27讲:与圆有关的计算

合集下载

圆的相关证明与计算(复习讲义)(原卷版)-中考数学重难点题型专题汇总

圆的相关证明与计算(复习讲义)(原卷版)-中考数学重难点题型专题汇总

题型五--圆的相关证明与计算(复习讲义)【考点总结|典例分析】考点01圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.考点02垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.考点03圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.考点04圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.考点05与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r ⇔点在⊙O 外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r考点06切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.考点07三角形与圆1.三角形外接圆外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.1.如图,点,,,,A B C D E 在O 上,,42AB CD AOB =∠=︒,则CED ∠=()A.48︒B.24︒C.22︒D.21︒2.如图,A,B,C 是半径为1的⊙O 上的三个点,若,∠CAB=30°,则∠ABC 的度数为()A.95°B.100°C.105°D.110°3.如图,AB 是⊙O 的直径,AC,BC 是⊙O 的弦,若20A ∠=︒,则B Ð的度数为()A.70°B.90°C.40°D.60°4.如图,Rt ABC 中,90ACB ∠=︒,AC =3BC =.点P 为ABC ∆内一点,且满足22PA PC +2AC =.当PB 的长度最小时,ACP ∆的面积是()A.3B.C.4D.25.如图,已知在⊙O 中, AB BCCD ==,OC 与AD 相交于点E.求证:(1)AD∥BC(2)四边形BCDE 为菱形.6.如图,A,B 是O 上两点,且AB OA =,连接OB 并延长到点C,使BC OB =,连接AC.(1)求证:AC 是O 的切线.(2)点D,E 分别是AC,OA 的中点,DE 所在直线交O 于点F,G,4OA =,求GF 的长.7.如图,Rt ABC 中,90ABC ∠=︒,以点C 为圆心,CB 为半径作C ,D 为C 上一点,连接AD 、CD ,AB AD =,AC 平分BAD ∠.(1)求证:AD 是C 的切线;(2)延长AD 、BC 相交于点E,若2EDC ABC S S = ,求tan BAC ∠的值.8.如图,在O 中,AB 是直径,弦CD AB ⊥,垂足为H ,E 为 BC上一点,F 为弦DC 延长线上一点,连接FE 并延长交直径AB 的延长线于点G ,连接AE 交CD 于点P ,若FE FP =.(1)求证:FE 是O 的切线;(2)若O 的半径为8,3sin 5F =,求BG 的长.9.如图,ABC 是O 的内接三角形,AC 是O 的直径,点D 是 BC的中点,//DE BC 交AC 的延长线于点E .(1)求证:直线DE 与O 相切;(2)若O 的直径是10,45A ∠=︒,求CE 的长.10.如图,已知点C 是以AB 为直径的圆上一点,D 是AB 延长线上一点,过点D 作BD 的垂线交AC 的延长线于点E ,连结CD ,且CD ED =.(1)求证:CD 是O 的切线;(2)若tan 2DCE ∠=,1BD =,求O 的半径.11.如图,AB 是⊙O 的直径,C 为⊙O 上一点,连接AC,CE⊥AB 于点E,D 是直径AB 延长线上一点,且∠BCE=∠BCD.(1)求证:CD 是⊙O 的切线;(2)若AD=8,BE CE=12,求CD的长.12.如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.13.如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO并延长,与⊙O 交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.=CD =DB ,连接AD,过点D作14.如图,AB为⊙O的直径,C、D为⊙O上的两个点,ACDE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6,求AD的长.15.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.16.如图,AB为⊙O的直径,C为⊙O上一点,AD与过C点的直线互相垂直,垂足为D,AC 平分∠DAB.(1)求证:DC为⊙O的切线.(2)若AD=3,DC=3,求⊙O的半径.17.如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若⊙O的半径为5,BC=16,求DE的长.。

2014中考数学复习课件23与圆有关的计算-第一轮复习第六单元圆

2014中考数学复习课件23与圆有关的计算-第一轮复习第六单元圆

例 12(2013· 乐山)如图, 小方格都是边长为 1 的正方 形, 则以格点为圆心, 半径为 1 和 2 的两种弧围成的“叶 状”阴影图案的面积为 2π-4 .
解析:如图,连接 AB,根据轴对称与旋转对称的 性质,从图中可知,S
2
阴影
= 2(S
扇形
AOB - S△AOB) =
90π×2 1 2×( - ×2×2)=2π-4. 360 2
例 8.(2013· 德州)如图,扇形 AOB 的半径为 1, ∠AOB=90° ,以 AB 为直径画半圆,则图中的阴影部 分的面积为( C )
1 A. π 4
1 B.π- 2
1 C. 2
1 1 D. π+ 4 2
解析:因为扇形 AOB 的半径为 1,∠AOB=90° , 1 所以 AB= 2,△AOB 的面积为 ,扇形 AOB 的面积为 2 90×π×1 π π 1 = , 所以弓形的面积为 - .又因为半圆的面 360 4 4 2 1 22 π π π 1 积为 π×( ) = ,所以阴影部分的面积为 - ( - ) 2 2 4 4 4 2 1 = .故选 C. 2
例 5 如图, 在 Rt△ ABC 中, ∠C=90° , ∠A=30° , AB=2.将△ ABC 绕顶点 A 顺时针方向旋转至△ AB′C′ 的位置,B,A,C′三点共线,则线段 BC 扫过的区域 5 面积为 π . 12
3 解析:在 Rt△ABC 中,AC=AB· cos 30° =2× = 2 3.∠BAB′ = ∠CAC′ = 150° . 把 △AB′C′ 按逆时针旋转 到△ABC 的位置, 则阴影部分恰好为一个完整的扇环, 150π× 22 150π× 32 所以 S 阴影=S 扇形 BAB′-S 扇形 CAC′= - = 360 360 5 π. 12

2015届湘教版中考数学复习课件(第27课时_与圆有关的计算)

2015届湘教版中考数学复习课件(第27课时_与圆有关的计算)
命题角度: 1.已知圆心角和半径求弧长; 2.利用转化思想求弧长.
例1 [2013· 扬州] 如图27-1,在扇形 OAB中,∠AOB=110°,半径OA=18, 将扇形OAB沿过点B的直线折叠,点O恰 ︵ 好落在 AB 上的点D处,折痕交OA于点C, ︵ 5π . 则AD的长为_______
考点聚焦 归类探究 回归教材
考点聚焦 归类探究 回归教材
第27课时┃ 与圆有关的计算
考点2 扇形的面积公式
nπ r2 (1)S扇形= (n°是圆心角度数,r是扇形的半径). 360 扇形 面积 (2)S扇形=1lr(l是扇形的弧长,r是扇形的半径) 2 弓形 面积 S弓形=S扇形±S△
考点聚焦
归类探究
回归教材
第27课时┃ 与圆有关的计算
命题角度: 1. 已知扇形的半径和圆心角,求扇形的面积; 2. 已知扇形的弧长和半径,求扇形的面积.
例2 [2012· 岳阳] 如图27-2所示,在⊙O ︵ ︵ 中, AD = AC ,弦AB与弦AC交于点A,弦CD 与弦AB交于点F,连接BC. (1)求证:AC2=AB· AF; (2)若⊙O的半径长为2 cm,∠B=60°, 求图中阴影部分的面积.
第27课时┃ 与圆有关的计算
解 析
如图,连接OD.
根据折叠的性质知,OB=DB. 又∵OD=OB, ∴OD=OB=DB,即△ODB是等边三角形, ∴∠DOB=60°. ∵∠AOB=110°, ∴∠AOD=∠AOB-∠DOB=50°, ︵ 50³π ³18 ∴AD的长为 =5π . 180
考点聚焦 归类探究 回归教材
考点3
正多边形和圆
正多边形和圆的关系非常密切,将一个圆n(n≥3) 等分,依次连接各等分点所得的多边形叫作这个圆的 内接正多边形,这个圆是这个正多边形的外接圆.正

中考总复习:正多边形与圆的有关的证明和计算--知识讲解(基础)

中考总复习:正多边形与圆的有关的证明和计算--知识讲解(基础)

中考总复习:正多边形与圆的有关的证明和计算—知识讲解(基础)【知识网络】【考点梳理】考点一、正多边形和圆1、正多边形的有关概念:(1) 正多边形:各边相等,各角也相等的多边形叫做正多边形.(2)正多边形的中心——正多边形的外接圆的圆心.(3)正多边形的半径——正多边形的外接圆的半径.(4)正多边形的边心距——正多边形中心到正多边形各边的距离.(正多边形内切圆的半径)(5)正多边形的中心角——正多边形每一边所对的外接圆的圆心角.2、正多边形与圆的关系:(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形.(2)这个圆是这个正多边形的外接圆.(3)把圆分成n(n≥3)等分,经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.这个圆叫做正n边形的内切圆.(4)任何正n边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3、正多边形性质:(1)任何正多边形都有一个外接圆.(2) 正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心.当边数是偶数时,它又是中心对称图形,它的中心就是对称中心.(3)边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.(4)任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.要点诠释:(1)正n边形的有n个相等的外角,而正n边形的外角和为360度,所以正n边形每个外角的度数是360n;所以正n边形的中心角等于它的外角.(2)边数相同的正多边形相似.周长的比等于它们边长(或半径、边心距)的比.面积比等于它们边长(或半径、边心距)平方的比.考点二、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、正多边形有关计算1.图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.【思路点拨】(1)作AE的垂直平分线交⊙O于C,G,作∠AOG,∠EOG的角平分线,分别交⊙O于H,F,反向延长 FO,HO,分别交⊙O于D,B顺次连接A,B,C,D,E,F,G,H,八边形ABCDEFGH即为所求;(2)由八边形ABCDEFGH是正八边形,求得∠AOD=3=135°得到的长=,设这个圆锥底面圆的半径为R,根据圆的周长的公式即可求得结论.【答案与解析】(1)如图所示,八边形ABCDEFGH即为所求,(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3=135°,∵OA=5,∴的长=,设这个圆锥底面圆的半径为R,∴2πR=,∴R=,即这个圆锥底面圆的半径为.故答案为:.【总结升华】本题考查了尺规作图,圆内接八边形的性质,弧长的计算,圆的周长公式的应用,会求八边形的内角的度数是解题的关键.举一反三:【变式1】如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是______米.【答案】31 .解析:如图,以三个圆心为顶点等边三角形O1O2O3的高O1C=3,所以AB=AO1+O1C+BC=131312222++=+.【变式2】同一个圆的内接正三角形、正方形、正六边形的边长的比是__________.【答案】321::【变式3】一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为2,则扇形纸板和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:【答案】A.【解析】解:如图1,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=2,∵∠AOB=45°,∴OB=AB=2,由勾股定理得:OD==2,∴扇形的面积是=π;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=2,∴MC=MB=,∴⊙M的面积是π×()2=2π,∴扇形和圆形纸板的面积比是π÷(2π)=.故选:A.类型二、正多边形与圆有关面积的计算2.(1)如图(a),扇形OAB的圆心角为90°,分别以OA,OB为直径在扇形内作半圆,P和Q 分别表示阴影部分的面积,那么P和Q的大小关系是( ).A.P=Q B.P>Q C.P<Q D.无法确定(2)如图(b),△ABC为等腰直角三角形,AC=3,以BC为直径的半圆与斜边AB交于点D,则图中阴影部分的面积是________.(3)如图(c),△AOB中,OA=3cm,OB=1cm,将△AOB绕点O逆时针旋转90°到△A′OB′,求AB 扫过的区域(图中阴影部分)的面积.(结果保留π)【思路点拨】 直接使用公式计算阴影部分面积比较困难时,可采用和差法、转化法、方程法等,有时也需要运用变换的观点来解决问题.【答案与解析】解:(1)阴影部分的面积直接求出十分困难,可利用几个图形面积的和差进行计算:2OAB OCA P S S Q =-+扇形半圆2211()42R R Q Q ππ=-+=; (2)(转化法“凑整”)利用BmD CnD S S =弓形弓形,则阴影部分的面积可转化为△ACD 的面积,等于△ABC面积的一半,答案为94; (3)(旋转法)将图形ABM 绕点O 逆时针旋转到A ′B ′M ′位置,则A OA MOM S S S ''=-阴影扇形扇形2211244OA OM πππ=-=. 【总结升华】求阴影面积的几种常用方 (1)公式法;(2)割补法;(3)旋转法;(4)拼凑法;(5)等积变形法;(6)构造方程法.举一反三:【变式】如图,在△ABC 中,AB =AC ,AB =8,BC =12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是( )A .64π127-B .16π32-C .16π247-D .16π127-【答案】解:如图,由AB ,AC 为直径可得AD ⊥BC ,则BD =DC =6.在Rt △ABD 中,228627AD =-=∴ 211246271612722S ππ⎛⎫=⨯⨯⨯-⨯⨯=-⎪⎝⎭阴影. 答案选D. 3.如图所示,A 是半径为2的⊙O 外一点,OA =4,AB 是⊙O 的切线,B 为切点,弦BC ∥OA ,连AC ,求阴影部分的面积.【思路点拨】图中的阴影是不规则图形,不易直接求出,如果连接OB 、OC ,由BC ∥OA ,根据同底等高的三角形面积相等,于是所求阴影可化为扇形OBC 去求解.【答案与解析】解:如图所示,连OB 、OC∵ BC ∥OA .∴ △OBC 和△ABC 同底等高,∴ S △ABC =S △OBC ,∵ AB 为⊙O 的切线,∴ OB ⊥AB .∵ OA =4,OB =2,∴ ∠AOB =60°.∵ BC ∥OA , ∴ ∠AOB =∠OBC =60°.∵ OB =OC ,∴ △OBC 为正三角形.∴ ∠COB =60°,∴ 260223603OBC S S ππ⨯===阴影扇形.【总结升华】通过等积替换化不规则图形为规则图形,在等积转化中①可根据平移、旋转或轴对称等图形变换;②可根据同底(等底)同高(等高)的三角形面积相等进行转化.举一反三:【变式】如图所示,半圆的直径AB =10,P 为AB 上一点,点C ,D 为半圆的三等分点,则阴影部分的面积等于________.【答案】解:连接OC 、OD 、CD . ∵ C 、D 为半圆的三等分点,∴ ∠AOC =∠COD =∠DOB =180603=°°. 又∵ OC =OD ,∴ ∠OCD =∠ODC =60°,∴ DC ∥AB ,∴ PCD OCD S S =△△,∴ 2605253606S S ππ===阴影扇形OCD .4.如图,在边长为4的正方形ABCD 中,以AB 为直径的半圆与对角线AC 交于点E .(1)求弧BE 所对的圆心角的度数.(2)求图中阴影部分的面积(结果保留π).【思路点拨】(1)连接OE,由条件可求得∠EAB=45°,利用圆周角定理可知弧BE所对的圆心角∠EOB=2∠EAB=90°;(2)利用条件可求得扇形AOE的面积,进一步求得弓形的面积,利用Rt△ADC的面积减去弓的面积可求得阴影部分的面积.【答案与解析】解:(1)连接OE,∵四边形ABCD为正方形,∴∠EAB=45°,∴∠EOB=2∠EAB=90°;(2)由(1)∠EOB=90°,且AB=4,则OA=2,∴S扇形AOE==π,S△AOE=OA2=2,∴S弓形=S扇形AOE﹣S△AOE=π﹣2,又∵S△ACD=AD•CD=×4×4=8,∴S阴影=8﹣(π﹣2)=10﹣π.【总结升华】本题主要考查扇形面积的计算和正方形的性质,掌握扇形的面积公式是解题的关键,注意弓形面积的计算方法.5.将一块三角板和半圆形量角器按图中方式叠放,重叠部分(阴影)的量角器圆弧(AB)对应的中心角(∠AOB)为120°,AO的长为4cm,求图中阴影部分的面积.【思路点拨】看是否由“规则的”三角形、四边形、圆、扇形、弓形等可求面积的图形,经过怎样的拼凑、割补、叠合而成,这是解决这类题的关键.【答案与解析】阴影部分的面积可看成是由一个扇形AOB 和一个Rt △BOC 组成,其中扇形AOB 的中心角是120°,AO 的长为4,Rt △BOC 中,OB =OA =4,∠BOC =60°,∴ 可求得BC 长和OC 长,从而可求得面积,阴影部分面积=扇形AOB 面积+△BOC 面积=21623cm 3π⎛⎫+ ⎪⎝⎭. 【总结升华】本题是求简单组合图形的面积问题,解答时,常常是寻找这些“不规则的图形”是由哪些“可求面积的、规则的图形”组合而成.举一反三:【变式】如图,矩形ABCD 中,AB =1,2AD =.以AD 的长为半径的⊙A 交BC 于点E ,则图中阴影部分的面积为________.【答案】1224π--. 解析:连接AE ,易证AB =BE =1,∠BAE =45°,所以∠EAD =45°, 所以21112(2)22824ABE ABCD DAE S S S S ππ=--=--=--△阴影矩形扇形.6.如图,AB是⊙O的直径,点P是AB延长线上一点,PC切⊙O于点C,连接AC,过点O作AC的垂线交AC于点D,交⊙O于点E.已知AB﹦8,∠P=30°.(1)求线段PC的长;(2)求阴影部分的面积.【思路点拨】(1)连接OC,由PC为圆O的切线,根据切线的性质得到OC与PC垂直,可得三角形OCP为直角三角形,同时由直径AB的长求出半径OC的长,根据锐角三角函数定义得到tanP为∠P的对边OC与邻边PC的比值,根据∠P的度数,利用特殊角的三角函数值求出tanP的值,由tanP及OC的值,可得出PC 的长;(2)由直角三角形中∠P的度数,根据直角三角形的两个锐角互余求出∠AOC的度数,进而得出∠BOC的度数,由OD与BC垂直,且OC=OB,利用等腰三角形的三线合一得到OD为∠BOC的平分线,可求出∠COD度数为60°,再根据直角三角形中两锐角互余求出∠OCD度数为30°,根据30°角所对的直角边等于斜边的一半,由斜边OC的长求出OD的长,先由∠COD的度数及半径OC的长,利用扇形的面积公式求出扇形COE的面积,再由OD与CD的长,利用直角三角形两直角边乘积的一半求出直角三角形COD 的面积,用扇形COE的面积减去三角形COD的面积,即可求出阴影部分的面积.【答案与解析】解:(1)连接OC,∵PC切⊙O于点C,∴OC⊥PC,∵AB=8,∴OC=12AB=4,又在直角三角形OCP中,∠P=30°,∴tanP=tan30°=OCPC,即PC=433=43;(2)∵∠OCP=90°,∠P=30°,∴∠COP=60°,∴∠AOC=120°,又AC⊥OE,OA=OC,∴OD为∠AOC的平分线,∴∠COE=12∠AOC=60°,又半径OC=4,∴S扇形OCE=26048= 3603ππ⨯,在Rt△OCD中,∠COD=60°,∴∠OCD=30°,∴OD=12OC=2,根据勾股定理得:CD=22OC-OD=23,∴S△OCD=12DC•OD=12×23×2=23,则S阴影=S扇形OCE-S△OCD=8-233π.【总结升华】此题考查了切线的性质,含30°角的直角三角形的性质,等腰三角形的性质,锐角三角函数定义,以及扇形的面积公式,遇到已知切线的类型题时,常常连接圆心与切点,利用切线的性质得出垂直,利用直角三角形的性质来解决问题.。

华师版九年级数学下册教学课件(HS) 第27章 圆 第27章 小结与复习

华师版九年级数学下册教学课件(HS) 第27章 圆 第27章 小结与复习
(4)中心角:正多边形每一条边对应所对的外接圆的圆心角都相等, 叫做正多边形的中心角.
二、与圆有关的位置关系 1.点与圆的位置关系 判断点与圆的位置关系可由点到圆心的距离d与圆的半径r比较得到. 设☉O的半径是r,点P到圆心的距离为d,则有
d<r
点P在圆内;
[注意]点与圆的位置关系可以转 化为点到圆心的距离与半径之间
d=r
点P在圆上;
的关系;反过来,也可以通过这
种数量关系判断点与圆的位置关
d>r
点P在圆外.
系.
2.直线与圆的位置关系 设r为圆的半径,d为圆心到直线的距离
直线与圆的
位置关系
相离
相切
图形
d与r的关系 公共点个数 公共点名称 直线名称
பைடு நூலகம்
d>r 0个
d=r 1个 切点 切线
相交
d<r 2个 交点 割线
三、 圆的基本性质 1. 圆的对称性 圆是轴对称图形,它的任意一条_______所在的直直径线都是它的对称轴.
(3)边长a,边心距r的正n边形的面积为
S
1 nar 2
1 lr. 2
其中l为正n边形的周长.
考点一 圆周角定理
例1 在图中,BC是☉O的直径,AD⊥BC,若∠D=36°,则∠BAD的度数是
()
B
A. 72° B.54° C. 45° D.36 °
A
B
C
D
针对训练
1.如图a,四边形ABCD为☉O的内接正方形,点P为劣弧BC上的任意一
3.与切线相关的定理 (1)判定定理:经过圆的半径的外端且垂直于这条半径的直线是圆 的切线.
(2)性质定理:圆的切线垂直于经过切点的半径.
(3)切线长定理:经过圆外一点所画的圆的两条切线,它们的切线 长相等.这一点和圆心的连线平分这两条切线的夹角.

(沪科版)中考数学总复习课件【第25讲】与圆有关的计算

(沪科版)中考数学总复习课件【第25讲】与圆有关的计算

2π -3 . 3 每个圆都经过另一个圆的圆心,则图中阴影部分的面积为________
图25 -9
第25讲┃与圆有关的计算
第24讲┃与圆有关的位置关系
核心练习
6.[ 2014·岳阳] 的弧长为( D ) π A. 2 已知扇形的圆心角为60°,半径为 1,则扇形
B .π
π C. 6
π D. 3 圆心角为120°,弧长为12π 的扇形半径为
7.[ 2014·衡阳] ( C )
A.6 B.9 C.18 D.36
第25讲┃与圆有关的计算
第25讲┃与圆有关的计算
图25 -1
A.(60°,4) B.(45°,4) C.(60°,2 2) D.(50°,2 2)
第25讲┃与圆有关的计算
[解析 ] 取正六边形中心为 M,连接 MA,MB. ∵多边形是正六边形, 360 ° ∴∠OMA=∠AMB=∠BMC= =60°, 6 MO= MA=MB=MC , ∴△MOA,△MAB ,△MBC 都是等边三角形, ∴∠COA=60°, MO=MC=OA =2, ∴CO =4, 即 θ = 60°,m=4 , ∴顶点 C 的极坐标应记为(60°,4).
第25讲┃与圆有关的计算
经典示例
例1 [2014·常德] 阅读理解:如图25-1①,在平面内
选一定点O,引一条有方向的射线Ox ,再选定一个单位长度,那 么平面上任一点M的位置可由∠MOx的度数θ 与OM的长度 m确定, 有序数对(θ ,m)称为点M的“极坐标”,这样建立的坐标系称 为“极坐标系”. 应用:在图②的极坐标系下,如果正六边形的边长为2 ,有 一边OA在射线Ox上,那么正六边形的顶点C的极坐标应记为 ( A )
第25讲┃与圆有关的计算

中考数学《与圆有关的计算》复习课件

中考数学《与圆有关的计算》复习课件
C=πd= 2πR . (2)半径为 R 的圆中,n°���的���������圆������心角所对 的弧长为 l,则 l= ������������������ .
回练课本 1.(1)半径为 4,圆心角为 90°的扇形弧长
为 2π ;
(2)50°的圆心角所对的弧长是 2.5π cm,
则此弧所在圆的半径是 9 cm .
若圆锥的底面圆半径是 5,则圆锥的母线 l=
.
22.(2014 珠海)已知圆柱体的底面半径为 3 cm,高为 4 cm,则圆柱体
的侧面积为( A )
A.24π cm2 C.12 cm2
B.36π cm2 D.24 cm2
基础训练
1.(2019 温州一模)如图,已知扇形的圆心角∠AOB=120°,半径 OA=2,则扇形的弧长
2.圆、扇形面积计算
(1)半径为 R 的圆面积 S=
πR2
.
(2)半径为 R 的圆中,圆心角为
n°的扇形面���������积���������为������ S 扇= ������������lR
或 S 扇= ������������������ .
2.(1)半径为 4,圆心角为 90° 的扇形面积为 4π ; (2)一个扇形的半径是 24 cm,面积是 240π cm2,则扇 形的圆心角是 150° .
3
即 V=13πR2h.
(3)如图所示,“粮仓”的容积为45π m3 (单位:m).
4.正多边形与圆
(1)正多边形:各边相等,各角相等的多边形叫做
正多边形.
(2)圆与正多边形的有关概念:一个正多边形的
外接圆的圆心叫做这个正多边形的中心,外接
圆的半径叫做正多边形的半径;正多边形每一

考点20 与圆有关的位置关系及计算(精讲)(解析版)

考点20 与圆有关的位置关系及计算(精讲)(解析版)

考点20.与圆有关的位置关系及计算(精讲)【命题趋势】与圆相关的位置关系也是各地中考数学中的必考考点之一,主要内容包括点、直线与圆的位置关系、切线的性质和判定、三角形的内切圆和外接圆三块,在解答题中想必还会考查切线的性质和判定,和直角三角形结合的求线段长的问题和三角函数结合的求角度的问题等知识点综合,考查形式多样,多以动点、动图的形式给出,难度较大。

关键是掌握基础知识、基本方法,力争拿到全分。

【知识清单】1:点、直线与圆的位置关系类(☆☆)1)点和圆的位置关系:已知⊙O的半径为r,点P到圆心O的距离为d,则:图1图2(1)d<r⇔点在⊙O内,如图1;(2)d=r⇔点在⊙O上,如图2;(3)d>r⇔点在⊙O外,如图3.解题技巧:掌握已知点的位置,可以确定该点到圆心的距离与半径的关系,反过来已知点到圆心的距离与半径的关系,可以确定该点与圆的位置关系。

2)直线和圆的位置关系:设⊙O的半径为r,圆心到直线l的距离为d,则直线和圆的位置关系如下:图1图2图3(1)d>r⇔相离,如图1;(2)d=r⇔相切,如图2;(3)d<r⇔相交,如图3。

2:切线的性质与判定(☆☆☆)1)切线的性质:(1)切线与圆只有一个公共点;(2)切线到圆心的距离等于圆的半径;(3)切线垂直于经过切点的半径。

解题技巧:利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题。

2)切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法);(2)到圆心的距离等于半径的直线是圆的切线(数量关系法);(3)经过半径外端点并且垂直于这条半径的直线是圆的切线(判定定理法)。

切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径。

3)切线长定理定义:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长。

定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

圆的周长PPT优秀课件

圆的周长PPT优秀课件

2024/1/26
10
03
圆周长在生活中的应用
2024/1/26
11
建筑设计领域应用
建筑设计中的圆形结构
在建筑设计中,圆形结构常被用于创造独特的美感和视觉效果,如圆形窗户、 拱门和穹顶等。这些圆形结构的周长计算对于材料的用量和施工的精度都至关 重要。
圆形建筑物的地基设计
当地基形状为圆形时,需要计算圆的周长以确定地基的尺寸和所需的材料量, 确保建筑物的稳定性和安全性。
17
圆锥体侧面积和表面积计算
圆锥体侧面积公式
侧面积 = (圆心角 × π × 母线长 ) / 180。这个公式用于计算圆锥
侧面展开后的面积。
圆锥体表面积公式
表面积 = π × 半径^2 + 侧面积 。这个公式用于计算圆锥体整体
所占的空间大小。
实际应用
圆锥体表面积和侧面积的计算在 建筑设计、工程造价等方面有重 要作用,如计算圆锥形屋顶的面
圆的性质包括圆心到圆上任一点的距离相等,以及圆上任意两点间的弧所对的圆心 角相等。
24
关键知识点总结回顾
圆的周长公式
圆的周长(或称为圆的周长)是 $C = 2pi r$,其中 $C$ 是圆的周长,$r$ 是圆的半径, $pi$ 是圆周率。
圆周率 $pi$ 是一个无理数,其近似值为 3.14159。
数值法
通过迭代或数值逼近的方法,逐步逼近椭圆的真实周长。
2024/1/26
21
椭圆周长精确计算方法
2024/1/26
积分法
利用椭圆的标准方程,通过计算椭圆弧长的积分表达式来 得到精确周长。这种方法需要较高的数学水平,通常适用 于理论研究或高精度计算。
参数方程法

圆的切线与圆的有关计算

圆的切线与圆的有关计算

一、知识聚焦:1. 切线的性质定理:圆的切线垂直于过切点的半径。

性质定理的推论1:经过圆心且垂直于切线的直线必过切点; 推论2:经过切点且垂直于切线的直线必过圆心 2. 切线的判定方法:(1) 切线的判定定理:过半径外端且垂直于这条切线的直线是圆的切线 (2)到圆心的距离等于半径的直线是圆的_______(3)和圆只有一个公共点的直线是圆的_______;3. 切线长定理:从圆外一点引圆的两条切线,它们的切线长_______,圆心和这点的连线平分两条切线所夹的角4.圆的有关计算:圆锥的表面积 S 表=+rl ππr 2 或S 表=2360l nπ+πr 2 圆柱的侧面积:S 侧=2(rh πr 为底面半径,h 为圆柱的高) 圆柱的表面积:S 表=)(底侧r h r r rh S S +=+=+πππ22222二、经典例题:例1:已知:如图,AB 是⊙O 的直径,P 是⊙O 外一点,PA⊥AB,•弦BC∥OP,请判断PC 是否为⊙O 的切线,说明理由.例2:艳军中学学术报告厅门的上沿是圆弧形,这条弧所在圆的半径为1.8米,所对的圆心角为100°,则弧长是 米(π≈3)例3:一个圆锥的母线长为5cm ,底面圆半径为3 cm ,则这个圆锥的侧面积是 cm 2(结果保留π). 例4:用弧长为8π的扇形做成一个圆锥的侧面,那么这个圆锥的底面的半径是( ).A .4πB .8πC .4D .8例5:如图,P 是⊙O 外一点,PA 、PB 分别切⊙O 于A 、B ,C 是弧AB 上任意一点,过C 作⊙O 的切线分别交PA 、PB 于D 、E ,若△PDE 的周长为12,则PA 长为 。

答案:例1:略例2:3例3:15π例4:C 例5:6三、基础演练:1. 已知R t△ABC斜边AB=8cm,AC=4cm,以点C为圆心作圆,当半径R=•_____•时,AB与⊙O相切.2. 如图1,AB与⊙O切于点B,AO=6cm,AB=4cm,则⊙O的半径为()A...m3.如图2,已知∠AOB=30°,M为OB边上任意一点,以M为圆心,•2cm•为半径作⊙M,•当OM=_____cm 时,⊙M与OA相切.4.如图3,在△ABC中,已知∠C=90º,BC=3,AC=4,则它的内切圆半径是()A.23B.32C.2 D.1图1 图2 图35.如图,已知O⊙的半径6OA=,90AOB∠=°,则AOB∠所对的弧AB的长为()A.2πB.3πC.6πD.12π6.若一个圆锥的底面圆的周长是4πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角的度数是( ) A.40° B.80° C.120° D.150°7.如图,已知RtΔABC中,∠ACB=90°,AC= 4,BC=3,以AB边所在的直线为轴,将ΔABC旋转一周,则所得几何体的表面积是().A.π5168B.π24 C.π584D.π128.将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为( )(A)10cm (B)30cm (C)40cm (D)300cm答案:. 4 4. D 5.B 6. C 7. C 8. A第5题图四、能力提升:1.如图6,PA、PB切⊙O于A、B,PA=3,∠APB=60°,则PO的长( ).A.1B.2C.2D.232.如图7,PA、PB切⊙O于点A、B,C是优弧AB上的点,∠C=64°,那么∠P等于()A.52°B.62°C.58°D.64°3.如图8,已知AB是⊙O的直径,BC是和⊙O相切与点B的切线,⊙O的弦AD平行于OC,若OA=2,且AO+OC=6,则CD等于()3A.23B.33C.43D.2图6 图7 图84.在直角坐标系中,⊙M的圆心坐标为(m,0)半径为2,如果⊙M与y轴相切,那么m=__ ___,如果⊙M与y轴相交,那么m的取值范围是_________5.如图,PA、PB是⊙O的切线,点A、B为切点,AC是⊙O的直径,∠BAC=20°,则∠P的大小是_ ________6.用一个面积为60cm2的长方形纸片围成一个圆柱,则这个圆柱的侧面积为 cm2.7.一个圆锥的侧面积是底面积的3倍,则这个圆锥的侧面展开图的圆心角是度.8.半径为4,圆心角为90°的弧的长为.9.已知圆锥的底面半径为2,母线长为5,则圆锥的侧面积为,底面积为.答案:1.C 2.A 3.A 4. m=2或-2; -2 m 2 5. 40° 6.60 7. 120 8. π2 9.π10π4五、个性天地:(HXS00010)如图,已知Rt△ABC中,∠ACB=90°,AC=20cm,BC=15cm,以直线AB为轴旋转一周,得到如图几何体,求这个几何体的表面积.(YXN00010)如图,已知⊙O 是三角形ABC 的外接圆,AB 是⊙O 的直径,D 是AB 延长线上的一点, AE ⊥DC 交DC 的延长线于点E ,且AC 平分∠EAB (1)求证:DE 是⊙O 的切线.(2)若AB=6,AE=524,求BD 和BC 的长.(LD00010)设矩形ABCD 的长与宽的和为2,以AB 为轴心 旋转一周得到一个几何体,则此几何体的侧面积有( )A.最小值4π B.最大值4π C.最大值2π D.最小值2π(ZZY00024) 如图,已知菱形ABCD 的边长为1.5cm ,B C ,两点在扇形AEF的上,求的长度及扇形ABC 的面积.(SHY00010)如图,Rt ΔABC 中,90C ∠=︒,若5AC cm =, 12BC cm =,求ΔABC 的外接圆半径。

九年级数学圆中有关计算知识精讲

九年级数学圆中有关计算知识精讲

九年级数学圆中有关计算【本讲主要内容】圆中有关计算包括圆中有关线段的计算,角度的计算,圆的周长及面积等。

【知识掌握】 【知识点精析】1. 垂弦定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

2. 直径上的圆周角等于90°。

3. 勾股定理。

4. 锐角三角函数。

5. 圆的周长R 2C π=,弧长:l 180Rn π=。

6. 圆的面积:2R S π=,扇形面积:21R 360n S 2=π=扇l R弓形面积:±=扇弓S S 等腰三角形的面积【解题方法指导】例1. (2005年某某市)如图,AE 切圆D 于点E ,AC =CD =DB =10,则线段AE 的长∴∴ 评析:切线的性质可以构造出直角三角形。

例2. (2005年某某市)如图,已知圆O 的半径为5,弦AB =8,P 是弦AB 上任意一点,则OP 的取值X 围是________。

2∵OB =5 345CB OB OC 2222=-=-=∴5OP 3≤≤∴∵∠A =∠D ,∠C =∠BBEAE DE CE BECEDE AE DBE ACE ⋅=⋅∴=∴∆∆∴∽ ∵AB =4,E 是AB 中点, ∴AE =EB =2 又DE =CE +3,设CE =x ,则DE =x +3 22)3x (x ⨯=+∴ 04x 3x 2=-+4x 1x 21-==∴,(舍去)∴CE =1,DE =1+3=4 ∴CD =1+4=5 故选B 。

解:∵OA =OB , ∴∠OAB =∠OBA =25°∴∠AOB =180°―25°―25°=130° 又∠AOB =2∠C∴∠C 21=∠AOB 21=×130°=65°故选D 。

评析:这里用到了同弧上的圆心角是圆周角的2倍。

【考点突破】【考点指要】 圆中的计算问题内容很丰富,涉及到许多性质,可以考查同学们的计算能力,因此在中考中经常出现,但难度不是很大,加上对实际问题中弧长、扇形等问题的不断出现,还应该对圆中的计算问题予以重视,在计算中,还要注意推理。

第24章圆-与圆有关的面积计算(教案)

第24章圆-与圆有关的面积计算(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“圆的面积计算在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(4)椭圆面积:通过计算一个长轴为10厘米,短轴为6厘米的椭圆面积,让学生了解椭圆面积的计算方法。
2.教学难点
-理解圆的面积公式推导过程,特别是将圆转化为近似长方形的方法;
-掌握圆环、扇形面积计算公式,尤其是圆环面积计算中内外圆半径的区分;
-椭圆面积公式的应用,如何将实际问题抽象为椭圆面积计算模型。
-圆环、扇形面积的计算方法,学会在实际问题中运用;
-椭圆面积的计算方法,拓展学生的几何知识面。
举例解释:
(1)圆的面积:通过实例,如计算一个半径为5厘米的圆的面积,使学生掌握圆的面积公式;
(2)圆环面积:计算一个外圆半径为6厘米,内圆半径为4厘米的圆环面积,让学生学会圆环面积的计算方法;
(3)扇形面积:计算一个圆心角为90°,半径为8厘米的扇形面积,使学生掌握扇形面积的计算方法;
实践活动和小组讨论环节,学生们积极参与,课堂氛围十分活跃。通过分组讨论和实验操作,学生们对圆的面积计算方法有了更深刻的认识。在小组讨论中,我也鼓励学生们提出自己的观点和想法,这有助于培养他们的创新思维能力。但同时,我也发现部分学生在讨论过程中存在依赖思想,需要引导他们更加主动地参与讨论。
在学生小组讨论的引导过程中,我努力扮演好引导者的角色,让学生们发现问题、分析问题并解决问题。通过这种方式,学生们对圆的面积计算在实际生活中的应用有了更全面的认识。但在这一环节,我也发现自己在时间分配上存在不足,部分小组讨论时间较短,影响到了讨论的深度。

(中考考点梳理)与圆有关的计算-中考数学一遍过

(中考考点梳理)与圆有关的计算-中考数学一遍过

考点19 与圆有关的计算一、正多边形的有关概念正多边形中心:正多边形的外接圆的圆心叫做这个正多边形的中心.正多边形半径:正多边形外接圆的半径叫做正多边形半径.正多边形中心角:正多边形每一边所对的圆心角叫做正多边形中心角.正多边形边心距:正多边形中心到正多边形的一边的距离叫做正多边形的边心距.二、与圆有关的计算公式1.弧长和扇形面积的计算扇形的弧长l=π180n r;扇形的面积S=2π360n r=12lr.2.圆锥与侧面展开图(1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.(2)若圆锥的底面半径为r,母线长为l,则这个扇形的半径为l,扇形的弧长为2πr,圆锥的侧面积为S圆锥侧=12ππ2l r rl⋅=.圆锥的表面积:S圆锥表=S圆锥侧+S圆锥底=πrl+πr2=πr·(l+r).在求不规则图形的面积时,注意利用割补法与等积变化方法归为规则图形,再利用规则图形的公式求解.考向一正多边形与圆任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.典例1 如图,已知⊙O的周长等于8π cm,则圆内接正六边形ABCDEF的边心距OM的长为A.2 cm B.cmC.4 cm D.cm【答案】B【点睛】本题考查了正多边形和圆、正六边形的性质、等腰三角形的判定与性质;熟练掌握正六边形的性质是解决问题的关键.1.若一个正多边形的一个外角为60°,则它的内切圆半径与外接圆半径之比是__________.2.如图,正方形ABCD的外接圆为⊙O,点P在劣弧CD上(不与C点重合).(1)求∠BPC的度数;(2)若⊙O的半径为8,求正方形ABCD的边长.考向二弧长和扇形面积1.弧长公式:π180n Rl=;2.扇形面积公式:2π360n RS=扇形或12S lR=扇形.典例2 时钟的分针长5 cm ,经过15分钟,它的针尖转过的弧长是 A .254π cm B .152π cm C .52π cm D .512π cm 【答案】C【解析】∵分针经过60分钟,转过360°,∴经过15分钟转过360°×1560=90°,则分针的针尖转过的弧长是l C .学科=网 典例3 小明用如图所示的扇形纸片折叠成一个圆锥的侧面,已知圆锥的母线长为5 cm ,扇形的弧长是6πcm ,那么这个圆锥的高是A .4 cmB .6 cmC .8 cmD .3 cm【答案】A【解析】设圆锥的底面半径是r ,则2πr =6π,解得:r =3cm ). 【点睛】本题主要考查圆锥侧面展开图的计算.用到的知识点:圆锥的侧面展开图是一个扇形,扇形的弧长等于圆锥底面的周长,扇形的半径是圆锥的母线长.3.已知扇形的圆心角为60°,半径长为12,则扇形的面积为 A .34π B .2π C .3π D .24π4.如图1,圆锥底面圆半径为1,母线长为4,图2为其侧面展开图.(1)求阴影部分面积(π可作为最后结果);(2)母线SC 是一条蜜糖线,一只蚂蚁从A 沿着圆锥表面最少需要爬多远才能吃到蜜糖?1,则该圆的内接正六边形的边心距是A.2B.1C D2.如图,正方形ABCD内接于⊙O,AB,则 AB的长是A.πB.32πC.2πD.12π3.圆锥的主视图与左视图都是边长为4的等边三角形,则圆锥的侧面展开图扇形的圆心角是A.90° B.120° C.150° D.180°4.已知半径为5的⊙O是△ABC的外接圆.若∠ABC=25°,则劣弧 AC的长为A.25π36B.125π36C.25π18D.5π365.如图,ABCDEF为⊙O的内接正六边形,AB=a,则图中阴影部分的面积是A .2π6aB .26π(a C 2D .23π(a 6.如图,在ABC △中,90ACB ∠=︒,30A ∠=︒,4AB =,以点B 为圆心,BC 长为半径画弧,交AB于点D ,则 CD的长为A .1π6B .1π3C .2π3D 7.如图,AB 是圆锥的母线,BC 为底面半径,已知BC =6 cm ,圆锥的侧面积为15π cm 2,则sin ∠ABC的值为A .34B .35C .45D .538.如图,在正方形ABCD 中,AB =12,点E 为BC 的中点,以CD 为直径作半圆CFD ,点F 为半圆的中点,连接AF ,EF ,图中阴影部分的面积是A .18+36πB .24+18πC .18+18πD .12+18π9.如图,从一块直径为2m 的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为A .2πm 2B 2mC .2πmD .22πm10.如图,在⊙O 的内接四边形ABCD 中,AB AD =,120C ∠=︒,点E 在弧AD 上.若AE 恰好为⊙O 的内接正十边形的一边, DE的度数为__________.11cm ,其侧面展开图的圆心角为120°,则圆锥的母线长是__________cm . 12.用一块圆心角为216︒的扇形铁皮,做一个高为40cm 的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是__________cm .13.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为__________.14.如图,正六边形ABCDEF 的边长为1,以点A 为圆心,AB 的长为半径,作扇形ABF ,则图中阴影部分的面积为__________(结果保留根号和π).15.如图1,作∠BPC 平分线的反向延长线PA ,现要分别以∠APB ,∠APC ,∠BPC 为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC 为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而902=45是360°(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是__________;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是__________.16.如图,AB是⊙O的弦,BC切⊙O于点B,AD⊥BC,垂足为D,OA是⊙O的半径,且OA=3.(1)求证:AB平分∠OAD;(2)若点E是优弧AEB上一点,且∠AEB=60°,求扇形OAB的面积(计算结果保留π).17.已知:如图,AB是⊙O的直径,AB=4,点F,C是⊙O上两点,连接AC,AF,OC,弦AC平分∠FAB,∠BOC=60°,过点C作CD⊥AF交AF的延长线于点D,垂足为点D.(1)求扇形OBC的面积(结果保留π);(2)求证:CD是⊙O的切线.学-科网18.已知:如图,以等边△ABC的边BC为直径作⊙O,分别交AB,AC于点D,E,过点D作DF⊥AC交AC于点F.(1)求证:DF是⊙O的切线;(2)若等边△ABC的边长为8,求由 DE、DF、EF围成的阴影部分面积.19.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC于点F.(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的面积;(2)求证:DF是⊙O的切线;(3)求证:∠EDF=∠DAC.20.如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.21.如图,AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,E 为⊙O 上一点,过点E 作直线DC 分别交AM ,BN 于点D ,C ,且CB =CE . (1)求证:DA =DE ;(2)若AB =6,CD1.(2018·益阳)如图,正方形ABCD 内接于圆O ,AB =4,则图中阴影部分的面积是A .4π16-B .8π16-C .16π32-D .32π16-2.(2018·山西)如图,正方形ABCD 内接于⊙O ,⊙O 的半径为2,以点A 为圆心,以AC 长为半径画弧交AB 的延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积为A .4π-4B .4π-8C .8π-4D .8π-83.(2018·抚顺)如图,AB 是⊙O 的直径,CD 是弦,∠BCD =30°,OA =2,则阴影部分的面积是A .π3B .2π3C .πD .2π4.(2018·十堰)如图,扇形OAB 中,∠AOB =100°,OA =12,C 是OB 的中点,CD ⊥OB 交 AB 于点D ,以OC 为半径的 CE交OA 于点E ,则图中阴影部分的面积是A .B .C .D .5.(2018·盘锦)如图,一段公路的转弯处是一段圆弧 AB ,则 AB 的展直长度为A .3π mB .6π mC .9π mD .12π m6.(2018·广安)如图,已知⊙O 的半径是2,点A 、B 、C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为A .23π- B .13πC .43π- D .43π7.(2018·钦州)如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB =2,则莱洛三角形的面积(即阴影部分面积)为A .π+B .π-C .2πD .2π-8.(2018·成都)如图,在ABCD 中,60B ∠=︒,C 的半径为3,则图中阴影部分的面积是A .πB .2πC .3πD .6π9.(2018·湖州)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣: ①将半径为r 的⊙O 六等分,依次得到A ,B ,C ,D ,E ,F 六个分点; ②分别以点A ,D 为圆心,AC 长为半径画弧,G 是两弧的一个交点; ③连接OG . 问:OG 的长是多少? 大臣给出的正确答案应是A r B.()rC.()r D r10.(2018·温州)已知扇形的弧长为2π,圆心角为60°,则它的半径为__________.11.(2018·呼和浩特)同一个圆的内接正方形和正三角形的边心距的比为__________.△是半径为2的圆内接正三角形,则图中阴影部分的面积是__________ 12.(2018·绥化)如图,ABC(结果用含π的式子表示).13.(2018·贵阳)如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是__________度.学科网14.(2018·玉林)如图,正六边形ABCDEF的边长是O1,O2分别是△ABF,△CDE的内心,则O1O2=__________.15.(2018·烟台)如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1∶r2=__________.16.(2018·株洲)如图,正五边形ABCDE 和正三角形AMN 都是⊙O 的内接多边形,则∠BOM =__________.17.(2018·宜宾)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O 的半径为1,若用圆O 的外切正六边形的面积来近似估计圆O 的面积,则S =__________.(结果保留根号)18.(2018·凉山州)将ABC △绕点B 逆时针旋转到A'BC'△使A 、B 、C'在同一直线上,若90BCA ∠=︒,30BAC ∠=︒,4cm AB =,则图中阴影部分面积为__________2cm .19.(2018·重庆A 卷)如图,在矩形ABCD 中,3AB =,2AD =,以点A 为圆心,AD 长为半径画弧,交AB 于点E ,图中阴影部分的面积是__________(结果保留π).20.(2018·泰州)如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于点D ,DE ⊥BC于点E .(1)试判断DE 与⊙O 的位置关系,并说明理由;(2)过点D 作DF ⊥AB 于点F ,若BE ,DF =3,求图中阴影部分的面积.21.(2018·扬州)如图,在ABC ∆中,AB AC =,AO BC ⊥于点O ,OE AB ⊥于点E ,以点O 为圆心,OE 为半径作半圆,交AO 于点F . (1)求证:AC 是O 的切线;(2)若点F 是AO 的中点,3OE =,求图中阴影部分的面积;(3)在(2)的条件下,点P 是BC 边上的动点,当PE PF +取最小值时,直接写出BP 的长.1∶2.【解析】∵一个正多边形的一个外角为60°,∴360°÷60°=6, ∴这个正多边形是正六边形,设这个正六边形的半径是r ,则外接圆的半径是r ,,2.2.【点睛】垂径定理:垂直于弦的直径平分弦并且平分弦所对的两条弧.3.【答案】D【解析】扇形的面积为D.4.【答案】(1)S阴=4π–8;(2)一只蚂蚁从A沿着圆锥表面最少需要爬个单位长度才能吃到蜜糖.【解析】(1)如图2中,作SE⊥AF交弧AF于C,设图2中的扇形的圆心角为n°·1,∴n=90°,∵SA=SF,∴△SFA是等腰直角三角形,∴S△SAF=12×4×4=8,又S扇形SAFS阴=S扇形SAF–S△SAF=4π–8.(2)在图2中,∵SC是一条蜜糖线,AE⊥SC,AF=,AE∴一只蚂蚁从A沿着圆锥表面最少需要爬个单位长度才能吃到蜜糖.1.【答案】B,故选B . 2.【答案】A【解析】如图,连接OA 、OB ,∵正方形ABCD 内接于⊙O , ∴AB =BC =DC =AD ,∴ AB BCCD DA ===, ∴∠AOB =14×360°=90°,在Rt △AOB 中,由勾股定理得:2AO 2=()2, 解得:AO =2, ∴ AB 的长为90π2180⨯=π,故选A . 3.【答案】D【解析】∵圆锥的主视图与左视图都是边长为4的等边三角形, ∴圆锥的母线长为4,底面圆的直径为4, 则圆锥的侧面展开图扇形的半径为4, 设圆锥的侧面展开图扇形的圆心角是n , 根据题意,得:·π·4180n =4π, 解得:n =180°,故选D . 4.【答案】C【解析】如图,连接AO ,CO ,∵∠ABC =25°,∴∠AOC =50°,∴劣弧 AC 的长=50π525π=18018⨯,故选C . 5.【答案】B【解析】∵正六边形的边长为a , ∴⊙O 的半径为a , ∴⊙O 的面积为π×a 2=πa 2,∵空白正六边形为六个边长为a 的正三角形,∴每个三角形面积为12×a ×a a 2,∴正六边形面积为a 2a 2,∴阴影面积为(πa 2a 2)×16=(π6)a 2,故选B .6.【答案】C【解析】∵90ACB ∠=︒,4AB =,30A ∠=︒,∴60B ∠=︒,2BC =,∴ CD的长为60π22π1803⨯=,故选C . 7.【答案】C【解析】设圆锥的母线长为R ,由题意得15π=π×3×R ,解得R =5, ∴圆锥的高为4,∴sin ∠ABC =45.故选C . 8.【答案】C【解析】作FH ⊥BC 于H ,连接FH ,如图,∵点E 为BC 的中点,点F 为半圆的中点,∴BE =CE =CH =FH =6,AE易得Rt △ABE ≌△EHF ,∴∠AEB =∠EFH ,而∠EFH +∠FEH =90°,∴∠AEB +∠FEH =90°,∴∠AEF =90°,∴图中阴影部分的面积=S 正方形ABCD +S 半圆-S △ABE -S △AEF =12×12+12·π·62-12×12×6-12· =18+18π.故选C . 9.【答案】A【解析】如图,连接AC .∵从一块直径为2 m 的圆形铁皮上剪出一个同心角为90°的扇形,即∠ABC =90°, ∴AC 为直径,即AC =2 m ,AB =BC .∵AB 2+BC 2=22,∴AB =BC m =1π2(m 2).故选A .11.【答案】【解析】设该圆锥的母线长是x cm x =.故答案为:. 12.【答案】50【解析】设这个扇形铁皮的半径为R cm ,圆锥的底面圆的半径为r cm , 根据题意得2πr =216π180R ⋅⋅,解得r =35R ,因为402+(35R )2=R 2,解得R =50. 所以这个扇形铁皮的半径为50 cm .故答案为:50. 13.【答案】72°【解析】∵五边形ABCDE 为正五边形,∴AB =BC =AE ,∠ABC =∠BAE =108°, ∴∠BAC =∠BCA =∠ABE =∠AEB =(180°−108°)÷2=36°, ∴∠AFE =∠BAC +∠ABE =72°,故答案为:72°.14-π3 【解析】正六边形的中心为点O ,如图,连接OD 、OE ,作OH ⊥DE 于H ,∴∠DOE =3606︒=60°,∴OD =OE =DE =1,∴OH∴正六边形ABCDEF 的面积=12,∠A =(62)1806-⨯︒=120°,∴扇形ABF 的面积=2120π13π603⨯=,∴图中阴影部分的面积-π3-π3. 15.【答案】14;21【解析】图2中的图案外轮廓周长是:8-2+2+8-2=14; 设∠BPC =2x ,∴以∠BPC 为内角的正多边形的边数为:360180180290x x =--,以∠APB 为内角的正多边形的边数为:360x,∴图案外轮廓周长是=18090x --2+360x -2+360x -2=18090x -+720x-6,根据题意可知:2x 的值只能为60°,90°,120°,144°, 当x 越小时,周长越大,∴当x =30时,周长最大,此时图案定为会标, 则则会标的外轮廓周长是=180720903030+--6=21,故答案为:14;21.16.【解析】(1)连接OB ,如图所示:∵BC切⊙O于点B,∴OB⊥BC,∵AD⊥BC,∴AD∥OB,∴∠DAB=∠OBA,∵OA=OB,∴∠OAB=∠OBA,∴∠DAB=∠OAB,∴AB平分∠OAD;(2)∵点E是优弧AEB上一点,且∠AEB=60°,∴∠AOB=2∠AEB=120°,∴扇形OAB的面积=2120π3360⨯=3π.17.【解析】(1)∵AB=4,∴OB=2,∵∠COB=60°,∴S扇形OBC=60π42π3603⨯=.(2)∵AC平分∠FAB,∴∠FAC=∠CAO,∵AO=CO,∴∠ACO=∠CAO,∴∠FAC=∠ACO,∴AD∥OC,∵CD⊥AF,∴CD⊥OC∵C在圆上,∴CD是⊙O的切线.18.【解析】(1)如图,连接CD、OD,∵BC是⊙O的直径,∴∠CDB=90°,即CD⊥AB,又∵△ABC是等边三角形,∴AD=BD,∵BO=CO,∴DO是△ABC的中位线,∴OD∥AC,∵DF⊥AC,∴DF⊥OD,∴DF是⊙O的切线.19.【解析】(1)如图,连接OE,过O作OM⊥AC于M,则∠AMO=90°,∵DF⊥AC,∴∠DFC=90°,∵∠FDC=15°,∴∠C=180°-90°-15°=75°,∵AB=AC,∴∠ABC=∠C=75°,∴∠BAC=180°-∠ABC∠C=30°,∴OM =12OA =12×3=32,AM OM , ∵OA =OE ,OM ⊥AC ,∴AE =2AM , ∴∠BAC =∠AEO =30°, ∴∠AOE =180°-30°-30°=120°,∴阴影部分的面积S =S 扇形AOE -S △AOE =2120π3133π36022⨯-⨯=-.(2)如图,连接OD ,∵AB =AC ,OB =OD ,∴∠ABC =∠C ,∠ABC =∠ODB , ∴∠ODB =∠C , ∴AC ∥OD , ∵DF ⊥AC , ∴DF ⊥OD , ∵OD 过点O , ∴DF 是⊙O 的切线. (3)如图,连接BE ,∵AB 为⊙O 的直径, ∴∠AEB =90°, ∴BE ⊥AC ,∵DF ⊥AC , ∴BE ∥DF , ∴∠FDC =∠EBC , ∵∠EBC =∠DAC , ∴∠FDC =∠DAC , ∵A 、B 、D 、E 四点共圆, ∴∠DEF =∠ABC , ∵∠ABC =∠C , ∴∠DEC =∠C , ∵DF ⊥AC , ∴∠EDF =∠FDC , ∴∠EDF =∠DAC .20.【解析】(1)直线DE 与⊙O 相切.理由如下:连接OE 、OD ,如图,∵AC 是⊙O 的切线, ∴AB ⊥AC , ∴∠OAC =90°,∵点E 是AC 的中点,O 点为AB 的中点, ∴OE ∥BC ,∴∠1=∠B ,∠2=∠3, ∵OB =OD , ∴∠B =∠3, ∴∠1=∠2,在△AOE 和△DOE 中,12OA OD OE OE =⎧⎪∠=∠⎨⎪=⎩,∴△AOE≌△DOE,∴∠ODE=∠OAE=90°,∴OA⊥AE,∴DE为⊙O的切线.(2)∵点E是AC的中点,∴AE=12AC=2.4,∵∠AOD=2∠B=2×50°=100°,∴图中阴影部分的面积=2×12×2×2.4-2100π2104.8π3609⨯=-.21.【解析】(1)如图,连接OE、BE,∵OB=OE,∴∠OBE=∠OE B.∵BC=EC,∴∠CBE=∠CEB,∴∠OBC=∠OEC.∵BC为⊙O的切线,∴∠OEC=∠OBC=90°.∵OE为半径,∴CD为⊙O的切线,∵AD切⊙O于点A,∴DA=DE.(2)如图,连接OC,过点D作DF⊥BC于点F,则四边形ABFD是矩形,∴AD=BF,DF=AB=6,∴DC=BC+AD,∵CF=,∴BC -AD∴BC在直角△OBC 中,tan ∠BOC =BCOB, ∴∠BOC =60°.在△OEC 与△OBC 中,OE OB OC OC CE CB =⎧⎪=⎨⎪=⎩,∴△OEC ≌△OBC (SSS ), ∴∠BOE =2∠BOC =120°,∴S 阴影部分=S 四边形BCEO -S 扇形OBE =2×12BC ·OB -2120π360OB ⋅⋅-3π.1.【答案】B【解析】如图,连接OA 、OB ,∵四边形ABCD 是正方形, ∴∠AOB =90°,∠OAB =45°, ∴OA =AB ·, 所以阴影部分的面积=S ⊙O -S 正方形ABCD =π×()2-4×4=8π-16.故选B . 2.【答案】A【解析】利用对称性可知:阴影部分的面积=扇形AEF 的面积-△ABD 的面积=290π413602⨯⨯-×4×2=4π-4,故选A . 3.【答案】B【解析】∵∠BCD =30°,∴∠BOD =60°, ∵AB 是⊙O 的直径,CD 是弦,OA =2,∴阴影部分的面积是:260π22π3603⨯⨯=,故选B . 4.【答案】C【解析】如图,连接OD ,AD ,∵点C 为OA 的中点,∴OC =12OA =12OD , ∵CD ⊥OA ,∴∠CDO =30°,∠DOC =60°,∴△ADO 为等边三角形,OD =OA =12,OC =CA =6,∴CD ,∴S 扇形AOD =260π12360⋅⋅=24π, ∴S阴影=S扇形AOB -S扇形COE -(S扇形AOD -S △COD)=22100π12100π61(24π63603602⋅⋅⋅⋅---⨯⨯,故选C . 5.【答案】B【解析】 AB 的展直长度为:108π10180⨯=6π(m ).故选B .6.【答案】C【解析】连接OB 和AC 交于点D ,如图,∵圆的半径为2,∴OB =OA =OC =2,又四边形OABC 是菱形,∴OB ⊥AC ,OD =12OB =1,在Rt △COD 中利用勾股定理可知:CD =,AC =2CD ,∵sin ∠COD =CD OC =∴∠COD =60°,∠AOC =2∠COD =120°,∴S 菱形ABCO =12B ×AC =12S 扇形AOC =2120π24π3603⨯⨯=,则图中阴影部分面积为S 菱形ABCO -S 扇形AOC =4π3-C .8.【答案】C【解析】∵在 ABCD 中,∠B =60°,⊙C 的半径为3,∴∠C =120°,∴图中阴影部分的面积是:2120π3360⨯⨯=3π,故选C . 9.【答案】D【解析】如图,连接CD ,AC ,DG ,AG .∵AD 是⊙O 直径,∴∠ACD =90°,在Rt △ACD 中,AD =2r ,∠DAC =30°,∴AC , ∵DG =AG =CA ,OD =OA ,∴OG ⊥AD ,∴∠GOA =90°,∴OG r ,故选D .10.【答案】6【解析】设扇形的半径为r ,根据题意得:60π2π180r=,解得:r =6,故答案为:6.111【解析】设⊙O 的半径为r ,⊙O 的内接正方形ABCD ,如图,过O 作OQ ⊥BC 于Q ,连接OB 、OC ,即OQ 为正方形ABCD 的边心距, ∵四边形BACD 是正方形,⊙O 是正方形ABCD 的外接圆, ∴O 为正方形ABCD 的中心,∴∠BOC =90°, ∵OQ ⊥BC ,OB =CO ,∴QC =BQ ,∠COQ =∠BOQ =45°,∴OQ =OC R . 设⊙O 的内接正△EFG ,如图,过O 作OH ⊥FG 于H ,连接OG ,即OH 为正△EFG 的边心距,∵正△EFG 是⊙O 的外接圆,∴∠OGF =12∠EGF =30°, ∴OH =OG ×sin30°=12R ,∴OQ ∶OH =R )∶(12R )∶1∶1.12.【答案】4π-【解析】如图,点O 既是它的外心也是其内心,∴2OB =,130∠=︒,∴112OD OB ==,BD =,∴3AD =,BC =,∴132ABC S =⨯=△2π24π=⨯=,所以阴影部分的面积4π=-,故答案为:4π-. 13.【答案】72【解析】如图,连接OA 、OB 、OC ,∠AOB =3605︒=72°, ∵∠AOB =∠BOC ,OA =OB ,OB =OC ,∴∠OAB =∠OBC ,在△AOM 和△BON 中,OA OB OAM OBN AM BN =⎧⎪∠=∠⎨⎪=⎩,∴△AOM ≌△BON ,∴∠BON =∠AOM ,∴∠MON =∠AOB =72°,故答案为:72. 14.【答案】【解析】如图,过A 作AM ⊥BF 于M ,连接O 1F 、O 1A 、O 1B ,∵六边形ABCDEF 是正六边形,∴∠A =(62)1806-⨯︒=120°,AF =AB ,∴∠AFB =∠ABF =12×(180°-120°)=30°, ∴△AFB 边BF 上的高AM =12AF =12×(FM =BM+6,∴BF设△AFB 的内切圆的半径为r , ∵S △AFB =111AO F AO B BFO S S S ++△△△,∴12×()×(+6)=12×()×r +12×()×r +12×(×r , 解得:r =32,即O 1M =r =32,∴O 1O 2=2×32.152【解析】如图,连接OA ,由已知,M 为AF 中点,则OM ⊥AF ,∵六边形ABCDEF 为正六边形,∴∠AOM =30°,设AM =a ,∴AB =AO =2a ,OM , ∵正六边形中心角为60°,∴∠MON =120°,∴扇形MON πa =,则r 1a , 同理:扇形DEF 的弧长为:120π24π1803a a ⋅⋅=,则r 2=23a ,r 1:r 222. 16.【答案】48°【解析】如图,连接OA ,∵五边形ABCDE 是正五边形,∴∠AOB =3605︒=72°,∵△AMN 是正三角形,∴∠AOM =3603︒=120°, ∴∠BOM =∠AOM -∠AOB =48°,故答案为:48°.17.【答案】【解析】依照题意画出图象,如图所示.∵六边形ABCDEF 为正六边形,∴△ABO 为等边三角形,∵⊙O 的半径为1,∴OM =1,∴BM =AM AB∴S =6S △ABO =6×12. 18.【答案】4π【解析】由旋转可得△ABC ≌△A ′BC ′.∵∠BCA =90°,∠BAC =30°,AB =4 cm ,∴BC =2 cm ,AC ,∠A ′BA =120°,∠CBC ′=120°,∴阴影部分面积=(S △A ′BC ′+S 扇形BAA ′)-S 扇形BCC ′-S △ABC =120π360×(42-22)=4π cm 2.故答案为:4π. 19.【答案】6π- 【解析】S 阴影=S 矩形ABCD -S 扇形ADE =2×3-290π2360⨯=6-π,故答案为:6-π. 20.【解析】(1)DE 与⊙O 相切,理由:如图,连接DO ,∵DO =BO ,∴∠ODB =∠OBD ,∵∠ABC 的平分线交⊙O 于点D ,∴∠EBD =∠DBO ,∴∠EBD =∠BDO ,∴DO ∥BE ,∵DE ⊥BC ,∴∠DEB =∠EDO =90°,∴DE 与⊙O 相切.(2)∵∠ABC 的平分线交⊙O 于点D ,DE ⊥BE ,DF ⊥AB ,∴DE =DF =3,∵BE ,∴BD =6, ∵sin ∠DBF =31=62, ∴∠DBA =30°,∴∠DOF =60°,∴sin60°=3DF DO DO ==,∴DO ,则FO132π2=. 21.【解析】(1)如图,过O 作AC 垂线OM ,垂足为M .∵AB AC =,AO BC ⊥,∴AO 平分BAC ∠,∵OE AB OM AC ⊥⊥,, ∴OE OM =,∵OE 为⊙O 的半径,∴OM 为⊙O 的半径,∴AC 是⊙O 的切线.(2)∵3OM OE OF ===,且F 是OA 的中点,∴6AO =,AE =,∴2AEO S AO AE =⋅÷=△, ∵OE AB ⊥,∴60EOF ∠=︒,即9π603π3602OEF S ⋅︒==︒扇形,∴3π2S =-阴影.学科=网 (3)作B 关于BC 的对称点G ,交BC 于H ,连接FG 交BC 于P ,此时PE PF +最小, 由(2)知60EOF ∠=︒,30EAO ∠=︒,∴60B ∠=︒,∵3EO =,∴3EG =,32EH =,BH =, ∵EG BC ⊥,FO BC ⊥,∴EHP △∽FOP △, ∴31322EH HP FO PO ==÷=,即2HP OP =,∵BO HP OP =+=,∴3HP =,即HP =,∴BP ==.。

中考数学复习第30课时《与圆有关的计算》教案

中考数学复习第30课时《与圆有关的计算》教案

中考数学复习第30课时《与圆有关的计算》教案一. 教材分析《与圆有关的计算》是中考数学的重要内容之一,主要包括圆的周长、面积、弧长、扇形的面积等计算方法。

这部分内容在中考中占有较大比重,是学生必须掌握的知识点。

通过本节课的学习,使学生理解圆的计算方法,提高解决实际问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了相似多边形的性质、圆的定义、圆的性质等基础知识。

但部分学生在理解圆的计算方法,尤其是涉及到圆的周长、面积等公式的灵活运用上还存在困难。

因此,在教学过程中,教师需要关注学生的学习情况,针对性地进行辅导。

三. 教学目标1.理解圆的周长、面积、弧长、扇形的面积等计算方法。

2.能够灵活运用圆的计算公式解决实际问题。

3.提高学生的数学思维能力和解决问题的能力。

四. 教学重难点1.圆的周长、面积公式的理解和运用。

2.弧长、扇形面积的计算方法。

五. 教学方法1.采用问题驱动法,引导学生主动探究圆的计算方法。

2.利用多媒体辅助教学,直观展示圆的计算过程。

3.采用小组合作学习,培养学生团队合作精神。

4.注重个体差异,针对性地进行辅导。

六. 教学准备1.多媒体教学设备。

2.教学课件。

3.练习题。

七. 教学过程1.导入(5分钟)利用多媒体展示生活中的圆形物体,如硬币、地球等,引导学生关注圆的周长和面积。

提问:你知道这些物体的周长和面积是如何计算的吗?2.呈现(10分钟)讲解圆的周长和面积公式,以及如何运用这些公式解决实际问题。

通过例题,展示圆的周长和面积的计算过程。

3.操练(10分钟)学生独立完成练习题,巩固圆的周长和面积的计算方法。

教师巡回指导,针对性地进行辅导。

4.巩固(5分钟)针对学生练习中出现的问题,进行讲解和辅导。

再次强调圆的周长和面积公式的运用。

5.拓展(10分钟)讲解弧长和扇形面积的计算方法,引导学生运用所学知识解决实际问题。

6.小结(5分钟)对本节课的主要内容进行总结,强调圆的计算方法及其应用。

2022春九年级数学下册第27章圆27.3圆中的计算问题2圆锥的侧面展开图习题课件华东师大版

2022春九年级数学下册第27章圆27.3圆中的计算问题2圆锥的侧面展开图习题课件华东师大版

5.【教材改编题】若一个圆锥的底面半径为 3 cm,母线长为 5 cm, 则这个圆锥的表面积为( B ) A.15π cm2 B.24π cm2 C.39π cm2 D.48π cm2
6.某圆锥的底面圆的半径为 5,高为 12,则圆锥的表面积为 ___9_0_π___.(结果保留 π)
7.已知 Rt△ABC,∠ACB=90°,AC=6,BC=8,△ABC 绕 AC 边旋转一周得到一个圆锥,求圆锥的表面积.
即蚂蚁爬行的最短路程是 3 3r.
14. 铁匠王老五要制作一个圆锥模型,操作规则如下:在一块边 长为 16 cm 的正方形纸片上剪出一个扇形和一个圆,使得扇 形围成圆锥的侧面时,圆恰好是该圆锥的底面.他首先设计 了如图所示的方案一,发现这种方案不可行,于是他调整了 扇形和圆的半径,
设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻 两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相 切)
解:将圆锥的侧面沿过点 A 的母线展开成如图的扇形,连结 AA′, 过点 O 作 OC⊥AA′于点 C,则蚂蚁爬行的最短路径为 AA′, 设∠AOA′=n°,由题意, 得 OA=OA′=3r,A︵A′的长为 2πr.
∴2πr=n1π8·03r,解得 n=120,即∠AOA′=120°, 易得∠OAC=30°. ∴OC=12OA=32r. ∴AC= OA2-OC2=32 3r. 易得 AC=A′C,∴AA′=3 3r,
【点拨】设 AB=x cm,则 DE=(6-x)cm,根据题意,得9108π0x= π(6-x),解得 x=4.故选 B.
【答案】B
11.【中考·金华】如图物体由两个圆锥组成.其主视图中,∠A =90°,∠ABC=105°,若上面圆锥的侧面积为 1,则下面圆 锥的侧面积为( ) A.2 B. 3 C.32 D. 2

中考数学点对点-涉及圆的证明与计算问题(解析版)

中考数学点对点-涉及圆的证明与计算问题(解析版)

专题27 涉及圆的证明与计算问题专题知识点概述圆的证明与计算是中考必考点,也是中考的难点之一。

纵观全国各地中考数学试卷,能够看出,圆的证明与计算这个专题内容有三种题型:选择题、填空题和解答题。

一、与圆有关的概念1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

定点称为圆心,定长称为半径。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

2.圆心角:顶点在圆心上的角叫做圆心角。

圆心角的度数等于它所对弧的度数。

3.圆周角:顶点在圆周上,并且两边分别与圆相交的角叫做圆周角。

4. 外接圆和外心:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆。

外接圆的圆心,叫做三角形的外心。

外心是三角形三条边垂直平分线的交点。

外心到三角形三个顶点的距离相等。

5.若四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个圆叫做这个四边形的外接圆。

6.和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

内心是三角形三个角的角平分线的交点。

内心到三角形三边的距离相等。

二、与圆有关的规律1.圆的性质:(1)圆具有旋转不变性;(2)圆具有轴对称性;(3)圆具有中心对称性。

2.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

3.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.4.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。

5.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.7.圆内接四边形的特征①圆内接四边形的对角互补;②圆内接四边形任意一个外角等于它的内对角。

初三下册数学圆知识点定理总结

初三下册数学圆知识点定理总结

一基本概念:圆的几何定义和集合定义, 弦, 弦心距, 弧, 等弧, 弓形, 弓形高三角形的外接圆, 三角形的外心, 三角形的内切圆, 三角形的内心, 圆心角, 圆周角, 弦切角, 圆的切线, 圆的割线, 两圆的内公切线, 两圆的外公切线, 两圆的内(外)公切线长, 正多边形, 正多边形的中心, 正多边形的半径, 正多边形的边心距, 正多边形的中心角.二定理:1.不在始终线上的三个点确定一个圆.2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3.正n边形的半径和边心距把正n边形分为2n个全等的直角三角形.三公式:1.有关的计算:(1)圆的周长C=2πR ;(2)弧长L=180R n π;(3)圆的面积S=πR 2. (4)扇形面积S 扇形 =LR 21360R n 2=π;(5)弓形面积S 弓形 =扇形面积S AOB ±ΔAOB 的面积.(如图) 2.圆柱与圆锥的侧面绽开图:(1)圆柱的侧面积:S 圆柱侧 =2πrh ; (r:底面半径;h:圆柱高)(2)圆锥的侧面积:S 圆锥侧 =LR 21. (L=2πr ,R 是圆锥母线长;r 是底面半径)四 常识:1. 圆是轴对称和中心对称图形. 2. 圆心角的度数等于它所对弧的度数.3. 三角形的外心 ⇔ 两边中垂线的交点 ⇔ 三角形的外接圆的圆心;三角形的内心 ⇔ 两内角平分线的交点 ⇔ 三角形的内切圆的圆心.4. 直线与圆的位置关系:(其中d 表示圆心到直线的距离;其中r 表示圆的半径)直线与圆相交 ⇔ d <r ; 直线与圆相切 ⇔ d=r ; 直线与圆相离 ⇔ d >r.5. 圆与圆的位置关系:(其中d 表示圆心到圆心的距离,其中R, r 表示两个圆的半径且R ≥r )两圆外离 ⇔ d >R+r ; 两圆外切 ⇔ d=R+r ; 两圆相交 ⇔ R-r <d <R+r ; 两圆内切 ⇔ d=R-r ; 两圆内含 ⇔ d <R-r.6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径” 的方法加协助线. 7.关于圆的常见协助线:。

第27讲圆的认识(50张)

第27讲圆的认识(50张)

中考数学复习指导
【解析】如图,作OD⊥AB于D, 则OA=2,AD= 1 AB= 3,
2 ∴sin∠AOD= AD 3 ,
OA 2 ∴∠AOD=60°,当点C在优弧 AB 上时, ∠ACB=∠AOD=60°;当点C在劣弧 AB 上时, ∠ACB= 1 (360°-60°×2)=120°.
2 答案:60°或120°
中考数学复习指导
3.半圆(或直径)所对的圆周角为直角,90°的圆周角所对的 弦是直径,所以常把圆的直径与90°的圆周角联系在一起, 进行角或弦的等量代换,即通过添加一弦,构造直径所对的 圆周角,进行论证或计算.
中考数学复习指导
【例1】(2010·眉山中考)如图,∠A是⊙O的圆周角, ∠A=40°,则∠OBC的度数为_______.
缜密思考分类全面不漏解
圆中一条弦所对的弧有两条,圆内两条平行的弦与圆心的位 置关系有两种情况,因此,在解决相关问题时,要缜密分析, 全面思考,将可能出现的情况逐一进行分类,讨论解答,不 要漏解.
中考数学复习指导
【例】(2011·凉山中考)如图,∠AOB=100°,
点C在⊙O上,且点C不与A、B重合,则∠ACB的
(B)32°
(C)58°
(D)64°
【解析】选B.∵AB是直径,∴∠ADB=90°,∴∠A=90°-
∠ABD=32°,∴∠BCD=∠A=32°.
中考数学复习指导
2.(2011·温州中考)如图,AB是⊙O的 直径,点C,D都在⊙O上,连结CA,CB, DC,DB.已知∠D=30°,BC=3,则AB的 长是______.
7 cm;当弦AB、CD在圆心O异侧时,则MN=ON+OM=17 cm.故选D.
中考数学复习指导
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与圆有关的计算
【课前热身】
1. (安徽)如图,在⊙O 中,60AOB ∠= ,3cm AB =, 则劣弧AB
⌒ 的长 为 cm .
2. (宜昌)翔宇学中的铅球场如图所示,已知扇形AOB 的面积是36米2,AB ⌒ 的
长度为9米,那么半径OA = 米.
3.(苏州)如图,已知扇形的半径为3cm ,圆心角为120°,则扇形的面积
为__________ 2cm .(结果保留π)
4.(常州)已知扇形的半径为2cm ,面积是24
3
cm π,则扇形的弧长是 cm ,
扇形的圆心角为 °.
5. (潍坊)如图,正六边形内接于圆O ,圆O 的半径为10,则圆中阴影部分的
面积为 . 【考纲解读】
1.掌握圆的周长、弧长、面积、扇形的面积公式,并会应用
2.会进行有关圆及有关组合图形的周长及面积
3.了解圆柱、圆锥侧面展开图分别是矩形和扇形,会计算圆柱、圆锥的侧面积和全面积
【考点扫描】
1. 圆的周长为 ,1°的圆心角所对的弧长为 ,n °的圆心角所对
的弧长为 ,弧长公式为 .
2. 圆的面积为 ,1°的圆心角所在的扇形面积为 ,n °的
圆心角所在的扇形面积为S= 2
R π⨯ = = .
3. 圆柱的侧面积公式:S=2rl π.(其中r 为 的半径,l 为 的高)
4. 圆锥的侧面积公式:S=rl π.(其中r 为 的半径,l 为 的长) 【典型例题】
例1 (金华)如图,CD 切⊙O 于点D ,连结OC ,交⊙O 于点B , 过点B 作弦AB ⊥OD ,点E 为垂足,已知⊙O 的半径为10,si n ∠COD =5
4
. (1)求弦AB 的长;(2)CD 的长;
第1题
第3题
第5题 第2题
(3)劣弧AB 的长.(结果保留三个有效数字,sin53.130.8
≈,π≈3.142)
例2 (南昌)如图,AB 为⊙O 的直径,CD AB ⊥于点E ,交⊙O 于点D ,
OF AC ⊥于点F .
(1)请写出三条与BC 有关的正确结论;
(2)当30D ∠= ,1BC =
练 2.1 (孝感)Rt ABC △中,90C ∠= ,8AC =,6BC =,两等圆⊙A ,⊙B 外切,那么图中两个扇形(即阴影部分)的面积之和为(

A .254π
B .25
8π C .2516π D .2532
π
练2.2 (厦门)如图,在矩形空地上铺4块扇形草地.若扇形的半径均为r 米,
,则铺上的草地共有 平方米.
例3 (庆阳)如图,线段AB 与⊙O 相切于点C ,连结OA 、OB ,OB 交⊙O 于点D ,已知6cm OA OB ==,AB =.
求(1)⊙O 的半径; (2)图中阴影部分的面积.
练3 (贵阳)如图,已知AB 是⊙O 的直径,点C 在⊙O 上,且13AB =,5BC =.
(1)求sin BAC ∠的值;
(2)如果OD AC ⊥,垂足为D ,求AD 的长; (3)求图中阴影部分的面积(精确到0.1).

B
A O A C
B D
第8题图
【课后作业】
1(2010年镇江市)14.已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于 ( A ) A .8π B .9π C .10π D .11π
2(桂林2010)一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是 ( C ).
A .1
B .3
4
C .12
D .13
3(2010年兰州) 现有一个圆心角为
90,半径为cm 8的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).该圆锥底面圆的半径为( C)
A . cm 4
B .cm 3
C .cm 2
D .cm 1
4.(2010年无锡)已知圆锥的底面半径为2cm ,母线长为5cm ,则圆锥的侧面积是( C )
A .220cm
B .220cm π
C .210cm π
D .25cm π
5.(2010毕节)已知圆锥的母线长是5cm ,侧面积是15πcm 2,则这个圆锥底面圆的
半径是( B )A .1.5cm B .3cm C .4cm D .6cm
6.(2010年济宁市)如图,如果从半径为9cm 的圆形纸片剪去1
3
圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为( B ) A .6cm
B
. C .8cm
D
.7、(2010年杭州市)如图,5个圆的圆心在同一条直线上, 且互相相切,若大圆直径是12,4个 ( B )
A. 48π
π
8(2010昆明)如图,在△ABC 中,AB = AC ,AB = 8,BC = 12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是(D )
A
.64π-B .1632π- C
.16π-D
.16π-
9.(2010四川宜宾)将半径为5的圆(如图1)剪去一个圆心角为n °的扇形后围成如图2所示的圆锥则n 的值等于 144
10(2010年成都)若一个圆锥的侧面积是18π,侧面展开图是半圆,则该圆锥的底面圆半径是___________.3
11(2010年眉山)已知圆锥的底面半径为4cm ,高为3cm ,则这个圆锥的侧面积为__________cm 2.20π
12(2010哈尔滨)将一个底面半径为5cm ,母线长为12cm 的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是 度.150
13(2010红河自治州) 已知圆锥的底面直径为4,母线长为6,则它的侧面展开图的圆心角为 120° .
14(2010·绵阳)如图,等腰梯形ABCD 内接于半圆D ,且AB = 1,BC = 2,
则OA =( A ).2
31+
15.(2010遵义市)如图,在△ABC 中,∠C= 90,AC+BC=8,点O 是
斜边AB 上一点,以O 为圆心的⊙O 分别与AC 、BC 相切于 点D 、E .
(1)当AC =2时,求⊙O 的半径;
(2)设AC =x ,⊙O 的半径为y ,求y 与x 的函数关系式.
16(2010年怀化市) 如图8,AB 是⊙O 的直径,C 是⊙O 上一点,AB CD ⊥于D,且AB=8,DB=2. (1)求证:△ABC ∽△CBD;
(2)求图中阴影部分的面积(结果精确到0.1,参考数据
73.13,14.3≈≈π).
(15题图) 图8
17(2010湖北省咸宁市)如图,在⊙O 中,直径AB 垂直于弦CD ,垂足为E ,连接AC ,
将△ACE 沿AC 翻折得到△ACF ,直线FC 与直线AB 相交于点G . (1)直线FC 与⊙O 有何位置关系?并说明理由;
(2)若2OB BG ==,求CD 的长.
【近三年临沂中考】
1.(2008临沂)13.如图,等腰梯形ABCD 中,AD ∥BC ,以A 为圆心,AD 为半径的圆与BC 切于点M ,与AB 交于点E ,若AD =2,BC =6,则⌒DE 的长为( ) A .
23π B . 43π C . 8

D . π3 2.(2009临沂)17.若一个圆锥的底面积是侧面积的1
3
,则该圆锥侧面展开图的
圆心角度数是____ _度. 3.(2010临沂)14.如图,直径AB 为6的半圆, 绕A 点逆时针旋转60°,此时点B 到了点B ', 则图中阴影部分的面积是 A .6π B .5π C .4π D .3π
(第17题) 第1题图
A M
D
E B
C B ' 第3题图。

相关文档
最新文档