252
将红、绿、蓝的量称为三色值,表示为X,Y,Z, 则一种颜色由三色值系数定义为:
x X X Y Z
y Y X Y Z
z Z X Y Z
x y z 1
CIE色度图
纯色在色度图边 界上,任何不在 边界上而在色度 图内的点都表示 谱色的混合色;
越靠近等能量点 饱和度越低,等 能量点的饱和度 为0;
Y 0.299 0.587 0.114R
U
0.147
0.289
0.436 G
V 0.615 0.515 0.1 B
R 1 0
1.1398 Y
G 1
0.3946
Hale Waihona Puke 0.5805UB 1 2.032 0.0005V
6.3 伪彩色图像处理
伪彩色(又称假彩色)图像处理是根据特定的 准则对灰度值赋以彩色的处理,即将灰度 图转换为彩色图。
6.2.2 CMY和CMYK模型
CMY模型和RGB模型间的关系:
C 1 R
M
1
G
Y 1 B
RGB三个值已归一化为[0,1]
等量的青色、品红和黄色应该产生黑色。但实 际产生的黑色不够纯正,另外加上价格因素, 引入黑色(打印的主色),构成CMYK模型。
6.2.2 CMY和CMYK模型
彩色图像分割
二值、灰度形态学
二值形态学中的运算对象是集合。设A为图像集合,S为结 构元素,数学形态学运算是用S对A进行操作。需要指出,实际 上结构元素本身也是一个图像集合。对每个结构元素可以指定 一个原点,它是结构元素参与形态学运算的参考点。应注意, 原点可以包含在结构元素中,也可以不包含在结构元素中,但 运算的结果常不相同。以下用阴影代表值为1的区域,白色代表 值为0的区域,运算是对值为1的区域进行的。二值形态学中两 个最基本的运算——腐蚀与膨胀,如图所示。
基本符号和术语
1. 元素和集合
在数字图像处理的数学形态学运算中,把一幅图像称为一个 集合。对于二值图像而言,习惯上认为取值为1的点对应于景 物中心,用阴影表示,而取值为0的点构成背景,用白色表示, 这类图像的集合是直接表示的。考虑所有值为1的点的集合为 A, 则A与图像是一一对应的。对于一幅图像A,如果点a在A
y S1
O
y
x X
X○ S1 X○ S2
O S2
x
(a)
(b)
X (c)
图 (a) 结构元素S1和S2
(b) X○S1
(c) X○S2
y S1
O
y
x
S1 X
X● S1
X● S2
O S2
x
X
S1
(a)
(b)
图 (a) 结构元素S1和S2
(c)
(b) X●S1; (c) X●S2
彩色图像处理
彩色图像处理彩色图像增强一般分为伪彩色增强和真彩色增强。
伪彩色图像增强常用的方法有亮度分割、灰度级-彩色变换和频率域伪彩色增强。
真彩色图像处理的发法一般分为两类:1是将彩色图像分解为3幅分量图像,在处理过程中首先对每幅分量图进行单独处理,然后再将3幅图像组合为彩色图;2是将彩色图像的每个像素看做一个矢量进行处理。
实例操作例1、RGB分量的显示clear allRGB=imread('peppers.png');R=RGB(:,:,1);G=RGB(:,:,2);B=RGB(:,:,3);subplot(2,2,1);imshow(RGB);title('原始图像');subplot(2,2,2);imshow(R);title('R分量图像');subplot(2,2,3);imshow(G);title('G分量图像');subplot(2,2,4);imshow(B);title('B分量图像');例2、RGB空间和HIS空间的转换function HIS=rgb2hsi(RGB)% RGB到HIS转换的函数RGB=im2double(RGB);R=RGB(:,:,1);G=RGB(:,:,2);B=RGB(:,:,3);fenzi=((R-G)+(R-B))/2;fenmu=sqrt((R-G).^2+(R-B).*(G-B));theta=acos(fenzi./(fenmu+eps));H=theta;H(B>G)=2*pi-H(B>G);H=H/(2*pi);%H范围归一化【0,1】MinC=min(min(R,G),B);S=1-3*MinC./(R+G+B+eps);H(S==0)=0;I=(R+G+B)/3;HIS=cat(3,H,S,I);function RGB=hsi2rgb(HSI)% HSI到RGB转换的函数H=HSI(:,:,1);H=2*pi*H;%[0 1]->[0 2*pi]S=HSI(:,:,2);I=HSI(:,:,3);%初始化RGB为0R=zeros(size(HIS,1),size(HSI,2));G=R;B=R;%0<=H<2*pi/3i=find((H>=0)&(H<2*pi/3));B(i)=I(i).*(1-S(i));R(i)=I(i).*(1+S(i).*cos(H(i))./cos(pi/3-H(i)));G(i)=3*I(i)-R(i)-B(i);%2*pi/3<=H<4*pi/3i=find((H>=2*pi/3)&(H<4*pi/3));H(i)=H(i)-2*pi/3;R(i)= I(i).*(1-S(i));G(i)=I(i).*(1+S(i).*cos(H(i))./cos(pi/3-H(i)));B(i)=3*I(i)-R(i)-G(i);%4*pi/3<=H<2*pii=find((H>=4*pi/3)&(H<=2*pi));H(i)=H(i)-4*pi/3;G(i)= I(i).*(1-S(i));B(i)=I(i).*(1+S(i).*cos(H(i))./cos(pi/3-H(i)));R(i)=3*I(i)-G(i)-B(i);RGB=cat(3,R,G,B);RGB=max(min(RGB,1),0);%RGB模型和HIS模型之间的转换及H、S、I分量显示代码如下:clear allRGB=imread('peppers.png');HSI=rgb2hsi(RGB);H=HSI(:,:,1);S=HSI (:,:,2);I=HSI (:,:,3);RGB2=hsi2rgb(HSI);subplot(2,3,1);imshow(RGB);title('原始RGB图像');subplot(2,3,2);imshow(H);title('H分量图像');subplot(2,3,3);imshow(S);title('S分量图像');subplot(2,3,4);imshow(I);title('I分量图像');subplot(2,3,5);imshow(I);title('HSI->RGB图像');例3、亮度分割法伪彩色图像处理clear allI1=imread('cameraman.tif');I2=imread('moon.tif');subplot(2,2,1);imshow(I1);title('灰度图像I1');subplot(2,2,2);imshow(I2);title('灰度图像I2');X1=grayslice(I1,16);subplot(2,2,3);imshow(X1,jet(16));title('伪彩色图像1'); X2=grayslice(I2,8);subplot(2,2,4);imshow(X2,hot(8));title('伪彩色图像2');例4、灰度级-彩色变换法clear allI=imread('moon.tif');subplot(1,2,1);imshow(I);title('灰度图像I');I=im2double(I);[W H]=size(I);R=zeros(W,H);G=zeros(W,H);B=zeros(W,H);L=1;for i=1:Wfor j=1:Hif ( I(i,j)>=L/2 & I(i,j)<=3*L/4)R(i,j)=4*(I(i,j)-L/2);elseif I(i,j)>3*L/4R(i,j)=1;endif I(i,j)<= L/4G(i,j)=4*I(i,j);elseif I(i,j)>=3*L/4G(i,j)= -4*(I(i,j)-L);elseG(i,j)=1;endif I(i,j)<= L/4B(i,j)=1;elseif I(i,j)>3*L/4 & I(i,j)<=L/2B(i,j)= -4*(I(i,j)-L/2);endendendRGB=cat(3,R,G,B);subplot(1,2,2);imshow(RGB);title('伪彩色图像');例5、彩色图像取反clear allRGB=imread('peppers.png');IRGB=255-RGB;subplot(1,2,1);imshow(RGB);title('原始图像I'); subplot(1,2,2);imshow(IRGB);title('取反图像');例6、彩色图像直方图均衡化clear allRGB=imread('peppers.png');R=RGB(:,:,1);G=RGB(:,:,2);B=RGB(:,:,3);R1=histeq(R);G1=histeq(G);B1=histeq(B);RGB1=cat(3,R1,G1,B1);HSV=rgb2hsv(RGB);V=HSV(:,:,3);V=histeq(V);HSV(:,:,3)=V;RGB2=hsv2rgb(HSV);subplot(1,2,1);imshow(RGB);title('RGB各分量均衡化'); subplot(1,2,2);imshow(RGB2);title('V分量均衡化');例7、图像饱和度调整clear allI=imread('peppers.png');HSV=rgb2hsv(I);S=HSV(:,:,2);S1=S*2;d=find(S1>1.0);S1(d)=1.0;S2=S*0.5;HSV(:,:,2)=S1;RGB1=hsv2rgb(HSV);HSV(:,:,2)=S2;RGB2= hsv2rgb(HSV);subplot(1,2,1);imshow(RGB1);title('饱和度乘上系数2'); subplot(1,2,2);imshow(RGB2);title('饱和度乘上系数0.5');。
实验五 彩色图像处理
实验五彩色图像处理一、实验目的使用MatLab 软件对图像进行彩色处理。
使学生通过实验熟悉使用MatLab软件进行图像彩色处理的有关方法,并体会到图像彩色处理技术以及对图像处理的效果。
二、实验要求要求学生能够完成彩色图像的分析,能正确讨论彩色图像的亮度、色调等性质;会对彩色图像进行直方图均衡,并能正确解释均衡处理后的结果;能够对单色图像进行伪彩色处理、利用多波长图像进行假彩色合成、进行单色图像的彩色变换。
三、实验内容与步骤(1) 彩色图像的分析调入并显示彩色图像flower1.tif ;拆分这幅图像,并分别显示其R,G,B分量;根据各个分量图像的情况讨论该彩色图像的亮度、色调等性质。
(2) 彩色图像的直方图均衡接内容(1);显示这幅图像的R,G,B分量的直方图,分别进行直方图均衡处理,并显示均衡后的直方图和直方图均衡处理后的各分量;将处理完毕的各个分量合成彩色图像并显示其结果;观察处理前后图像的彩色、亮度、色调等性质的变化。
(3) 假彩色处理调入并显示红色可见光的灰度图像vl_red.jpg、绿色可见光的灰度图像vl_green.jpg 和蓝色可见光的灰度图像vl_blue.jpg;以及近红外灰度图像infer_near.jpg和中红外灰度图像infer_mid.jpg;以图像vl_red.jpg为R;图像vl_green.jpg为G;图像vl_blue.jpg为B,将这三幅图像组合成可见光RGB彩色图像;分别以近红外图像infer_near.jpg和中红外图像infer_mid替换R分量,形成假彩色图像;观察处理的结果,注意不同波长红外线图像组成图像的不同结果(4) 伪彩色处理1:灰度切片处理调入并显示灰度图像head.jpg;利用MATLAB提供的函数对图像在8~256级的范围内进行切片处理,并使用hot模式和cool 模式进行彩色化;观察处理的结果。
(5) 彩色变换(选做)调入并显示灰度图像Lenna.jpg;使用不同相位的正弦函数作为变换函数,将灰度图像变换为RGB图像。
MATLAB彩色图像处理
色彩平衡是调整图像中颜色分量的过程,以改善图像的色彩表现。在Matlab中,可以 使用colorbalance函数进行色彩平衡。
03
图像滤波与变换
图像滤波
均值滤波
通过将像素邻域的平均 值赋给输出图像的相应 像素,减少图像中的噪
声。
中值滤波
将像素值替换为其邻域 的中值,对去除椒盐噪
声特别有效。
高斯滤波
使用高斯函数对图像进 行平滑处理,有助于减
少图像中的细节。
双边滤波
结合了像素的空间邻近 度和灰度值相似度,能
够保留边缘信息。
图像变换
傅里叶变换
小波变换
将图像从空间域转换到频率域,用于分析 图像的频率成分。
将图像分解成不同频率和方向的小波系数 ,用于图像压缩和特征提取。
离散余弦变换(DCT)
支持向量机(SVM)
基于统计学习理论的分类器,用于图像识别。
05
Matlab应用实例
图像平滑处理
01
02
03
均值滤波
通过将像素邻域的平均值 赋给输出图像的相应像素, 减少图像中的噪声。
高斯滤波
利用高斯函数的形状对图 像进行平滑,对图像的边 缘进行平滑处理,减少噪 声的影响。
中值滤波
将像素邻域的中值赋给输 出图像的相应像素,对去 除椒盐噪声特别有效。
图像锐化处理
拉普拉斯算子
利用拉普拉斯算子对图像 进行锐化,增强图像的边 缘和细节。
梯度算子
基于图像梯度的锐化方法, 能够突出显示图像中的边 缘和其他高频部分。
Sobel算子
通过计算像素邻域内像素 的加权差分,实现图像的 锐化。
图像边缘检测
Canny边缘检测
简要彩色图像印前处理的处理流程
下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!彩色图像印前处理是指在彩色图像印刷之前对图像进行一系列处理的过程,以确保最终印刷品的质量和准确性。
第六章 彩色图像处理 2
3.彩色分层
作用:突出图像中特殊的彩色区域、从其周围分离出目 标物。
基本思路是:(1)显示感兴趣的颜色以便从背景中把它们 分离出来;(2)像模板那样使用由彩色定义的区域,以便进一 步处理。 最直接的方法沿用灰度分层技术。然而,因为一个彩色 像素是一个n维参量,彩色变换函数比相对应的灰度变换函数 要复杂得多,事实上,所要求的变换比到目前为止考虑的彩 色分量变换也复杂得多。这是因为所有的彩色分层方法都要 求,每个像素变换后的彩色分量是所有n个原始像素彩色分量 的函数。 对一幅彩色图像分层的最简单的方法之一是,把某些感 兴趣区域以外的区域的彩色映射为不突出的自然色。
上图显示了一碗草莓和一个咖啡杯的高分辨率彩色图像。这是从大幅 (4“×5”)彩色负片数字化的图像。 图中的第二行包含原始的CMYK扫描分量图像。在这些图像的每一个 CMYK彩色分量中,白用1表示,黑用0表示。这样,我们看到草莓是由大 量的深红和黄色组成的,因为对应于这两种CMYK分量的图像最亮。黑色 较少并通常限于咖啡和草莓碗中的阴影。 当CMYK图像被转换为RGB时,如图中第三行所示,可以看到草莓包含 大量的红色和很少的绿色与蓝色。 最后一行显示了用式计算出的HSI分量图像。如期望的那样,强度分量 是全彩色原像的单色复现。另外,草莓在彩色方面相对较纯净。它们具有 最高的饱和度或图像中色调被白光稀释得最少。最后注意到说明色度分量 时的某些困难。问题包含这样一些事实:(1)在HSI模型中,0o和360o相遇 处有一个不连续点.(2)色调对于0饱和度没定义(对白、黑和纯灰)。模型 的不连续点多出现在草莓周围,它们用接近白(1)和黑(0)的灰度值描述。 其结果是不希望的高对比灰度级的混合去描述单颜色——红色。
彩色图像处理课件
白平衡
消除由于光照条件不同而 引起的色彩偏差,使得图 像的色彩更加真实自然。
色彩映射
通过建立输入图像和输出 图像之间的映射关系,实 现图像色彩的变换和调整。
色彩分离与合成
将彩色图像分离成不同的 颜色通道进行处理,然后 再合成彩色图像,以实现 色彩平衡的调整。
锐化与去噪
锐化滤波器
联合锐化与去噪
通过增强图像的高频分量来提高图像 的清晰度,使得图像的边缘和细节更 加突出。
混合压缩方法
JPEG压缩
结合有损和无损压缩技术,先通过色彩空间转换和量化进行有损压 缩,再利用预测编码和算术编码进行无损压缩。
渐进式JPEG
一种特殊的JPEG压缩方法,允许图像在下载时由模糊到清晰逐渐显 示。
有损至无损转换
首先应用有损压缩方法减少数据量,然后对压缩后的数据进行无损压 缩以确保数据的完整性。
01
02
03
直方图均衡化
通过拉伸像素强度分布来 增强图像对比度,使得图 像的亮度分布更加均匀。
对比度拉伸
通过线性或非线性的映射 函数,将原始图像的像素 值映射到更宽的范围,从 而增强图像的对比度。
自适应对比度增强
根据图像的局部特征动态 调整对比度增强算法,以 更好地突出图像的细节和 纹理。
色彩平衡调整
素划分为不同的区域。
适用范围
适用于目标和背景灰度差异较大 的图像。
基于边缘的分割
边缘检测
边缘连接
区域划分
利用边缘检测算子(如 Sobel、Canny等)提取
图像中的边缘信息。
将检测到的边缘点连接 起来,形成封闭的边界。
根据边界信息将图像划 分为不同的区域。
适用范围
适用于边缘明显且连续 的图像。
《彩色图像处理》课件
人脸识别
02
利用彩色图像处理技术,对人脸图像进行特征提取、比对和分
析,实现人脸识别和身份验证。
指纹识别
03
通过对指纹图像进行彩色图像处理,提取指纹特征,实现指纹
识别和身份验证。
彩色图像处理在广告设计领域的应用
色彩校正
通过对图像进行色彩校正,调整颜色、亮度和对 比度,以达到更好的视觉效果和品牌形象。
数字摄影和艺术创作
利用彩色图像处理技术对数字 摄影作品和艺术作品进行后期 处理和创作。
安全和监控
利用彩色图像处理技术对监控 视频进行分析,如人脸识别、
行为分析等。
彩色图像处理的基本流程
特征提取
从彩色图像中提取出感兴趣的 特征,如边缘、角点等。
增强和变换
对彩色图像的色彩、对比度等 进行增强和变换,以突出某些 特征或改善视觉效果。
图片美化
利用彩色图像处理技术,对图片进行美化处理, 如磨皮、美白、瘦脸等,提高图片质量和观感。
创意设计
通过彩色图像处理技术,实现创意设计和艺术效 果,如动态海报、数字绘画等。
THANKS
谢谢
视频捕捉
将纸质图像扫描成数字格式,转换为彩色图 像。
网络下载
从互联网上下载彩色图像资源。
彩色图像的预处理技术
01
02
03
04
灰度转换
将彩色图像转换为灰度图像, 减少颜色信息,突出图像的明
暗对比。
噪声消除
去除图像中的噪声和干扰,提 高图像的清晰度和质量。
尺寸调整
去雾处理
去除图像中的雾气和阴影,提高图像 的可见度和清晰度。
03
CHAPTER
彩色图像的分割与识别
彩色图像的分割算法
彩色图像处理综述
嚣 科创 论 】 § 技新坛 【
彩 色 图 像 处 理 综 述
谢斌盛 张 正 平
贵州 贵阳 50 2 ) 5 0 5 ( 贵卅l 大学 计算机 科学与信息工程 学院
摘
要: 介绍 彩色 图像处理 的研 究背 景,对 目前所提 出 的主要颜 色空 间进 行 归类分 析 ,并对各种 颜色 空间 的转换关 系进 行论述 。并且 介绍 了基于彩 色图像 的增
类是 将彩 色 图像经 过色 调空 间转 换 ,将 密 切相 关 的分量 (G ) 的空间 转变 RB
到 基本 不 相关 的 色调 空 间, 保持 色相 不 变从 而 保证 了没有 颜色 的 偏移 , 而对 亮 度作 相应 的处 理: 另 一类算 法 从人 眼 对物 体 颜色 的感 知 特性 触 发 ,将色 彩 横 常性 应用 于彩 色图像 的 强 。
强 ,彩色 图像 的滤波 ,彩 色图像 的分 割和彩色 图像 的压缩的些处 理算法。
关键词 : 彩色 图像 处理;彩色 图像分割 彩 色图像压缩 ;彩 色图像增 强;彩 色图像滤波 中图分类号 :T 3 1 4 文献标 识码:A 文章编号 :17 - 7 9 2 1 )1 1 1 8 1 P9 1 5 7( 0 0 2 0 6 —0 6
0引言
更好 的 去处 彩色 图像分 量 间 的冗 余 ,提高 压 缩 比,而 且在 Y 子阵 技术 中提 出 c 了Y 三 维 子 阵 和C 三 维 子 阵 的概 念 ;量 化 方 法 采 用 了线 性 非 均匀 标 量 薰 类 类 化 ,并 定义 了 一种 新 的运 算方 法— —量 化 除 法 。此方 法在 压 缩整 体效 果方 面
已经 优于 ] E 方法 。 PG
随着 信息 技术 的 发展 ,彩 色 图像 的处 理 已经成 为一 个 重要 的研 究领 域 , 本 文 在 总结 了彩 色 图像 的基 本 理 论的基 础 上 ,还 介绍 了彩色 图像 中的 图像 增 强 ,滤 波 ,压缩 , 分割 等处 理 算法 ,由于 彩色 图像 的的 研究 范 围非 常广 泛 , 因此 ,本文 对其 中几 个范 畴给 予综 述性 的介 绍 。 1彩色 图像 增强 图像增 强 时指 针对 特 定 的需要 采用 特 定方 法突 出 图像 中的 某些 信息 , 同 时削弱 或 取 出无 关信 息 的 图像处 理 方法 。常见 的彩 色 图像 增 强算 法有 两类 :
实验七彩色图像处理
实验7 MATLAB实现彩色图像处理【实验内容】1、任选一幅彩色图像(RGB)(1)彩色图像的分析调入并显示彩色图像;拆分这幅图像,并分别显示其R,G,B分量;将该图像转换成HSV图像,根据各个分量图像的情况讨论该彩色图像的亮度、色调等性质。
RGB=imread('autumn.tif');R=RGB(:,:,1);G=RGB(:,:,2);B=RGB(:,:,3);hsv=rgb2hsv(RGB);(2) 彩色图像的直方图均衡显示这幅图像的R,G,B分量的直方图,分别进行直方图均衡处理,并显示均衡后的直方图和直方图均衡处理后的各分量;将处理完毕的各个分量合成彩色图像并显示其结果;将该图像转换成HSV图像,观察处理前后图像的彩色、亮度、色调等性质的变化。
RGB=imread('autumn.tif');hsv=rgb2hsv(RGB);R=RGB(:,:,1);subplot(231),imhist(R),title('原始R分量直方图');G=RGB(:,:,2);subplot(232),imhist(G),title('原始G分量直方图');B=RGB(:,:,3);subplot(233),imhist(B),title('原始B分量直方图');R1=histeq(R);subplot(234),imhist(R1),title('均衡化R分量直方图'); G1=histeq(G);subplot(235),imhist(G1),title('均衡化G分量直方图'); B1=histeq(B);subplot(236),imhist(B1),title('均衡化B分量直方图'); RGB1=cat(3,R1,G1,B1);hsv1=rgb2hsv(RGB1);figuresubplot(221),imshow(RGB),title('原始图像');subplot(222),imshow(hsv),title('原始HSV图像');subplot(223),imshow(RGB1),title('均衡化后图像');subplot(224),imshow(hsv1),title('均衡化后hsv图像');(3)、彩色图像在HIS模型下的增强将一幅RGB彩色图像转换为HIS空间。
第二十一章 彩色和多光谱图像处理
视觉彩色模型
在上面讨论的几种颜色模型中,RGB、CMYK、YIQ是为便于研究用硬件显示 彩色的方法提出来的;XYZ、UCS是为便于色度学的理论研究而提出来的,它们都 不能很好地与人眼的视觉特性相匹配。 从视觉的角度来讲,颜色可分为彩色和非彩色两大类。非彩色是指黑色、白 色及其两者之间深浅不同的灰色,称为非彩色或无色系列(achromatic series)。彩 色系列或有色系列(chromatic series)是指除了白色系列以外的各种颜色.为了定量 地描述颜色对人眼的视觉作用,可以选用亮度( brightness)、色调(hue)、饱和度 (saturation)这三个与视觉特征有关的量来计算描述,这三个量称为颜色的三个基 本属性. 色调是指光的颜色,不同波长的光呈现不同的颜色,具有不同的色调。发光 物体的色调取决于它产生的辐射光谱的分布特征;不发光物体的色调则由它的吸 收、反射、透射和照明光源的特性所共同决定。饱和度指颜色的深浅或浓淡程 度。饱和度的深浅与颜色中加入白色的比例有关。一种纯颜色中加入的白色成分 越多,则其饱和度越低,因而饱和度反映了某种颜色被白色冲淡的程度。白色成 分为0,则饱和度为100%;只有白色,则饱和度为0。亮度就是人眼感觉到的光 的明暗程度。光波的能量越大,亮度就越大。颜色的色调和饱和度说明了颜色的 深浅,合称为色度。
0.114 R Y 0.299 0.587 I = 0.596 0.274 0.322 G Q 0.211 0.523 0.312 B
工业彩色模型
由于计算机显示器和许多电子显示设备采用的CRT直接使用R、G、 B三色电子枪在荧光屏上显示颜色,为了便于处理,大多数图像格式都 采用RGB模型来表示像素的颜色。 RGB彩色模型的优点是:(1)简单;(2)其它表色系统必须最后转化成 RGB系统才能在彩色显示器上显示。 RGB系统的缺点:(1)RGB空间用红、绿、蓝三原色的混合比例 定义不同的色彩,使不同的色彩难以用准确的数值来表示,并进行定量分 析;(2)在RGB系统中,由于彩色合成图像通道之间相关性很高,使合成图 像的饱和度偏低,色调变化不大,图像视觉效果差;(3)人眼不能直接感觉 红、绿、蓝三色的比例, 而只能通过感知颜色的亮度、色调以及饱和度 来区分物体,而色调和饱和度与红、绿、蓝的关系是非线性的,因此,在R GB空间中对图像进行增强处理结果难以控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
彩色图像处理彩色基础什么是彩色彩色是物体的一种属性,就像纹理、形状、重量一样.通常,它依赖于3个方面的因素:光源一一照射光的谱性质或谱能量分布.物体-一被照射物体的反射性质.成像接收器(眼睛或成像传感器)一一光谱能量吸收性质其中,光特性是颜色科学的核心。
假如光没有颜色(捎色的,如观察者看到的黑白电视的光),那么它的属性仅仅是亮度或者数值。
可以用灰度值来描述亮度,光的范围从黑到灰.最后到白。
而对于彩色光,我们通常用3个基本量来描述其光源的质量:辐射率、光强和亮度。
(1)辐射率是从光源流出能量的总量,通常用瓦特(W)度量;(2)光强用流明度量,它给出了观察者从光源接收的能量总和的度量:(3)亮度是彩色强度概念的具体化。
它实际上是一个难以度量的主关描绘子.同样作为能量的度盘,辐射率与光强却往往没有必然的联系.例如,在进行X光检查时,光从X射线源中发出,它是具有实际意义上的能量的。
但由于其处于可见光范围以外,观察者很难感觉到。
因此对我们来说,它的光强几乎为o.我们眼中的彩色人类能够感受到的物体的颜色是由物体反射光的性质决定的,.如图7.2所示,可见光是由电磁波谱中较窄的液段组成。
如果物体反射的光在所有可见光披长范围内是平衡的,则站在观察者的角度它就是白色的:如果物体仅对有限的可见光谱范围反射,则物体表现为某种特定颜色。
例如,反射披长范围在450~500nm 之间的物体呈现蓝色,它吸收了其他被长光的多数能量:而如果物体吸收了所有的入射光,则将呈现为黑色。
三原色据详细的实验结果可知,人眼中负责彩色感知的细胞中约有65%对红光敏感,33%对绿光敏感,而只有2%对蓝光敏感。
正是人眼的这些极收特性决定了被看到的彩色是通常所谓的原色红(R )、绿(G )、蓝(B)的各种组合。
国际照明委员会(CIE )规定以蓝=435.8nm、绿=546.lnm、红=700nm 作为主原色,红CR )、绿(G )、蓝( B )也因此被称为3 原色。
在图7.3所示的CIE色度图中,最外围的轮廓对应所有的可见光谱色,在其边缘上标出了对应的波长值(以m为单位〉,该轮廓之内的区域包含了所有的可见颜色.如果将色度圈中的三色点两两连接成一个三角形,则该三角形内的任何颜色都可以自这3种原色的不同混合产生。
我们看到,图7.3中由R、G、B三种标准原色所连成的三角形并不能涵盖整个可见颜色区域,这说明仅使用三原色并不能得到所有的可见颜色。
事实上,图7.3中的三角形区域对应着典型的RGB监视器所能够产生的颜色范围,称为彩色全域:而在三角形内不规则的区域表示高质量的彩色打印设备的彩色域.计算机中的颜色表示在计算机中,显示器的任何颜色〈色彩全域〉都可以自红、绿、蓝3种颜色组成,称为三基色.每种基色的取值范围是0~255.任何颜色都可以用这3种颜色按不同的比例混合而成,这就是三原色原理.在计算机中,三原色的原理可以这样解释:计算机中的任何颜色都可以由3种颜色按不同比例混合而成;而每种颜色也都可以分解成三种基本颜色.三原色之间相互独立,任何一种颜色都不能由其余两种颜色组成.混合色的饱和度由3种颜色的比例来决定混合色的亮度为3种颜色的亮度之和.彩色模型彩色模型也称彩色空间或彩色系统,是用来精确标定和生成各种颜色的一套规则和定义,它的用途是在某些标准下用通常可接受的方式简化彩色规范.彩色模型通常可以采用坐标系统来描述,而位于系统中的每种颜色都由坐标空间中的单个点来表示。
如今使用的大部分彩色模型都是面向应用或是面向硬件,比如众所周知的针对彩色电视器的RGB(红、绿、蓝〉模型,以及面向彩色打印机的CMY(青、深红、黄〉和CMYK(青、深红、黄、黑〉模型。
而HSI(色调、饱和度、亮度〉模型非常符合人眼描述和解释颜色的方式。
此外,目前广泛使用的彩色模型还有如:HSV模型、YUV 模型、YIQ模型、Lab模型等。
下面将分别介绍这些彩色模型并给出它们与最为常用的RGB模型之间的转换方式。
RGB模型RGB模型是工业界的一种颜色标准.是通过对红(Red)、绿(Green)、蓝(Blue)3种颜色亮度的变化以及它们相互之间的叠加来得到各种各样的颜色的。
该标准儿乎包括了人类视觉所能感知的所有颜色,是目前运用最广的颜色模型之一。
理论基础RGB彩色空间对应的坐标系统是如图7.4所示的立方体.红、绿和蓝位手立方体的3个顶点上:青、深红和黄位于另外3个顶点上:黑色在原点处,而白色位于距离原点最远的顶点处,灰度等级就沿这两点连线分布:不同的颜色处于立方体外部和内部,因此可以用一个3维向量来表示。
例如,在所有颜色均己归一化到(O, 1)的情况下,蓝色可表示为(O, 0, 1),而灰色可由向量(0.5, 0.5, 0.5)来表示。
在RGB模型中,3个图像分量组成了所要表示的图像,而每一个分量图像都是其原色图像,如图7.5所示。
当送入RGB监视器时,这3个分量图像便在屏上混合产生一幅合成彩色图像:在RGB空间中,用以表示每一像素的比特数叫做像素深度。
RGB图像的3个红、绿、蓝分量图像都是一幅8比特图像,每一个彩色像素有24比特深度。
因此,全彩色图像常用来定义24比特的彩色图像,颜色总数是(28)3=16777216matlab实现CMY、CMYK模型CMY模型(Cyan、Magenta、Yellow)是采用青、品红、黄色3种基本原色按一定比例合成颜色的方法。
由于色彩的显示不是直接来自于光线的色彩,而是由光线被物体吸收掉一部分之后反射回来的剩余光线产生,因此CMY模型又称为减色法混色模型。
当光线都被吸收时成为黑色,都被反射时成为白色.像CMY 模型这样的减色混合模型正好适用于彩色打印机和复印机这类需要在纸上沉积彩色颜料的设备,因为颜料不是像显示器那样发出颜色,而是反射颜色。
例如,当青色颜料涂覆的表面用。
白光照射时,从该表面反射的不是红光,而是从反射的白光中减去红色得到的青色(白光本身是等量的红、绿、蓝光的组合). CMY模型的颜料混合效果如图7.6所示,注意这里的混合是原色的相减,与RGB模型的混合正好相反。
CMYK模型由图7.6可见,等量的颜料原色(青、品红和黄)可以混合产生黑色。
然而在实际运用中,通过这些颜色混合产生的黑色是不纯的。
因此,为产生真正的黑色〈黑色在打印中起主要作用〉,专门在CMY模型中加入了第4种颜色一一黑色,从而得到CMYK影色模型.这样当出版商说到“四色打印”时,即指CMY彩色模型的3种原色再加上黑色。
HSI模型HSI模型是从人的视觉系统出发,直接使用颜色三要素色调(Hue)、饱和度(Saturation) 和亮度(intensity,有时也翻译作密度或灰度〉来描述颜色.亮度是指人眼感觉光的明暗程度.光的能量越大,亮度越大.色调是彩色最重要的属性,决定颜色的本质,由物体反射光线中占优势的波长来决定.不同的波长产生不同的颜色感觉,我们叫来一种颜色为红、橙、黄,这就是说我们在规定一种色调.饱和度是指颜色的深浅和浓淡程度,饱和度越高,颜色越深.饱和度的深浅和白色的比例有关,白色所占比例越高,饱和度越低.HSI彩色空间可以用一个圆锥空间模型来描述,如图7.8所示。
我们通常把色调和饱和度统称为色度,用来表示颜色的类别与深浅程度。
在图中四锥中间的横截面圆就是色度圆,而圆锥向上或向下延伸的便是亮度分量的表示.由于人的视觉对亮度的敏感程度远强于对颜色浓淡的敏感程度,为了便于颜色处理和识别,人的视觉系统经常采用HSI彩色空间,它比RGB彩色空间更符合人的视觉特性。
此外,由于HSl空间中亮度和色度具有可分离特性,使得图像处理和机器视觉中大量灰度处理算法都可在HSI彩色空间中方便地使用。
HSI彩色空间和RGB 彩色空间只是同一物理量的不同表示法,它们之间存在着转换关系.下面将介绍RGB到到HSI的彩色转换和HSI到RGB的彩色转换从RGB到HSI的彩色转换及其实现给定一幅RGB格式的图像,每一个RGB像素和H分量可用下面的公式得到:matlab实现function hsi = rgb2hsi(rgb)% hsi = rgb2hsi(rgb)把一幅RGB图像转换为HSI图像,% 输入图像是一个彩色像素的M×N×3的数组,% 其中每一个彩色像素都在特定空间位置的彩色图像中对应红、绿、蓝三个分量。
% 假如所有的RGB分量是均衡的,那么HSI转换就是未定义的。
% 输入图像可能是double(取值范围是[0, 1]),uint8或uint16。
%% 输出HSI图像是double,% 其中hsi(:, :, 1)是色度分量,它的范围是除以2*pi后的[0, 1];% hsi(:, :, 2)是饱和度分量,范围是[0, 1];% hsi(:, :, 3)是亮度分量,范围是[0, 1]。
% 抽取图像分量rgb = im2double(rgb);r = rgb(:, :, 1);g = rgb(:, :, 2);b = rgb(:, :, 3);% 执行转换方程num = 0.5*((r - g) + (r - b));den = sqrt((r - g).^2 + (r - b).*(g - b));theta = acos(num./(den + eps)); %防止除数为0H = theta;H(b > g) = 2*pi - H(b > g);H = H/(2*pi);num = min(min(r, g), b);den = r + g + b;den(den == 0) = eps; %防止除数为0S = 1 - 3.* num./den;H(S == 0) = 0;I = (r + g + b)/3;% 将3个分量联合成为一个HSI图像hsi = cat(3, H, S, I);从HSI到RGB的彩色转换及其实现在[O, 1]内给出HSI值,现在要在相同的值域找到RGB值,可利用H值公式。
在原始色分割中有3个相隔120·的扇形,如图7.10所示。
从H乘以360"开始,这时色调值返回原来的[0,360]的范围.matlab实现function rgb = hsi2rgb(hsi)% rgb = hsi2rgb(hsi)把一幅HSI图像转换为RGB图像,% 其中hsi(:, :, 1)是色度分量,它的范围是除以2*pi后的[0, 1];% hsi(:, :, 2)是饱和度分量,范围是[0, 1];% hsi(:, :, 3)是亮度分量,范围是[0, 1]。
%% 输出图像分量:% rgb(:, :, 1)为红;% rgb(:, :, 2)为绿;% rgb(:, :, 3)为蓝。
% 抽取图像分量hsi = im2double(hsi);H = hsi(:, :, 1) * 2 * pi;S = hsi(:, :, 2);I = hsi(:, :, 3);% 执行转换方程R = zeros(size(hsi, 1), size(hsi, 2));G = zeros(size(hsi, 1), size(hsi, 2));B = zeros(size(hsi, 1), size(hsi, 2));% RG扇形(0 <= H < 2*pi/3)idx = find( (0 <= H) & (H < 2*pi/3));B(idx) = I(idx) .* (1 - S(idx));R(idx) = I(idx) .* (1 + S(idx) .* cos(H(idx)) ./ ...cos(pi/3 - H(idx)));G(idx) = 3*I(idx) - (R(idx) + B(idx));% BG扇形(2*pi/3 <= H < 4*pi/3)idx = find( (2*pi/3 <= H) & (H < 4*pi/3) );R(idx) = I(idx) .* (1 - S(idx));G(idx) = I(idx) .* (1 + S(idx) .* cos(H(idx) - 2*pi/3) ./ ...cos(pi - H(idx)));B(idx) = 3*I(idx) - (R(idx) + G(idx));% BR扇形idx = find( (4*pi/3 <= H) & (H <= 2*pi));G(idx) = I(idx) .* (1 - S(idx));B(idx) = I(idx) .* (1 + S(idx) .* cos(H(idx) - 4*pi/3) ./ ...cos(5*pi/3 - H(idx)));R(idx) = 3*I(idx) - (G(idx) + B(idx));% 将3个分量联合成为一个RGB图像rgb = cat(3, R, G, B);rgb = max(min(rgb, 1), 0);全彩色图像处理基础本节主要介绍全彩色图像处理技术,以及面对不同的图像处理任务怎样处理全彩色图像.通常,全彩色图像处理技术总的可以分为以下两大类。