矿热炉设计方案教学提纲

合集下载

最新矿热炉设计方案

最新矿热炉设计方案

(1)电耗值随原料成分,制成品成分,电炉容量等的不同而有很大差异。

这里是约值。

二结构特点矿热炉是一种耗电量巨大的工业电炉。

主要由炉壳,烟罩、炉衬、短网,水冷系统,排烟系统,除尘系统,电极壳,电极压放及升降系统,上下料系统,把持器,烧穿器,液压系统,矿热炉变压器及各种电器设备等组成。

矿热炉设备共分三层布置第一层为炉体(包括炉底支撑、炉壳、炉衬),出铁系统(包括包或锅及包车等),烧穿器等组成。

第二层(1)烟罩。

矿热炉目前大多数采用密闭式、或半密闭式矮烟罩结构,具有环保和便于维修,改善操作环境的特点。

采用密闭式结构还可把生产中产生的废气(主要成分是一氧化碳)收集起来综合利用,并可减少电路的热损失,降低电极上部的温度,改善操作条件。

(2)电极把持器。

大多数矿热炉都由三相供电,电极按正三角形或倒三角形,对称位置布置在炉膛中间。

大型矿热炉一般采用无烟煤,四、矿热炉主要设备1.主要设备:本设计选用矮烟罩半封闭固定式矿热炉,主要设备选择如下:1.1炉体炉体是由炉壳、炉衬、炉底支撐等构成,炉壳采用14~18mm厚钢板焊接而成的圆筒体,外部焊接有加强筋,以保证炉体具有足够的强度。

炉底采用18~20㎜厚钢板,炉体采用25~30#工字钢支撑,自然通风冷却炉底,炉壳设有1~2个出料口,炉衬采用高铝耐火砖和自焙碳砖无缝砌筑新工艺,炉墙厚度为460~690㎜,外敷20㎜厚硅酸铝纤维板。

炉底碳砖厚度为800~1200㎜。

炉口采用碳化硅刚玉砖,流料槽采用水冷结构。

根据需要也可增加水冷炉门。

1.2矮烟罩采用全水冷结构或水冷骨架和耐热混凝土的复合结构。

其高度以满足设备维修的需要,全水冷结构采用水冷骨架、水冷盖板和水冷壁及水冷围板。

水冷骨架采用16~20#槽钢制成,三相电极周围内盖板采用无磁不锈钢板制成,外盖板及围板采用Q-235钢板制作,并设有极心圆调整装置和三相电极水冷保护套和绝缘密封装置。

水冷骨架和耐热混凝土复合结构采用烟罩侧壁由金属构件立柱支撑并通水冷却,四周用耐火砖砌筑而成,侧壁上设有三个操作门,在炉内大面上,开启方向是横向旋转式,上部有二个排烟口,与其相联的是二个立冷弯管烟道,直通烟囱或除尘装置。

环保理念下矿热炉节能设计策略分析

环保理念下矿热炉节能设计策略分析

环保理念下矿热炉节能设计策略分析摘要最近几年,我国的能源短缺问题越来越严重,我国政府制定了多项节能降耗的制度方针,为优化能源结构、提升能源使用效率提供了重要的方向指引。

矿热炉作为能源消耗量大的机械工业设施,必须进行节能降耗设计,为机械生产、工业冶炼做出更大的贡献。

基于这一目标,对矿热炉的概念、结构进行简单地阐述分析,详细探讨矿热炉节能降耗的方法举措,并提出一系列切实可行的节能设计方案,有助于减少矿热炉的能源损耗,产生更大的经济效益和环境效益。

关键词:环保理念;矿热炉;节能设计一、矿热炉的概念及结构冶金矿热炉是机械生产、金属冶炼中不可或缺的一部分,在还原冶炼矿石、碳质还原剂、硅铁生产等作业中发挥着重要的职能作用。

矿热炉通常由炉壳、炉衬、炉盖、水冷系统、除尘系统、把持器、上下料、烧穿器等几部分组成。

一般情况下,矿热炉的能源使用效率维持在0.5-0.8之间,如果能源使用效率低于这个区间,也就意味着矿热炉的能量损耗过于庞大,所产生的经济效益也会大打折扣。

矿热炉在使用过程中,往往会受到环境温度、人为操作、炉体结构等多种因素的影响,导致能量使用效率降低,这与我国政府提倡的节能环保、可持续发展不相符,因此基于环保理念,对矿热炉的节能设计展开全面细致地分析研究,具有重要的实践价值。

二、矿热炉的节能降耗措施(一)提高能源循环利用效率矿热炉在运行过程中,内部循环水通常在45摄氏度左右,在循环过程中损失的热量是不容忽视的,如果将这些热量损失充分利用起来,能够有效提升矿热炉的节能效果。

相关人员可以在保证矿热炉正常运行的情况下,利用高温循环水来补充设备内部的软化水和低温凝结水,从而提升矿热炉的产气量,矿热炉的整体余热利用率也能再上一个台阶。

在节能环保理念下,人们可以对传统的矿热炉进行结构优化,利用水冷梁制作炉罩,并铺设一些耐火材料,在炉罩的内外环梁、支撑钢梁、斜梁、直梁等位置都加装冷却通水装置,此外在矿热炉的铜瓦、集电环、导电铜管、保护环等位置加装水冷却设计,使得所有的冷却水装置都能发挥出最大效用,充分利用循环水提升矿热炉的能量使用效率。

12500KVA矿热炉开炉方案

12500KVA矿热炉开炉方案

12500KVA矿热炉开炉方案第一篇:12500KVA矿热炉开炉方案12500KVA(7#炉)冶炼锰硅合金开炉方案一、电烘炉前准备工作1)检查和试车烘炉前必须对变压器、短网进行性能及安全测试,冷却系统、电极把持系统、升降系统、配料投料系统必须运行正常。

2)清扫炉膛:将筑炉后的炉内剩余材料清理干净。

3)检查除尘系统,保证除尘开启后能够正常运行。

4)垫焦层:为防止烘炉时电极与炉底相粘结应在三相电极底部垫一层厚度为200MM左右的焦炭(10-30MM)后,并用六根32MM 圆钢埋在三根电极头下连接成三角形,将三相电极平稳的座放在焦炭上。

5)调小冷却水量。

烘炉初期,电极和其他设备受热较少,因此在焦烘炉阶段需要将冷却水调至畅通但水量较小为宜。

6)堵出铁眼:为使炉眼易于打开,封堵出铁口时两头用泥球封堵,中间用焦粉填实。

7)倒抱三相电极至下限。

二、电烘炉1)试送电(电极离开焦炭层):电烘前需对变压器进行三次分合闸试验,第一次分合闸(1秒左右),主要观察设备是否有异常,如没有,将进行第二次分合闸(10秒左右),检查变压器本体及短网有无异常现象,如没有,进行第三次合闸送电,如无异常,进行空载运行,空载运行根据实际情况定时。

2)电烘炉前需将变压器调至8档电压级。

3)电烘炉电流提什幅值表:1-8小时10A(2424kwh)8-16小时10-20A(4849kwh)16-24小时20-30A(9700 kwh)24-32小时30-40A(16973 kwh)32-40小时 40-50A(21823 kwh)4)本次电烘炉时间大约为40小时左右,用电量为5万KWH左右。

5)电烘炉时为稳定电弧和保持所规定的功率,可根据具体情况给电极周围添加新焦炭,并使焦炭绕电极成馒头体状。

6)电烘炉时应尽量少活动电极,并使三根电极负荷保持均衡,不可单独升高某相电极电流,以免出现漏糊等电极事故。

7)当出现电极负荷给不起时,若需下放电极必须有车间主任指令或其他干部亲自指挥方可停电下放,再送电后,电流要慢慢逐步给起。

12500KVA矿热炉开炉方案

12500KVA矿热炉开炉方案

12500KVA(7#炉)冶炼锰硅合金开炉方案一、电烘炉前准备工作1)检查和试车烘炉前必须对变压器、短网进行性能及安全测试,冷却系统、电极把持系统、升降系统、配料投料系统必须运行正常。

2)清扫炉膛:将筑炉后的炉内剩余材料清理干净。

3)检查除尘系统,保证除尘开启后能够正常运行。

4)垫焦层:为防止烘炉时电极与炉底相粘结应在三相电极底部垫一层厚度为200MM左右的焦炭(10-30MM)后,并用六根32MM圆钢埋在三根电极头下连接成三角形,将三相电极平稳的座放在焦炭上。

5)调小冷却水量。

烘炉初期,电极和其他设备受热较少,因此在焦烘炉阶段需要将冷却水调至畅通但水量较小为宜。

6)堵出铁眼:为使炉眼易于打开,封堵出铁口时两头用泥球封堵,中间用焦粉填实。

7)倒抱三相电极至下限。

二、电烘炉1)试送电(电极离开焦炭层):电烘前需对变压器进行三次分合闸试验,第一次分合闸(1秒左右),主要观察设备是否有异常,如没有,将进行第二次分合闸(10秒左右),检查变压器本体及短网有无异常现象,如没有,进行第三次合闸送电,如无异常,进行空载运行,空载运行根据实际情况定时。

2)电烘炉前需将变压器调至8档电压级。

3)电烘炉电流提什幅值表:1-8小时 10A (2424kwh) 8-16小时 10-20A(4849kwh)16-24小时 20-30A (9700 kwh) 24-32小时 30-40A (16973 kwh)32-40小时 40-50A (21823 kwh)4)本次电烘炉时间大约为40小时左右,用电量为5万KWH左右。

5)电烘炉时为稳定电弧和保持所规定的功率,可根据具体情况给电极周围添加新焦炭,并使焦炭绕电极成馒头体状。

6)电烘炉时应尽量少活动电极,并使三根电极负荷保持均衡,不可单独升高某相电极电流,以免出现漏糊等电极事故。

7)当出现电极负荷给不起时,若需下放电极必须有车间主任指令或其他干部亲自指挥方可停电下放,再送电后,电流要慢慢逐步给起。

33000矿热炉技术方案

33000矿热炉技术方案

33000KVA硅铁炉电力变压器(11)33000KV A矿热炉变压器报价目录1. SF11-85000/132-35-10台数:2台油重:20980KG器身重:45900KG总重:82100KG长×宽×高:6990×5389×6360(增加有载调压开关/每台)2.S11-12500/10-0.4台数:2台总重:5690KG器身吊重:3720KG油重:1680KG长×宽×高:2540×1600×27803.S11-1000/10-0.4台数:1台总重:2680KG器身吊重:1360KG油重:960KG长×宽×高:1770×1040×15404.HKDSPZ-11000/35台数:6台总重:30300KG器身吊重:17500KG油重:7060KG外型尺器重:1380KG备用油重:210KG配件及包装重:230KG长×宽×高:2540×2600×43802.1 设备需求表2.1绕组电阻(,75℃)SF11-85000/132-35电力变压器参数一、型号:SF11-85000/35一次电压:132KV(+2.5%X2 -2.5%X2)二次电压:35KV二、重量油重:20980KG器身重:45900KG总重:82100KG三、外形尺寸长×宽×高:6990×5389×6360 电力变压器技术参数设计依据:设计方案依据国家标准而定使用的环境条件1.1、安装地点:室外1.2、海拔高度:1000 米以内1.3、年平均气温值:-20℃<42℃1.4、相对湿度:<95%变压器主要技术参数:(括弧内是 1000KVA 的参数)3.1型号:S11-2500/10-0.4(S11-1000/10-0.4)3.2额定容量:2500KVA(1000KVA)3.3额定电压:10000/4003.4额定频率:50Hz3.5额定电流:144/3609(58/1443)3.6联结组别:Yyn03.7阻抗电压:4.5%3.8冷却方式:油浸自冷3.11调压方式:手动3.12变压器重量及外型参数:变压器总重:5690KG(2680KG) 器身吊重:3720KG(1360KG) 变压器油重:1680KG(960 KG)外型尺寸:2540(长)×1600(宽)×2780(高) mm(2500KVA) 1770(长)×1040(宽)×1540(高) mm(1000KVA)HKDSPZ-11000/35电炉变压器技术方案及报价1 设计依据本技术方案依据需方11000×3kVA铁合金炉变压器和埋弧炉变压器技术要求要求而确定。

矿热炉设计方案

矿热炉设计方案

矿热炉设计方案-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII(1)电耗值随原料成分,制成品成分,电炉容量等的不同而有很大差异。

这里是约值。

二结构特点矿热炉是一种耗电量巨大的工业电炉。

主要由炉壳,烟罩、炉衬、短网,水冷系统,排烟系统,除尘系统,电极壳,电极压放及升降系统,上下料系统,把持器,烧穿器,液压系统,矿热炉变压器及各种电器设备等组成。

矿热炉设备共分三层布置第一层为炉体(包括炉底支撑、炉壳、炉衬),出铁系统(包括包或锅及包车等),烧穿器等组成。

第二层(1)烟罩。

矿热炉目前大多数采用密闭式、或半密闭式矮烟罩结构,具有环保和便于维修,改善操作环境的特点。

采用密闭式结构还可把生产中产生的废气(主要成分是一氧化碳)收集起来综合利用,并可减少电路的热损失,降低电极上部的温度,改善操作条件。

(2)电极把持器。

大多数矿热炉都由三相供电,电极按正三角形或倒三角形,对称位置布置在炉膛中间。

大型矿热炉一般采用无烟煤,焦碳和煤沥青拌合成的电极料,在电炉冶炼过程中自己培烧成的电极。

(3)短网(4)铜瓦(5)电极壳(6)下料系统(7)倒炉机四、矿热炉主要设备1.主要设备:本设计选用矮烟罩半封闭固定式矿热炉,主要设备选择如下:炉体炉体是由炉壳、炉衬、炉底支撐等构成,炉壳采用14~18mm厚钢板焊接而成的圆筒体,外部焊接有加强筋,以保证炉体具有足够的强度。

炉底采用18~20㎜厚钢板,炉体采用25~30#工字钢支撑,自然通风冷却炉底,炉壳设有1~2个出料口,炉衬采用高铝耐火砖和自焙碳砖无缝砌筑新工艺,炉墙厚度为460~690㎜,外敷20㎜厚硅酸铝纤维板。

炉底碳砖厚度为800~1200㎜。

炉口采用碳化硅刚玉砖,流料槽采用水冷结构。

根据需要也可增加水冷炉门。

矮烟罩采用全水冷结构或水冷骨架和耐热混凝土的复合结构。

其高度以满足设备维修的需要,全水冷结构采用水冷骨架、水冷盖板和水冷壁及水冷围板。

矿热炉开炉方案

矿热炉开炉方案

矿热炉开炉方案现矿热炉已检修改造结束,经公司和厂部讨论,决定6月9日08:00时点火柴烘,6月12日00:00时通电电烘,6月13日08:00时投料生产,具体方案如下。

一、成立组织机构组长: XXX副组长:XXX组员: XXXXXX:负责开炉前的准备工作、方案落实、技术、现场的安全工作。

XXX:负责开炉过程中协调工作。

XXX:负责对配料系统的检查、调试和原料准备。

XXX:负责与配料车间沟通准备好原料。

XXX:负责对绝缘系统、电极壳、电器仪表、液压系统、出铁口、铁水包等设备的检查调试和准备工作,确保正常运行。

XXX:负责对炉盖、水冷系统检查调试和冶炼岗位所用工器具准备的工作。

XXX:负责炉前设备的检查调试和出铁岗位所用的工器具准备的工作。

XXX:负责开炉过程的检查、协调工作。

二、安全及确认准备工作2.1人员已通过培训符合岗位能力要求。

2.2开透气孔(在炉壳距炉底板200mm处钻10mm孔,沿炉壳均匀分部)。

2.3用配好的泥球堵眼(中部冲焦粉,两头用泥球堵实)。

2.4所属区域清扫干净。

2.5压放电极并控制为2000mm,并在电极壳距底部环100mm以下开透气孔,孔距为200mm交错开孔。

2.6凿岩机一台,钻头60mm。

2.7劳动防护用品发放到所有员工。

2.8、准备好拉电极所有器材。

2.9、所属工作区域干燥。

2.10、吊钩吊具齐全完好。

2.11、防护设施齐全可靠。

2.12、消防器材按规定配置。

2.13、6月9日16:00前在炉膛内铺好木柴,同时在每相电极下放置一个高1米,直径为1.4米的钢桶,用于装米焦, 17:50开始适量浇上柴油或其它易燃液体(汽油除外),2.14、烘炉期间电极糊糊柱高度控制在2800-3400mm,并每小时对糊柱高度进行测量一次。

(更换电极糊厂家)2.15、以上准备工作于6月9日17:00前完成。

三、柴烘3.1期间分段为:小火段(6月9日18:00— 6月10日16:00,炉底柴均匀燃烧且火苗尽可能小);中火段(6月10日16:00—6月11日8:00,火苗高度达炉墙垂直中央);大火段(6月10日08:00— 23:59,火苗高度超过炉墙垂直中央,但不超炉口)。

课程设计

课程设计

Fe2 O3 还原为Fe Al2 O3 还原为Al Ca0还原为Ca
lOOx0.5%x99%=0.495 lOOx0.5%x50%=0.25 lOOx0.2%x40%=0.08 总计
0.495x36/160=0.11 0.25x36/102=0.09 0.08x12/56=0.02 37.49
2.3.2还原焦炭灰分中氧化物的碳见下表 lOOkg 焦炭含固定碳 83kg ,用来还原焦炭中灰分中的氧化物有 3.61kg , 用来还原硅石中的氧化物的碳有 83-3.61=79.39kg。 还 原 lOOkg 硅 石 需 要 同 定 碳 37.49kg , 折 合 干 焦 量 为 37.49/79.39% =47.22kg. 氧化物 从lOOkg焦炭中还原的数 量(kg) 13x0.48x0.91=5.678 13x0.48x0.07= 0.437 13x0.21x0.99=2.703 13x0.25x0.5=1.625 13 x0.047x0.4=0.244 13x0.003x1=0.0039 还原所需的碳量(kg)
度与防止涡流损失,我们采取用水冷钢管(防磁)做骨架并起吊,上下盖采用石 板与水泥构筑, 用细钢筋做支撑,既减轻了烟罩整体重量又防止了筑砌或制作上 的不便。烟罩高度离炉沿 2 300 mm,直径与炉壳直径等同,厚度 160 mm,上 下盖间通水冷却。
1.3 技术指标
设计完成以后有关该炉的技术参数与性能如下: 电极直径/mm 1050;极心圆直径/mm 2500; 炉膛直径/mm 6200;炉膛深度/mm 2700; 炉壳直径/mm 8000;炉壳高度/mm 4618; 烟罩高度/mm 2300;理论日产量/t 15; 理论电单耗量/kW·h·t −1 =8800;
工作层、保温层、隔热层、绝热层的厚度,钢板层的厚度根据强度需要而定。 我们在这次设计中, 工作层都使用自焙碳砖、保温层选用新型隔热耐火粘土 砖(热导率< 0.44 W/( m·K) 、隔热层使用粒度为3 ~ 8mm 的细硅石与矿 渣混合物、绝热层使用石棉纤维板、钢板层选用14mm 厚的普通钢(炉底钢板 厚18 mm) 。 1.2.2.6 出料口位置、结构、尺寸与材料选择:出料口是矿热炉上非常重要的 一个部位,它的位置、结构形状、尺寸、材料选择都是需要仔细斟酌的。位置布 置不当,出料口部位温度低,出料不畅或者是操作不方便;结构形状尺寸不当, 也会导致出料不畅或者封堵困难或者出硅时间延长;材料选择不当,容易氧化腐 蚀,维修频繁。 在这次设计中,出料口设计 2 个,每个出料口水平位置与炉底齐平并比炉 底水平线下倾斜 3°,角度位于炉心与电极中心两点的延长线与炉壁的交点上。 出料口应当设计成圆形, 便于烧穿与封堵,尺寸根据出硅时间要求计算并结合实 际操作需要来决定大小,一般为直径 100 mm,容易氧化的外侧选择石英材料与 碳糊。 1.2.2.7 炉门结构、尺寸与材料选择:大容量炉最大的问题是炉缘距离炉心远, 上料困难, 国内特别强调以人工精细加料来取得好质量与低能耗产品,普遍认为 大容量炉子在国内不如 6 300 kVA 炉子的性能。我们在这次设计中设计了 3 个 机械加料炉门,3 个捣料炉门。3 个机械加料炉门取代了炉顶上料,因为从炉顶 上料, 必须建造一个高的加料台或皮带上料系统,同时用机械加料炉门也解决了 大容量矿热炉上料困难的问题。考虑到德国 DDS 公司生产的加料捣炉机比较昂 贵,因此将加料捣炉功能分开,加料从 3 个密封加料炉门通过摇动料桥(可伸 缩深入到炉心) 将料布放在料面各处,捣炉功能通过窥视孔根据需要打开捣料炉 门进行捣炉操作。 加料炉门位于离炉沿 400mm 高度处,其门槛长 500mm,高 400mm,普通 钢材质。捣炉炉门门槛下部与炉沿等高,门槛长 1 200mm,高 1 500 mm,使用 单独水冷结构。 1.2.2.8 烟罩结构、尺寸与材料选择:大容量矿热炉炉膛尺寸跨度大,烟罩设计 较困难,同时从烟罩通过的电流大,处理不好涡流损失大。为了解决烟罩结构强

(冶金行业)半封闭式工业硅矿热炉主要技术方案

(冶金行业)半封闭式工业硅矿热炉主要技术方案

(冶金行业)半封闭式工业硅矿热炉主要技术方案(冶金行业)半封闭式工业硅矿热炉主要技术方案宜兴市中宇电冶设备有限X公司33000KVA半封闭式工业硅矿热炉技术方案1电炉设备1.133000KVA半封闭式工业硅矿热炉主要技术参数1.2电炉设备设计1.2.1矿热炉设备设计要求矿热电炉采用半封闭型式,采用铜瓦压力环式电极把持器,电炉炉底通风冷却,炉体采用旋转炉体,炉体测温,变压器长期具备20%的长期超负荷能力。

短网系统、铜瓦、进线电缆都长期具备20%之上的超负荷能力。

烟道和炉盖之间设置了可靠绝缘。

液压系统采用组合阀,且设置储能器。

电极升降油缸上、下俩端均设绝缘加以保护。

高压油管俩端全部带绝缘。

为防止电极偏斜,设计时在炉盖、平台及电极导向装置,电极导向装置设绝缘。

所有管道均设管道沟,便于检修。

闸阀采用不锈钢丝杆,以增加其使用寿命。

每组分水器设3路备用水路,分水器阀门采用不锈钢或铜球阀,分水器给、回水路布局合理。

炉盖采用框架式水冷结构,中心区采用不导磁材料制作。

电炉烟道在二、三楼之间设水冷段,以降低烟气温度。

1.2.2工艺设计要求电炉厂房柱子跨距按6m、7.5m布置。

电炉车间分设四个跨区,分别是变压器跨(偏跨)7.5m、电炉跨18m、浇注跨24m、成品跨18m。

电炉跨初定为五层平台分别为:a)+0.0m出渣铁轨道平台包括铁道、出铁车和铁包、出渣车和渣包等。

其中+2.4m平台为局部出铁操作平台:该平台正对出铁口,包括烧穿器、出铁挡板等出炉工具等。

b)+7.0m电炉炉口操作平台电炉控制室计算机室布置在此平台上,冷却水系统的分水器和回水槽布置在该平台上、炉口操作工具等。

C)+11.8变压器放置平台电炉设有三台单相变压器,放置在此平台上成三角形布置,为方便变压器安装、检修、更换设有变压器吊装孔。

d)+18.3m电极升降机构平台平台空间内安装有电极升降、压放装置及电炉料管插板阀。

液压站也布置在此平台上。

e)+24.8m电炉电极支承及接长电极壳、加入电极糊及加料平台炉顶料仓座在此平台上。

我司成功研制30000KVA矿热炉

我司成功研制30000KVA矿热炉

我司成功研制30000KVA矿热炉在中冶赛迪专家的大力支持下我司成功研制3000KVA矿热炉在引进国外先进技术和中冶赛迪部分专家的支持下我司众多技术人员和工程师经过长期努力,克服了技术上的种种难关,终于成功研制出适合各个地区使用的矿热炉,为国内冶金业做出了重大贡献。

矿热炉简介一原理用途矿热炉又称电弧电炉或电阻电炉。

它主要用于还原冶炼矿石,碳质还原剂及溶剂等原料。

主要生产硅铁,锰铁,铬铁、钨铁、硅锰合金等铁合金,是冶金工业中重要工业原料及电石等化工原料。

其工作特点是采用碳质或镁质耐火材料作炉衬,使用自培电极。

电极插入炉料进行埋弧操作,利用电弧的能量及电流通过炉料的,因炉料的电阻而产生能量来熔炼金属,陆续加料,间歇式出铁渣,连续作用的一种工业电炉。

矿热炉主要类别、用途(1)电耗值随原料成分,制成品成分,电炉容量等的不同而有很大差异。

这里是约值。

二结构特点矿热炉是一种耗电量巨大的工业电炉。

主要由炉壳,烟罩、炉衬、短网,水冷系统,排烟系统,除尘系统,电极壳,电极压放及升降系统,上下料系统,把持器,烧穿器,液压系统,矿热炉变压器及各种电器设备等组成。

矿热炉设备共分三层布置第一层为炉体(包括炉底支撑、炉壳、炉衬),出铁系统(包括包或锅及包车等),烧穿器等组成。

第二层(1)烟罩。

矿热炉目前大多数采用密闭式、或半密闭式矮烟罩结构,具有环保和便于维修,改善操作环境的特点。

采用密闭式结构还可把生产中产生的废气(主要成分是一氧化碳)收集起来综合利用,并可减少电路的热损失,降低电极上部的温度,改善操作条件。

(2)电极把持器。

大多数矿热炉都由三相供电,电极按正三角形或倒三角形,对称位置布置在炉膛中间。

大型矿热炉一般采用无烟煤,焦碳和煤沥青拌合成的电极料,在电炉冶炼过程中自己培烧成的电极。

(3)短网(4)铜瓦(5)电极壳(6)下料系统(7)倒炉机(8)排烟系统(9)水冷系统(10)矿热炉变压器(11)操作系统第三层(1)液压系统(2)电极压放装置(3)电极升降系统(4)钢平台(5)料斗及环行布料车其他附属;斜桥上料系统,电子配料系统等三、矿热炉主要配置方案四、矿热炉主要设备1.主要设备:本设计选用矮烟罩半封闭固定式矿热炉,主要设备选择如下:1.1炉体炉体是由炉壳、炉衬、炉底支撐等构成,炉壳采用14~18mm厚钢板焊接而成的圆筒体,外部焊接有加强筋,以保证炉体具有足够的强度。

密闭矿热炉技术方案

密闭矿热炉技术方案

密闭矿热炉技术方案生石灰和含碳原料(焦炭、无烟煤或石油焦)在矿热炉内,依靠电弧高温熔化反应而生成电石。

主要生产过程是:原料加工;配料;通过电炉上端的入口或管道将混合料加入电炉内,密闭的电炉中加热至2000℃左右,依下式反应生成电石:GaO+3C→CaC2+CO熔化了的碳化钙从炉底取出后,经冷却、破碎后作为成品包装。

反应中生成的一氧化碳则全部被抽出。

一、工艺流程简介1.生石灰工艺石灰石经加热达900O C便会发生分解,放出CO2,生成石灰。

CaCO3——→ CaO + CO2 – 422 kcal/kg生产冶金活性石灰时,分解温度控制为1050O C~1100O C,煅烧效果恰到好处才能获得最佳的优质软烧(轻烧)石灰。

A石灰石煅烧流程料场石灰石经振动筛筛去≥80mm的大石块和≤40mm的小石料入窑后,自上而下缓慢下移,连续经过预热带、煅烧带、后置煅烧带和冷却带,最后被煅烧成石灰。

B石灰流程成品石灰经窑底部四个小料仓,按预定的间隔时间由四个电磁振动给料机将石灰排入对应石灰称中至给定重量,然后进入窑下部的储灰仓中,保证窑内物料的均匀下落防止发生偏窑。

储灰仓内石灰至一定量时,再由振动给料机排出,经过平皮带和大倾角皮带运输机送入振动筛。

块度≥5mm石灰放至可逆皮带输送至各成品仓,≤5mm石灰粉直接放入粉灰仓。

2、电石工序全密闭电石生产工艺流程电石生产将分为原料贮运、炭材干燥、电石生产、固态电石冷却、破碎、储存及电极壳制造几个工序。

(1)原料贮运电石生产主要原料焦炭、石灰、电极糊控制生石灰过烧率小于2%,石灰氧化镁含量小于1%,石灰粒度5-40毫米,焦碳含水小于2%,操作电流小于75-80KA,焦炭干燥时由装载机送到受料斗中,经带式输送机及斗式提升机送到破碎筛分楼筛分5-25mm通过带式输送机送至炭材干燥中间料仓。

0-5mm用小车送至电厂、空心电极或炭材干燥焦粉仓供热风炉使用;石灰需要时经带式输送机送至石灰破碎筛分楼进行破碎筛分。

铁合金矿热炉设计及冶金计算毕业课程设计

铁合金矿热炉设计及冶金计算毕业课程设计

(此文档为word格式,下载后您可任意编辑修改!)J I A N G S U U N I V E R S I T Y本科课程设计铁合金矿热炉设计及冶金计算学院名称:京江学院专业班级:J冶金1101班学生姓名:周纪雪指导教师姓名:黄海芳指导教师职称:副教授2014年12月29日课程设计任务书题目:铁合金矿热炉设计及冶金计算学院:京江学院专业:冶金工程班级:11011.设计目的:达成我校冶金工程专业本科生毕业要求和培养目标,培养学生正确的设计思想,理论联系实际的工作作风,严肃认真、实事求是的科学态度和勇于探索的创新精神;加深学生对冶金课程基础知识和基本理论的理解和掌握,培养学生综合运用所学知识与生产实践经验,独立分析和解决工程技术问题的能力;培养学生在理论计算、工程绘图、结构设计、运用标准和规范、查阅设计手册与资料以及应用计算机等方面的能力。

2.设计内容和要求:计算并给出适合下表相应条件FeSi75Al2.0-A产量的矿热电炉的主要参数。

课程设计所需其它数据例如原料成分,自行合理选取,并适当验证以保证产品符合现行标准。

要求在本课程设计中,体现人文社会科学素养、社会责任感和工程职业道德,体现运用从事工程工作所需的相关数学、自然科学以及经济和管理知识的能力,体现运用工程基础知识和本专业的基本理论知识解决问题的能力,体现系统的工程实践学习经历;还要体现了解本专业的前沿发展现状和趋势并具备设计实验的能力,能对结果校核分析;要求设计过程中掌握文献检索、资料查询及运用现代信息技术获取相关信息的基本方法,能够考虑经济、环境、法律、安全、健康、伦理等制约因素,了解与本专业相关的职业和行业的生产、设计、研究与开发、环境保护和可持续发展等方面的方针、政策和法律、法规,能正确认识工程对于客观世界和社会的影响,树立终身学习观念,不断学习,发展提高。

3.主要参考文献:《钢铁工业“十二五”发展规划》及现行“淘汰落后生产工艺装备和产品指导目录”、相关标准、《冶金设备课程设计》、《冶金工程专业课程设计指导书》、《硅系铁合金生产技术》等设计参考书目及其它设计参考资料。

矿热炉设计方案.doc

矿热炉设计方案.doc

矿热炉简介一原理用途矿热炉它主要用于还原冶炼矿石,碳质还原剂及溶剂等原料。

主要生产硅铁,锰铁,铬铁、钨铁、硅锰合金等铁合金,是冶金工业中重要工业原料及电石等化工原料。

其工作特点是采用碳质或镁质耐火材料作炉衬,使用自培电极。

电极插入炉料进行埋弧操作,利用电弧的能量及电流通过炉料的,因炉料的电阻而产生能量来熔炼金属,陆续加料,间歇式出铁渣,连续作业的一种工业电炉。

矿热炉主要类别、用途反映温度电耗类别主要原料制成品0℃KW*h/t(45%)硅2100-5500 铁硅铁炉硅铁、废铁、焦碳硅铁1550-1770(75%)硅铁8000-11000铁合锰铁炉锰矿石、废铁、焦碳、石锰铁1500-1400 2400-4000 灰金炉铬铁炉铬矿石、硅石、焦碳铬铁1600-1750 3200-6000 钨铁炉钨晶矿石、焦碳钨铁2400-2900 3000-5000硅铬炉铬铁、硅石、焦碳硅铬合金 1600-1750 3500-6500硅锰炉锰矿石、硅石、废铁、焦硅锰合金 1350-1400 3500-4000碳炼钢电炉铁矿石、焦碳生铁1500-1600 1800-2500 电石炉石灰石、焦碳电石1900-2000 2900-3200 碳化硼炉氧化硼、焦碳碳化硼1800-2500 约 20000 (1)电耗值随原料成分,制成品成分,电炉容量等的不同而有很大差异。

这里是约值。

二结构特点矿热炉是一种耗电量巨大的工业电炉。

主要由炉壳,烟罩、炉衬、短网,水冷系统,排烟系统,除尘系统,电极壳,电极压放及升降系统,上下料系统,把持器,烧穿器,液压系统,矿热炉变压器及各种电器设备等组成。

矿热炉设备共分三层布置第一层为炉体(包括炉底支撑、炉壳、炉衬),出铁系统(包括包或锅及包车等),烧穿器等组成。

第二层(1)烟罩。

矿热炉目前大多数采用密闭式、或半密闭式矮烟罩结构,具有环保和便于维修,改善操作环境的特点。

采用密闭式结构还可把生产中产生的废气(主要成分是一氧化碳)收集起来综合利用,并可减少电路的热损失,降低电极上部的温度,改善操作条件。

12500KVA工业硅矿热炉的设计

12500KVA工业硅矿热炉的设计

第五章工业硅冶炼能源节约技术的研究5.1概述能源安全已构成我国整体战略安全的一个极大隐患,成为经济社会发展的瓶颈。

我国人均煤炭、石油、天然气资源量仅为世界平均水平的60%、10%和5%。

目前,我国已成为世界第二大能源消费国和第二大石油消费国,能源供应紧张局面日趋严重[81]。

与此同时,我国也存在严重能源利用效率低的问题。

近年来的快速增长在很大程度上是靠消耗大量物质资源实现的。

我国单位产出的能耗和资源消耗水平明显高于国际先进水平,如火电供煤消耗高达22.5%,吨钢可比能耗高21%,水泥综合能耗高达45%。

据测算,我国每创造一美元GDP所消耗的能源是美国的4.3倍,是日本的11.5倍。

能源利用率仅为美国的26.9%,日本的11.5%[82]。

因此,提高能源使用效率是在能源总量不变条件成为中国发展中的刻不容缓的任务。

工业硅生产是高能耗行业,平均每吨工业硅需要消耗13000KWh电以上,全国年产100万吨工业硅需要13亿KWh以上。

而国外先进水平吨硅消耗量为11000KWh,我国工业硅电耗比国外先进水平高10—20%,能源节约潜力仍很大(预计年节约0.2亿KWh,相当0.1亿元)。

另外,国外先进水平也不是最理想的能耗水平,我国如能在国外先进水平基础上再配以精工细作,吨硅消耗量应该在10000—11000KWh间。

我国工业硅生产能源消耗高主要是因为设计上不合理、控制水平与管理水平不高。

设计上不合理体现在我国普遍使用的是6300KV A左右的小炉型(散热大、产量低)、炉型设计上为隔热措施不严密、电路设计不合理、极心圆尺寸大小不合理等许多细节方面。

控制水平不高体现在人工操作范围大、炉况稳定性差、造成因调整炉况波动费时较长而使得非生产性能耗损失大。

管理水平不高体现在管理上不严、制度不健全、操作细节缺乏,造成物资或能源上的消耗浪费。

目前工业硅生产中能源节约途径主要有:1)炉型的大型化方向;2)炉型的密闭化方向;3)余热利用化方向;4)提高炉子电效率措施如改进短网结构设计、改善变压器性能、改善电参数、采用低频电源等;5)提高炉子热效率;6)改变炉内反应机制;7)改变原料性能方向;8)采用自动控制方向;9)管理制度建设方向。

硅铁矿热炉余热发电系统设计方案

硅铁矿热炉余热发电系统设计方案

硅铁矿热炉余热发电系统设计方案2019年10月3日矿热炉生产中烟气温度约400℃左右,烟气带走的热量约为输入总热量的40%~50%。

因此,充分利用余热资源实现节能减排、保护环境具有重要的现实意义。

硅铁矿热炉生产运行特点:(1)热负荷不稳定。

在连续稳定的生产工艺中,加料、熔化、出料时,烟气温度变化较大,难以人工控制;(2)硅石和煤炭是硅铁冶炼的原料,烟尘中含SiO2和SO2。

SiO2具有较强的粘附性,粒径极小,比表面积大,绝热性能强。

其粘附在换热管束上致使换热效果恶化。

除灰技术研究的主要问题即如何更有效的去除粘附在换热管上的SiO2粉尘。

烟道中的部分SO2转化成SO3,与水蒸汽接触产生硫酸蒸汽。

当锅炉受热面温度低于硫酸蒸汽露点时,则其在管壁凝结造成低温腐蚀。

目前在硅铁矿热炉上实施余热发电项目的单位分别采用不同的除灰方式,不同的余热锅炉型式、不同的蒸汽参数、不同的余热发电方案,在硅铁行业节能降耗、减少污染排放方面取得初步成效。

但都不同程度地存在某些问题。

发展、完善低温低压余热锅炉的研究与设计方案亟待解决的关键问题:首先研制高效吹灰技术,取代结构复杂、笨重、多发故障的机械除灰方式;其次是采用强化换热技术,取代目前体积庞大、耗用钢材较多的光管结构余热锅炉;第三,选择适当的蒸汽参数,选择最佳的系统配置。

余热资源某冶炼公司现有4台25.5MVA硅铁矿热炉,实测每台硅铁矿热炉产生的烟气温度约350〜550℃左右,流量102000Nm3/h(正常工况),出料时流量97500Nm3/h。

运行工况具有一定波动性,依据测量参数,结合行业经验数据,取设计方案烟气参数,烟尘成分及粒度。

硅微粉呈灰白色,质轻粒细,容重约为200kg/m3,安息角约为48度,吸湿差。

硅铁烟尘的主要成分以SiO2为主,占90%以上;比电阻高,在225℃时,比电阻不低于1.0x10的11次方W.cm。

高电绝缘性:比电阻通常在10的11次方~10的13次Ω.cm,具有极强隔热性,热传导率≤0.05W/mK(由于多孔性),粉尘以小粒径为主,小于5微米的硅微粉占93%以上。

3第三章矿热炉

3第三章矿热炉

T = 1637 ℃ ∆H = 24637kJ/kg (Si)
48
冶炼温度和入炉功率
冶炼温度
电弧热— 热等离子体 3×103~4×104 K (属低温等离子体;核聚变、激光聚 变,属高温等离子体,106 ~108K)
电阻热— 焦炭层、熔体<3×103 K
功率密度—维持反应温度的电能输入要求
c-z
b-y
a-x
23
二次短网设计与经济运行的关系
短网截面选择的原则:
(1)用安全运行电流密度选择导体截面积 (2)用经济运行电流密度选择导体截面积 (3)克服集肤效应影响选择几何形状
24
矿热炉节电的技术措施之一 短网布置与导电体截面积选取
焦耳-楞次定律: Q=0.239I2Rt
工频电流中的导体集肤效应
6.0
挥发分/% 12.0~15.5 12.0~15.5
耐压强度 /MPa≥
17.0
15.7
电阻率
/μΩ·m≤
68
75
体积密度
/g·cm-3 ≥
1.36
1.36
THD-3
7.0 9.5~13.5
19.6
80
1.36
THD-4
THD-5
9.0
11.0
11.5~15.5 11.5~15.5
19.6
19.6
3
矿热炉参数
设备参数
熔炼特性参数
电气参数
变压器容量 电极电流 二次侧电压
炉型参数 电气特性
炉膛直径 炉膛深度 电极直径 极心圆大小
功率因素 相平衡 操作电阻
操作制度
电极插入深度 化料速度 炉料透气性
4
矿热炉主要设备组成

3_第三章_矿热炉

3_第三章_矿热炉
26
国内部分企业短网运行情况调查汇总表
产品 硅铁 硅钙合金 硅钙钡 合金 工业硅
锰硅合金
碳铬合金
短网压降 %
19.23 13.72 39.8 20.57 32.5 25.4 22.5 17.9 16.9 27.74 21.21 22.94
铜管 2.79 4.1 3.7 3.15 3.17 3.24 2.74 2.69 2.79 2.89 2.88 2.96
5
矿热炉主体设备示意图
1-高压母线;2-油开关;3-电炉变压器;4-高压线圈;5-低压线圈;6-铁芯; 7-铜排;8-软电缆;9-导电铜管;10-铜瓦;11-电极;12-炉衬;13-熔池
6
普通矿热炉设备示意图
7
Hale Waihona Puke 封闭式旋转电炉断面图1-炉衬;2-炉壳;3-炉盖; 4-旋转机构;5-把持器; 6-电极;7-加料系统; 8-电极升降压放装置。
电极周边电阻系数(安德列系数) 不同产品k因子不同,同一产品k因子是常数
电极功率密度
k U2 d
I2
4P 3 d 2
(kw/cm2)
式中:P-炉口有效功率kW
16
直流电源内阻与灯泡电阻
r k
R
17
炉子电压圆图
18
Y
短网三种接线方式
Y
a 三相变压器Y-△接线
b 三相变压器Y-△接线

c 三相变压器△-△接线
第三章 矿热炉
(Submerged Arc Electric Furnace)
铁合金生产三要素 矿热炉主体设备组成 炉用变压器与短网设计要点 电极系统 不同冶炼模式的矿热炉
1
铁合金生产三要素
大酒店(饭店)

矿热炉打炉料实施方案

矿热炉打炉料实施方案

矿热炉打炉料实施方案一、前言。

矿热炉是工业生产中常用的一种热处理设备,其主要作用是对矿石进行加热处理,以达到提取金属等目的。

而炉料作为矿热炉的重要组成部分,对于炉内的热处理效果有着至关重要的影响。

因此,制定一套科学合理的矿热炉打炉料实施方案,对于提高炉内热处理效率和产品质量具有重要意义。

二、矿热炉打炉料实施方案。

1. 炉料选择。

在选择炉料时,首先要考虑其物理化学性质和热处理特性,确保炉料能够满足炉内的加热要求。

同时,还需要考虑炉料的成本和可获得性,确保选用的炉料能够在一定程度上降低生产成本。

2. 炉料预处理。

在投入矿热炉之前,需要对炉料进行预处理,以去除其中的杂质和水分,以确保炉料在炉内的加热效果。

同时,还需要对炉料进行粒度分级,以满足不同规格的炉料需求。

3. 炉料投入。

在投入炉料时,需要根据炉型和炉内温度的要求,合理控制炉料的投入速度和方式,确保炉料能够均匀分布在炉内,避免出现过热或局部冷却的情况。

4. 炉料加热。

在炉料加热过程中,需要根据炉料的物理化学性质和热处理要求,合理控制加热温度和时间,确保炉料能够达到预期的加热效果。

5. 炉料排出。

在炉料加热结束后,需要及时将炉料从矿热炉中排出,以避免炉料在炉内过度热处理或产生不必要的化学反应,影响炉内产品的质量。

6. 炉料回收利用。

在炉料排出后,可以对炉料进行冷却处理,并进行再利用,以降低生产成本和资源浪费。

三、总结。

矿热炉打炉料实施方案的制定对于提高炉内热处理效率和产品质量具有重要意义。

通过科学合理地选择炉料、进行预处理、合理投入和加热、及时排出和回收利用,可以有效提高矿热炉的生产效率和产品质量,降低生产成本,实现经济效益和社会效益的双赢。

希望本实施方案能够得到广泛应用,并不断完善和提升。

电石矿热炉产能及产量提升设计方案与电极入炉插入深度控制措施及方法

电石矿热炉产能及产量提升设计方案与电极入炉插入深度控制措施及方法

电石矿热炉产能提升设计方案与电极入炉深度控制措施及方法一、电石矿热炉产能提升:XXX电石厂有12台电石炉,每台电石炉用三台单相变压器供电,单台变压器容量为9000KVA,共9000×3=27000KVA;总负荷为27000KVA×12=324000KVA。

电石炉用电由220KV两台主变供电,每台变压器接带6台电石炉负荷,每台主变压器额定38.5KV电压时负荷为180000KVA,两台变压器38.5KV电压时总负荷为360000KVA,35KV电压时为163800×2=327600KVA, 12台电石炉额定总需求负荷为27000KVA×12=324000KVA。

按照表1设计要求电石炉变压器制造时可超额定负荷20%长期运行,但是实际运行时,电石炉总负荷324000KVA超20%为388800KVA,已经超过变压器的额定负荷,显然主变压器设计时未考虑电石炉变压器设计负荷要求,在原设计中,电石炉总负荷限制在额定负荷324000KVA以下。

表1、主变分支回路的实际参数和目前的运行参数单台变压器额定负荷9000KVA(超额定负荷20%能长期运行),一次电流257A(相电流),角接运行时额定线电流为257×1.732=445A,三台电石炉满负荷电流为445×3=1335A,从上表中可以看出,分支电流报警值为1300A,额定电流为1350A。

三台电石炉满负荷运行时电流1335A大于供电分支设定报警值1300A,小于设计电流值1350A。

受供电设备额定负荷的影响,实际运行中,每台电石炉只能运行在27000KVA以下,考虑到电石炉操作电流引起的三相不平衡,电石炉负荷实际达不到额定的27000KVA。

主变的限制,已成为电石炉负荷提升的一个制约点;另外一点,电石炉变压器运行时功率因数0.95,档位达到3档甚至2档运行,变压器在负荷不超27000KVA,有功功率最高可提高到25650KW,这时,变压器已基本达到上限,这是制约电石炉负荷提升的另一个原因,两方面制约了电石炉负荷的进一步提升。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)电耗值随原料成分,制成品成分,电炉容量等的不同而有很大差异。

这里是约值。

二结构特点
矿热炉是一种耗电量巨大的工业电炉。

主要由炉壳,烟罩、炉衬、短网,水冷系统,排烟系统,除尘系统,电极壳,电极压放及升降系统,上下料系统,把持器,烧穿器,液压系统,矿热炉变压器及各种电器设备等组成。

矿热炉设备共分三层布置
第一层为炉体(包括炉底支撑、炉壳、炉衬),出铁系统(包括包或锅及包车等),烧穿器等组成。

第二层
(1)烟罩。

矿热炉目前大多数采用密闭式、或半密闭式矮烟罩结构,具有环保和便于维修,改善操作环境的特点。

采用密闭式结构还可把生产中产生的废气(主要成分是一氧化碳)收集起来综合利用,并可减少电路的热损失,降低电极上部的温度,改善操作条件。

(2)电极把持器。

大多数矿热炉都由三相供电,电极按正三角形或倒三角形,对称位置布置在炉膛中间。

大型矿热炉一般采用无烟煤,
四、矿热炉主要设备
1.主要设备:本设计选用矮烟罩半封闭固定式矿热炉,主要设备
选择如下:
1.1炉体
炉体是由炉壳、炉衬、炉底支撐等构成,炉壳采用14~18mm厚钢板焊接而成的圆筒体,外部焊接有加强筋,以保证炉体具有足够的强度。

炉底采用18~20㎜厚钢板,炉体采用25~30#工字钢支撑,自然通风冷却炉底,炉壳设有1~2个出料口,炉衬采用高铝耐火砖和自焙碳砖无缝砌筑新工艺,炉墙厚度为460~690㎜,外敷20㎜厚硅酸铝纤维板。

炉底碳砖厚度为800~1200㎜。

炉口采用碳化硅刚玉砖,流料槽采用水冷结构。

根据需要也可增加水冷炉门。

1.2矮烟罩
采用全水冷结构或水冷骨架和耐热混凝土的复合结构。

其高度以满足设备维修的需要,全水冷结构采用水冷骨架、水冷盖板和水冷壁
及水冷围板。

水冷骨架采用16~20#槽钢制成,三相电极周围内盖板采用无磁不锈钢板制成,外盖板及围板采用Q-235钢板制作,并设有极心圆调整装置和三相电极水冷保护套和绝缘密封装置。

水冷骨架和耐热混凝土复合结构采用烟罩侧壁由金属构件立柱支撑并通水冷却,四周用耐火砖砌筑而成,侧壁上设有三个操作门,在炉内大面上,开启方向是横向旋转式,上部有二个排烟口,与其相联的是二个立冷弯管烟道,直通烟囱或除尘装置。

1.3短网
短网包括变压器端的水冷补偿器、水冷铜管、水冷电缆、导电铜管、铜瓦及其吊挂、固定联接等装置。

其布置型式可分为正三角或倒三角。

不论那种布置,均要求在满足操作空间的前提下,尽可能地缩短短网的距离降低短网阻抗,以保正获得最大的有功功率。

水冷铜管、导电铜管均采用厚壁铜管,各相均采用同向逆并联,使短网往返电流双线制布置,互感补偿磁感抵消。

中间铜管用水冷电缆相连,冷却水直接从水冷铜管经水冷电缆、导电铜管流入铜瓦,冷却铜瓦后经返回的导电铜管、水冷电缆、水冷铜管流出炉外。

运行温度低,减少短网导电时产生的热量损失,能有效提高短网的有功功率,同时铜管重量轻,易加工安装,大大减少短网的投资。

1.4电极系统:
电极系统由把持器筒体、铜瓦吊挂、压力环、水冷大套、电极升降装置、电极压放装置等。

在电极系统上我们采用了国际先进的德马克,南非PYROMET等技术,如采用悬挂油缸式的电极升降装置,能灵
活、可靠、准确地调节电极的上、下位置。

上下抱闸和压放油缸组成电极带电自动压放装置。

电极系统共三套,每套包括电极筒1个、把持筒1个、保护套1个、压力环1个、铜瓦6~8块。

把持器的作用把持住自焙电极,保护大套、压力环、铜瓦依顺序都吊挂固定在其上面,每根电极上设6~8块铜瓦,是通过压力环上的油缸和顶紧装置,形成一对一顶紧铜瓦,压力均匀,可保证铜瓦对电极的抱紧力均衡,铜瓦与电极的接触导电良好。

把持器上部由台架与二个升降油缸联接,油缸的支座是固定在三层平台的钢平台上,在钢平台上一定的范围内根据需要可调整极心圆。

每根电极上设有单独电极自动压放装置,由气囊抱闸(或液压抱闸)抱紧电极,充气气囊抱紧电极,放气气囊松开电极;上、下气囊抱闸由导向柱和压放油缸相联接,下气囊抱闸与把持筒相联接,冶炼时下气囊始终抱紧电极,只在压放时才与上气囊配合交替松开夹紧电极,完成压放动作。

1.5 冷却水系统
冷却水冷系统是对处于高温条件下工作的构件(包括短网、压力环、保护大套、炉壳、烟罩、烟囱)进行冷却的装置,它由分水器、集水箱、压力表、阀门、管道及胶管、接头等组成。

短网(包括水冷铜管、水冷电缆、铜瓦)压力环的水路专门设有放水装置用于检修、抢修时可快速排水。

水冷短网及压力环、保护套的冷却水要求:软水,进水温度≤30℃,出水温度≤50℃。

2.主要电气设备
2.1矿热炉变压器
采用低损耗节能型壳式矿热变压器,有载电动调压,强循环,油水冷却器,阻抗电压4~6%,一次侧电压可为35~110KV,二次侧电压分为5~27级(不同容量变压器和不同冶炼品种采用不同的二次电压级),前几档为恒功率,后几档为恒电流,并要求超负载能力>25%,采用侧出线管式联接方式。

2.2高压供电系统
高压供电系统由35KV(或110KV)馈电经变压器隔离开关,真空断器送至电炉变压器,同时可以根据用户要求设计谐波吸收装置和一次补偿。

2.3压供电系统
设动力变压器,动力电源送至主室动力柜,送至水泵、变压器、调压装置、控电电源、PLC电源、液压站及空压机室,低压可以增加二次补偿。

3.主要辅助设备
可根据用户需要自备或用我公司设计、制造的设备或图纸。

3.1 上料、加料系统设备
上料设备可选用皮带上料,单斗提升机上料,斗式提升机、料斗、料罐和单梁电动葫芦上料。

加料设备可选用布料小车。

钢料仓→下料管→电磁振动给料机→自动插板阀→下料管。

3.2 出炉设备:铁水包、铁水包龙门吊钩、运包车、地卷扬机。

3.3 浇铸设备:锭模
3.4 捣炉机、加料机、烧穿器。

3.5 除尘设备
3.6 高压补偿,二次低压补偿。

(选择使用)
五、矿热炉硅锰合金冶炼生产工艺流程
六、安全操作规程
1、作业前,必须按规定穿戴好劳动防护用品,检查所用工具,设备是否完好,各种安全防护保险装置,必须齐全有效。

2、操作的各种开关、阀门、信号等装置必须设有醒目的安全标示,严防操作失误。

3、电炉在投入或者停止生产前,必须与生产调度及相关单位(岗位)取得联系。

停、送电时,必须先将电极提升至上限。

送电时先合高压隔离开关,后合油开关及操作开关,停电时反之、严禁带负荷拉合隔离开关。

4、冶炼过程中不准停止可控硅控制系统运行和切换电压。

5、推捣炉膛料面前,必须先活动电极消除悬挂,在进行推捣料操作。

操作时不得敞开炉门,严防塌料喷火伤害。

6、经常进行设备运行检查,发现问题及时处理和报告,做好设备运行记录。

7、设备运行时,不得维护、调试、清扫设备带电、旋转、高压等危险部位,进行机械电气设备维护检修时,必须停机拉闸挂检修安全警示牌。

8、操作本岗位配套设备时(如空气压缩机、电动葫芦)等,必须严格遵守其安全操作规程,采用电动葫芦吊运台下物料时,必须上下有人监护。

上料时料斗装料不得过满和从人体上方吊运。

9、用氧气烧铁口时,要有专人指挥,胶管与铁管连要牢固,操作时不得将手抓在接头处,严防氧气回火和渣铁喷溅烫伤。

严格遵守氧气
瓶使用管理规定。

10、填充铁水包沙眼的沙子必须精选,不得带有石子和杂质,铁水沟、铁水包、铁模及出铁场地,必须保持干燥。

接触铁水的工具必须烘干烤热,严防铁水爆炸事故。

11、配合行车工吊装渣铁时,要站在吊物摆动不被挤压的安全位置挂钩,手不能抓在钩链活动部位和将脚伸入被吊物下指挥起吊,严防吊物伤害。

12、不准在炉基周围取暖休息和烘烤衣物。

13、严格执行定置管理规定,保持作业场所清洁,道路畅通。

相关文档
最新文档