高三数学-数列大题解法(一)——练习

合集下载

高三数学数列试题答案及解析

高三数学数列试题答案及解析

高三数学数列试题答案及解析1.对于正项数列,定义为的“光阴”值,现知某数列的“光阴”值为,则数列的通项公式为________【答案】【解析】由题意,,,所以,则时,,两式相减得,,也适合此式,故.【考点】新定义与数列的通项公式.2.已知数列的通项公式an= (n∈N*),求数列前30项中的最大项和最小项.【答案】最大项为a10,最小项为a9【解析】∵an =1+,∴当n≤9时,an随着n的增大越来越小且小于1,当10≤n≤30时,a n 随着n的增大越来越小且大于1,∴前30项中最大项为a10,最小项为a9.3.(本小题满分12分)已知数列的前项和是,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,求适合方程的的值.(Ⅲ)记,是否存在实数M,使得对一切恒成立,若存在,请求出M 的最小值;若不存在,请说明理由。

【答案】,2/9【解析】19. 解:(Ⅰ)当时,,由,得.当时,,,∴,即.∴.∴是以为首项,为公比的等比数列.故.………………6分(Ⅱ),,………………8分………10分解方程,得………………12分(2)解法一:,由错误!不能通过编辑域代码创建对象。

,当,又故存在实数M,使得对一切M的最小值为2/9。

4.把数列的所有项按照从大到小的原则写成如题15图所示的数表,其中的第行有个数,第行的第个数(从左数起)记为则_____________.【答案】【解析】略5.设等差数列的前项和为,若,,则()A.63B.45C.36D.27【答案】B【解析】在等差数列中,成等差数列。

因为,,所以。

故选B。

【考点】等差数列的性质点评:在等差数列中,成等差数列。

6.(本小题满分14分)已知曲线.从点向曲线引斜率为的切线,切点为。

(1)求数列的通项公式;(2)证明:。

【答案】(1);(2)证明见解析。

【解析】(1)设直线:,联立得:,则,∴(舍去),即,∴(2)证明:∵∴由于,可令函数,则,令,得,给定区间,则有,则函数在上单调递减,∴,即在恒成立,又,则有,即。

等比数列及其前n项和(高三一轮复习)

等比数列及其前n项和(高三一轮复习)

数学 N 必备知识 自主学习 关键能力 互动探究
— 18 —
思维点睛►
(1)等比数列的通项公式及前n项和公式共涉及五个量a1,n,q,an,Sn,一般可 以“知三求二”,通过列方程(组)便可迎刃而解.
(2)等比数列的前n项和公式涉及对公比q的分类讨论,分为q=1时与q≠1时的情 况.
数学 N 必备知识 自主学习 关键能力 互动探究
— 15 —
解法二:设等比数列{an}的公比为q,易知q≠1.由题意可得aa12+ -aa25+ =a432=,168,
即a111--qq3=168, a1q1-q3=42,
a1=96, 解得q=12,
所以a6=a1q5=3,故选D.
数学 N 必备知识 自主学习 关键能力 互动探究
(2)设等比数列{an}的公比为q, 由题意得2(12a3)=3a1+2a2, 即a1q2=3a1+2a1q. 因为数列{an}的各项均为正数,所以a1>0,且q>0,故A、B正确; 由q2-2q-3=0,解得q=3或q=-1(舍), 所以aa32=q=3,aa46=q2=9,故C错误,D正确,故选ABD.
第六章 数列
第3讲 等比数列及其前n项和
数学 N 必备知识 自主学习 关键能力 互动探究 课标解读
— 2—
1.通过生活中的实例,理解等比数列的概念和通项公式的意义;2.探索并掌握等 比数列的前n项和公式,理解等比数列的通项公式与前n项和公式的关系;3.能在具 体的问题情境中,发现数列的等比关系,并解决相应的问题;4.体会等比数列与指 数函数的关系.
数学 N 必备知识 自主学习 关键能力 互动探究
(2)由(1)可知 an-3n=(-1)n, 所以 an=3n+(-1)n, 所以 Sn=311--33n+-11·-[1--1- 1n] =3n+1-2-1n+1-2.

数列的函数性质-2023届高三数学一轮复习专题

数列的函数性质-2023届高三数学一轮复习专题

2023高考数列专题——数列的函数性质一、数列的单调性解决数列单调性问题的三种方法(1)作差比较法:根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列; (2)作商比较法:根据a n +1a n (a n>0或a n <0)与1的大小关系进行判断;(3)函数法:结合相应的函数图象直观判断. 例1(2022·滕州模拟)设数列{a n }的通项公式为a n =n 2+bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为( )A .[1,+∞)B .(-3,+∞)C .[-2,+∞)D .⎝⎛⎭⎫-92,+∞ 例2 若数列{a n }满足a n =-2n 2+kn -1,且{a n }是递减数列,则实数k 的取值范围为 跟踪练习1、已知数列{a n }的通项公式为a n =n3n +1,那么这个数列是( )A .递增数列B .递减数列C .摆动数列D .常数列2、请写出一个符合下列要求的数列{a n }的通项公式:①{a n }为无穷数列;②{a n }为单调递增数列;③0<a n <2.这个数列的通项公式可以是________.3、(2022·绵阳模拟)在数列{a n }中,a 1=1,a 1+2a 2+3a 3+…+na n =n +12a n +1.(1)求数列{a n }的通项公式;(2)若存在n ∈N *,使得a n ≤(n +1)λ成立,求实数λ的最小值.二、数列的周期性解决数列周期性问题的方法根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n 项的和.例3、若数列{a n }满足a 1=2,a n +1=1+a n1-a n (n ∈N *),则该数列的前2 023项的乘积是( )A .2B .-6C .3D .1例4 (2021·福建福清校际联盟期中联考)已知S n 为数列{a n }前n 项和,若a 1=12,且a n +1=22-a n(n ∈N *),则6S 100=( )A .425B .428C .436D .437跟踪练习1、(2022·福州模拟)已知数列{a n }满足a n +1=11-a n,若a 1=12,则a 2 023=( )A .-1B .12C .1D .2三、数列的最大(小)项求数列的最大项与最小项的常用方法(1)将数列视为函数f (x )当x ∈N *时所对应的一列函数值,根据f (x )的类型作出相应的函数图象,或利用求函数最值的方法,求出f (x )的最值,进而求出数列的最大(小)项;(2)通过通项公式a n 研究数列的单调性,利用⎩⎪⎨⎪⎧ a n ≥a n -1,a n ≥a n +1 (n ≥2)确定最大项,利用⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1 (n ≥2)确定最小项;(3)比较法:若有a n +1-a n =f (n +1)-f (n )>0⎝⎛⎭⎫或a n >0时,a n +1a n >1,则a n +1>a n ,则数列{a n }是递增数列,所以数列{a n }的最小项为a 1=f (1);若有a n +1-a n =f (n +1)-f (n )<0⎝⎛⎭⎫或a n >0时,a n +1a n <1,则a n +1<a n ,则数列{a n }是递减数列,所以数列{a n }的最大项为a 1=f (1).例5(2022·金陵质检)已知数列{a n }满足a 1=28,a n +1-a n n =2,则a nn的最小值为( )A .293B .47-1C .485D .274例6已知数列{a n }的通项公式a n =(n +1)⎝⎛⎭⎫1011n,则数列{a n }中的最大项是第 项. 跟踪练习1、已知数列{a n }的通项公式为a n =n -22n -11,前n 项和为S n ,则当S n 取得最小值时n 的值为________.2、已知递增数列{a n },a n ≥0,a 1=0.对于任意的正整数n ,不等式t 2-a 2n -3t -3a n ≤0恒成立,则正数t 的最大值为( )A .1B .2C .3D .63、(2022·重庆模拟)设S n 为等差数列{a n }的前n 项和,且满足S 2 018>0,S 2 019<0,对任意正整数n ,都有|a n |≥|a k |,则k 的值为( )A .1 008B .1 009C .1 010D .1 0114、(多选)已知数列{a n }满足a n =n ·k n (n ∈N *,0<k <1),下列命题正确的有( )A .当k =12时,数列{a n }为递减数列B .当k =45时,数列{a n }一定有最大项C .当0<k <12时,数列{a n }为递减数列D .当k1-k为正整数时,数列{a n }必有两项相等的最大项5、已知数列{a n }的通项公式a n =632n ,若a 1·a 2·…·a n ≤a 1·a 2·…·a k 对n ∈N *恒成立,则正整数k 的值为________.四、数列与函数的综合问题例7(2022·珠海模拟)已知函数y =f (x +1)的图象关于y 轴对称,且函数f (x )在(1,+∞)上单调,若数列{a n }是公差不为0的等差数列,且f (a 4)=f (a 18),则{a n }的前21项之和为( )A .0B .252C .21D .42跟踪练习1、(2022·青岛模拟)等比数列{a n }的各项均为正数,a 5,a 6是函数f (x )=13x 3-3x 2+8x +1的极值点,则log 2a 1+log 2a 2+…+log 2a 10=( )A .3+log 25B .8C .10D .15 2、已知等比数列{a n }的公比q >1,a 1=2,且a 1,a 2,a 3-8成等差数列.(1)求出数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,任意n ∈N *,S n ≤m 恒成立,求实数m 的最小值.3、 (2022·东莞模拟)已知等差数列{a n }的首项a 1=1,公差为d ,前n 项和为S n .若S n ≤S 8恒成立,则公差d 的取值范围是________.高考数列专题——数列的函数性质(解析版)一、数列的单调性解决数列单调性问题的三种方法(1)作差比较法:根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列;(2)作商比较法:根据a n +1a n (a n>0或a n <0)与1的大小关系进行判断;(3)函数法:结合相应的函数图象直观判断. 例1(2022·滕州模拟)设数列{a n }的通项公式为a n =n 2+bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为( B )A .[1,+∞)B .(-3,+∞)C .[-2,+∞)D .⎝⎛⎭⎫-92,+∞ 解: ∵数列{a n }是单调递增数列,∴对任意的n ∈N *,都有a n +1>a n ,∴(n +1)2+b (n +1)>n 2+bn ,即b >-(2n +1)对任意的n ∈N *恒成立,又n =1时,-(2n +1)取得最大值-3,∴b >-3,即实数b 的取值范围为(-3,+∞).例2 若数列{a n }满足a n =-2n 2+kn -1,且{a n }是递减数列,则实数k 的取值范围为(-∞,6).解:解法一:由数列是一个递减数列,得a n +1<a n ,又因为a n =-2n 2+kn -1,所以-2(n +1)2+k (n +1)-1<-2n 2+kn -1,k <4n +2,对n ∈N *,所以k <6.解法二:数列{a n }的通项公式是关于n (n ∈N *)的二次函数,∵数列是递减数列,∴k 4<32,∴k <6.跟踪练习1、已知数列{a n }的通项公式为a n =n3n +1,那么这个数列是( )A .递增数列B .递减数列C .摆动数列D .常数列解析:A 由a n =n 3n +1,可得a n +1-a n =n +13n +4-n 3n +1=1(3n +1)(3n +4)>0,∴a n +1>a n ,故选A .2、请写出一个符合下列要求的数列{a n }的通项公式:①{a n }为无穷数列;②{a n }为单调递增数列;③0<a n <2.这个数列的通项公式可以是________.解析:因为函数a n =2-1n 的定义域为N *,且a n =2-1n 在N *上单调递增,0<2-1n <2,所以满足3个条件的数列的通项公式可以是a n =2-1n.答案:a n =2-1n(答案不唯一)3、(2022·绵阳模拟)在数列{a n }中,a 1=1,a 1+2a 2+3a 3+…+na n =n +12a n +1.(1)求数列{a n }的通项公式;(2)若存在n ∈N *,使得a n ≤(n +1)λ成立,求实数λ的最小值.解:(1)∵a 1+2a 2+3a 3+…+na n =n +12a n +1,∴当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1=n2a n ,两式相减得na n =n +12a n +1-n2a n ,即(n +1)a n +1na n=3(n ≥2),∵a 1=1,∴1=1+12a 2,即a 2=1,∴2·a 21·a 1=2≠3.∴数列{na n }是从第二项开始的等比数列, ∴当n ≥2时,有na n =2×3n -2, ∴a n =⎩⎪⎨⎪⎧1,n =1,2n×3n -2,n ≥2.(2)存在n ∈N *使得a n ≤(n +1)λ成立⇔λ≥a nn +1有解,①当n =1时,a 12=12,则λ≥12,即λmin =12;②当n ≥2时,a nn +1=2×3n -2n (n +1),设f (n )=2×3n -2n (n +1),∴f (n +1)f (n )=3nn +2>1,∴f (n )单调递增,∴f (n )min =f (2)=13,∴实数λ的最小值是13.由①②可知实数λ的最小值是13.二、数列的周期性解决数列周期性问题的方法根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n 项的和.例3、若数列{a n }满足a 1=2,a n +1=1+a n1-a n (n ∈N *),则该数列的前2 023项的乘积是( 3 )A .2B .-6C .3D .1解 因为数列{a n }满足a 1=2,a n +1=1+a n 1-a n (n ∈N *),所以a 2=1+a 11-a 1=1+21-2=-3,同理可得a 3=-12,a 4=13,a 5=2,…所以数列{a n }每四项重复出现,即a n +4=a n ,且a 1·a 2·a 3·a 4=1,而2 023=505×4+3,所以该数列的前2 023项的乘积是a 1·a 2·a 3·a 4·…·a 2 023=1505×a 1×a 2×a 3=3.例4 (2021·福建福清校际联盟期中联考)已知S n 为数列{a n }前n 项和,若a 1=12,且a n +1=22-a n(n ∈N *),则6S 100=( A )A .425B .428C .436D .437解: 由数列的递推公式可得:a 2=22-a 1=43,a 3=22-a 2=3,a 4=22-a 3=-2,a 5=22-a 4=12=a 1,据此可得数列{a n }是周期为4的周期数列,则:6S 100=6×25×⎝⎛⎭⎫12+43+3-2=425. 跟踪练习1、(2022·福州模拟)已知数列{a n }满足a n +1=11-a n ,若a 1=12,则a 2 023=( )A .-1B .12C .1D .2解析:B 由a 1=12,a n +1=11-a n得a 2=2,a 3=-1,a 4=12,a 5=2,…,可知数列{a n }是以3为周期的周期数列,因此a 2 023=a 3×674+1=a 1=12.五、数列的最大(小)项求数列的最大项与最小项的常用方法(1)将数列视为函数f (x )当x ∈N *时所对应的一列函数值,根据f (x )的类型作出相应的函数图象,或利用求函数最值的方法,求出f (x )的最值,进而求出数列的最大(小)项;(2)通过通项公式a n 研究数列的单调性,利用⎩⎪⎨⎪⎧ a n ≥a n -1,a n ≥a n +1 (n ≥2)确定最大项,利用⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1 (n ≥2)确定最小项;(3)比较法:若有a n +1-a n =f (n +1)-f (n )>0⎝⎛⎭⎫或a n >0时,a n +1a n >1,则a n +1>a n ,则数列{a n }是递增数列,所以数列{a n }的最小项为a 1=f (1);若有a n +1-a n =f (n +1)-f (n )<0⎝⎛⎭⎫或a n >0时,a n +1a n <1,则a n +1<a n ,则数列{a n }是递减数列,所以数列{a n }的最大项为a 1=f (1).例5(2022·金陵质检)已知数列{a n }满足a 1=28,a n +1-a n n =2,则a nn 的最小值为( C )A .293B .47-1C .485D .274解: 由a n +1-a n =2n ,可得a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=28+2+4+…+2(n -1)=28+n (n -1)=n 2-n +28,∴a n n =n +28n -1,设f (x )=x +28x ,可知f (x )在(0,28 ]上单调递减,在(28,+∞)上单调递增,又n ∈N *,且a 55=485<a 66=293.例6已知数列{a n }的通项公式a n =(n +1)⎝⎛⎭⎫1011n,则数列{a n }中的最大项是第9、10项.解: 解法一:∵a n +1-a n =(n +2)⎝⎛⎭⎫1011n +1-(n +1)⎝⎛⎭⎫1011n =⎝⎛⎭⎫1011n ×9-n 11, 当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n , ∴该数列中有最大项,为第9、10项, 且a 9=a 10=10×⎝⎛⎭⎫10119.解法二:根据题意,令⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2),即⎩⎨⎧n ×⎝⎛⎭⎫1011n -1≤(n +1)⎝⎛⎭⎫1011n,(n +1)⎝⎛⎭⎫1011n≥(n +2)⎝⎛⎭⎫1011n +1,解得9≤n ≤10.又n ∈N *,∴n =9或n =10,∴该数列中有最大项,为第9、10项, 且a 9=a 10=10×⎝⎛⎭⎫10119. 跟踪练习1、已知数列{a n }的通项公式为a n =n -22n -11,前n 项和为S n ,则当S n 取得最小值时n 的值为________.解析:当a n =n -22n -11>0⇒n =1或n ≥6,∴a 2=0,a 3<0,a 4<0,a 5<0,故当S n 取得最小值时n 的值为5.2、已知递增数列{a n },a n ≥0,a 1=0.对于任意的正整数n ,不等式t 2-a 2n -3t -3a n ≤0恒成立,则正数t 的最大值为( )A .1B .2C .3D .6解析:C 因为数列{a n }是递增数列,又t 2-a 2n -3t -3a n =(t -a n -3)(t +a n )≤0,t +a n >0,所以t ≤a n+3恒成立,即t ≤(a n +3)min =a 1+3=3,所以t max =3.3、(2022·重庆模拟)设S n 为等差数列{a n }的前n 项和,且满足S 2 018>0,S 2 019<0,对任意正整数n ,都有|a n |≥|a k |,则k 的值为( )A .1 008B .1 009C .1 010D .1 011解析:C 因为S 2 018>0,S 2 019<0,所以a 1+a 2 018=a 1 009+a 1 010>0,a 1+a 2 019=2a 1 010<0,所以a 1 009>0,a 1 010<0,且a 1 009>|a 1 010|,因为对任意正整数n ,都有|a n |≥|a k |,所以k =1 010,故选C .4、(多选)已知数列{a n }满足a n =n ·k n (n ∈N *,0<k <1),下列命题正确的有( )A .当k =12时,数列{a n }为递减数列B .当k =45时,数列{a n }一定有最大项C .当0<k <12时,数列{a n }为递减数列D .当k1-k为正整数时,数列{a n }必有两项相等的最大项解析:BCD 当k =12时,a 1=a 2=12,知A 错误;当k =45时,a n +1a n =45·n +1n ,当n <4时,a n +1a n>1,当n >4时,a n +1a n <1,所以可判断{a n }一定有最大项,B 正确;当0<k <12时,a n +1a n =k n +1n <n +12n ≤1,所以数列{a n }为递减数列,C 正确;当k 1-k 为正整数时,1>k ≥12,当k =12时,a 1=a 2>a 3>a 4>…,当1>k >12时,令k 1-k =m ∈N *,解得k =mm +1,则a n +1a n =m (n +1)n (m +1),当n =m 时,a n +1=a n ,结合B ,数列{a n }必有两项相等的最大项,故D 正确.故选B 、C 、D .5、已知数列{a n }的通项公式a n =632n ,若a 1·a 2·…·a n ≤a 1·a 2·…·a k 对n ∈N *恒成立,则正整数k 的值为________.解析:a n =632n ,当n ≤5时,a n >1;当n ≥6时,a n <1,由题意知,a 1·a 2·…·a k 是{a n }的前n 项乘积的最大值,所以k =5.六、数列与函数的综合问题例7(2022·珠海模拟)已知函数y =f (x +1)的图象关于y 轴对称,且函数f (x )在(1,+∞)上单调,若数列{a n }是公差不为0的等差数列,且f (a 4)=f (a 18),则{a n }的前21项之和为( C )A .0B .252C .21D .42解: 由函数y =f (x +1)的图象关于y 轴对称,且函数f (x )在(1,+∞)上单调,可得y =f (x )的图象关于直线x =1对称,由数列{a n }是公差不为0的等差数列,且f (a 4)=f (a 18),可得a 4+a 18=2,又{a n }是等差数列,所以a 1+a 21=a 4+a 18=2,可得数列的前21项和S 21=21(a 1+a 21)2=21,则{a n }的前21项之和为21.故选.跟踪练习1、(2022·青岛模拟)等比数列{a n }的各项均为正数,a 5,a 6是函数f (x )=13x 3-3x 2+8x +1的极值点,则log 2a 1+log 2a 2+…+log 2a 10=( )A .3+log 25B .8C .10D .15解析:D f ′(x )=x 2-6x +8,∵a 5,a 6是函数f (x )的极值点,∴a 5,a 6是方程x 2-6x +8=0的两实数根,则a 5·a 6=8,∴log 2a 1+log 2a 2+…+log 2a 10=log 2(a 1·a 2·…·a 10)=log 2(a 5·a 6)5=5log 28=15,故选D .2、已知等比数列{a n }的公比q >1,a 1=2,且a 1,a 2,a 3-8成等差数列. (1)求出数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,任意n ∈N *,S n ≤m 恒成立,求实数m 的最小值.[解] (1)因为a 1=2,且a 1,a 2,a 3-8成等差数列,所以2a 2=a 1+a 3-8,即2a 1q =a 1+a 1q 2-8,所以q 2-2q -3=0, 所以q =3或q =-1,又q >1,所以q =3,所以a n =2·3n -1(n ∈N *). (2)因为数列{a n }是首项为2,公比为3的等比数列,所以1a n +11a n =a n a n +1=13,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为12,公比为13的等比数列,所以S n =12⎣⎡⎦⎤1-⎝⎛⎭⎫13n 1-13=34⎣⎡⎦⎤1-⎝⎛⎭⎫13n <34,因为任意n ∈N *,S n ≤m 恒成立,所以m ≥34,即实数m 的最小值为34.3、(2022·东莞模拟)已知等差数列{a n }的首项a 1=1,公差为d ,前n 项和为S n .若S n ≤S 8恒成立,则公差d 的取值范围是________.解析:根据等差数列{a n }的前n 项和S n 满足S n ≤S 8恒成立,可知a 8≥0且a 9≤0,所以1+7d ≥0且1+8d ≤0,解得-17≤d ≤-18.答案:⎣⎡⎦⎤-17,-18。

高三数学数列求和试题答案及解析

高三数学数列求和试题答案及解析

高三数学数列求和试题答案及解析1.设数列的前项积为,且(n∈N*).(1)求,并证明:;(2)设,求数列的前项和.【答案】(1),祥见解析;(2).【解析】(1)n取1,2,3求出,再利用与的关系将已知等式用表示即可证明;(2)由(1)问的结论利用等差数列的通项公式先求出的通项,再由通项利用裂项相消法求.试题解析:(1)由题意可得:,所以 5分(2)数列为等差数列,,, 10分【考点】1.数列的通项公式;2.数列的前n项和.2.已知函数且an =f(n)+f(n+1),则a1+a2+a3+…+a100等于()A.0 B.100 C.-100 D.10200【答案】B【解析】由题意,a1+a2+a3+…+a100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100,选B.3.已知等差数列的前项和为,且、成等比数列.(1)求、的值;(2)若数列满足,求数列的前项和.【答案】(1),;(2).【解析】(1)解法1是先令求出的表达式,然后令,得到计算出在的表达式,利用为等差数列得到满足通式,从而求出的值,然后利用条件、成等比数列列方程求出的值,从而求出、的值;解法2是在数列是等差数列的前提下,设其公差为,利用公式以及对应系数相等的特点得到、和、之间的等量关系,然后利用条件、成等比数列列方程求出的值,从而求出、的值;(2)解法1是在(1)的前提下求出数列的通项公式,然后利用错位相减法求数列的和;解法2是利用导数以及函数和的导数运算法则,将数列的前项和视为函数列的前项和在处的导数值,从而求出. 试题解析:(1)解法1:当时,, 当时,.是等差数列, ,得. 又,,,、、成等比数列, ,即,解得.解法2:设等差数列的公差为,则., ,,.,,.、、成等比数列,,即,解得.;(2)解法1:由(1)得.,.,①,② ①②得..解法2:由(1)得.,.,① 由,两边对取导数得,.令,得..【考点】1.定义法求通项;2.错位相减法求和;3.逐项求导4. 数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( ). A .3 690 B .3 660 C .1 845 D .1 830【答案】D【解析】∵a n +1+(-1)n a n =2n -1, 当n =2k 时,a 2k +1+a 2k =4k -1, 当n =2k -1时,a 2k -a 2k -1=4k -3,从而a2k+1+a2k-1=2,a2k+3+a2k+1=2,因此a2k+3=a2k-1,∴a1=a5=a9=…=a61,于是S60=a1+a2+a3+…+a60=(a2+a3)+(a4+a5)+…+(a60+a61)=3+7+11+…+(2×60-1)==1 830.5.如图,是一问题的程序框图,则输出的结果是 .【答案】【解析】根据流程图可知它的作用是求的值,由等差数列的前项和公式可知,.【考点】1.程序框图及其应用;2.等差数列的前项和6.阅读如图程序框图,若输入的,则输出的结果是()A.B.C.D.【答案】A【解析】,,不成立,执行第一次循环,,;不成立,执行第二次循环,,;不成立,执行第三次循环,,;;不成立,执行第一百次循环,,;成立,输出,故选A.【考点】1.数列求和;2.算法与程序框图7.数列中,已知且,则前项和为,则的值为__________.【答案】【解析】因为,所以公差,由得,所以.【考点】1、等差数列的定义;2、等差数列的前项和公式.8.已知数列满足,.(1)求数列的通项公式;(2)令,数列{bn }的前n项和为Tn,试比较Tn与的大小,并予以证明.【答案】(1);(2)详见解析.【解析】(1)由于数列的递推式的结构为,在求数列的通项的时候可以利用累加法来求数列的通项公式;(2)先求出数列的通项公式,根据其通项结构选择错位相减法求出数列的前项和,在比较与的大小时,一般利用作差法,通过差的正负确定与的大小,在确定差的正负时,可以利用数学归纳法结合二项式定理进行放缩来达到证明不等式的目的.试题解析:(1)当时,.又也适合上式,所以.(2)由(1)得,所以.因为①,所以②.由①-②得,,所以.因为,所以确定与的大小关系等价于比较与的大小.当时,;当时,;当时,;当时,;……,可猜想当时,.证明如下:当时,.综上所述,当或时,;当时,.【考点】累加法、错位相减法、二项式定理9.已知数列的通项公式为,那么满足的整数()A.有3个B.有2个C.有1个D.不存在【答案】B【解析】时,,所以,此时从到共项,从到共项,或,有2个值【考点】数列求和点评:本题中数列求和要依据通项公式特点分两种情况,分别讨论所求各项所属的范围及应代入的公式,第二种情况找到各项中正负项分界的位置是难点10.已知数列满足,则的前n项和_____【答案】【解析】根据题意,由于故可知的前n项和,故答案为【考点】数列的递推关系点评:主要是考查了数列的递推关系的运用,来求解数列的通项公式以及数列的和的运用,属于中档题。

(天津版)高考数学分项版解析 专题06 数列 理-天津版高三全册数学试题

(天津版)高考数学分项版解析 专题06 数列 理-天津版高三全册数学试题

第六章 数列一.基础题组1.【2005某某,理13】在数列{}n a 中,11a =,22a =且()()*211nn n a a n N +-=+-∈则100S =__________。

【答案】2600【解析】当n 为奇数时,20n n a a +-=;当n 为偶数时,22n n a a +-= 因此,数列{}n a 的奇数各项都是1,偶数项成公差为2的等差数列()()()210010011505021005050260022a a S a a ++=+=+=本题答案填写:26002.【2006某某,理7】已知数列}{n a 、}{n b 都是公差为1的等差数列,其首项分别为1a 、1b ,且511=+b a ,*11,N b a ∈.设n b n a c =(*N n ∈),则数列}{n c 的前10项和等于( )A .55B .70C .85D .100 【答案】C3.【2006某某,理16】设函数()11+=x x f ,点0A 表示坐标原点,点()()()*,N n n f n A n ∈,若向量01121n n n a A A A A A A -=+++,n θ是n a 与i 的夹角,(其中()0,1=i),设n n S θθθtan tan tan 21+++= ,则n n S ∞→lim =.【答案】1【解析】设函数()11+=x x f ,点0A 表示坐标原点,点()()()*,N n n f n A n ∈,若向量01121n n n a A A A A A A -=+++=0n A A ,n θ是n a 与i 的夹角,111tan (1)n n n n n θ+==+(其中()0,1=i ),设n n S θθθtan tan tan 21+++= 111111223(1)1n n n +++=-⋅⋅++,则nn S ∞→lim =1.4.【2007某某,理8】设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则k = ( )A.2B.4C.6D.8【答案】B 【解析】k a 是1a 与2k a 的等比中项可得12k k a a a =⨯(*),由{}n a 为等差数列可得121(1),(21)k k a a k d a a k d =+-=+-及19a d =代入(*)式可得4k =.故选B5.【2007某某,理13】设等差数列{}n a 的公差d 是2,前n 项的和为,n S 则22lim n n na n S →∞-=__________. 【答案】3 【解析】根据题意知11(1)222n a a n n a =+-⨯=+-21,(1)n S n n a =+-代入极限式得22112134(2)(2)lim 3(1)n n a n a n n a →∞+-+-=+- 6.【2008某某,理15】已知数列{}n a 中,()*31,1111N n a a a n n n ∈=-=++,则=∞→nn a lim .【答案】767.【2009某某,理6】设a >0,b >0.若3是3a与3b的等比中项,则ba 11+的最小值为( ) A.8 B.4 C.1 D.41【答案】B【解析】3是3a 与3b 的等比中项⇒3a·3b=3⇒3a+b =3⇒a+b =1,∵a>0,b >0,∴41212≤⇒=+≤ab b a ab .∴4411111=≥=+=+ab ab b a b a . 8.【2010某某,理6】已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列1n a ⎧⎫⎨⎬⎩⎭的前5项和为( )A.158或5 B.3116或5 C.3116 D.158【答案】C法二:∵S6=S3+a4+a5+a6=S3+S3·q3, ∴9S3=S3+S3·q3得q3=8,解得q =2. ∴{1n a }是首项为1,公比为12的等比数列. ∴其前5项和为511[1()]31211612-=-9.【2011某某,理4】已知{}n a 为等差数列,其公差为-2,且7a 是3a 与9a 的等比中项,n S 为{}n a 的前n 项和,*n N ∈,则10S 的值为A .-110B .-90C .90D .110 【答案】D.【解析】∵2,9327-=•=d a a a ,∴)16)(4()12(1121--=-a a a ,解之得201=a ,∴110)2(2910201010=-⨯+⨯=s . 10.【2014某某,理11】设n a 是首项为1a ,公差为1的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a 的值为__________.【答案】12-. 【解析】试题分析:依题意得2214S S S ,∴21112146a a a ,解得112a . 考点:1.等差数列、等比数列的通项公式;2.等比数列的前n 项和公式.二.能力题组1.【2005某某,理18】已知:()1221*,0,0n n n n n n u a a b a b ab b n N a b ---=+++++∈>>。

数列题型及解题方法归纳总结

数列题型及解题方法归纳总结

知识框架掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。

一、典型题的技巧解法 1、求通项公式 (1)观察法。

(2)由递推公式求通项。

对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。

(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数)例1、? 已知{a n }满足a n+1=a n +2,而且a 1=1。

求a n 。

例1、解? ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1例2、已知{}n a 满足112n n a a +=,而12a =,求n a = (2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a .解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)★ 说明 ?只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。

(3)递推式为a n+1=pa n +q (p ,q 为常数)例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a .解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。

两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2? ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1-1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2,把n-1个等式累加得:∴an=2·3n-1-1(4)递推式为a n+1=p a n +q n (p ,q 为常数))(3211-+-=-n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n nn n b a )31(2)21(32-==(5)递推式为21n n n a pa qa ++=+思路:设21n n n a pa qa ++=+,可以变形为:211()n n n n a a a a αβα+++-=-,想于是{a n+1-αa n }是公比为β的等比数列,就转化为前面的类型。

高中数学-数列求通项公式方法汇总及经典练习(含答案)

高中数学-数列求通项公式方法汇总及经典练习(含答案)

高中数学-数列求通项公式方法汇总及经典练习(含答案)1、定义法:直接求首项和公差或公比。

2、公式法:1 (1) (2)n n nn S n a S S n -=⎧=⎨-≥⎩两种用途(列举),结果要验证能否写成统一的式子.例、数列{}n a 的各项都为正数,且满足()()2*14nna S n N +=∈,求数列的通项公式.解一:由()()2*14nna S n N +=∈得()()()221114411n n n n n aS S a a +++=-=---化简得()()1120n n n n a a a a +++--=,因为10,2n n n a a a +>∴-=,又()2111441S a a ==-得11a =,故{}n a 是以1为首项,2为公差的等差数列,所以21n a n =-.解二:由()()2*14nn a S n N +=∈,可得()11,12n n n a S S n -=-∴=--≥化简可得)211n S -=,即1=,又11S =,所以数列是首项为1,公差为1的等差数列,∴n =,从而2n S n =,所以121n n n a S S n -=-=-,又11a =也适合,故21n a n =-.练习:已知数列{a n }的前n 项和S n 满足120n n n a S S -+=(2n ≥),a 1=21,求n a . 答案:a n =⎪⎪⎩⎪⎪⎨⎧≥--=)2()1(21)1(21n n n n .扩展一:作差法例、在数列}{n a 中,11a =,212323(1)n a a a na n n ++++=-+,求n a .解:由212323(1)n a a a na n n ++++=-+,得2123123(1)(2)1n a a a n a n n -++++-=-+-,两式相减,得66n na n =-+,∴ 1 (=1)66 (2)n n a n n n⎧⎪=-⎨≥⎪⎩.练习(理):已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求n a .解:由123123(1)(2)n n a a a a n a n -=++++-≥,得1123123(1)n n n a a a a n a na +-=++++-+,两式相减,得1n n n a a na +-=,即11(2)n na n n a +=+≥,所以13222122![(1)43]2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=又由已知,得2122a a a =+,则211a a ==,代入上式,得!13452n n a n =⋅⋅⋅⋅⋅=, 所以,{}n a 的通项公式为 1 (1)! (2)2n n a n n =⎧⎪=⎨≥⎪⎩.扩展二、作商法例、在数列}{n a 中,11a =,对所有的2n ≥,都有2123n a a a a n ••••=,求n a .解:∵2123n a a a a n ••••=,∴21232(1)n a a a a n -••••=-,故当2n ≥时,两式相除,得22(1)n n a n =-, ∴221 (=1) (2)(1)n n a n n n ⎧⎪=⎨≥⎪-⎩.3、 叠加法:对于型如)(1n f a a n n =-+类的通项公式.例、在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .答案:na n 14-=. 例、已知数列{}n a 满足112231n n n n a a ++=++-(*n N ∈),352a =,求通项n a .解:由112231n nn n aa ++=++-,两边同除以12n +,得()111131112222n n n n n n n a a n ++++-=-+≥,列出相加得121212121332323212212121-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=---n a a n n n n又由已知求得16a =,∴()*231n n n n N a n ∈=•++.练习:已知数列}a {n 满足3a 132a a 1nn 1n =+⋅+=+,,求数列}a {n 的通项公式.答案:1n 32n 31332a n nn -+=++--⋅=.4、叠乘法:一般地,对于型如1+n a =f (n)·n a 的类型例(理)、已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅121[2(11)5][2(21)5][2(11)5]3n n n n --=-+-++⨯⨯(1)1(1)(2)21122[(1)32]53325!n n n n n n n n n ---+-+++-=-⋅⋅⨯⨯⨯=⨯⨯⨯,所以数列{}n a 的通项公式为(1)12325!n n n n a n --=⨯⨯⨯.练习:在数列{a n }中,112a =,11(1n n n a a a n --=⋅+≥2),求n a . 答案:)1(1+=n n a n . 5、构造法:型如a n+1=pa n +f(n) (p 为常数且p ≠0, p ≠1)的数列(1)f(n)= q (q 为常数) 一般地,递推关系式a +1=pa n +q (p 、q 为常数,且p ≠0,p ≠1)等价与)1(11pqa p p q a n n --=--+,则{p q a n --1}为等比数列,从而可求n a .例、已知数列{}n a 满足112a =,132n n a a --=(2n ≥),求通项n a . 解:由132n n a a --=,得111(1)2n n a a --=--,又11210a -=≠,所以数列{1}n a -是首项为12,公比为12-的等比数列,∴11111(1)()1()22n nn a a -=---=+-. 练习:已知数列}{n a 的递推关系为121+=+n n a a ,且11=a ,求通项n a . 答案:12-=n na .(2) f(n)为等比数列,如f(n)= q n (q 为常数) ,两边同除以q n ,得111+=++nn n n qa p q a q ,令nn n a b q =,则可转化为b n+1=pb n +q 的形式求解.例、已知数列{a n }中,a 1=65,1111()32n n n a a ++=+,求通项n a . 解:由条件,得2 n+1a n+1=32(2 n a n )+1,令b n =2 n a n ,则b n+1=32b n +1,b n+1-3=32(b n -3) 易得 b n =3)32(341+--n ,即2 n a n =3)32(341+--n , ∴ a n =n n 2332+-. 练习、已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求通项n a .答案:31()222nn a n =-.(3) f(n)为等差数列,如1n n a Aa Bn C +=++型递推式,可构造等比数列.(选学,注重记忆方法)例、已知数列{}n a 满足11=a ,11212n n a a n -=+-(2n ≥),求.解:令n n b a An B =++,则n n a b An B =--,∴11(1)n n a b A n B --=---,代入已知条件, 得11[(1)]212n n b An B b A n B n ---=---+-,即11111(2)(1)2222n n b b A n A B -=++++-,令202A +=,1022A B +-=,解得A=-4,B=6,所以112n n b b -=,且46n n b a n =-+, ∴{}n b 是以3为首项、以12为公比的等比数列,故132n n b -=,故13462n n a n -=+-. 点拨:通过引入一些尚待确定的系数,经过变形与比较,把问题转化成基本数列(等差或等比数列)求解. 练习:在数列{}a n 中,132a =,1263n n a a n --=-,求通项a n . 答案:a n nn -+=69912·().解:由1263n n a a n --=-,得111(63)22n n a a n -=+-,令11[(1)]2n n a An B a A n B -++=+-+,比较系数可得:A=-6,B=9,令n n b a An B =++,则有112n n b b -=,又1192b a A B ==++,∴{}n b 是首项为92,公比为12的等比数列,所以b n n =-92121(),故a n n n-+=69912·(). (4) f(n)为非等差数列,非等比数列法一、构造等差数列法例、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>,求数列{}n a 的通项公式.解:由条件可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,∴数列2n n n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为0,公差为1的等差数列,故21nnn a n λλ⎛⎫-=- ⎪⎝⎭,∴(1)2n n n a n λ=-+. 练习:在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项a n 。

高中数学数列经典题型专题训练试题(含答案)

高中数学数列经典题型专题训练试题(含答案)

高中数学数列经典题型专题训练试题学校:___________姓名:___________班级:___________考号:___________说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分。

考试时间120分钟。

2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。

考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)一.单选题(共15小题,每题2分,共30分)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-12.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-39.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.9910.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.52212.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项二.填空题(共10小题,每题2分,共20分)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.17.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.18.数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.22.设正项等比数列{an}的公比为q,且,则公比q=______.23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.第Ⅱ卷(非选择题)三.简答题(共5小题,50分)26.(10分)已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.27.(8分)已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.28.(7分)已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.29.(12分)已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.30.(12分)在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.参考答案一.单选题(共__小题)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-1答案:C解析:解:∵a1+a2+a3+…+a n=2n-1…①∴a1+a2+a3+…+a n-1=2n-1-1…②,①-②得a n=2n-1,∴a n2=22n-2,∴数列{a n2}是以1为首项,4为公比的等比数列,∴a12+a22+a32+…+a n2==,故选C.2.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-答案:C解析:解:∵{a n}为等比数列a5•a11=3,∴a3•a13=3①∵a3+a13=4②由①②得a3=3,a13=1或a3=1,a13=3∴q10=或3,∴=或3,故选C.3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.答案:A解析:解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选A.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.答案:D解析:解:∵数列{a n}是等差数列,a1=1,a3=4,∴a3=a1+2d,即4=1+2d,解得d=.故选:D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()A.12B.13C.14D.15答案:A解析:解:令a n=<0,解得n≤6,当n>7时,a n>0,且a6+a7=a5+a8=a4+a9=a3+a10=a2+a11=a1+a12=0,所以S12=0,S13>0,即使S n≥0的最小正整数n=12.故选A.6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列答案:A解析:解:∵S n=2n2-2n,则S n-S n-1=a n=2n2-2n-[2(n-1)2-2(n-1)]=4n-4故数列{a n}是公差为4的等差数列故选A.7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.答案:C解析:解:当n=1时,a1=S1=21-1=1,当n≥2时,a n=Sn-Sn-1=2n-1-(2n-1-1)=2•2n-1-2n-1=2n-1,对n=1也适合∴a n=2n-1,∴数列{a n}是等比数列,此数列奇数项也构成等比数列,且首项为1,公比为4.∴此数列奇数项的前n项和为==故选C8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-3答案:C解析:解:由题意可得q≠1由数列{S n+2}也是等比数列可得s1+2,s2+2,s3+2成等比数列则(s2+2)2=(S1+2)(S3+2)代入等比数列的前n项和公式整理可得(6+4q)2=24(1+q+q2)+12解可得q=3故选C.9.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.99答案:A解析:解:当n为奇数时,a n+2-a n=1+(-1)n=0,可得a1=a3=…=a59=2.当n为偶数时,a n+2-a n=1+(-1)n=2,∴数列{a2n}为等差数列,首项为2,公差为2,∴a2+a4+…+a60=30×2+=930.∴S60=(a1+a3+…+a59)+(a2+a4+…+a60)=30×2+930=990.故选:A.10.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列答案:A解析:解:∵数列{a n}是公差为2的等差数列∴a n=a1+2(n-1)∴∴数列是公比为4的等比数列故选A11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.522答案:B解析:解:由a n=4a n-1+3可得a n+1=4a n-1+4=4(a n-1+1),故可得=4,由题意可得a1+1=1即数列{a n+1}为首项为1,公比为4的等比数列,故可得a5+1=44=256,故a5=255故选B12.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.答案:B解析:解:∵a n•b n=1∴b n==∴s10==(-)+=-=故选项为B.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()A.20B.18C.10D.8答案:B解析:解:设等比数列{a n}的公比为q,∵a1+a2=8,a3-a1=16,∴,解得,∴=2×32=18.故选:B.14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.答案:C解析:解:∵a4=2S3+3,a5=2S4+3,即2S4=a5-3,2S3=a4-3∴2S4-2S3=a5-3-(a4-3)=a5-a4=2a4,即3a4=a5∴3a4=a4q解得q=3,故选C15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项答案:D解析:解:由题意得=,∵n是正整数,∴=当且仅当时取等号,此时,∵当n=9时,=19;当n=9时,=19,则当n=9或10时,取到最小值是19,而取到最大值.故选D.二.填空题(共__小题)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.答案:-40解析:解:设等差数列{a n}的公差为d,∵a1+a2+a3=8,a4+a5+a6=-4,∵a4+a5+a6=(a1+3d)+(a2+3d)+(a3+3d)=a1+a2+a3+9d,∴-4=8+9d,解得d=-,∴a13+a14+a15=a1+a2+a3+36d=8-×36=-40,故答案为:-4017.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.答案:8解析:解:由等差数列的性质可得a3+a5+a7+a9+a11=(a3+a11)+a7+(a5+a9)=2a7+a7+2a7=5a7=20∴a7=4∴a1+a13=2a7=8故答案为:818.(2015秋•岳阳校级月考)数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.答案:2n+n2-1解析:解:数列a n的前n项和S n=(2+22+23+…+2n)+[1+3+5+…+(2n-1)]=+=2n-1+n2.故答案为:2n-1+n2.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.答案:2n-1解析:解:由题可得,a n+1+1=2(a n+1),则=2,又a1=1,则a1+1=2,所以数列{a n+1}是以2为首项、公比的等比数列,所以a n+1=2•2n-1=2n,则a n=2n-1.故答案为:2n-1.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.答案:3解析:解:设等差数列{a n}的首项为a1,公差为d,由a2+a6=a8,得a1+d+a1+5d=a1+7d,即a1=d,所以==.故答案为3.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.答案:1023解析:解:由题意,两边同加1得:a n+1+1=2(a n+1),∵a1+1=2∴{a n+1}是以2为首项,以2为等比数列∴a n+1=2•2n-1=2n∴a n=2n-1∴a10=1024-1=1023.故答案为:1023.22.设正项等比数列{an}的公比为q,且,则公比q=______.答案:解析:解:由题意知得∴6q2-q-1=0∴q=或q=-(与正项等比数列矛盾,舍去).故答案为:23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.答案:2n+1-1解析:解:由题意知a n+1=2a n+1,则a n+1+1=2a n+1+1=2(a n+1)∴=2,且a1+1=4,∴数列{a n+1}是以4为首项,以2为公比的等比数列.则有a n+1=4×2n-1=2n+1,∴a n=2n+1-1.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.答案:=5解析:解:等差数列{a n}中,∵a3+2a8+a9=20,∴(a1+2d)+2(a1+7d)+(a1+8d)=4a1+24d=4(a1+6d)=4a7=20,∴a7=5.故答案为:5.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.答案:解析:解:由题设条件知a1+a1q=a1q2,∵a1>0,∴q2-q-1=0解得,∵数列{a n}为正项等比数列,∴.故答案:.三.简答题(共__小题)26.已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.答案:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+1解析:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+127.已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.解析:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.28.已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.解析:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.29.已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.答案:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)解析:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)30.在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.答案:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.解析:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.。

高三数学 等差数列选择题专项训练知识点及练习题及解析(1)

高三数学 等差数列选择题专项训练知识点及练习题及解析(1)

一、等差数列选择题1.已知等差数列{}n a ,且()()35710133248a a a a a ++++=,则数列{}n a 的前13项之和为( ) A .24 B .39C .104D .52解析:D 【分析】根据等差数列的性质计算求解. 【详解】由题意()()357101341041073232236()1248a a a a a a a a a a ++++=⨯+⨯=+==,74a =,∴11313713()13134522a a S a +===⨯=. 故选:D .2.已知正项数列{}n a 满足11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-=⎪⎪⎝⎭⎝⎭,数列{}n b 满足1111n n nb a a +=+,记{}n b 的前n 项和为n T ,则20T 的值为( ) A .1 B .2C .3D .4解析:B 【分析】 由题意可得221114n n a a +-=,运用等差数列的通项公式可得2143n n a =-,求得14n b =,然后利用裂项相消求和法可求得结果【详解】解:由11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭,得221114n n a a +-=, 所以数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列, 所以2114(1)43nn n a =+-=-,因为0n a >,所以n a =,所以1111n n nb a a +=+=所以14nb==,所以201220T b b b=++⋅⋅⋅+111339(91)244=++⋅⋅⋅+=⨯-=,故选:B【点睛】关键点点睛:此题考查由数列的递推式求数列的前n项和,解题的关键是由已知条件得221114n na a+-=,从而数列21na⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列,进而可求na=,14nb==,然后利用裂项相消法可求得结果,考查计算能力和转化思想,属于中档题3.已知等差数列{}n a的前n项和为n S,且310179a a a++=,则19S=()A.51 B.57 C.54 D.72解析:B【分析】根据等差数列的性质求出103a=,再由求和公式得出答案.【详解】317102a a a+=1039a∴=,即103a=()1191019191921935722a a aS+⨯∴===⨯=故选:B4.若数列{}n a满足121()2nnaa n N*++=∈,且11a=,则2021a=()A.1010B.1011C.2020D.2021解析:B【分析】根据递推关系式求出数列的通项公式即可求解.【详解】由121()2nnaa n N*++=∈,则11()2n na a n N*+=+∈,即112n na a+-=,所以数列{}n a是以1为首项,12为公差的等差数列,所以()()11111122n n a a n d n +=+-=+-⨯=, 所以2021a =2021110112+=. 故选:B5.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( ) A .103 B .107C .109D .105解析:B 【分析】根据题意可知正整数能被21整除余2,即可写出通项,求出答案. 【详解】根据题意可知正整数能被21整除余2,21+2n a n ∴=, 5215+2107a ∴=⨯=.故选:B.6.已知等差数列{}n a 中,161,11a a ==,则数列{}n a 的公差为( ) A .53B .2C .8D .13解析:B 【分析】设公差为d ,则615a a d =+,即可求出公差d 的值. 【详解】设公差为d ,则615a a d =+,即1115d =+,解得:2d =, 所以数列{}n a 的公差为2, 故选:B7.《周碑算经》有一题这样叙述:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影长之和为八丈五尺五寸,则后五个节气日影长之和为( )(注:一丈=十尺,一尺=十寸) A .一丈七尺五寸 B .一丈八尺五寸 C .二丈一尺五寸 D .二丈二尺五寸解析:D 【分析】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,已知条件为985.5S =,14731.5a a a ++=,由等差数列性质即得5a ,4a ,由此可解得d ,再由等差数列性质求得后5项和. 【详解】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和, 则()19959985.52a a S a +===(尺),所以59.5a =(尺),由题知1474331.5a a a a ++==(尺),所以410.5a =(尺),所以公差541d a a =-=-, 则()8910111210555522.5a a a a a a a d ++++==+=(尺). 故选:D .8.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121 B .161C .141D .151解析:B 【分析】由条件可得127a =,然后231223S a =,算出即可. 【详解】因为31567a a a +=+,所以15637a a a =-+,所以1537a d =+,所以1537a d -=,即127a =所以231223161S a == 故选:B9.《周髀算经》是中国最古老的天文学和数学著作,它揭示日月星辰的运行规律.其记载“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁”.现恰有30人,他们的年龄(都为正整数)之和恰好为一遂(即1520),其中年长者年龄介于90至100,其余29人的年龄依次相差一岁,则最年轻者的年龄为( ) A .32 B .33C .34D .35解析:D 【分析】设年纪最小者年龄为n ,年纪最大者为m ,由他们年龄依次相差一岁得出(1)(2)(28)1520n n n n m ++++++++=,结合等差数列的求和公式得出111429m n =-,再由[]90,100m ∈求出n 的值.【详解】根据题意可知,这30个老人年龄之和为1520,设年纪最小者年龄为n ,年纪最大者为m ,[]90,100m ∈,则有(1)(2)(28)294061520n n n n m n m ++++++++=++=则有291114n m +=,则111429m n =-,所以90111429100m ≤-≤解得34.96635.31n ≤≤,因为年龄为整数,所以35n =. 故选:D10.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231n n a n b n =+,则2121S T 的值为( )A .1315B .2335C .1117 D .49解析:C 【分析】利用等差数列的求和公式,化简求解即可 【详解】2121S T =12112121()21()22a ab b ++÷=121121a a b b ++=1111a b =2113111⨯⨯+=1117.故选C11.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10C .12D .14解析:C 【分析】利用等差数列的通项公式即可求解. 【详解】 {a n }为等差数列,S 3=12,即1232312a a a a ++==,解得24a =. 由12a =,所以数列的公差21422d a a =-=-=, 所以()()112212n a a n d n n =+-=+-=, 所以62612a =⨯=. 故选:C12.等差数列{}n a 中,已知14739a a a ++=,则4a =( ) A .13 B .14C .15D .16解析:A 【分析】利用等差数列的性质可得1742a a a +=,代入已知式子即可求解. 【详解】由等差数列的性质可得1742a a a +=, 所以1474339a a a a ++==,解得:413a =, 故选:A13.已知数列{}n a 的前n 项和为n S ,且满足212n n n a a a ++=-,534a a =-,则7S =( )A .7B .12C .14D .21解析:C 【分析】判断出{}n a 是等差数列,然后结合等差数列的性质求得7S . 【详解】∵212n n n a a a ++=-,∴211n n n n a a a a +++-=-,∴数列{}n a 为等差数列. ∵534a a =-,∴354a a +=,∴173577()7()1422a a a a S ++===. 故选:C14.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200 B .100 C .90 D .80解析:C 【分析】先求得1a ,然后求得10S . 【详解】依题意120a a d =-=,所以101104545290S a d =+=⨯=. 故选:C15.已知各项不为0的等差数列{}n a 满足26780a a a -+=,数列{}n b 是等比数列,且77b a =,则3810b b b =( )A .1B .8C .4D .2解析:B 【分析】根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】因为各项不为0的等差数列{}n a 满足26780a a a -+=,所以27720a a -=,解得72a =或70a =(舍);又数列{}n b 是等比数列,且772b a ==,所以33810371178b b b b b b b ===.故选:B.二、等差数列多选题16.题目文件丢失!17.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .01q <<B .681a a >C .n S 的最大值为7SD .n T 的最大值为6T解析:AD 【分析】分类讨论67,a a 大于1的情况,得出符合题意的一项. 【详解】①671,1a a >>, 与题设67101a a -<-矛盾. ②671,1,a a ><符合题意. ③671,1,a a <<与题设67101a a -<-矛盾. ④ 671,1,a a <>与题设11a >矛盾.得671,1,01a a q ><<<,则n T 的最大值为6T .∴B ,C ,错误.故选:AD. 【点睛】考查等比数列的性质及概念. 补充:等比数列的通项公式:()1*1n n a a qn N -=∈.18.已知等差数列{}n a 的前n 项和为n S ,公差为d ,且35a =,73a =,则( )A .12d =B .12d =-C .918S =D .936S =解析:BD 【分析】由等差数列下标和性质结合前n 项和公式,求出9S ,可判断C ,D ,由等差数列基本量运算,可得公差,判断出A ,B . 【详解】因为1937538a a a a +=+=+=, 所以()1999983622a a S +⨯===. 因为35a =,73a =,所以公差731732a a d -==--. 故选:BD19.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( ) A .2d =- B .122a =C .3430a a +=D .当且仅当11n =时,n S 取得最大值解析:AC 【分析】先根据题意得等差数列{}n a 的公差2d =-,进而计算即可得答案. 【详解】解:设等差数列{}n a 的公差为d , 则52318312a a d d =+=+=,解得2d =-.所以120a =,342530a a a a +=+=,11110201020a a d =+=-⨯=, 所以当且仅当10n =或11时,n S 取得最大值. 故选:AC 【点睛】本题考查等差数列的基本计算,前n 项和n S 的最值问题,是中档题. 等差数列前n 项和n S 的最值得求解常见一下两种情况:(1)当10,0a d ><时,n S 有最大值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +<且0n a >的n 的取值范围确定;(2)当10,0a d <>时,n S 有最小值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +>且0n a <的n 的取值范围确定;20.已知数列{}n a :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68S a = B .733S =C .135********a a a a a ++++=D .2222123202020202021a a a a a a ++++=解析:BCD 【分析】根据题意写出8a ,6S ,7S ,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】对A ,821a =,620S =,故A 不正确; 对B ,761333S S =+=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,…,202120222020a a a =-,可得135********a a a a a +++⋅⋅⋅+=,故C 正确;对D ,该数列总有21n n n a a a ++=+,2121a a a =,则()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,…,()220182018201920172018201920172018a a a a a a a a =-=-, 22019a =2019202020192018a a a a -,220202020202120202019a a a a a =-, 故2222123202*********a a a a a a +++⋅⋅⋅+=,故D 正确.故选:BCD【点睛】关键点睛:解答本题的关键是对CD 的判断,即要善于利用21n n n a a a ++=+对所给式子进行变形.21.无穷等差数列{}n a 的前n 项和为S n ,若a 1>0,d <0,则下列结论正确的是( ) A .数列{}n a 单调递减 B .数列{}n a 有最大值 C .数列{}n S 单调递减 D .数列{}n S 有最大值解析:ABD 【分析】由10n n a a d +-=<可判断AB ,再由a 1>0,d <0,可知等差数列数列{}n a 先正后负,可判断CD. 【详解】根据等差数列定义可得10n n a a d +-=<,所以数列{}n a 单调递减,A 正确; 由数列{}n a 单调递减,可知数列{}n a 有最大值a 1,故B 正确;由a 1>0,d <0,可知等差数列数列{}n a 先正后负,所以数列{}n S 先增再减,有最大值,C 不正确,D 正确. 故选:ABD.22.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a < 解析:AD 【分析】利用等差数列的通项公式可以求70a >,80a <,即可求公差0d <,然后根据等差数列的性质判断四个选项是否正确. 【详解】因为67S S <,所以7670S S a -=> , 因为78S S >,所以8780S S a -=<, 所以等差数列{}n a 公差870d a a =-<, 所以{}n a 是递减数列,故1a 最大,选项A 正确;选项B 不正确;10345678910770S S a a a a a a a a -=++++++=>,所以310S S ≠,故选项C 不正确;当8n ≥时,80n a a ≤<,即0n a <,故选项D 正确; 故选:AD 【点睛】本题主要考查了等差数列的性质和前n 项和n S ,属于基础题.23.在数列{}n a 中,若22*1(2,.n n a a p n n N p --=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .{(1)}n -是等方差数列C .若{}n a 是等方差数列,则{}()*,kn a k Nk ∈为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 解析:BCD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}n a 不是等方差数列,故A 错误;对于B ,数列(){}1n-中,222121[(1)][(1)]0n n n n a a ---=---=是常数,{(1)}n ∴-是等方差数列,故B 正确;对于C ,数列{}n a 中的项列举出来是,1a ,2a ,,k a ,,2k a ,数列{}kn a 中的项列举出来是,k a ,2k a ,3k a ,,()()()()2222222212132221k k k k k k k k aa a a a a a a p +++++--=-=-==-=,将这k 个式子累加得()()()()2222222212132221k kk k k k k k aa a a a a a a kp +++++--+-+-++-=,222k k a a kp ∴-=,()221kn k n a a kp +∴-=,{}*(,kn a k N ∴∈k 为常数)是等方差数列,故C 正确; 对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BCD. 【点睛】本题考查了数列的新定义问题和等差数列的定义,属于中档题. 24.下列命题正确的是( )A .给出数列的有限项就可以唯一确定这个数列的通项公式B .若等差数列{}n a 的公差0d >,则{}n a 是递增数列C .若a ,b ,c 成等差数列,则111,,a b c 可能成等差数列D .若数列{}n a 是等差数列,则数列{}12++n n a a 也是等差数列解析:BCD【分析】根据等差数列的性质即可判断选项的正误.【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知0d >,{}n a 必是递增数列;C 选项:1a b c ===时,1111a b c===是等差数列,而a = 1,b = 2,c = 3时不成立; D 选项:数列{}n a 是等差数列公差为d ,所以11112(1)223(31)n n a a a n d a nd a n d ++=+-++=+-也是等差数列;故选:BCD【点睛】本题考查了等差数列,利用等差数列的性质判断选项的正误,属于基础题.25.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0B .2437d -<<- C .S n <0时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项 解析:ABCD【分析】S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确.【详解】∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0,又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13. 数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0. 对于:7≤n ≤12时,n nS a <0.S n >0,但是随着n 的增大而减小;a n <0, 但是随着n 的增大而减小,可得:n nS a <0,但是随着n 的增大而增大. ∴n =7时,n nS a 取得最小值. 综上可得:ABCD 都正确.故选:ABCD .【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.。

2010届高三数学高考二轮专题复习:数列通项的求法(教案+习题+解析)

2010届高三数学高考二轮专题复习:数列通项的求法(教案+习题+解析)
所以

类型2递推公式为
解法:把原递推公式转化为 ,利用累乘法(逐商相乘法)求解。
例5.已知数列 满足 , ,求 。
解析:由条件知 ,分别令 ,代入上式得 个等式累乘之,即
又 ,
点评:由 和 确定的递推数列 的通项可如下求得:
由已知递推式有 , , , 依次向前代入,得

简记为 ,这就是叠(迭)代法的基本模式。
2010年高三数学第二轮专题复习——数列通项的求法
考纲要求:
1.了解数列的概念和几种简单的表示方法(列表、图像、通项公式);
2.能够依据数列的前几项归纳出其通项公式;
3.会应用递推公式求数列中的项或.通项;
4.掌握已知 的一般方法和步骤.
考点回顾:
回顾近几年高考,对数列概念以及通项一般很少单独考查,往往与等差、等比数列或者与数列其它知识综合考查.一般作为考查其他知识的铺垫知识,因此,如果这一部分掌握不好,对解决其他问题也是非常不利的.
题型3.应用 与 的关系求通项
有些数列给出{ }的前n项和 与 的关系式 = ,利用该式写出 ,两式做差,再利用 导出 与 的递推式,从而求出 。
例3.已知数列 的前 项和 满足 .求数列 的通项公式.
分析:由前n项和 与 的关系即可求得.
解析:由
当 时,有
……,
经验证 也满足上式,所以
点评:利用公式 求解时,要注意对n分类讨论,但若能合写时一定要合并.
7.在数列 中, ,则 =()
A.5 B.-5 C.1 D.-1
8.已知数列 满足 ,则 ()
A.2010 2009 B.2011 2010 C.2009 2008 D.2009 2009
9.已知数列 的通项公式分别为 ,(a、b为常数)且a>b,那么两个数列中序号与数值均相同的项的个数为()

高三数学数列综合应用试题答案及解析

高三数学数列综合应用试题答案及解析

高三数学数列综合应用试题答案及解析1.已知数列{an }的前n项和为Sn,f(x)=,an=log2,则S2 013=________.【答案】log2+1【解析】an =log2f(n+1)-log2f(n),∴S2 013=a1+a2+…+a2 013=[log2f(2)-log2f(1)]+[log2f(3)-log2f(2)]+…+[log2f(2 014)-log2f(2 013)]=log2f(2 014)-log2f(1)=log2-log2=log2+1.2.各项均为正数的数列,满足:,,,那么()A.B.C.D.【答案】C【解析】取,,则,依次得到数列的各项为1,2,5,11,27…,取,,则,依次得到数列的各项为1,2,4,8,16…,由上可知存在,使得,…则由,∴数列为递增数列,由,而,…,累加得:,,即.【考点】1.递推公式;2.数列的单调性.3.已知数列满足:当()时,,是数列的前项和,定义集合是的整数倍,,且,表示集合中元素的个数,则,.【答案】9, 1022【解析】由于()时,,可知数列满足:,其前n项和满足:当时,是奇数,则是的整数倍;所以当时,的奇数项共有9项,故9;所以当时,的奇数项共有1022项,故1022;【考点】1.集合的表示法;2.数列通项与前n项和的关系;3.数学归纳法.4.在数列中,,则 .【答案】-1【解析】由此可知,所以.【考点】递推数列5.设数列满足 ,且对任意,函数满足,若,则数列的前项和为( )A.B.C.D.【答案】C【解析】.因为,所以:,所以是一个等差数列. ,又,,所以 .【考点】1、等差数列等比数列的通项及前项和;2、导数.6.若数列的前项和,则数列的通项公式()A.B.C.D.【答案】D【解析】对任意,有,当时有,解得;当且时,由,可得,两式相减得,整理得,故数列是以为首项,以为公比的等比数列,,故选D.【考点】数列通项的求解7.已知数列的通项公式为,数列的前项和为,且满足.(1)求的通项公式;(2)在中是否存在使得是中的项,若存在,请写出满足题意的其中一项;若不存在,请说明理由.【答案】(1)数列的通项公式为;(2)存在,如,是的第5项.【解析】(1)首先令求出的值,当时,两式相减得:,即:,从而为首项和公比均为的等比数列,最后利用等比数列的通项公式可求得数列的通项公式;(2)先假设存在,即中第项满足题意,亦即,故,因此只要取,就能使得是数列中的第项.试题解析:(1)当时,.(2分)当时,两式相减得:,即:.(6分)故为首项和公比均为的等比数列,.(8分)(2)设中第项满足题意,即,即,所以,取,则(其它形如的数均可).(14分)【考点】1.数列通项公式的求法;2.数列探究型问题的解法.8.已知数列是等差数列,且,;又若是各项为正数的等比数列,且满足,其前项和为,.(1)分别求数列,的通项公式,;(2)设数列的前项和为,求的表达式,并求的最小值.【答案】(1),;(2),.【解析】(1)首先设出公差和公比,根据已知条件及等比数列和等差数列的性质,列方程组解方程组,求得公差和公比,写出各自的通项公式;(2)因为取偶数和奇数时,数列的项数会有变化,所以对分取偶数和奇数两种情况进行讨论,根据等差数列和等比数列的前项和公式,求出的表达式,根据前后两项的变化确定的单调性,求得每种情况下的最小值,比较一下,取两个最小值中的较小者.试题解析:(1)设数列的公差是,的公比为,由已知得,解得,所以; 2分又,解得或(舍去),所以; .4分(2)当为偶数时,,当为奇数时. .10分当为偶数时,,所以先减后增,当时,,所以;当时,,所以;所以当为偶数时,最小值是. 12分当为奇数时,,所以先减后增,当时,,所以,当时,,所以,所以当为奇数时,最小值是.比较一下这两种情况下的的最小值,可知的最小值是. .14分【考点】1、等差数列与等比数列的前项和公式;2、数列与函数单调性的综合应用;3、数列与求函数最值的综合运用;4、数列的函数特性.9.设数列{an }的前n项和为Sn,且,n=1,2,3(1)求a1,a2;(2)求Sn 与Sn﹣1(n≥2)的关系式,并证明数列{}是等差数列;(3)求S1•S2•S3S2011•S2012的值.【答案】(1),;(2)Sn Sn﹣1﹣2S n+1=0;(3).【解析】(1)直接利用与的关系式求的值;(2)当时,把代入已知关系式可得与的关系式,再由此关系式,去凑出和,可得所求数列是等差数列,进而得通项的表达式,从而得的表达式;(3)由(2)中的表达式易求S1•S2•S3S2011•S2012的值.试题解析:(1)解:当n=1时,由已知得,解得,同理,可解得.(4分)(2)证明:由题设,当n≥2时,an =Sn﹣Sn﹣1,代入上式,得S n S n﹣1﹣2S n+1=0,∴,(7分)∴=﹣1+,∴{}是首项为=﹣2,公差为﹣1的等差数列,(10分)∴=﹣2+(n﹣1)•(﹣1)=﹣n﹣1,∴Sn=.(12分)(3)解:S1•S2•S3S2011•S2012=••••=.(14分)【考点】1、等差数列;2、数列的前n项和与通项的综合应用.10.设数列{an }是等差数列,数列{bn}的前n项和Sn满足且(Ⅰ)求数列{an }和{bn}的通项公式:(Ⅱ)设Tn 为数列{Sn}的前n项和,求Tn.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)利用求,再结合条件求;(Ⅱ)利用等比数列的求和公式求解.试题解析:(Ⅰ)由,,,即,又,故.,,公差,. (6分)(Ⅱ),所以数列其前项和,. (12分)【考点】等差数列、等比数列的性质,等比数列的求和公式.11.设等差数列的前项和,且,.(1)求数列的通项公式;(2)若数列满足,求数列的前项和.【答案】(1).(2),.【解析】(1)确定等差数列的通项公式,往往利用已知条件,建立相关元素的方程组,如本题,设等差数列的公差为,结合已知,可建立的方程组,,解得得到.(2)首先应确定。

数列解答题的考法研究题型归纳练习-2023届高三数学一轮复习(含解析)

数列解答题的考法研究题型归纳练习-2023届高三数学一轮复习(含解析)

数列大题的考法研究题型一:等差数列、等比数列的判定与证明1.已知数列{}n a 中,11a =,前n 项和为n S ,且满足2133(1)022n n nS n S n n +-+--=.证明:数列n S n ⎧⎫⎨⎬⎩⎭是等差数列,并求{}n a 的通项公式;2.已知数列{}n a 满足:12a =,()11n n n a a n n++=+. 设nn a b n=,证明:数列{}n b 是等差数列;3.已知数列{}n a 的前n 项和n S 满足3223n n a S =-. 证明:对任意的正整数n ,集合{}21221,,n n n a a a -+中的三个元素可以排成一个递增的等差数列题型二:分组转化法求和1.已知数列{}n a 满足11a =,11,22,n n n a n n a a n n +⎧+⎪=⎨⎪-⎩为奇数为偶数.(1)求2a ,3a ;(2)设22n n b a =-,求证:数列{}n b 是等比数列,并求其通项公式; (3)已知12log n n c b =,求证:122311111n nc c c c c c -+++<.2.已知数列{}n a 的前n 项和为n S ,且2,?,?n n n S n n ⎧=⎨⎩为奇数为偶数(1)求{}n a 的通项公式;(2)设1n n n b a a +=+,求数列{}n b 的前20项和20T .3.已知数列{}n a 满足11a =,11,,.n n na n a a n ++⎧=⎨⎩为奇数,为偶数(1)求2a ,3a ,4a ,并求n a ; (2)求{}n a 的前100项和100S .4.山西面食历史悠久,源远流长,称为“世界面食之根”.临汾牛肉丸子面、饸饹面是我们临汾人喜爱吃的面食.调查资料表明,某学校在每周一有1000名学生选择面食,餐厅的面食窗口在每周一提供牛肉丸子面和饸饹面两种面食.凡是在本周一选择牛肉丸子面的学生,下周一会有20%改选饸饹面;而选择饸饹面的学生,下周一会有30%改选牛肉丸子面.用,n n a b 分别表示在第n 个周一选择牛肉丸子面和饸饹面的人数,且1600a =. (1)证明:数列{}n a 是常数列;(2)若2,2,n n n n c n ⎧=⎨⎩为奇数为偶数,求数列{}n n b c +的前2n 项和2n S .题型三:裂项相消法求和1.已知数列{}n a 满足111,2(*,2)n n a a a n N n -==+∈≥ (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足11()n n n b n N a a +=∈,n S 是数列{}n b 的前n 项和,求n S .2.已知数列{}n a 满足()1123123(1)22n n a a a na n n N +*++++=-⋅+∈.(1)求数列{}n a 的通项公式; (2)设()()111nn n n a b a a +=++,求数列{}n b的前n 项和n S .3.已知数列{}n a 的前n 项和为n S ,且()*22n n S a n =-∈N ;(1)求{}n a 的通项公式;(2)设21n n b a n =+-,n T 是数列{}n b 的前n 项和,求n T ; (3)设()()1111n n n n a c a a ++=++,n R 是数列{}n c 的前n 项和,若对任意*n ∈N 均有n R λ<恒成立,求λ的最小值;题型四:错位相减法求和1.已知数列{}n a 的前n 项和为n S ,且12a =,12n n a S -=+(2n ≥,n *∈N ) (1)求{}n a 的通项公式n a ; (2)记2log nn na b a =,求数列{}n b 的前n 项和n T .2.若数列{}n a 的前n 项和为n S ,且21n n S a =-;数列{}n b 满足11(2,)n n n n b b b b n n N ---=≥∈,11b =.(1)求数列{}n a ,{}n b 的通项公式;(2)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n T .3.已知数列{}n a 的前n 项和为n S ,且(1)2n n n a a S +=,0n a >. (1)证明数列{}n a 为等差数列,并求{}n a 的通项公式; (2)已知2nn na b =,求数列{}n b 的前n 项和n T ,并证明2n T <.【课后精练】1.已知函数()21122f x x x =+,数列{}n a 的前n 项和为n S ,点()()*,n n S n ∈N 均在函数()f x 的图象上.(1)求数列{}n a 的通项公式;(2)若函数()442x x g x =+,令()*2021n n a b g n ⎛⎫=∈ ⎪⎝⎭N ,求数列{}n b 的前2020项和2020T .2.已知数列{}n a 的前n 项和224()n n S n N ++=-∈,函数()f x 对一切实数x 总有()(1)1f x f x +-=,数列{}n b 满足121(0)()()()(1).n n b f f f f f n n n-=+++++分别求数列{}n a 、{}n b 的通项公式.3.在公差不为0的等差数列{}n a 中,257a a +=,2a ,4a ,8a 成等比数列. (1)求数列{}n a 的通项公式;(2)若22n an n b a =+,求{}n b 的前n 项和n S .4.已知{}n a 是等比数列,0n a >,且223a =,6542a a a -=. (1)求数列{}n a 的通项公式;(2)设n n b a n =+,求数列{}n b 的前n 项和n S .5.已知数列{}n b 的前n 项和()22n S n n n N +=+∈.(1)求数列{}n b 的通项公式;(2)求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T .6.已知数列{}n a 的前n 项和为n S ,111,1(*)n n a a S n N +==+∈,数列{}n b 满足11b =,12n n n b a b +=+.(1)求数列{}n a 、{}n b 的通项公式; (2)若数列{}n c 满足1nn n n a c b b +=,求证:1212n c c c +++<.7.已知数列{}n a 满足111,2(1)n n a na n a +==+. (1)证明:数列n a n ⎧⎫⎨⎬⎩⎭为等比数列,并求n a ;(2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .8.已知数列{}n a 满足11()n n a a n N *+=+∈,且22a =.(1)若数列{}n b 满足111,21n n n b b b a +==+-,求数列{}n b 的通项公式;(2)求数列{}3n an a ⋅的前n 项和n S .9.已知数列{}n a ,{}n b 满足1118a =,11216n n n n a a a a ++-=,116n n b a =-.(1)证明{}n b 为等比数列,并求{}n b 的通项公式; (2)求11223377a b a b a b a b ++++.10.已知数列{}n a 的前n 项和为214n S n n =-.(1)求数列{}n a 的通项公式; (2) 求数列{}n a 的前n 项和n T .数列大题的考法研究【答案解析】题型一:等差数列、等比数列的判定与证明1.已知数列{}n a 中,11a =,前n 项和为n S ,且满足2133(1)022n n nS n S n n +-+--=.证明:数列n S n ⎧⎫⎨⎬⎩⎭是等差数列,并求{}n a 的通项公式; 【答案】证明见解析,32n a n =- 证明:因为2133(1)022n n nS n S n n +-+--=, 所以()13(1)12n n nS n S n n +-+=+, 所以1312n n S S n n +-=+,1111S a ==, 所以数列n S n ⎧⎫⎨⎬⎩⎭是以1为首项,32为公差的等差数列,3122n S n n =-,所以23122n S n n =-, 当2n ≥时, ()()2213131112222n n n a S S n n n n -⎡⎤=-=-----⎢⎥⎣⎦32n =-, 当1n =时,等式也成立, 所以32n a n =-;2.已知数列{}n a 满足:12a =,()11n n n a a n n++=+. 设nn a b n=,证明:数列{}n b 是等差数列; 【答案】证明:由()11n n n a a n n++=+,可得111n n a a n n +=++,所以111n n a a n n +-++,由于nn a b n=,可得11n n b b +-=,又112b a ==, 所以{}n b 为首项为2,公差为1的等差数列. 3.已知数列{}n a 的前n 项和n S 满足3223n n a S =-. 证明:对任意的正整数n ,集合{}21221,,n n n a a a -+中的三个元素可以排成一个递增的等差数列;【答案】由题意,数列{}n a 的前n 项和n S 满足3223n n a S =-,当2n ≥时,113223n n a S --=-, 两式相减,可得132n n n a a a --=,即12n n a a -=-,即()12,2n n a n a -=-≥, 令1n =,可得113223a a =-,解得143a =, 所以数列{}n a 是首项为43,公比为2-的等比数列,所以()()1124233n n n a +--=⋅-=,所以()222112233n nn a -=-=,21223n n a +=-,222123n n a ++=,又由21221214nn n n n a a a a -+--=-=,所以2n a ,21n a -,21n a +构成一个递增的等差数列.证明(判断)数列是等差(比)数列的4种基本方法题型二:分组转化法求和1.已知数列{}n a 满足11a =,11,22,n n n a n n a a n n +⎧+⎪=⎨⎪-⎩为奇数为偶数.(1)求2a ,3a ;(2)设22n n b a =-,求证:数列{}n b 是等比数列,并求其通项公式; (3)已知12log n n c b =,求证:122311111n nc c c c c c -+++<.【答案】(1)232a =,352a =-(2)证明见解析,12nn b ⎛⎫=- ⎪⎝⎭(3)证明见解析(1)因为数列{}n a 满足11a =,11,22,n n n a n n a a n n +⎧+⎪=⎨⎪-⎩为奇数为偶数,所以2113122a a =+=,323522422a a =-⨯=-=-.即232a =,352a =- (2)()()12221211122122122n n n n b a a n a n ++++=-=++-=+-()()()2221111421122222n n n n a n n a a b -+-==-==-. ∵12122b a =-=-,∴数列{}n b 的各项均不为0,∴112n n b b +=,即数列{}n b 是首项为12-,公比为12的等比数列, ∴1111222n nn b -⎛⎫⎛⎫=-=- ⎪⎪⎝⎭⎝⎭. (3)由(2)知11221log log 2nn n c b n ⎛⎫=== ⎪⎝⎭.∴()1223111111112231n n c c c c c c n n -+++=+++⨯⨯-1111111112231n n n=-+-++-=-<-. 2.已知数列{}n a 的前n 项和为n S ,且2,?,?n n n S n n ⎧=⎨⎩为奇数为偶数(1)求{}n a 的通项公式;(2)设1n n n b a a +=+,求数列{}n b 的前20项和20T .【答案】(1)1,?2,?n n n a n n +⎧=⎨-⎩为奇数为偶数;(2)60.【详解】解:(1)当1n =时,112a S ==当n 为奇数,且3n ≥时,12(1)1n n n a S S n n n -=-=--=+,显然1n =满足; 当n 为偶数时,12(1)2n n n a S S n n n -=-=--=-所以1,,2,.n n n a n n +⎧=⎨-⎩为奇数为偶数(2)()()()20122012232021T b b b a a a a a a =++⋅⋅⋅+=++++⋅⋅⋅++()1220211212a a a a a a =++⋅⋅⋅++--211212S a a =--222122260=⨯⨯--=.3.已知数列{}n a 满足11a =,11,,.n n na n a a n ++⎧=⎨⎩为奇数,为偶数(1)求2a ,3a ,4a ,并求n a ; (2)求{}n a 的前100项和100S .【答案】(1)22a =,32a =,43a =,1,22,.2n n n a n n +⎧⎪⎪=⎨+⎪⎪⎩为奇数,为偶数;(2)2600.【详解】解:(1)2112a a =+=,322a a ==,4313a a =+=. 当*N k ∈时,由题意,得2211k k a a -=+,212k k a a +=. 于是21211k k a a +-=+,即21211k k a a +--=.所以,{}21k a -是以1为首项,1为公差的等差数列, 所以()21111k a a k k -=+-⋅=,即n 为奇数时,12n n a +=. 当n 为偶数时,()11121122n n n n a a --++=+=+=.所以,1,22,.2n n n a n n +⎧⎪⎪=⎨+⎪⎪⎩为奇数,为偶数;(2)法1:()()100139924100S a a a a a a =++⋅⋅⋅++++⋅⋅⋅+()()1235023451=+++⋅⋅⋅+++++⋅⋅⋅+()()1505025150260022+⨯+⨯=+=法2:由(1),当*N k ∈时,21k a k -=,21k a k =+. 令212k k k b a a -=+,则21k b k =+.()()()1001234991001250S a a a a a a b b b =++++⋅⋅⋅++=++⋅⋅⋅+15031015050260022b b ++=⨯=⨯=. 4.山西面食历史悠久,源远流长,称为“世界面食之根”.临汾牛肉丸子面、饸饹面是我们临汾人喜爱吃的面食.调查资料表明,某学校在每周一有1000名学生选择面食,餐厅的面食窗口在每周一提供牛肉丸子面和饸饹面两种面食.凡是在本周一选择牛肉丸子面的学生,下周一会有20%改选饸饹面;而选择饸饹面的学生,下周一会有30%改选牛肉丸子面.用,n n a b 分别表示在第n 个周一选择牛肉丸子面和饸饹面的人数,且1600a =. (1)证明:数列{}n a 是常数列;(2)若2,2,n n n n c n ⎧=⎨⎩为奇数为偶数,求数列{}n n b c +的前2n 项和2n S .【答案】(1)证明见解析;(2)2248002(41)3n n S n n ++-=. 【详解】解:(1)证明:1600a =,11000600400b ∴=-=,26000.84000.3600a =⨯+⨯=,由题意,可得10.80.31000n n n n n a a b a b +=+⎧⎨+=⎩,解得113002n n a a +=+,1600a =,600n a ∴=,即数列{}n a 是常数列.(2)由(1)可得,1000400n n b a =-=,2,2,n n n n c n ⎧=⎨⎩为奇数为偶数,213212422400()()n n n S n c c c c c c -∴=⨯+++⋯++++⋯+24224002(13521)(222)n n n =⨯++++⋯+-+++⋯+ 248002(41)3n n n =++-.分组转化法求和的常见类型(1)若n n n a b c =±,且{}n b ,{}n c 为等差或等比数列,可采用分组求和法求{}n a 的前n 项和 (2)通项公式为n n n b n a c n ⎧⎪=⎨⎪⎩为奇数为偶数的数列,其中数列{}n b {}n c 是等比数列或等差数列,可采用分组转化法求和。

高三数学数列求和试题答案及解析

高三数学数列求和试题答案及解析

高三数学数列求和试题答案及解析1.设数列的前项积为,且(n∈N*).(1)求,并证明:;(2)设,求数列的前项和.【答案】(1),祥见解析;(2).【解析】(1)n取1,2,3求出,再利用与的关系将已知等式用表示即可证明;(2)由(1)问的结论利用等差数列的通项公式先求出的通项,再由通项利用裂项相消法求.试题解析:(1)由题意可得:,所以 5分(2)数列为等差数列,,, 10分【考点】1.数列的通项公式;2.数列的前n项和.2.设数列{an }的首项a1=,前n项和为Sn,且满足2an+1+S n=3(n∈N*),则满足<<的所有n的和为________.【答案】7【解析】由2an+1+S n=3得2a n+S n-1=3(n≥2),两式相减,得2a n+1-2a n+a n=0,化简得2an+1=a n(n≥2),即=(n≥2),由已知求出a2=,易得=,所以数列{a n}是首项为a1=,公比为q=的等比数列,所以Sn ==3[1-()n],S2n=3[1-()2n]代入<<,可得<()n<,解得n=3或4,所以所有n的和为7.3.已知等差数列的前项和为,且、成等比数列.(1)求、的值;(2)若数列满足,求数列的前项和.【答案】(1),;(2).【解析】(1)解法1是先令求出的表达式,然后令,得到计算出在的表达式,利用为等差数列得到满足通式,从而求出的值,然后利用条件、成等比数列列方程求出的值,从而求出、的值;解法2是在数列是等差数列的前提下,设其公差为,利用公式以及对应系数相等的特点得到、和、之间的等量关系,然后利用条件、成等比数列列方程求出的值,从而求出、的值;(2)解法1是在(1)的前提下求出数列的通项公式,然后利用错位相减法求数列的和;解法2是利用导数以及函数和的导数运算法则,将数列的前项和视为函数列的前项和在处的导数值,从而求出. 试题解析:(1)解法1:当时,,当时,.是等差数列,,得.又,,,、、成等比数列,,即,解得.解法2:设等差数列的公差为,则.,,,.,,.、、成等比数列,,即,解得.;(2)解法1:由(1)得.,.,①,②①②得. .解法2:由(1)得.,.,①由,两边对取导数得,.令,得. .【考点】1.定义法求通项;2.错位相减法求和;3.逐项求导4.已知数列{an }的前n项和为Sn=3n-1.(1)求数列{an}的通项公式;(2)若bn = (Sn+1),求数列{bnan}的前n项和Tn.【答案】(1)an=2×3n-1(2)-,n∈N*【解析】(1)当n=1时,a1=S1=2,当n≥2时,an =Sn-Sn-1=(3n-1)-(3n-1-1)=2×3n-1,综上所述,a n=2×3n-1.(2)bn = (Sn+1)=3n=-n,所以bnan=-2n×3n-1,Tn=-2×1-4×31-6×32-…-2n×3n-1,3Tn=-2×31-4×32-…-2(n-1)×3n-1-2n×3n,相减,得-2Tn=-2×1-2×31-2×32-…-2×3n-1+2n×3n=-2×(1+31+32+…+3n-1)+2n×3n,所以Tn=(1+31+32+…+3n-1)-n×3n=-n×3n=-,n∈N*5.数列1,1+2,1+2+22,…,1+2+22+…+2n-1,…的前n项和为.【答案】2n+1-n-2【解析】该数列的通项公式an=1+2+22+…+2n-1=2n-1.故Sn =a1+a2+…+an=(2-1)+(22-1)+(23-1)+…+(2n-1)=(2+22+23+…+2n)-n=2n+1-n-2.6.在数列{an }中,若对任意的n均有an+an+1+an+2为定值(n∈N*),且a7=2,a9=3,a98=4,则此数列{an}的前100项的和S100=.【答案】299【解析】设定值为M,则an +an+1+an+2=M,进而an+1+an+2+an+3=M,后式减去前式得an+3=an,即数列{an}是以3为周期的数列.由a7=2,可知a1=a4=a7=…=a100=2,共34项,其和为68;由a9=3,可得a 3=a6=…=a99=3,共33项,其和为99;由a98=4,可得a2=a5=…=a98=4,共33项,其和为132.故数列{an}的前100项的和S100=68+99+132=299.7.已知等差数列满足,,则它的前10项和()A.85B.135C.95D.23【答案】C.【解析】由得.【考点】等差数列通项公式及前和公式.8.数列的通项公式,其前项和为,则.【答案】1006【解析】所以,于是.【考点】数列前n项和.9.(本小题满分12分)等差数列的各项均为正数,,前项和为,等比数列中,,,是公比为64的等比数列.(Ⅰ)求与;(Ⅱ)证明:.【答案】(Ⅰ) ,;(Ⅱ)详见解析.【解析】(Ⅰ)先用等差数列等比数列的通项公式将已知表达式展开,解方程组,得到和,再写出通项公式;(Ⅱ)先用等差数列的求和公式求出,然后用裂项相消法求,再用放缩法比较大小.试题解析:(Ⅰ)设的公差为,为正数,的公比为,则,. 2分依题意有,由知为正有理数, 4分又由知,为6的因数1,2,3,6之一,解之得,. 故,. 6分(Ⅱ)证明:由(Ⅰ)知, 7分. 12分【考点】1.等差、等比数列的通项公式;2.裂项相消法求和.10.在数列中,(1)试判断数列是否为等差数列;(2)设满足,求数列的前n项和;(3)若,对任意n ≥2的整数恒成立,求实数的取值范围.【答案】(1)根据递推关系得到,从而结合定义来证明、(2)(3)λ的取值范围是(-∞,].【解析】解:(1)∵,∴,∴由已知可得(n ≥ 2),故数列{}是等差数列,首项为1,公差为3.∴(2)上面两式相减得(3)将代入并整理得,∴,原命题等价于该式对任意n≥2的整数恒成立.设,则,故,∴Cn 的最小值为C2=,∴λ的取值范围是(-∞,].【考点】数列的求和,数列的单调性点评:主要是考查了数列的求和以及数列的单调性的运用,属于中档题。

高中数学第4章数列1_4综合拔高练苏教版选择性必修第一册

高中数学第4章数列1_4综合拔高练苏教版选择性必修第一册

综合拔高练五年高考练考点1 等差数列及其应用 1.(2020全国Ⅱ,4,5分,)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A.3 699块B.3 474块C.3 402块D.3 339块 2.(2020浙江,7,4分,)已知等差数列{a n }的前n 项和为S n ,公差d ≠0,且a1a ≤1.记b 1=S 2,b n +1=S 2n +2-S 2n ,n ∈N *,下列等式不可能成立的是 ( )A.2a 4=a 2+a 6B.2b 4=b 2+b 6C.a 42=a 2a 8D.a 42=b 2b 83.(2019课标全国Ⅰ,9,5分,)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( )A.a n =2n -5B.a n =3n -10C.S n =2n 2-8n D.S n =12n 2-2n4.(2020新高考Ⅰ,14,5分,)将数列{2n -1}与{3n -2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为 . 5.(2020浙江,11,4分,)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列{a (a +1)2}就是二阶等差数列.数列{a (a +1)2}(n ∈N *)的前3项和是 .6.(2019课标全国Ⅲ,14,5分,)记S n 为等差数列{a n }的前n 项和,若a 1≠0,a 2=3a 1,则a 10a 5= .7.(2019北京,10,5分,)设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5= ,S n 的最小值为 .8.(2019课标全国Ⅰ,18,12分,)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.考点2 等比数列及其应用 9.(2020全国Ⅰ,10,5分,)设{a n }是等比数列,且a 1+a 2+a 3=1,a 2+a 3+a 4=2,则a 6+a 7+a 8=( )A.12B.24C.30D.32 10.(2018北京,4,5分,)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于√212.若第一个单音的频率为f ,则第八个单音的频率为 ( ) A.√23f B.√223fC.√2512 fD.√2712f 11.(2019课标全国Ⅰ,14,5分,)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5= .12.(2020全国Ⅲ文,17,12分,)设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8.(1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3,求m.13.(2019课标全国Ⅱ,19,12分,)已知数列{a n}和{b n}满足a1=1,b1=0,4a n+1=3a n-b n+4,4b n+1=3b n-a n-4.(1)证明:{a n+b n}是等比数列,{a n-b n}是等差数列;(2)求{a n}和{b n}的通项公式.考点3数列的综合问题14.(2020江苏,11,5分,)设{a n}是公差为d的等差数列,{b n}是公比为q的等比数列.已知数列{a n+b n}的前n项和S n=n2-n+2n-1(n∈N*),则d+q的值是.15.(2020全国Ⅰ,16,5分,)数列{a n}满足a n+2+(-1)n a n=3n-1,前16项和为540,则a1=.16.(2020新高考Ⅰ,18,12分,)已知公比大于1的等比数列{a n}满足a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,求数列{b m}的前100项和S100.考点4数学归纳法*17.(2020全国Ⅲ理,17,12分,)设数列{a n}满足a1=3,a n+1=3a n-4n.(1)计算a2,a3,猜想{a n}的通项公式并加以证明;(2)求数列{2n a n}的前n项和S n.三年模拟练应用实践1.(多选)(2020江苏盐城高二期末,)设d,S n分别为等差数列{a n}的公差与前n项和,若S10=S20,则下列判断中正确的有()A.当n=15时,S n取最大值B.当n=30时,S n=0C.当d>0时,a10+a22>0D.当d<0时,|a10|>|a22|2.(多选)(2020江苏苏州实验中学高二月考,)已知等差数列{a n }的首项为1,公差d =4,前n 项和为S n ,则下列结论成立的有( )A.数列{a aa}的前10项和为100B.若a 1,a 3,a m 成等比数列,则m =21C.若∑a =1a1a a a a +1>625,则n 的最小值为6D.若a m +a n =a 2+a 10,则1a +16a 的最小值为2512 3.(2020四川南充西南大学实验学校高一月考,)已知数列{log a b n }(a >0且a ≠1)是首项为2,公差为1的等差数列,若数列{a n }是递增数列,且满足a n =b n lg b n ,则实数a 的取值范围是( )A.(23,1) B.(2,+∞)C.(23,1)∪(1,+∞) D.(0,23)∪(1,+∞) 4.(2020山东济宁实验中学高二上期中,)古代埃及数学中有一个独特现象:除23用一个单独的符号表示以外,其他分数都可写成若干个单分数和的形式.例如25=13+115,可这样理解:有两个面包,要平均分给5个人,每人13,余13,再将这13分成5份,每人得115,这样每人分得13+115.形如22a -1(n ≥3,n ∈N *)的分数的分解:25=13+115,27=14+128,29=15+145,按此规律,22a -1=(n ≥3,n ∈N *).5.(2021河南豫南九校高二联考,)已知数列{a n }的前n 项和为S n ,数列{b n }的前n 项和为T n ,其中a 1=1,3S n =(n +m )a n (m ∈R),且a n b n =15.若对任意n ∈N *,λ>T n 恒成立,则实数λ的最小值为 .6.(2021上海交通大学附属中学高三月考,)已知等差数列{a n }(公差不为零)和等差数列{b n },如果关于x 的方程2 021x 2-(a 1+a 2+…+a 2021)x +b 1+b 2+…+b 2021=0有实数解,那么以下 2 021个方程x 2-a 1x +b 1=0,x 2-a 2x +b 2=0,x 2-a 3x +b 3=0,……,x 2-a 2 021x +b 2 021=0中,无实数解的方程最多有个.7.(2021浙江宁波宁海中学高三二模,)已知{|a n |}是首项和公差均为1的等差数列,S n 为数列{a n }的前n 项和,记m n 为|S n |的所有可能取值中的最小值,则m 1+m 2+…+m 2 020= .a n+1,②a n+1=a n+2,③8.(2021江苏南京三校高三期中联考,)在下列三个条件①a n+1=12S n=2a n-1中选择一个补充在题中横线处,并作答.设数列{a n}的前n项和为S n,a1=1,对任意的n∈N*,都有,等比数列{b n}中,对任意的n∈N*,都有b n>0,2b n+2=b n+1+3b n,且b1=1,问:是否存在k∈N*,使得对任意的n∈N*,都有a n b k≤a k b n?若存在,试求出k的值;若不存在,请说明理由.9.(2020天津耀华中学高二上期中,)在数列{a n}中,已知a1=1,其前n项和为S n,且对任意的正整数n,都有2S n=(n+1)a n成立.(1)求数列{a n}的通项公式;(2)已知关于n 的不等式a 3-2a 3·a 4-2a 4·…·a a -2a a <√2a +1对一切n ≥3,n ∈N *恒成立,求实数a 的取值范围;(3)已知c n =(11+a a)2,数列{c n }的前n 项和为T n ,试比较T n 与23的大小并证明.迁移创新10.(2019北京高考,)已知数列{a n },从中选取第i 1项、第i 2项、…、第i m 项(i 1<i 2<…<i m ),若a a 1<a a 2<…<a a a ,则称新数列a a 1,a a 2,…,a a a 为{a n }的长度为m 的递增子列.规定:数列{a n }的任意一项都是{a n }的长度为1的递增子列. (1)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(2)已知数列{a n }的长度为p 的递增子列的末项的最小值为a a 0,长度为q 的递增子列的末项的最小值为a a 0.若p <q ,求证:a a 0<a a 0;(3)设无穷数列{a n }的各项均为正整数,且任意两项均不相等.若{a n }的长度为s 的递增子列的末项的最小值为2s -1,且长度为s 且末项为2s -1的递增子列恰有2s -1个(s =1,2,…),求数列{a n }的通项公式.4.1~4.4综合拔高练五年高考练1.C由题意可设每层有n个环,则三层共有3n个环,∴每一环扇面形石板的块数构成以a1=9为首项,9为公差的等差数列{a n},且项数为3n.不妨设上层扇面形石板总数为S1,中层总数为S2,下层总数为S3,∴S3-S2=[9(2a+1)×a+a(a-1)2×9]-9(n+1)×n+a(a-1)2×9=9n2=729,解得n =9(负值舍去).则三层共有扇面形石板(不含天心石)27×9+27×262×9=27×9+27×13×9=27×14×9=3402(块).故选C .2.D 对于A,a 2,a 4,a 6成等差数列,故A 成立;对于B,由b n +1=S 2n +2-S 2n =a 2n +2+a 2n +1,可得b n +1-b n =a 2n +2+a 2n +1-(a 2n +a 2n -1)=a 2n +2-a 2n +a 2n +1-a 2n -1=4d ,故{b n }是等差数列,则b 2,b 4,b 6也成等差数列,故B 成立;对于C,a 42=(a 1+3d )2=a 12+6a 1d +9d 2,a 2a 8=(a 1+d )·(a 1+7d )=a 12+8a 1d +7d 2,所以a 42-a 2a 8=2d 2-2a 1d =2d (d -a 1),当d =a 1时,a 42=a 2a 8成立;对于D,a 42=(a 1+a 2+12a )2=(2a 1+13d )2=4a 12+52a 1d +169d 2,b 2b 8=(a 1+a 2+4d )(a 1+a 2+28d )=(2a 1+5d )(2a 1+29d )=4a 12+68a 1d +145d 2,所以a 42-b 2b 8=24d 2-16a 1d =8d 2(3-2·a1a )≥8d 2>0,所以a 42≠b 2b 8,故D 不可能成立.故选D .3.A 设{a n }的公差为d ,依题意得,4a 1+4×32d =0①,a 1+4d =5②,联立①②,解得a 1=-3,d =2.所以a n =2n -5,S n =n 2-4n.故选A . 4.答案 3n 2-2n解析 ∵数列{2n -1}的项为1,3,5,7,9,11,13,…, 数列{3n -2}的项为1,4,7,10,13,…, ∴数列{a n }是首项为1,公差为6的等差数列, ∴a n =1+(n -1)×6=6n -5, ∴数列{a n }的前n 项和S n =(1+6a -5)×a2=3n 2-2n.5.答案 10 解析 数列{a (a +1)2}的前三项依次为1×22=1,2×32=3,3×42=6,∴所求和为1+3+6=10. 6.答案 4解析 设等差数列{a n }的公差为d , ∵a 2=3a 1,∴a 2=a 1+d =3a 1,∴d =2a 1, ∴S 10=10a 1+10×92d =100a 1,S 5=5a 1+5×42d =25a 1,又∵a 1≠0,∴a10a 5=4.7.答案 0;-10解析 解法一:设等差数列{a n }的公差为d , ∵a 2=-3,S 5=-10, ∴{a 1+a =-3,5a 1+5×42a =-10, 即{a 1+a =-3,a 1+2a =-2,解得{a 1=-4,a =1,∴a 5=a 1+4d =0,S n =na 1+a (a -1)2d =-4n +a 2-a 2=12(n 2-9n )=12(a -92)2-818,∵n ∈N *,∴n =4或n =5时,S n 取最小值,最小值为-10. 解法二:设等差数列{a n }的公差为d ,易得S 5=5(a 1+a 5)2=5a 3,∵S 5=-10,∴a 3=-2,又a 2=-3,∴d =1,∴a 5=a 3+2d =0,∴(S n )min =S 4=S 5=-10.8.解析 (1)设{a n }的公差为d. 由S 9=-a 5得a 1+4d =0. 由a 3=4得a 1+2d =4. 于是a 1=8,d =-2.因此{a n }的通项公式为a n =10-2n. (2)由(1)得a 1=-4d ,故a n =(n -5)d ,S n =a (a -9)a2.由a 1>0知d <0,故S n ≥a n 等价于n 2-11n +10≤0,解得1≤n ≤10. 所以n 的取值范围是{n |1≤n ≤10,n ∈N }. 9.D 设等比数列{a n }的公比为q , 故a 2+a 3+a 4=q (a 1+a 2+a 3), 又a 2+a 3+a 4=2,a 1+a 2+a 3=1, ∴q =2,∴a 6+a 7+a 8=q 5(a 1+a 2+a 3)=25=32,故选D .10.D 由题意知,十三个单音的频率依次构成首项为f ,公比为√212的等比数列,设该等比数列为{a n },则a 8=a 1q 7,即a 8=√2712f ,故选D .11.答案1213解析 设{a n }的公比为q ,由a 42=a 6,得a 42=a 4·q 2,∴a 4=q 2.又∵a 4=a 1·q 3,∴a 1·q 3=q 2,又a 1=13,∴q =3.由等比数列求和公式可知S 5=13×(1-35)1-3=1213.12.解析 (1)设{a n }的公比为q ,则a n =a 1q n -1. 由已知得{a 1+a 1a =4,a 1a 2-a 1=8,解得{a 1=1,a =3.所以{a n }的通项公式为a n =3n -1. (2)由(1)知log 3a n =n -1.故S n =a (a -1)2.由S m +S m +1=S m +3得m (m -1)+(m +1)m =(m +3)(m +2),即m 2-5m -6=0, 解得m =-1(舍去)或m =6.13.解析 (1)证明:由题设得4(a n +1+b n +1)=2(a n +b n ), 即a n +1+b n +1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列. 由题设得4(a n +1-b n +1)=4(a n -b n )+8,即a n +1-b n +1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)由(1)知,a n +b n =12a -1,a n -b n =2n -1.所以a n =12[(a n +b n )+(a n -b n )]=12a +n -12,b n =12[(a n +b n )-(a n -b n )]=12a -n +12.14.答案 4 解析易知q ≠1,则{a n +b n }的前n 项和S n =na 1+a (a -1)2d +a 1(1-a a )1-a =a 2n 2+(a 1-a 2)n -a 11-a q n +a 11-a=n 2-n +2n-1, ∴a2=1,q =2,即d =2,q =2,∴d +q =4. 15.答案 7解析 令n =2k (k ∈N *),则有a 2k +2+a 2k =6k -1(k ∈N *), ∴a 2+a 4=5,a 6+a 8=17,a 10+a 12=29,a 14+a 16=41, ∴前16项的所有偶数项和S 偶=5+17+29+41=92, ∴前16项的所有奇数项和S 奇=540-92=448, 令n =2k -1(k ∈N *),则有a 2k +1-a 2k -1=6k -4(k ∈N *).∴a2k+1-a1=(a3-a1)+(a5-a3)+(a7-a5)+…+(a2k+1-a2k-1)=2+8+14+…+6k-4=a(2+6a-4)=k(3k-1)(k∈2N*),∴a2k+1=k(3k-1)+a1(k∈N*),∴a3=2+a1,a5=10+a1,a7=24+a1,a9=44+a1,a11=70+a1,a13=102+a1,a15=140+a1,∴前16项的所有奇数项和S奇=a1+a3+…+a15=8a1+2+10+24+44+70+102+140=8a1+392=448.∴a1=7.16.解析(1)设{a n}的公比为q.由题设得a1q+a1q3=20,a1q2=8,(舍去),q2=2.解得q1=12由题设得a1=2,所以{a n}的通项公式为a n=2n.(2)由题设及(1)知b1=0,且当2n≤m<2n+1时,b m=n.所以S100=b1+(b2+b3)+(b4+b5+b6+b7)+…+(b32+b33+…+b63)+(b64+b65+…+b100)=0+1×2+2×22+3×23+4×24+5×25+6×(100-63)=480.17.解析(1)a2=5,a3=7.猜想a n=2n+1.由已知可得a n+1-(2n+3)=3[a n-(2n+1)],a n-(2n+1)=3[a n-1-(2n-1)],……a2-5=3(a1-3).因为a1=3,所以a n=2n+1.(2)由(1)得2n a n=(2n+1)2n,所以S n=3×2+5×22+7×23+…+(2n+1)×2n,①从而2S n=3×22+5×23+7×24+…+(2n+1)×2n+1,②①-②得-S n=3×2+2×22+2×23+…+2×2n-(2n+1)×2n+1,所以S n=(2n-1)2n+1+2.知识拓展解决数列的求和问题,首先要得到数列的通项公式,再根据其特点选择相应的求和方法.数列求和的方法有以下几类:(1)公式法,等差或等比数列的求和用公式法;(2)裂项相消法,形如a n =1a (a +a )(k ≠0),可裂项为a n =1a ·(1a -1a +a);(3)错位相减法,形如c n =a n ·b n ,其中{a n }是等差数列,{b n }是等比数列;(4)分组求和法,形如c n =a n +b n ,其中{a n }是等差数列,{b n }是等比数列;(5)并项求和法.三年模拟练1.BC 因为S 10=S 20,所以10a 1+10×92d =20a 1+20×192d ,解得a 1=-292d.对选项A,因为无法确定a 1和d 的正负,所以无法确定S n 是否有最大值,故A 错误. 对选项B,S 30=30a 1+30×292d =30×(-292a )+15×29d =0,故B 正确.对选项C,a 10+a 22=2a 16=2(a 1+15d )=2(-292a +15a )=d >0,故C 正确.对选项D,a 10=a 1+9d =-292d +182d =-112d ,a 22=a 1+21d =-292d +422d =132d , 因为d <0,所以|a 10|=-112d ,|a 22|=-132d ,所以|a 10|<|a 22|,故D 错误. 故选BC .2.AB 由已知可得a n =4n -3,S n =2n 2-n ,a a a =2n -1,则数列{aaa }为等差数列,则其前10项和为10×(1+19)2=100,故A 正确; 若a 1,a 3,a m 成等比数列,则a 32=a 1·a m ,所以a m =81,即a m =4m -3=81,解得m =21,故B 正确; 因为1aa a a +1=14(14a -3-14a +1),所以∑a =1a1a a a a +1=141-15+15-19+…+14a -3-14a +1=a 4a +1>625,解得n >6,因为n ∈N *,所以n 的最小值为7,故C 错误;由等差数列的性质可知m +n =12,所以1a +16a =112(1a +16a )(m +n )=1121+a a +16aa+16≥112×(17+2×4)=2512,当且仅当a a =16aa,即n =4m =485时取等号,因为m ,n ∈N *,所以n =4m =485不成立,故D 错误.故选AB.3.D 由题意得log a b 1=2,log a b n +1-log a b n =log a a a +1a a=1, ∴b 1=a 2,a a +1a a=a ,∴{b n }是以a 2为首项,a 为公比的等比数列,∴b n =a n +1.∵a n =b n lg b n ,∴a n =a n +1lg a n +1=(n +1)a n +1·lg a ,∵{a n }为递增数列,∴a n +1-a n >0,即[(n +2)a -(n +1)]a n +1·lg a >0.①当a >1时,lg a >0,a n +1>0,∴(n +2)a -(n +1)>0,即a >a +1a +2=1-1a +2,∵1a +2>0,∴1-1a +2<1,∴只需a >1即可满足[(n +2)a -(n +1)]a n +1·lg a >0.②当0<a <1时,lg a <0,a n +1>0,∴(n +2)a -(n +1)<0,即a <1-1a +2,∵1a +2≤13,∴1-1a +2≥23,∴只需0<a <23即可满足[(n +2)a -(n +1)]a n +1·lg a >0.综上所述,实数a 的取值范围为(0,23)∪(1,+∞),故选D .4.答案1a +12a 2-a解析 由题意得,25=13+115, 即22×3-1=13+13×(2×3-1),27=14+128,即22×4-1=14+14×(2×4-1),29=15+145,即22×5-1=15+15×(2×5-1), 由此归纳出22a -1=1a +1a (2a -1)(n ≥3,n ∈N *).又1a +1a (2a -1)=2a -1+1a (2a -1)=22a -1,结论成立,∴22a -1=1a +12a 2-a . 解题模板由数列的前几项归纳其通项公式时,首先要分析项的结构,然后探究结构中的各部分与项的序号n 之间的函数关系,进而求得通项公式. 5.答案 25解析 当n =1时,3S 1=3a 1=(1+m )a 1,解得m =2.当n ≥2时,由{3a a =(a +2)a a ,3a a -1=(a -1+2)a a -1得(n -1)a n =(n +1)a n -1,即a a a a -1=a +1a -1.由累乘法可得a a a 1=a (a +1)2, 又a 1=1,所以a n =a (a +1)2,由a n b n =15,得b n =25a (a +1)=25(1a -1a +1), 所以T n =251-12+(12-13)+…+(1a -1a +1)=25(1-1a +1)<25.因为对任意n ∈N *,λ>T n 恒成立,所以λ≥25,故实数λ的最小值为25. 6.答案 1010解析 设等差数列{a n }的公差为d 1,d 1≠0,等差数列{b n }的公差为d 2,则a 1+a 2+…+a 2021=2021a 1011,b 1+b 2+…+b 2021=2021b 1011, 所以原方程可变为2021x 2-2021a 1011x +2021b 1011=0,由该方程有实数解可得(-2021a 1011)2-4×20212b 1011≥0,即a 10112≥4b 1011.要使方程x 2-a i x +b i =0(i ∈N *,i ≤2021)无解, 则需Δ=(-a i )2-4b i =a a 2-4b i <0(i ∈N *,i ≤2021).设y 1=a a 2=[a 1+(a -1)a 1]2,y 2=4b i =4[b 1+(i -1)d 2](i ∈N *,i ≤2021),易得y 1的图象为开口向上的抛物线的一部分,y 2的图象为直线的一部分, 又i =1011时,y 1≥y 2,所以满足y 1<y 2的i 的取值最多可有1010个, 即无实数解的方程最多有1010个. 7.答案 1010解析 因为{|a n |}是首项和公差均为1的等差数列,所以|a n |=1+n -1=n , 根据等差数列的性质,对任意p ,q ,r ,s ∈N *,若p +q =r +s ,则|a p |+|a q |=|a r |+|a s |, 所以存在满足p +q =r +s ,有a p +a q =-(a r +a s ). 当n =4k 时,S 4k =a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8+…+a 4k -3+a 4k -2+a 4k -1+a 4k ,为使|S 4k |取得最小值,只需a 2+a 3=-(a 1+a 4),a 5+a 8=-(a 6+a 7),……,a 4k -3+a 4k =-(a 4k -2+a 4k -1), 此时S 4k =k (a 1+a 2+a 3+a 4)=0,即|S 4k |的最小值m 4k =0; 当n =4k +1时,S 4k +1=a 1+(a 2+a 3+a 4+a 5+a 6+a 7+a 8+…+a 4k -3+a 4k -2+a 4k -1+a 4k +a 4k +1),为使|S 4k +1|取得最小值,同n =4k 时,只需S 4k +1=a 1+k (a 2+a 3+a 4+a 5)=a 1, 此时S 4k +1=a 1,即|S 4k +1|的最小值m 4k +1=1; 当n =4k +2时,S 4k +2=a 1+a 2+(a 3+a 4+a 5+a 6+a 7+a 8+…+a 4k -3+a 4k -2+a 4k -1+a 4k +a 4k +1+a 4k +2),为使|S 4k +2|取得最小值,同n =4k 时,只需S 4k +2=a 1+a 2+k (a 3+a 4+a 5+a 6)=a 1+a 2, 此时S 4k +1=a 1+a 2,当a 1=1,a 2=-2时,可使|S 4k +2|取得最小值m 4k +2=1; 当n =4k +3时,S 4k +3=a 1+a 2+a 3+(a 4+a 5+a 6+a 7+a 8+…+a 4k -3+a 4k -2+a 4k -1+a 4k +a 4k +1+a 4k +2+a 4k +3),为使|S 4k +3|取得最小值,同n =4k 时,只需S 4k +3=a 1+a 2+a 3+k (a 4+a 5+a 6+a 7)=a 1+a 2+a 3,当a 1=1,a 2=2,a 3=-3时,可使|S 4k +3|取得最小值m 4k +3=0.所以m n 以4为周期,因此m 1+m 2+…+m 2020=505×(m 1+m 2+m 3+m 4)=1010.8.解析 设等比数列{b n }的公比为q.因为对任意的n ∈N *,都有2b n +2=b n +1+3b n , 所以2q 2=q +3,解得q =-1或q =32.因为对任意的n ∈N *,都有b n >0,所以q >0,从而q =32.又b 1=1,所以b n =(32)a -1.假设存在k ∈N *,使得对任意的n ∈N *,都有a n b k ≤a k b n ,即a a a a≤aa a a.记c n =aa a a,n ∈N *.下面分别选择①②③作为条件进行研究.选择①.因为a n +1=12a n +1,所以a n +1-2=12(a n -2). 又a 1=1,所以a 1-2=-1≠0,所以a n -2≠0,从而a a +1-2a a -2=12, 所以数列{a n -2}是以a 1-2=-1为首项,12为公比的等比数列,则a n -2=-(12)a -1,即a n =2-(12)a -1,所以c n =a a a a =2a -13a -1,从而a a +1a a=2a +1-13(2a -1).由2a +1-13(2a-1)≤1得2n≥2,解得n ≥1,当n =1时,c 1=c 2,当n >1时,c n +1<c n ,所以当n 的值为1或2时,c n 取得最大值,即aa a a取得最大值.所以对任意的n ∈N *,都有a a a a≤a 2a 2=a1a 1,即a n b 1≤a 1b n ,a n b 2≤a 2b n ,所以存在k 的值为1或2,使得对任意的n ∈N *,都有a n b k ≤a k b n . 选择②.因为a n +1=a n +2,所以a n +1-a n =2,所以数列{a n }是以1为首项,2为公差的等差数列,又a 1=1,所以a n =1+2(n -1)=2n -1, 所以c n =a a a a =(2n -1)(23)a -1>0,从而a a +1a a=2(2a +1)3(2a -1).由2(2a +1)3(2a -1)≤1得2n ≥5,解得n ≥52,当n ≤2时,c n +1>c n ,当n ≥3时,c n +1<c n , 又c 2=2,c 3=209,所以当n =3时,c n 取得最大值,即aa a a取得最大值.所以对任意的n ∈N *,都有a a a a≤a3a 3,即a n b 3≤a 3b n .所以存在k 的值为3,使得对任意的n ∈N *,都有a n b k ≤a k b n . 选择③.因为S n =2a n -1,所以S n +1=2a n +1-1,从而a n +1=S n +1-S n =2a n +1-1-(2a n -1)=2a n +1-2a n ,即a n +1=2a n . 又a 1=1>0,所以a n >0,且a a +1a a=2, 从而数列{a n }是以1为首项,2为公比的等比数列,所以a n =2n -1, 所以c n =a a a a =(43)a -1>0,从而a a +1a a =43>1,所以c n +1>c n ,所以不存在满足题意的k. 9.解析 (1)∵2S n =(n +1)a n ,① ∴当n ≥2时,2S n -1=na n -1,② ①-②并化简,得2a n =(n +1)a n -na n -1, 即(n -1)a n =na n -1(n ≥2), 又a 1=1≠0,∴a n ≠0,∴a a a a -1=aa -1(n ≥2), ∴a 2a 1=21,a 3a 2=32,……,a a a a -1=a a -1, ∴a n =a 2a 1·a 3a 2·…·a a a a -1·a 1=21·32·…·aa -1·1=n , 经检验,当n =1时,a 1=1也满足上式, ∴a n =n.(2)由(1)知a n =n ,设f (n )=a 3-2a 3·a 4-2a 4·…·a a -2a a·√2a +1(n ≥3,n ∈N *), 则f (n +1)-f (n )=a 3-2a 3·a 4-2a 4·…·a a -2a a ·(a a +1-2a a +1·√2a +3-√2a +1) =a 3-2a 3·a 4-2a 4·…·a a -2a a ·(a -1)√2a +3-(a +1)√2a +1a +1=a 3-2a 3·a 4-2a 4·…·a a -2a a ·√2a 3-a 2-4a +3-√2a 3+5a 2+4a +1a +1<0, ∴f (n )在n ≥3,n ∈N *上单调递减, ∴f (n )max =f (3)=√73,∴a >f (3)=√73,即实数a 的取值范围是(√73,+∞). (3)T n <23.证明如下:∵a n =n ,∴c n =(11+a a)2=(11+a )2=1a 2+2a +1<1a (a +2)=12(1a -1a +2),∴T n =c 1+c 2+c 3+…+c n =14+c 2+c 3+…+c n <14+1212-14+(13-15)+(14-16)+…+(1a -1a +2) =14+12(12+13-1a +1-1a +2) =23-12(1a +1+1a +2)<23, 即T n <23.10.解析 (1)1,3,5,6.(答案不唯一)(2)证明:设长度为q 且末项为a a 0的一个递增子列为a a 1,a a 2,…,a a a -1,a a 0. 由p <q ,得a a a ≤a a a -1<a a 0.因为{a n }的长度为p 的递增子列末项的最小值为a a 0, 且a a 1,a a 2,…,a a a 是{a n }的长度为p 的递增子列, 所以a a 0≤a a a .所以a a 0<a a 0. (3)由题设知,所有正奇数都是{a n }中的项.先证明:若2m 是{a n }中的项,则2m 必排在2m -1之前(m 为正整数). 假设2m 排在2m -1之后.设a a 1,a a 2,…,a a a -1,2m -1是数列{a n }的长度为m 且末项为2m -1的递增子列,则a a 1,a a 2,…,a a a -1,2m -1,2m 是数列{a n }的长度为m +1且末项为2m 的递增子列,与已知矛盾.再证明:所有正偶数都是{a n }中的项.假设存在正偶数不是{a n }中的项,设不在{a n }中的最小的正偶数为2m.因为2k 排在2k -1之前(k =1,2,…,m -1),所以2k 和2k -1不可能在{a n }的同一个递增子列中. 又{a n }中不超过2m +1的数为1,2,…,2m -2,2m -1,2m +1,所以{a n }的长度为m +1且末项为2m +1的递增子列个数至多为2×2×2×…×2⏟ (a -1)个×1×1=2m -1<2m,与已知矛盾.最后证明:2m 排在2m -3之后(m ≥2为整数).假设存在2m (m ≥2),使得2m 排在2m -3之前,则{a n }的长度为m +1且末项为2m +1的递增子列的个数小于2m,与已知矛盾.综上,数列{a n }只可能为2,1,4,3,…,2m -3,2m ,2m -1,…. 经验证,数列2,1,4,3,…,2m -3,2m ,2m -1,…符合条件. 所以a n ={a +1,a 为奇数,a -1,a 为偶数.主编点评本题通过对数列中新概念的理解,考查逻辑推理、知识的迁移应用能力,重点考查逻辑推理、数学抽象的核心素养,渗透数学应用与创新意识,以及由特殊到一般的分类整合思想.。

数列中的最值问题

数列中的最值问题

问题二:数列中的最值问题数列中的最值常见题型有:求数列的最大项或最小项、与n S 有关的最值、求满足数列的特定条件的最值、求满足条件的参数的最值、实际问题中的最值及新定义题型中的最值问题等. 题型一:求数列的最大项或最小项求数列中的最大项的基本方法是: (1)利用不等式组⎩⎨⎧a n -1≤a n ,a n ≥a n +1(n ≥2)确定数列的最大项;(2)利用不等式组⎩⎨⎧a n -1≥a n ,a n ≤a n +1(n ≥2)确定数列的最小项.(3)利用函数或数列单调性求最大项或最小项.【例1】已知数列}{n a 的通项公式为n a =2156nn +,求}{n a 的最大项.【分析】思路1:利用基本不等式求解.思路2:求满足⎩⎨⎧≥≥-+11n n n n a a a a 的的值.【解法一】基本不等式法.n a =2156n n +=1156n n+,因为156n n +1562n n ⨯;当且仅当156n n =,即n=156时,而,144156169<< 且n ∈N *,于是将n=12或13代人,得1213a =a 且最大.【评注】解法一是是利用基本不等式求解,解法二是通过确定满足⎩⎨⎧≥≥-+11n nn n a a a a 的的值,从而找到最大项【小试牛刀】在数列{a n }中,a n =(n +1)⎝ ⎛⎭⎪⎫1011n(n ∈N *).(1)求证:数列{a n }先递增,后递减;(2)求数列{a n }的最大项.(2)解:由(1)知a 9=a 10=1010119最大.【点评】要证明数列{a n }是单调的,可利用“{a n }是递增数列⇔a n <a n +1,数列{a n }是递减数列⇔a n >a n +1”来证明.注意数列的单调性是探索数列的最大、最小项及解决其他许多数列问题的重要途径,因此要熟练掌握上述求数列单调性的方法.题型二:数列前n 项和最值问题公差不为0的等差数列的前n 项和的最值问题在高考中常出现,题型有小题也有大题,难度不大,求等差数列前n 项和最值的方法有:(1)利用{a n }中项的单调性,求出其正负转折项.(2)利用二次函数的性质求最值.公差不为0的等差数列的前n 项和S n =An 2+Bn(A,B 为常数).(3)利用⎩⎨⎧S n ≥S n -1,S n ≥S n +1求出S n 的最值.【例2】在等差数列{a n }中,a 1=7,公差为d,前n 项和为S n ,当且仅当n =8时S n 取最大值,则d 的取值范围是________.【分析】知a 1和S 8最大,可以求出S n 关于d 的表达式是关于n 的二次函数,再用二次函数的最值来解决;还可用S 8最大推出项的正负和变化规律,并利用所有正数项和最大.【解析】 (2)方法一(通法):由于S n =7n +n (n -1)2d =d 2n 2+⎝⎛⎭⎪⎫7-d 2n,设f(x)=d 2x 2+⎝ ⎛⎭⎪⎫7-d 2x,则其图象的对称轴为直线x =12-7d .当且仅当n =8时S n 取得最大值,故7.5<12-7d <8.5,解得-1<d<-78.方法二(优法):由题意,得a 8>0,a 9<0,所以7+7d>0,且7+8d<0,即-1<d<-78.【小试牛刀】【山西大学附属中学2017级上学期11月模块诊断】设等差数列{}n a 的前项和为n S ,且满足170S >,180S <,则11S a ,22S a ,…,1515S a 中最大的项为( ) A .77S a B .88S a C .99S a D .1010Sa 【答案】C 【解析】117917917()17(2)000022a a a S a +>⇒>⇒>⇒>11889181091018()18()0000022a a a a S a a a ++<⇒<⇒<⇒+<⇒<,因此8910121289100,0,0,0,0,S S SS S a a a a a >>>><而1291289,S S S a a a a <<<>>>>,所以89121289S S S S a a a a <<<<,选C. 题型三:求满足数列的特定条件的最值【例3】【2016届云南师范大学附属中学高三月考四】数列{}n a 是等差数列,若981a a <-,且它的前n 项和n S 有最大值,那么当n S 取得最小正值时,n 等于( ) A .17 B .16 C .15 D .14 【分析】利用等差数列的性质求前项和的最值.【解析】∵数列{}n a 的前n 项和有最大值,∴数列{}n a 为递减数列,又981a a <-, 8900a a ><∴,且890a a +<,又115116158168915()16()1508()022a a a a S a S a a ++==>==+<,,故当15n =时,n S 取得最小正值,故选C .【小试牛刀】【四川省2017年普通高考适应性测试】设数列{}n a 各项为正数,且214a a =,()2*12n n n a a a n N +=+∈.(Ⅰ)证明:数列(){}3log 1n a +为等比数列;(Ⅱ)令()321log 1n n b a -=+,数列{}n b 的前项和为n T ,求使345n T >成立时的最小值. 【答案】(Ⅰ)详见解析(Ⅱ)6【解析】(Ⅰ)由已知,2211124a a a a =+=,则()1120a a -=, 因为数列{}n a 各项为正数,所以12a =, 由已知,()21110n n a a ++=+>, 得()()313log 12log 1n n a a ++=+. 又()313log 1log 31a +==,所以,数列(){}3log 1n a +是首项为1,公比为2的等比数列.题型四:求满足条件的参数的最值【例4】【山东省枣庄市2017届高三上学期期末】已知n S 为各项均为正数的数列{}n a 的前项和,()210,2,326n n n a a a S ∈++=.(1)求{}n a 的通项公式; (2)设11n n n b a a +=,数列{}n b 的前项和为n T ,若对,4n n N t T *∀∈≤恒成立,求实数的最大值. 【分析】(1)首先求得1a 的值,然后利用n a 与n S 的关系推出数列{}n a 为等差数列,由此求得{}n a 的通项公式;(2)首先结合(1)求得n b 的表达式,然后用裂项法求得n T ,再根据数列{}n T 的单调性求得的最大值.【解析】(1)当1n =时,由2326n n n a a S ++=,得2111326a a a ++=,即211320a a -+=. 又()10,2a ∈,解得11a =.由2326n n n a a S ++=,可知2111326n n n a a S +++++=.两式相减,得()2211136n n n n n a a a a a +++-+-=,即()()1130n n n n a a a a +++--=.由于0n a >,可得130n n a a +--=,即13n n a a +-=,所以{}n a 是首项为,公差为的等差数列,所以()13132n a n n =+-=-.【点评】(1) 求解与参数有关的问题,一般是分离变量,再构造新函数求解.(2)使用裂项法,要注意正负项相消时,消去了哪些项,保留了哪些项.要注意由于数列{}n a 中每一项n a 均裂成一正一负两项,所以互为相反数的项合并为零后,所剩正数项与负数项的项数必是一样多的,切不可漏写未被消去的项,未被消去的项有前后对称的特点. 【小试牛刀】已知数列{}n a 的通项公式为11n a n =+,前项和为n S ,若对任意的正整数,不等式216n n mS S ->恒成立,则常数m 所能取得的最大整数为. 【答案】5【解析】要使216n n m S S ->恒成立,只需2min ()16n n m S S ->. 因2(1)1()n n S S ++-2222121221()()()n n n n n n n n n S S S S S S a a a +++++--=---=+-11111111022232222422224n n n n n n n n =+->+-=->++++++++,所以22113n n S S S S -≥-=,所以1161633m m <⇒<,m 所能取得的最大整数为5.题型五:实际问题中的最值【例5】为了保障幼儿园儿童的人身安全,国家计划在甲、乙两省试行政府规范购置校车方案,计划若干时间内(以月为单位)在两省共新购1000辆校车.其中甲省采取的新购方案是:本月新购校车10辆,以后每月的新购量比上一月增加50%;乙省采取的新购方案是:本月新购校车40辆,计划以后每月比上一月多新购m 辆. (Ⅰ)求经过n 个月,两省新购校车的总数S(n);(Ⅱ)若两省计划在3个月内完成新购目标,求m 的最小值.【分析】本题主要考查实际问题、等差等比数列的前n 项和公式、不等式的解法等数学知识,考查学生将实际问题转化为数学问题的能力,考查学生分析问题解决问题的能力和计算能力.第一问,通过对题意的分析可知甲方案能构成等比数列,而乙方案能构成等差数列,利用等差等比数列的前n 项和公式分别求和,再相加即可;第二问,利用第一问的结论,得出3n =且(3)1000S ≥,直接解不等式即可得到m 的取值范围,并写出最小值.【解析】(Ⅰ)设a n ,b n 分别为甲省,乙省在第n 月新购校车的数量.依题意,{a n }是首项为10,公比为1+50%=32的等比数列;{b n }是首项为40,公差为m 的等差数列. {a n }的前n 项和310[1()]2312n n A -=-,{b n }的前n 项和[4040(1)](1)4022n n n m n n mB n ++--==+. 所以经过n 个月,两省新购校车的总数为S(n)=310[1()](1)2403212n n n n n m A B n --+=++- 3(1)20[()1]4022n n n mn -=-++2320()(40)20222n m mn n =++--.(Ⅱ)若计划在3个月内完成新购目标,则S(3)≥1000,所以323(3)20()3(40)3201000222m mS =+⨯+-⨯-≥,解得m ≥277.5.又*∈N m ,所以m 的最小值为278.【小试牛刀】某企业为节能减排,用万元购进一台新设备用于生产. 第一年需运营费用万元,从第二年起,每年运营费用均比上一年增加万元,该设备每年生产的收入均为11万元. 设该设备使用了()n n *∈N 年后,年平均盈利额达到最大值(盈利额等于收入减去成本),则等于( ) A. B. C. D. 【答案】A【解析】设该设备第()n n N *∈的营运费用为n a 万元,则数列{}n a 是以为首项,以为公差的等差数列,则2n a n =,则该设备到第()n n N *∈年的营运费用总和为12242n a a a n +++=+++=()2222n n n n +=+,设第()n n N *∈的盈利总额为n S 万元,则()22119109n S n n n n n =-+-=-+-,因此,该设备年平均盈利额为210999*********n S n n n n n n n n n n -+-⎛⎫==--+=-++≤-⋅+= ⎪⎝⎭,当且仅当9n n =且当n N *∈,即当3n =时,该设备年平均盈利额达到最大值,此时3n =,故选A.【迁移运用】1.【2016·辽宁大连统考】数列{a n }中,如果存在a k ,使得a k >a k -1且a k >a k +1成立(其中k ≥2,k ∈N *),则称a k 为数列{a n }的峰值,若a n =-3n 2+15n -18,则{a n }的峰值为( ) A .0 B .4 C.133 D.163【答案】A【解析】因为a n =-3⎝ ⎛⎭⎪⎫n -522+34,且n ∈N *,所以当n =2或n =3时,a n 取最大值,最大值为a 2=a 3=0.2.【中原名校豫南九校2017届第四次质量考评】已知等差数列{}n a 的公差0d ≠,n S 是其前项和,若236 a a a ,,成等比数列,且1017a =-,则2nnS 的最小值是( ) A .12- B .58- C.38- D .1532-【答案】A3.【河南省豫北名校联盟2017届高三年级精英对抗赛,】已知在正项等比数列{}n a 中,存在两项,m n a a 满足14m n a a a =,且6542a a a =+,则14m n+的最小值是( ) A .32 B .2 C. 73 D .256【答案】A【解析】设数列{}n a 的公比为(0)q q >,则由6542a a a =+得220q q --=,解之得2q =或1q =-(舍去),因为存在两项,m n a a 满足14m n a a a =,所以1111224m n a a --=,解之得6m n +=,所以1411414143()()(5)(52)6662n m n m m n m n m n m n m n +=++=++≥+⨯=,当且仅当4,6n m m n m n =+=即2,4m n ==时等号成立,所以14m n +的最小值是32,故选A. 4.【天津六校2017届高三上学期期中联考】已知数列{}n a 满足:11a =,12n n n a a a +=+()n N *∈.若11(2)(1)n n b n a λ+=-⋅+()n N *∈,1b λ=-,且数列{}n b 是单调递增数列,则实数λ的取值范围是( ) A .23λ>B .32λ>C .32λ<D .23λ< 【答案】D5.设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ). A.163 B.133 C .4 D .0【答案】D【解析】∵a n =-32)25(-n +34,由二次函数性质,得当n =2或3时,a n 最大,最大为0.6.等差数列{a n }的前n 项和为S n ,已知a 1=13,S 3=S 11,当S n 最大时,n 的值是( ) A .5 B .6 C .7 D .8【答案】 C【解析一】由S 3=S 11,得a 4+a 5+…+a 11=0,根据等差数列的性质,可得a 7+a 8=0,根据首项等于13可推知这个数列递减,从而得到a 7>0,a 8<0,故n =7时,S n 最大. 【解析二】由S 3=S 11,可得3a 1+3d =11a 1+55d,把a 1=13代入,得d =-2, 故S n =13n -n(n -1)=-n 2+14n,根据二次函数的性质,知当n =7时,S n 最大. 【解析三】根据a 1=13,S 3=S 11,则这个数列的公差不等于零,且这个数列的和先是单调递增然后又单调递减,根据公差不为零的等差数列的前n 项和是关于n 的二次函数,以及二次函数图象的对称性,得只有当n =3+112=7时,S n 取得最大值.7.在数列{a n }中,a n =n - 2 013n - 2 014,则该数列前100项中的最大项与最小项分别是( ) A .a 1,a 50B .a 1,a 44C .a 45,a 44D .a 45,a 50【答案】C 【解析】a n =n - 2 013n - 2 014=1+ 2 014- 2 013n - 2 014,∴当n ∈1,44]时,{a n }单调递减,当n ∈45,100]时,{a n }单调递减, 结合函数f(x)=x - 2 013x - 2 014的图象可知,(a n )max =a 45,(a n )min =a 44,选C.8.【2016届重庆市南开中学高三12月月考】已知函数()()22812f x x a x a a =++++-,且()()2428f a f a -=-,设等差数列{}n a 的前项和为n S ,()*n N ∈若()n S f n =,则41n n S aa --的最小值为( ) A .276 B .358 C .143 D .378【答案】【解析】由题意可得等差数列的通项公式和求和公式,代入由基本不等式可得.由题意可得2428a a -=-或2842822a a a +-+-=⨯-(), 解得a=1或a=-4,当a=-1时,2712f x x x =+-(),数列{a n }不是等差数列; 当a=-4时,24f x x x =+(),24nS f n n n ==+(), ()()1257575123n a a a n n ∴===+--=+,,,()22121134416122)11(2n n n n S a n n a n n ++++-++∴==-++⨯()113113122121312121n n n n =⨯+++≥++⎡⎤⨯⎢⎥=++⎣⎦+()(),当且仅当1311n n +=+,即131n =-时取等号, ∵n 为正数,故当n=3时原式取最小值378,故选D . 9. 【2016届江苏省盐城市盐阜中学高三上12月月】等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为. 【答案】﹣49【解析】设等差数列{a n }的首项为a 1,公差为d, ∵S 10=10a 1+45d=0,S 15=15a 1+105d=25, ∴a 1=﹣3,d=, ∴S n =na 1+d=n 2﹣n,∴nS n =n 3﹣n 2,令nS n =f (n ),∴f ′(n )=n 2﹣n,∴当n=时,f (n )取得极值,当n <时,f (n )递减;当n >时,f (n )递增;因此只需比较f (6)和f (7)的大小即可. f (6)=﹣48,f (7)=﹣49, 故nS n 的最小值为﹣49. 故答案为:﹣49.10.【2016届河北省正定中学高三上第五次月考】已知数列{}n a 满足151=a ,12n na a n+-=,则na n的最小值为. 【答案】27411.【2016·湖南衡阳五校联考】已知数列{a n }满足a 1=1,a n +1=1-14a n,其中n ∈N *. (1)设b n =22a n -1,求证:数列{b n }是等差数列,并求出{a n }的通项公式a n . (2)设c n =4a n n +1,数列{c n c n +2}的前n 项和为T n ,是否存在正整数m,使得T n <1c m c m +1对于n ∈N *恒成立?若存在,求出m 的最小值;若不存在,请说明理由. 【解析】(1)b n +1-b n =22a n +1-1-22a n -1=22⎝ ⎛⎭⎪⎫1-14a n -1-22a n -1=4a n 2a n -1-22a n -1=2. 所以数列{b n }是等差数列,a 1=1,b 1=2,因此b n =2+(n -1)×2=2n, 由b n =22a n -1得a n =n +12n .(2)c n =2n ,c n c n +2=4n (n +2)=2⎝ ⎛1n -⎭⎪⎫1n +2, 所以T n =2⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2<3, 依题意要使T n <1c m c m +1对于n ∈N *恒成立,只需m (m +1)4≥3, 解得m ≥3或m ≤-4(舍), 所以m 的最小值为3.12.【天津六校2017届高三上学期期中联考】已知各项都是正数的数列{}n a 的前项和为n S ,212n n n S a a =+,n N *∈(1) 求数列{}n a 的通项公式;(2) 设数列{}n b 满足:11b =,12(2)n n n b b a n --=≥,数列1n b ⎧⎫⎨⎬⎩⎭的前项和n T ,求证:2n T <;(3) 若(4)n T n λ≤+对任意n N *∈恒成立,求λ的取值范围. 【答案】(Ⅰ)12n a n =(Ⅱ)详见解析(Ⅲ)29λ≥ 【解析】(1)时,是以为首项,为公差的等差数列(2),,即2n T <(3)由得, 当且仅当时,有最大值,13.【中原名校豫南九校2017届第四次质量考评】设等差数列{}n a 的前项和为n S ,且55625S a a =+=.(1)求{}n a 的通项公式;(2)若不等式()()282714nn n S n k a ++>-+对所有的正整数都成立,求实数的取值范围.【答案】(Ⅰ)34n a n =-(Ⅱ)2974k -<<14.【河南省豫北名校联盟2017届高三年级精英对抗赛】已知各项均不相等的等差数列{}n a 的前五项和520S =,且137,,a a a 成等比数列. (1)求数列{}n a 的通项公式; (2)若n T 为数列11{}n n a a +的前项和,且存在*n N ∈,使得10n n T a λ+-≥成立,求实数λ的取值范围.【答案】(1)1n a n =+;(2)1(,]16-∞. 【解析】(1)设数列{}n a 的公差为d ,则1211154520,2(2)(6),a d a d a a d ⨯⎧+=⎪⎨⎪+=+⎩即12124,2.a d d a d +=⎧⎨=⎩ 又因为0d ≠,所以12,1.a d =⎧⎨=⎩所以1n a n =+. (2)因为11111(1)(2)12n n a a n n n n +==-++++, 所以11111111233412222(2)n n T n n n n =-+-++-=-=++++. 因为存在*n N ∈,使得10n n T a λ+-≥成立,所以存在*n N ∈,使得(2)02(2)nn n λ-+≥+成立,即存在*n N ∈,使22(2)nn λ≤+成立.又2142(2)2(4)n n n n =+++,114162(4)n n≤++(当且仅当2n =时取等号), 所以116λ≤.即实数λ的取值范围是1(,]16-∞.15.已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记n S 为数列{}n a 的前项和,是否存在正整数n,使得n S 60800n >+?若存在,求的最小值; 若不存在,说明理由.【解析】(Ⅰ)设数列{}n a 的公差为,依题意, ,2d +,24d +成等比数列,故有2(2)2(24)d d +=+,化简得240d d -=,解得0d =或d =. 当0d =时,2n a =;当d =时,2(1)442n a n n =+-⋅=-,从而得数列{}n a 的通项公式为2n a =或42n a n =-.16.已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设T n =S n -1S n (n ∈N *),求数列{T n }的最大项的值与最小项的值.【解析】(1)设等比数列{a n }的公比为q, 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5, 即4a 5=a 3,于是q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12.故等比数列{a n }的通项公式为 a n =32×1)21(--n =(-1)n -1·32n .(Ⅱ)由(Ⅰ)得S n =1-n)21(-=⎩⎪⎨⎪⎧1+12n ,n 为奇数,1-12n,n 为偶数.当n 为奇数时,S n 随n 的增大而减小, 所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对于n ∈N *,总有-712≤S n -1S n ≤56. 所以数列{T n }最大项的值为56,最小项的值为-712.17.【2016届上海市七校高三上12月联考】公差不为零的等差数列{a n }中,a 1、a 2、a 5成等比数列,且该数列的前10项和为100. (1)求数列{a n }的通项公式;(2)若b n =a n ﹣10,求数列{b n }的前n 项和T n 的最小值. 【答案】(1)a n =2n ﹣1;(2)﹣25.【解析】(1)∵公差不为零的等差数列{a n }中,a 1、a 2、a 5成等比数列,且该数列的前10项和为100,∴,∴解得a 1=1,d=2,∴a n =1+(n ﹣1)×2=2n ﹣1. (2)∵b n =a n ﹣10=2n ﹣11, ∴=2﹣11=﹣9,b n ﹣b n ﹣1=(2n ﹣11)﹣2(n ﹣1)﹣11]=2,∴数列{b n }是首项为﹣9,公差为2的等差数列, T n ==n 2﹣10n=(n ﹣5)2﹣25.∴当n=5时,数列{b n }的前n 项和T n 的最小值为﹣25. 18.已知数列{}n a 满足:*1a ∈N ,136a ,且()12,18,1,2,236,18n n n n n a a a n a a +⎧==⎨->⎩,记集合{}*n M a n =∈N .(1)若16a =,写出集合M 的所有元素;(2)若集合M 存在一个元素时3的倍数,证明:M 的所有元素都是3的倍数; (3)求集合M 的元素个数的最大值. 解析:(1)6,12,24.(2)因为集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数. 由12,18236,18n n n n n a a a a a +⎧=⎨->⎩,可归纳证明对任意nk ,n a 是3的倍数.如果1k =,则M 的所有元素都是3的倍数;如果1k >,因为12k k a a -=或1236k k a a -=-,所以12k a -是3的倍数,或1236k a --是3的倍数,于是1k a -是3的倍数.类似可得,2k a -,…,1a 都是3的倍数.从而对任意1n ,n a 是3的倍数,因此M 的所有元素都是3的倍数.综上,若集合M 存在一个元素是3的倍数,则M 的所有元素都是3的倍数. (3)由136a ,*1a ∈N ,11112,18236,18n n n n n a a a a a ----⎧=⎨->⎩,可归纳证明()362,3,na n =.因为1a 是正整数,112112,18236,18a a a a a ⎧=⎨->⎩,所以2a 是2的倍数.从而当3n时,n a 是4的倍数.如果1a 是3的倍数,由(2)知对所有正整数n ,n a 是3的倍数,因此当3n时,{}12,24,36n a ∈,这时,M 中的元素的个数不超过5.如果1a 不是3的倍数,由(2)知,对所有的正整数n ,n a 不是3的倍数,因此当3n时,{}4,8,16,20,28,32n a ∈,这时M 的元素的个数不超过8.当11a =时,{}1,2,4,8,16,20,28,32M =有8个元素. 综上可知,集合M 的元素个数的最大值为8. 19.设数列{}n a (1,2,3,n =)的前项和n S 满足12n n S a a =-,且1a ,21a +,3a 成等差数列.(1)求数列{}n a 的通项公式; (2)设数列1n a ⎧⎫⎨⎬⎩⎭的前项和为n T ,求使得111000nT -<成立的的最小值.(2)由(1)可得112n n a =,所以211122111111222212nn n nT ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=+++==--.由111000n T -<,得111121000n --<,即21000n>.因为9102512100010242=<<=,所以10n .所以使111000nT-<成立的的最小值为10.。

2021-2022学年湘教版(2019)高中数学选择性必修第一册全册练习作业(解析版)(1)

2021-2022学年湘教版(2019)高中数学选择性必修第一册全册练习作业(解析版)(1)

(解法二)特值法:取 m 1 则 S1 a1 30, S2 a1 a2 100 ,
a2 70 , a3 110 , S3 a1 a2 a3 210 .故选 C.
4.设an 是等差数列,则下列结论中正确的是
A.若 a1 a2 0 ,则 a2 a3 0
B.若 a1 a3 0 ,则 a1 a2 0
则 Sn 取得最大值时 n 的取值为:___________.
【答案】5
【解析】因为 S10 5(a1 a10 ) 0 ,所以 a1 a10 a5 a6 0 ,又 a4 a5 a6 3a5 0 ,
即 a5 0 , 所以 a6 0 ,所以当 n 5 时, Sn 取得最大值.
C. 32
D. 64
【答案】C
【解析】设等比数列 an 的公比为 q (q 0) ,显然 q 1,则有:
S3 S6
a1(1 q3 ) 1 q
a1(1 q6 ) 1 q
7 4 63 4
1 q6
,两式相除可得:
1 q3
9 ,即
(1 q3 )(1 q3 ) 1 q3
1 q3
9,
q
2
, a1
1 4
, a8
1 4
27
32 .故选
C.
4.已知等比数列
an
中,各项都是正数,且
a1

1 2
a3

2a2
成等差数列,则
a9 a10 a7 a8
A. 3 2 2
B.1 2
C.1 2
D. 3 2 2
【答案】A
【解析】
a1,
1 2
a3 ,
2a2
成等差数列, a3
a1
2a2

高三数学数列问题的题型与方法

高三数学数列问题的题型与方法

高三数学数列问题的题型与方法第90-93课时课题:数列问题的题型与方法一.复习目标:1.能灵活地运用等差数列、等比数列的定义、性质、通项公式、前n项和公式解题;2.能熟练地求一些特殊数列的通项和前项的和;3.使学生系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;4.通过解决探索性问题,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力.5.在解综合题的实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力.6.培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.二.考试要求:1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。

2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能运用公式解答简单的问题。

3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能运用公式解决简单的问题。

4.数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位。

高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。

解答题多为中等以上难度的试题,突出考查考生的思维能力,解决问题的能力,试题大多有较好的区分度。

有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。

本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

2022学年高三上(编号1-25)数列大题汇编(教师版)

2022学年高三上(编号1-25)数列大题汇编(教师版)

2022学年高三上(编号1-25)数列大题汇编(教师版)1:(2023届湖北圆创第一次联合测试解析第17题) 1:已知数列{}n a 满足()*1232311113333n na a a a n n N ++++=∈, (1)求数列{}n a 的通项公式;(2)设3log n n b a =,求数列121n n n b b b ++⎧⎫⎨⎬⎩⎭的前n 项和n T .方法提供与解析:(浙江金华郭扬文) (1)解析:(减项作差) 当1n =时,13a =,当2n 时,1232311113333n na a a a n ++++=① 1231231111113333n n a a a a n --++++=-② 由①-②得1(1)13n n a n n =--=,即3(2)n n a n =.当1n =时也成立,所以数列{}n a 的通项公式为()*3n n a n N =∈(2)解析:(裂项求和) 因为33log log 3n n n b a n ===, 所以1211111(1)(2)2(1)(1)(2)n n n b b b n n n n n n n ++⎡⎤==-⎢⎥+++++⎣⎦,所以1111111111212232334(1)(1)(2)22(1)(2)n T n n n n n n ⎡⎤⎡⎤=-+-++-=-⎢⎥⎢⎥⋅⋅⋅⋅+++++⎣⎦⎣⎦. 2:(2023届如皋市高三上期初调研解析第17题)2:已知数列{}n a 的前n 项和为n S ,且23522n S n n =+.(1)求{}n a 的通项公式;(2)求数列13n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .方法提供与解析:(上海奉贤沈健) 解析:(1)当1n =时,1135422a S ==+=. 当2n 时,2213535(1)(1)312222n n n a S S n n n n n -⎡⎤=-=+--+-=+⎢⎥⎣⎦.因为当1n =时,3114⨯+=,也符合,所以31n a n =+.(2)因为13311(31)(34)3134n n a a n n n n +==-++++, 所以111111477103134n T n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭1134341216n n n =-=++. 3:(2023届湖北九师联盟高三开学考解析第17题)3:已知等差数列{}n a 的前n 项和为n S ,2320a S +=,514a =. (1)求{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的n 项和为n T ,并证明16n T <.方法提供与解析:(湖州赵健鑫)(1)解析:因为{}n a 为等差数列,由2320a S +=得,14420a d +=,即25a =,因为514a =,所以5239d a a =-=,3d =,则12a =,所以31n a n =-.(2)解析:由(1)得,31n a n =-,则,()()1113132n n a a n n +=-+,裂项可得1111133132n n a a n n +⎛⎫=- ⎪-+⎝⎭,则11111111111111325583132323263326n T n n n n ⎛⎫⎛⎫=-+-+-=-=-⋅< ⎪ ⎪-+++⎝⎭⎝⎭,则16n T <,即证. 4:(2023届广东梅州中学高三上阶段性考试解析第19题)4:已知正项等比数列{}n a 满足257a a a ⋅=,8256a =,正项数列{}n b 的前n 项和n S 满足222n n n S b b =+-.(1)求数列{}n a ,{}n b 的通项公式;(2)若13221n n nn S n a c b +⎛⎫-⋅ ⎪⎝⎭=-,求数列{}n c 的前n 项和n M .方法提供与解析:(浙江绍兴+谢柏军)(1)解析:设{}n a 公比为()0q q > 257a a a ⋅=,8256a =88863a a a q q q∴⋅= 88256q a ∴==2q ∴=882n n n a a q -∴==∴数列{}n a 的通项公式为2n n a =当1n =时,211122S b b =+-,即211122b b b =+- 12b ∴=,11b =-(舍去)当2n ≥时,221112222n n n n n n S b b S b b ---⎧=+----⎪⎨=+----⎪⎩①②-①②得:22112n n n n n b b b b b --=+--,整理得:()()1110nn n n b b b b --+--= {}n b 是正项数列110n n b b -∴--=()1111n b b n n ∴=+-⋅=+∴数列{}n b 的通项公式为1n b n =+(2)解析1:(裂项法)()22211223222n n n n n b b n nS +++-+-+===∴1211322221n n n n n n S n a n c n b n+++⎛⎫-⋅ ⎪⋅⎝⎭===⋅-()()1124424142n n n n n n +-⋅=----⎡⎤⎣⎦()()()()()()1021112341424042424241424424142n n n n M c c c c n n -∴=+++⋅⋅⋅+=⋅--⋅-⋅+⋅--⋅-⋅+⋅⋅⋅+----⎡⎤⎣⎦()4424n n =-+(2)解析2:(错位相减法) ()23412312122232221222122n n n n n M n M n n +++=⋅+⋅+⋅+⋅⋅⋅+⋅---=⋅+⋅+⋅⋅⋅+-⋅+⋅---①②-①②:()2341222222222242124n n n n n n M n n n +++++-=+++⋅⋅⋅+-⋅=--⋅=--()2124n n M n +∴=-+5:(2023届麓山国际实验学校高三上入学考解析第17题)5:已知集合{}*|2,A x x n n ==∈N ,{}*|3,n B x x n ==∈N ,将AB 中所有元素按从小到大的顺序排列构成数列{}n a ,设数列{}n a 的前n 项和为n S .(1)若27m a =,求m 的值; (2)求50S 的值.方法提供与解析:(上海奉贤沈健) 解析:(1)因为27m a =,所以数列{}n a 中前m 项中含有A 中的元素为2,4,6,,26⋯,共有13项, 数列{}n a 中前m 项中含有B 中的元素为3,9,27,共有3项,所以16m =.(2)因为250100⨯=,4381100=<,53243100=>, 所以数列{}n a 中前50项中含有B 中的元素为3,9,27,81共有4项, 所以数列{}n a 中前50项中含有A 中的元素为21,22,23,,246⨯⨯⨯⨯,共有46项,所以50(392781)(212223246)2282S =++++⨯+⨯+⨯+⋯+⨯=.6:(2023届麓山国际实验学校高三上入学考解析第20题)6:(本题满分12分)已知数列{}n a 满足12a =,28a =,2143n n n a a a ++=-. (1)证明:数列{}1n n a a +-是等比数列;(2)若()()()()22231321265log 1log 1n n n n n n b a a ++-⋅++=+⋅+,求数列{}n b 的前n 项和n T . 方法提供与解析:(衢州张小臣)解析:(1)由2143n n n a a a ++=-得:()2113n n n n a a a a +++-=-,又216a a -=, ∴数列{}1n n a a +-是以6为首项,3为公比的等比数列.(2)由(1)得:116323n n n n a a -+-=⋅=⋅,则1123---=⋅n n n a a ,21223n n n a a ----=⋅,32323n n n a a ----=⋅,…,12123a a -=⋅, 各式作和得:()()1211313233323313n n n n a a ----=⨯++⋅⋅⋅+=⨯=--,又12a =,31n n a ∴=-, ()()()()()()()()()22222233221212651265111log log 132231nnn n n n n n n n n n n n b ++⎛⎫-⋅++-⋅++∴===-+ ⎪ ⎪⋅⎝+++⎭+, 当n 为偶数时,()22222222111111112334451n T n n ⎛⎫⎛⎫⎛⎫⎛⎫=--+++--+⋅⋅⋅+--+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+⎝⎭()()()22211114122n n n ⎛⎫+=- ⎪ ⎪+++⎝⎭;当n 为奇数时, ()()()()112222111111443232n n n T T b n n n n ++=-=---=--++++;综上所述:()()21142n n T n -=-+. 7:(2023届如皋市高三上期初调研解析第20题)7:(本题满分12分)已知等差数列{}n A 的首项1A 为4,公差为6,在{}n A 中每相邻两项之间都插 入两个数,使它们和原数列的项一起构成一个新的等差数列{}n a .(1)求数列{}n a 的通项公式;(2)若12,,,,nk k k a a a 是从{}n a 中抽取的部分项按原来的顺序排列组成的一个等比数列,11k =,25k =,令22n n b nk n =+,求数列{}n b 的前n 项和n T .方法提供与解析:(衢州张小臣)解析:(1)由4,6,8,10可得数列{}n a 是首项为4,公差为2的等差数列, 可得42(1)2(1)n a n n =+-=+;(2)由1k a ,2k a 是等比数列的前两项,且11k =,25k =,即14a =,512a =,则等比数列的公比为3,143n n k a -=⋅,即为12(1)43n n k -+=⋅,可得1231n n k -=⋅-,12243n n n b nk n n -=+=⋅,所以01214(132333...3)n n T n -=⋅+⋅+⋅++⋅,2334(132333...3)n n T n =⋅+⋅+⋅++⋅,相减可得211324(133...33)4(3)13nn nn n T n n ---=++++-⋅=-⋅-,化简可得(21)3 1.n n T n =-⋅+ 8:(2023届广东省高三上学期开学联考解析第17题)8:已知数列{}n a 的前n 项和为n S ,11a =,且()*141,2n n n n na S ab n +=+=∈N . (1)证明:数列{}n b 是等差数列; (2)求数列{}n a 的前n 项和. 方法提供与解析:(上海奉贤沈健)解析:(1)因为141n n S a +=+,*n ∈N ,所以141n n S a -=+,2n 且*n ∈N ,两式相减,得14n n a a +=-14n a -,所以1144n n n a a a +-+=,所以11112222n n nn n n a a a +-+-+=⨯,即(1122n n n b b b n +-+=且)*n ∈N , 所以数列{}n b 是等差数列.(2)因为11a =,1221415a a S a +==+=,所以24a =,由(1)知数列{}n b 是等差数列,公差为212122a a d =-12=,所以11(1)222n n b n =+-⨯=, 所以1222n n n n a n -=⨯=⨯,*n ∈N .所以当2n 时,21414(1)2n n n S a n --=+=⨯-⨯+1(1)21n n =-⨯+, 当1n =时,等式也成立,所以(1)21n n S n =-⨯+,*n ∈N .9:(2023届南京市一中高三上学期数学模拟卷1解析第17题)9:已知等差数列n a 的前n 项和为n S ,12a =,426S =,正项等比数列{}n b 中,12b =,2312b b +=. (1)求{}n a 与{}n b 的通项公式; (2)求数列{}n n a b 的前n 项和n T . 方法提供与解析:(湖州赵健鑫)(1)解析:n a 的等差数列,426S =,则14626a d +=,因为12a =,所以3d =,则31n a n =-,因为n b 为等比数列,且2312b b +=,则()2112b q q ⋅+=,因为12b =,所以26q q +=,求得2q =或者3-,因为{}n b 为正项等比数列,所以2q =,解得2n n b =,所以31n a n =-,2n n b =.(2)解析:因为31n a n =-,2n n b =,所以()312nn n a b n =-⋅,则()123225282312n n T n =⋅+⋅+⋅++-⋅.两边同乘2得()23412225282312n n T n +=⋅+⋅+⋅++-⋅,两式相减得()123122323232312nn n T n +-=⋅+⋅+⋅++⋅--⋅,则()()211132122231212n n n T n -+⋅⋅--=⋅+--⋅-,所以()13428n n T n +=-⋅+.10:(2023届南京市高三年级学情调研1解析第17题)公众号中学数学星10:记n S 为数列{}n a 的前n 项和,已知1n a >,212n n S a ⎧⎫-⎨⎬⎩⎭是公差为12的等差数列.(1)证明:{}n a 是等差数列;(2)若1a ,2a ,6a 可构成三角形的三边,求1314S a 的取值范围. 方法提供与解析:(上海奉贤沈健)解析:(1)因为212n n S a ⎧⎫-⎨⎬⎩⎭是公差为12的等差数列,所以2211111222n n n n S a S a --⎛⎫---= ⎪⎝⎭,即()2211n n a a --=,又1na >,所以11n n a a --=,所以{}n a 是等差数列; (2)因为1a ,2a ,6a 可构成三角形的三边,所以11215a a +>+,即14a >,又137114141113137891131313S a a a a a a +===-++,且14a >,所以1314130,1317S a ⎛⎫∈ ⎪⎝⎭. 11:(2023届湖北省二十一所重点中学高三上第二次联考解析第18题) 11:已知数列{}n a 满足*0,N n a n ≠∈.(1)若2210n n n a a ka --=>且0na >. (i)当{}lg n a 成等差数列时,求k 的值;(ii)当2k =且141,a a ==时,求2a 及n a 的通项公式.(2)若2131231,1,0,[4,8]2n n n n a a a a a a a +++=-=-<∈.设n S 是{}n a 的前n 项之和,求2020S 的最大值.方法提供与解析:(浙江金华郭扬文)(1)解析:(等差定义)(i)因为{}lg n a 成等差数列, 所以122lg lg lg n n n a a a ++=+,所以212n n n a a a ++=⋅,又2210n n n a a ka ++=>所以1k =(ii)因为()22120n n n n a a a a ++⋅=>,所以221322432,2a a a a a a ==,所以322148a a a ==所以2a =因为2112n n n n a a a a +++=⋅,又由21aa 所以1n n a a +⎧⎫⎨⎬⎩⎭,公比为2的等比数列,所以112n n na a -+=,所以21012(2)(1)3211212n n n nn n a a a a a aa a -++++---=⨯⨯⨯⨯=⋅=,∴所以2(1)n n a -=(2)解析:(分组求和)由21312n n n n a a a a +++=-可得132412n n n n a a a a ++++=-,所以22424111224n n n n n n a a a a a a +++++⎛⎫=-⨯-= ⎪⎝⎭,因为0n a ≠,所以414n n a a +=,即44n n a a +=,因为1324121,1,02a a a a a a =-=-<,所以132420a a a a +=即2432a a a =,()()()()20201592017261020183711201948122020S a a a a a a a a a a a a a a a a =+++++++++++++++++++()()()()250425042504250412341444144414441444a a a a =+++++++++++++++++++()()250412341444a a a a =+++++++因为24332,[4,8]a a a a =∈,所以240aa >,因为20a <,所以40a <, 所以()24a a -+-≥,可得24a a +≤-所以123431a a a a a +++≤-+-令31y a =-+-,设[2,t =,21y t =--,对称轴为t =是开口向上的抛物线,在[2,t ∈单调递增,所以t =1234a a a a +++最大值为211-=-, 所以()()2504202012341444S a a a a =+++++++最大值为50550514141143---⨯=-. 12:(2023届武汉市高三上7月新起点考试解析第17题) 12:记n S 为数列{}n a 的前n 项和,已知2n n S na n n =-+. (1)证明:{}n a 是等差数列; (2)若1a ,4a ,6a 成等比数列,求9n S n+的最小值. 方法提供与解析:(湖州赵健鑫)(1)解析:由已知2n n S na n n =-+,当1n =时,1111S a =-+,等号成立,当2n ≥时,1n n n a S S -=-,因为2n n S na n n =-+,所以()()211111n n S n a n n --=---+-,两式相减得()()()11121n n n a n a n ----=-,所以12n n a a --=,则{}n a 是以2为公差的等差数列.(2)解析:由(1)得,416a a =+,6110a a =+,因为1a ,4a ,6a 成等比数列,所以2416a a a =⋅,即()()2111610a a a +=⋅+,解得118a =-,所以219n S n n =-,则291999191913n S n n n n n n +-+==+-≥=-,所以当且仅当9n n =,即3n =时,9n S n +的最小值为13-.13:(2023届广东惠州高三第一次调研考解析第17题)13:已知数列{}n a 的前n 项和为n S ,*n ∈N ,现有如下三个条件分别为: 条件①55a =;条件②12n n a a +-=;条件③24S =-;请从上述三个条件中选择能哆确定一个数列的两个条件,并完成解答. 您选择的条件是 和 .(1)求数列{}n a 的通项公式; (2)设数列{}n b 满足11n n n b a a +=⋅,求数列{}n b 的前n 项和n T .方法提供与解析:(上海奉贤沈健) 解析:(1)选①②时:解法1:由12n n a a +-=可知数列{}n a 是以公差2d =的等差数列,又55a =得51(51)a a d =+-⨯,得13a =-,故32(1)n a n =-+-,即()*25n a n n =-∈N .解法2:由12n n a a +-=可知数列{}n a 是以公差2d =的等差数列,又55a =得5(5)n a a n d =+-⨯,则5(5)2n a n =+-⨯,即()*25n a n n =-∈N .选②③时:由12n n a a +-=可知数列{}n a 是以公差2d =的等差数列, 由24S =-可知124a a +=-,即1224a +=-,得13a =-,故32(1)n a n =-+-,即()*25n a n n =-∈N .备注:选①③这两个条件无法确定数列,不给分. (2)111111(25)(23)22523n n n b a a n n n n +⎛⎫===- ⎪⋅-⋅---⎝⎭,11111111123111132523n T n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋯+- ⎪ ⎪ ⎪ ⎪⎢⎥-----⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦1112323n ⎛⎫=-- ⎪-⎝⎭11646n =---. 所以69n nT n =-+.14:(2023届江苏省盐城中学8月高三上开学考解析第18题)14:已知各项均为正数的数列{}n a 的前n 项和为n S ,11a =,),2n a n n *∈≥Ν.(1)求证:数列是等差数列,并求{}na 的通项公式;(2)若[]x 表示不超过x 的最大整数,求22212111n a a a ⎡⎤+++⎢⎥⎣⎦的值. 方法提供与解析:(湖州赵健鑫)(1)解析:因为),2n a n n *∈≥Ν,由1n n n a S S -=-1n nS S -+-,解得1=,所以数列是以11=n =,则2n S n =,因为),2n a n n *=∈≥Ν,解得21n a n =-,1n =时也成立,所以21n a n =-.(2)解析:由(1)得21n a n =-,当2n ≥时,()()()2221111111222222221211n a n n n n n n ⎛⎫=<==- ⎪--⎝⎭---,所以222211211111115112224n a a a a n ⎛⎫=≤+++<+-< ⎪⎝⎭,则222121111n a a a ⎡⎤+++=⎢⎥⎣⎦.15:(2023届广州市真光中学高三上8月开学考解析第17题) 15:已知数列{}n a 满足111,2(1)n n a na n a +==+,设nn a b n=. (1)证明:数列{}n b 为等比数列;(2)设数列112log n n c b +=,记数列11n n c c +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,请比较n T 与1的大小.方法提供与解析:(浙江金华郭扬文) (1)解析:(等比定义) 因为12(1)n n na n a +=+,所以121n na a n n+⋅=+, 因为nn a b n =,所以12n n b b +=,所以112n nb b +=, 因为11a =,所以1111a b ==,所以数列{}n b 是以1为首项,12为公比的等比数列 (2)解析:(裂项求和) 由(1)可得112n n b -⎛⎫= ⎪⎝⎭,所以111221log log 2nn n c b n +⎛⎫=== ⎪⎝⎭,所以11111(1)1n n c c n n n n +==-++, 所以1111111122311n T n n n ⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, 因为101n >+,所以1111n -<+,所以1n T < 16:(2023届浙江省新高考研究高三上8月测试解析第18题) 16:在数列{}n a 中,()*111,5(2)N 10n n a na n a n +==+∈. (1)求{}n a 的通项公式;(2)设数列{}n b 满足()()2*55N n n b n n a n =++∈,数列{}n b 前n 项和为n T .在①1110n T ≤,②5145(1)n n T n <-+中任意选择一个,补充在横线上并证明.选择 .方法提供与解析:(浙江金华郭扬文) (1)解析:(构造等比)由15(2)n n na n a +=+得1(1)5(2)(1)n n n n a n n a ++=++,即1(2)(1)1(1)5n n n n a n n a +++=+,因为1110a =,所以1n =时,1(1)5n n n a +=, 得1111(1)555n n n n n a -+=⋅=,因此1(1)5n n a n n =+⋅;(2)解析:(裂项求和)因为()255n n b n n a =++,得2215545111(1)5(1)555(1)5n n n n n nn n n n n b n n n n n n -+++++===+-+⋅+⋅⋅+⋅,所以123n n T b b b b =++++101212323111111111111151525525355354555(1)5n n nn n -=+-++-++-+++-⋅⋅⋅⋅⋅⋅⋅+⋅ 01111151155115(1)5445(1)515n n n nn n ⎛⎫- ⎪⎝⎭=+-=--⋅+⋅⋅+⋅- 选择①1110n T ≤:因为111111145(2)545(1)5n n n n n n T T n n +++-=--++⋅+⋅⋅+⋅ 111115(2)5(1)5n n n n n ++=-++⋅+⋅, 因为1(2)5(1)5n n n n ++⋅>+⋅,所以111(2)5(1)5n nn n +<+⋅+⋅, 所以10n n T T +->,所以n T 单调递增,因为()1min 1110n T T ==,所以1110n T ≤; 选择②因为511445(1)5n n n T n =--⋅+⋅,1045n>⋅,所以5145(1)nn T n <-+. 17:(2023届浙江省A9协作体高三暑假返校考解析第17题)17:已知数列{}n a 为公差不为0的等差数列,且24a =,1a ,2a ,4a 成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设n S 为数列{}n a 的前n 项和,令1(1)nn n na b S +=-,求数列{}n b 的前2022项和. 方法提供与解析:(上海奉贤沈健)解析:(Ⅰ)由题意可得:()()121114,3.a d a d a a d +=⎧⎪⎨+=+⎪⎩所以2n a n =. (Ⅱ)因为(1)n S n n =+,所以2111(1)(1)(1)1nn n n b n n n n +⎛⎫=-=-+ ⎪++⎝⎭,202211111111202211223342022202320232023T =--++--+++=-+=-. 18:(2023届湖北省九校教研协作体高三起点考试解析第17题) 18:已知数列{}n a 满足111,n a a +=其中*n N ∈)(1)判断并证明数列{}n a 的单调性; (2)记数列{}n a 的前n 项和为n S ,证明:20213522S <<.方法提供与解析:(浙江金华郭扬文)(1)解析:(作差)11n n nn n na a aa a a---=-==.∵10,0,n n na a a+>∴-<∴数列{}n a单调递减(2)解析:(类等差放缩)∵1231231431,,332a a a a a a==∴++=>,又0na>,则2021332S S>>.∵221111311,0242nn naa a+⎛⎫⎛⎫=+=++≥>⎪⎪⎪⎪⎭⎭,12≥12当2n≥,2112na---≥,1(1)12n≥-+,11(1)12n≤-+,则222144411411313(1)1(1)(1)1422222nan n n nn nn⎛⎫⎪≤=<==⨯-⎪+⎛⎫⎛⎫⎡⎤ ⎪+-++++-+ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以20211232021111111141313133344202122222 S a a a a⎛=++++<++⨯-+-++-+++++⎝1320212⎫⎪⎪⎪+⎭111421485144133337372320212021222⎛⎫⎛⎫⎪ ⎪=++⨯-=+⨯-<+<⎪ ⎪⎪ ⎪+++⎝⎭⎝⎭则20213522S<<成立.19:(2023届长沙市一中入学摸底考解析第20题)19:已知数列{}n a的前n项和为n S,且满足(1)1(0)n nq S qa q-=->,*n∈N (1)求数列{}n a的通项公式;(2)当2q=时,数列{}n b满足2(1)nnnbn n a+=+,求证:12322nb b b≤+++<;(3)若对任意正整数n 都有1n a n +≥成立,求正实数q 的取值范围. 方法提供与解析:(杭州沙志广)解析:(1)由(1)1(0)n n q S qa q -=->得11(1)1q S qa -=-,即11(1)1q a qa -=-, 所以11a =若1q =,则1n a =;若1q ≠,则由(1)1n n q S qa -=-得11(1)1(2)n n q S qa n ---=-≥, 两式相减得()()11(1)11(2)n n n n n q a qa qa qa qa n ---=---=-≥, 化简得1(2)n n a qa n -=≥,所以数列{}n a 是以1为首项,以q 为公比的等比数列,因此n i n a q -=, 当1q =时,也满足该式,故1(0)n n a q q -=>.(2)因为2q =,所以12n n a -=, 则112112(1)22(1)2n n n n n b n n n n --⎡⎤+==-⎢⎥+⋅⋅+⋅⎣⎦因此12211111121222222322(1)2n n n b b b n n -⎡⎤⎡⎤⎡⎤+++=-+-++-⎢⎥⎢⎥⎢⎥⋅⋅⋅⋅+⋅⎣⎦⎣⎦⎣⎦1212(1)2n n ⎡⎤=-<⎢⎥+⋅⎣⎦, 又因为132b =,且0n b >,故1232n b b b +++≥, 因此12322n b b b ≤+++<得证.(3)由(1)得n n q ≤,则ln ln n n q ≤,即()*ln ln nq n n≥∈N , 令()*ln ()0,xf x x x x=>∈N , 为使对任意正整数n 都有1n a n +≥成立,即max ()ln f x q ≤, 因为21ln ()xf x x -'=,所以当0x e <<时,()0f x '>,即()f x 在(0,)e 上单调递增; 当x e >时,()0f x '<,即()f x 在(,)e +∞上单调递减,又*x ∈N ,且ln 2(2)2f =,ln3(3)3f =,ln 2ln3ln8ln9(2)(3)0236f f --=-=<所以max ln3()(3)3f x f ==,因此ln3ln 3q ≥,即q20:(2023届金太阳联考数学试题解析第20题)20:已知数列{}n a 的首项为1,满足3434a a a a -=,且2n n a a +,21n n a a ++,1成等差数列. (1)求{}n a 的通项公式;(2)证明:1232343451214n n n a a a a a a a a a a a a +++++⋅⋅⋅+<. 方法提供与解析:(浙江绍兴+谢柏军)(1)解析:2n n a a +,21n n a a ++,1成等差数列 22121n n n na a a a +++∴=+ 12211n n n a a a ++∴=+,即1211111n n n n a a a a +++-=- 1n a ⎧⎫∴⎨⎬⎩⎭是等差数列 3434a a a a -= 43111a a ∴-= ()11111n n n a a ∴=+-⋅= 1n a n∴=(2)解析:()()()()()()()()121211112121221212n n n n n a a a n n n n n n n n n n +++-⎡⎤⎣⎦===-+++++++ 12323434512n n n a a a a a a a a a a a a ++∴+++⋅⋅⋅+ ()()()()()1111111112122232232342121242124n n n n n n =-+-+⋅⋅⋅+-=-<⋅⋅⋅⋅⋅⋅⋅⋅+++++21:(2022年8月Z20联盟数学解析第18题)21:已知数列{}n a 的各项的为正数,记n S 为{}n a 的前n 项和,11a ==*n ∈N 且2n ≥).(Ⅰ)求证:数列是等差数列,并求{}na 的通项公式;(Ⅱ)当*n ∈N ,2n ≥时,求证:2222311111114n a a a +++<---. 方法提供与解析:(上海奉贤沈健)解析:=+(n *∈N 且2n ≥),所以n a =2n ≥时,1n n S S --=,所以,又因为0n a >0,1(2)n ≥,所以数列1=为首项,公差为1的等差数列,1(1)1n n =+-⨯=,所以2n S n =.所以当2n ≥时,121n a n n n =+-=-, 又因为11a =满足上式,所以数列{}n a 的通项公式为21n a n =-. 另解:当2n ≥时,221(1)21n n n a S S n n n -=-=--=-, 当1n =时,11a =,满足上式,所以{}n a 的通项公式为21n a n =-.(Ⅱ)当2n ≥时,221111114441na n n n n ⎛⎫==- ⎪---⎝⎭, 故22211111111111111141223144na a n n n ⎛⎫⎛⎫++=⨯-+-++-=⨯-< ⎪ ⎪---⎝⎭⎝⎭, 所以对n *∈N ,2n ≥,都有222111114n a a ++<--. 22:(2022年8月南京市六校联合体高三联合调研解析第18题)22:已知数列{}n a 满足121,3a a ==,数列{}n b 为等比数列,且满足()1+1n n n n b a a b +-=. (1)求数列{}n a 的通项公式;(2)数列{}n b 的前n 项和为n S ,若 ,记数列{}n c 满足,,n n na n cb n ⎧=⎨⎩为奇数,为偶数,求数列{}n c 的前2n项和2n T .在①2322S S =-,②234,2,b a b 成等差数列,③6126S =这三个条件中任选一个补充在第(2)问中,并对其求解.注:若选择多个条件分别解答,按第一个解答计分.方法提供与解析:(浙江金华郭扬文) (1)解析:(数列定义)因为()+1+112,13n n n n b a a b a a -===,.令1n =得122b b =, 又数列{}n b 为等比数列,所以+12n n b b =,则+12n n a a -=,所以数列{}n a 是以1为首项2为公差的等差数列,所以21n a n =-(2)解析:(分组求和)由(1)知数列{}n b 是公比为2的等比数列若选①,由2322S S =-得()1111122242b b b b b +=++-,所以12b =,则2n n b =若选②,由234,2,b a b 成等差数列得3244a b b =+,即112820b b +=,所以12b =,则2n n b = 若选③,由6126S =得()611212612b -=-,所以12b =,则2nn b =所以21, 2,n n n n c n -⎧=⎨⎩为奇数为偶数 所以数列{}n c 的奇数项是以1为首项4为公差的等差数列,偶数项是以4为首项4为公比的等比数列, 所以()()21321242n n n T a a a b b b -=+++++++()()2414441(1)422143nn n n n nn ---=+⨯+=-+-23:(2023届南海区摸底考试解析第17题)23:已知数列{}n a 的首项135a =,()1341n n n a n a a *+=∈+Ν. (1)求证数列12n a ⎧⎫-⎨⎬⎩⎭为等比数列;(2)记12111n nT a a a =+++,若20n T <,求n 的最大值. 方法提供与解析:(湖州赵健鑫)(1)解析:因为()1341n nn a n a a *+=∈+Ν,所以141416121223331112121232n n n n n n n n n n n n n n na a a a a a a a a a a a a a a +++----====----,所以12n a ⎧⎫-⎨⎬⎩⎭是以13为公比的等比数列.(2)解析:由(1)得,1111112233n n n a a -⎛⎫⎛⎫⎛⎫-=-⋅=- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,所以1123nn a ⎛⎫=- ⎪⎝⎭,则1211111322nn n T n a a a ⎛⎫- ⎪⎝⎭=+++=-,当10n =时,101011320202T ⎛⎫- ⎪⎝⎭=-<,当11n =时,11111110111113333222022020222T ⎛⎫⎛⎫⎛⎫--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-<+-=+>,所以,当20n T <,n 的最大值为10.。

高三数学等差数列选择题专项训练知识点及练习题附解析(1)

高三数学等差数列选择题专项训练知识点及练习题附解析(1)

一、等差数列选择题1.已知{}n a 为等差数列,n S 是其前n 项和,且100S =,下列式子正确的是( ) A .450a a += B .560a a +=C .670a a +=D .890a a +=解析:B 【分析】由100S =可计算出1100a a +=,再利用等差数列下标和的性质可得出合适的选项. 【详解】由等差数列的求和公式可得()110101002a a S +==,1100a a ∴+=, 由等差数列的基本性质可得561100a a a a +=+=. 故选:B.2.已知数列{x n }满足x 1=1,x 2=23,且11112n n n x x x -++=(n ≥2),则x n 等于( ) A .(23)n -1B .(23)n C .21n + D .12n + 解析:C 【分析】由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,求出数列1n x ⎧⎫⎨⎬⎩⎭的通项公式,进而得出答案.【详解】 由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,且121131,2x x ==,故公差12d = 则()1111122n n n x +=+-⨯=,故21n x n =+ 故选:C3.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( ) A .103 B .107C .109D .105解析:B 【分析】根据题意可知正整数能被21整除余2,即可写出通项,求出答案. 【详解】根据题意可知正整数能被21整除余2,21+2n a n ∴=, 5215+2107a ∴=⨯=.故选:B.4.已知{}n a 是公差为2的等差数列,前5项和525S =,若215m a =,则m =( ) A .4 B .6C .7D .8解析:A 【分析】由525S =求出1a ,从而可求出数列的通项公式,进而可求出m 的值 【详解】 解:由题意得15452252a ⨯+⨯=,解得11a =, 所以1(1)12(1)21n a a n d n n =+-=+-=-, 因为215m a =,所以22115m ⋅-=,解得4m =, 故选:A5.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加( )尺 A .47B .1629C .815D .45解析:D 【分析】设该妇子织布每天增加d 尺,由等差数列的前n 项和公式即可求出结果 【详解】设该妇子织布每天增加d 尺, 由题意知2020192042322S d ⨯=⨯+=, 解得45d =. 故该女子织布每天增加45尺. 故选:D6.已知等差数列{}n a 的前n 项和n S 满足:21<<m m m S S S ++,若0n S >,则n 的最大值为( ) A .2m B .21m +C .22m +D .23m +解析:C 【分析】首先根据数列的通项n a 与n S 的关系,得到10m a +>,2<0m a +,12+>0m m a a ++,再根据选项,代入前n 项和公式,计算结果. 【详解】由21<<m m m S S S ++得,10m a +>,2<0m a +,12+>0m m a a ++. 又()()()1212112121>02m m m m a a S m a +++++==+,()()()1232322323<02m m m m a a S m a +++++==+, ()()()()1222212211>02m m m m m a a S m a a ++++++==++.故选:C. 【点睛】关键点睛:本题的第一个关键是根据公式11,2,1n n n S S n a S n --≥⎧=⎨=⎩,判断数列的项的正负,第二个关键能利用等差数列的性质和公式,将判断和的正负转化为项的正负. 7.设n S 是等差数列{}n a (*n N ∈)的前n 项和,且141,16a S ==,则7a =( ) A .7 B .10C .13D .16解析:C 【分析】由题建立关系求出公差,即可求解. 【详解】设等差数列{}n a 的公差为d ,141,16a S ==,41464616S a d d ∴=+=+=,2d ∴=, 71613a a d ∴=+=.故选:C8.已知等差数列{}n a 中,前n 项和215n S n n =-,则使n S 有最小值的n 是( )A .7B .8C .7或8D .9解析:C 【分析】215n S n n =-看作关于n 的二次函数,结合二次函数的图象与性质可以求解.【详解】22152251524n S n n n ⎛⎫=-=--⎪⎝⎭,∴数列{}n S 的图象是分布在抛物线21522524y x ⎛⎫=--⎪⎝⎭上的横坐标为正整数的离散的点.又抛物线开口向上,以152x =为对称轴,且1515|7822-=-|, 所以当7,8n =时,n S 有最小值. 故选:C9.已知等差数列{}n a 中,5470,0a a a >+<,则{}n a 的前n 项和n S 的最大值为( ) A .4S B .5SC . 6SD . 7S解析:B 【分析】根据已知条件判断0n a >时对应的n 的范围,由此求得n S 的最大值. 【详解】依题意556475600000a a a a a a a d >⎧>⎧⎪⇒<⎨⎨+=+<⎩⎪<⎩,所以015n a n >⇒≤≤, 所以{}n a 的前n 项和n S 的最大值为5S .10.已知数列{}n a 的前n 项和221n S n n =+-,则13525a a a a ++++=( )A .350B .351C .674D .675解析:A 【分析】先利用公式11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出数列{}n a 的通项公式,再利用通项公式求出13525a a a a ++++的值.【详解】当1n =时,21112112a S ==+⨯-=;当2n ≥时,()()()22121121121n n n a S S n n n n n -⎡⎤=-=+---+--=+⎣⎦.12a =不适合上式, 2,121,2n n a n n =⎧∴=⎨+≥⎩.因此,()()3251352512127512235022a a a a a a ⨯+⨯+++++=+=+=;故选:A. 【点睛】易错点睛:利用前n 项和n S 求通项n a ,一般利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,但需要验证1a 是否满足()2n a n ≥.11.在等差数列{a n }中,a 3+a 7=4,则必有( ) A .a 5=4 B .a 6=4C .a 5=2D .a 6=2解析:C 【分析】利用等差数列的性质直接计算求解 【详解】因为a 3+a 7=2a 5=4,所以a 5=2. 故选:C12.等差数列{}n a 中,已知14739a a a ++=,则4a =( ) A .13 B .14C .15D .16解析:A 【分析】利用等差数列的性质可得1742a a a +=,代入已知式子即可求解. 【详解】由等差数列的性质可得1742a a a +=, 所以1474339a a a a ++==,解得:413a =, 故选:A13.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200 B .100C .90D .80解析:C 【分析】先求得1a ,然后求得10S . 【详解】依题意120a a d =-=,所以101104545290S a d =+=⨯=. 故选:C14.南宋数学家杨辉《详解九张算法》和《算法通变本末》中,提出垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差不相等,但是逐项差数之差或者高次成等差数列.在杨辉之后一般称为“块积术”.现有高阶等差数列,其前7项分别1,7,15,27,45,71,107,则该数列的第8项为( ) A .161 B .155C .141D .139解析:B 【分析】画出图形分析即可列出式子求解.【详解】所给数列为高阶等差数列,设该数列的第8项为x ,根据所给定义:用数列的后一项减去前一项得到一个新数列,得到的新数列也用后一项减去前一项得到一个新数列,即得到了一个等差数列,如图:由图可得:3612107y x y -=⎧⎨-=⎩ ,解得15548x y =⎧⎨=⎩.故选:B.15.已知各项不为0的等差数列{}n a 满足26780a a a -+=,数列{}n b 是等比数列,且77b a =,则3810b b b =( )A .1B .8C .4D .2解析:B 【分析】根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】因为各项不为0的等差数列{}n a 满足26780a a a -+=,所以27720a a -=,解得72a =或70a =(舍);又数列{}n b 是等比数列,且772b a ==, 所以33810371178b b b b b b b ===. 故选:B.二、等差数列多选题16.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,114a =,则下列说法错误的是( ) A .数列{}n a 的前n 项和为4n S n = B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1n S ⎧⎫⎨⎬⎩⎭为递增数列解析:ABC 【分析】数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114a =,可得:1140n n n n S S S S ---+=,化为:1114n n S S --=,利用等差数列的通项公式可得1nS ,n S ,2n ≥时,()()111144141n n n a S S n n n n -=-=-=---,进而求出n a . 【详解】数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114a =, ∴1140n n n n S S S S ---+=,化为:1114n n S S --=, ∴数列1n S ⎧⎫⎨⎬⎩⎭是等差数列,公差为4,∴()14414n n n S =+-=,可得14n S n=, ∴2n ≥时,()()111144141n n n a S S n n n n -=-=-=---, ∴()1(1)41(2)41n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,对选项逐一进行分析可得,A ,B ,C 三个选项错误,D 选项正确. 故选:ABC. 【点睛】本题考查数列递推式,解题关键是将已知递推式变形为1114n n S S --=,进而求得其它性质,考查逻辑思维能力和运算能力,属于常考题17.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-B .180S =C .当0d >时,6140a a +>D .当0d <时,614a a >解析:ABC 【分析】因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,140a <即可判断选项D ,进而得出正确选项.【详解】因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()()118910181818022a a a a S ++===,故选项B 正确;对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,所以614a a <,故选项D 不正确, 故选:ABC 【点睛】关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.18.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列 C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列 解析:BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键.19.已知数列{}n a 满足0n a >,121n n n a na a n +=+-(N n *∈),数列{}n a 的前n 项和为n S ,则( )A .11a =B .121a a =C .201920202019S a =D .201920202019S a >解析:BC 【分析】根据递推公式,得到11n n nn n a a a +-=-,令1n =,得到121a a =,可判断A 错,B 正确;根据求和公式,得到1n n nS a +=,求出201920202019S a =,可得C 正确,D 错. 【详解】由121n n n a n a a n +=+-可知2111n n n n na n n n a a a a ++--==+,即11n n n n n a a a +-=-, 当1n =时,则121a a =,即得到121a a =,故选项B 正确;1a 无法计算,故A 错; 1221321111102110n n n n n n n n n n S a a a a a a a a a a a a +++⎛⎫⎛⎫⎛⎫-=+++=-+-++-=-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,所以1n n S a n +=,则201920202019S a =,故选项C 正确,选项D 错误. 故选:BC. 【点睛】 方法点睛:由递推公式求通项公式的常用方法:(1)累加法,形如()1n n a a f n +=+的数列,求通项时,常用累加法求解; (2)累乘法,形如()1n na f n a +=的数列,求通项时,常用累乘法求解; (3)构造法,形如1n n a pa q +=+(0p ≠且1p ≠,0q ≠,n ∈+N )的数列,求通项时,常需要构造成等比数列求解;(4)已知n a 与n S 的关系求通项时,一般可根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解.20.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为a n (n ∈N *),数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3).再将扇形面积设为b n (n ∈N *),则( )A .4(b 2020-b 2019)=πa 2018·a 2021B .a 1+a 2+a 3+…+a 2019=a 2021-1C .a 12+a 22+a 32…+(a 2020)2=2a 2019·a 2021D .a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=0解析:ABD 【分析】对于A ,由题意得b n =4πa n 2,然后化简4(b 2020-b 2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,然后累加求解;对于D ,由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2,化简可得结果 【详解】 由题意得b n =4πa n 2,则4(b 2020-b 2019)=4(4πa 20202-4πa 20192)=π(a 2020+a 2019)(a 2020-a 2019)=πa 2018·a 2021,则选项A 正确; 又数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),所以a n -2=a n -a n -1(n ≥3),a 1+a 2+a 3+…+a 2019=(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+…+(a 2021-a 2020)=a 2021-a 2=a 2021-1,则选项B 正确;数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n-12=a n -1 a n -2-a n -1 a n ,则a 12+a 22+a 32…+(a 2020)2=a 12+(a 2a 1-a 2a 3)+(a 3a 2-a 3a 4)+…+(a 2020a 2019-a 2020a 2021)=a 12-a 2020a 2021=1-a 2020a 2021,则选项C 错误;由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=a 2019·(a 2021-a 2019)+a 2020·(a 2018-a 2020)=a 2019·a 2020+a 2020·(-a 2019)=0,则选项D 正确; 故选:ABD. 【点睛】此题考查数列的递推式的应用,考查累加法的应用,考查计算能力,属于中档题 21.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )A .若100S =,则50a >,60a <;B .若412S S =,则使0n S >的最大的n 为15;C .若150S >,160S <,则{}n S 中7S 最大;D .若89S S <,则78S S <.解析:ABD【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案.【详解】对于A :因为正数,公差不为0,且100S =,所以公差0d <, 所以1101010()02a a S +==,即1100a a +=, 根据等差数列的性质可得561100a a a a +=+=,又0d <,所以50a >,60a <,故A 正确;对于B :因为412S S =,则1240S S -=,所以561112894()0a a a a a a ++⋅⋅⋅++=+=,又10a >,所以890,0a a ><, 所以115815815()15215022a a a S a +⨯===>,116891616()16()022a a a a S ++===, 所以使0n S >的最大的n 为15,故B 正确; 对于C :因为115815815()15215022a a a S a +⨯===>,则80a >, 116891616()16()022a a a a S ++===,则890a a +=,即90a <, 所以则{}n S 中8S 最大,故C 错误;对于D :因为89S S <,则9980S a S =->,又10a >,所以8870a S S =->,即87S S >,故D 正确,故选:ABD【点睛】解题的关键是先判断d 的正负,再根据等差数列的性质,对求和公式进行变形,求得项的正负,再分析和判断,考查等差数列性质的灵活应用,属中档题.22.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( )A .1055a =B .2020a 是偶数C .2020201820223a a a =+D .123a a a +++…20202022a a +=解析:AC【分析】由该数列的性质,逐项判断即可得解.【详解】对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确;对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,32121,a a a a a ⋅⋅⋅=+=,各式相加得()2022202120202021202020192012182a a a a a a a a a ++⋅⋅⋅+=+++⋅⋅⋅++, 所以202220202019201811a a a a a a =++⋅⋅⋅+++,故D 错误.故选:AC.【点睛】关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项.23.公差不为零的等差数列{}n a 满足38a a =,n S 为{}n a 前n 项和,则下列结论正确的是( )A .110S =B .10n n S S -=(110n ≤≤)C .当110S >时,5n S S ≥D .当110S <时,5n S S ≥ 解析:BC【分析】设公差d 不为零,由38a a =,解得192a d =-,然后逐项判断. 【详解】设公差d 不为零, 因为38a a =, 所以1127a d a d +=+,即1127a d a d +=--, 解得192a d =-, 11191111551155022S a d d d d ⎛⎫=+=⨯-+=≠ ⎪⎝⎭,故A 错误; ()()()()()()221101110910,10102222n n n n n n d d na d n n n a n n S S d ----=+=-=-+=-,故B 正确; 若11191111551155022S a d d d d ⎛⎫=+=⨯-+=> ⎪⎝⎭,解得0d >,()()22510525222n d d d n n S n S =-=--≥,故C 正确;D 错误;故选:BC24.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且3201911111a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥B .当数列{}n a 为等差数列时,20210S ≤C .当数列{}n a 为等比数列时,20210T >D .当数列{}n a 为等比数列时,20210T <解析:AC【分析】 将3201911111a a e e +≤++变形为32019111101212a a e e -+-≤++,构造函数()1112x f x e =-+,利用函数单调性可得320190a a +≥,再结合等差数列与等比数列性质即可判断正确选项【详解】 由3201911111a a e e +≤++,可得32019111101212a a e e -+-≤++,令()1112x f x e =-+, ()()1111101111xx x x x e f x f x e e e e --+=+-=+-=++++, 所以()1112x f x e =-+是奇函数,且在R 上单调递减,所以320190a a +≥, 所以当数列{}n a 为等差数列时,()320192*********a a S +=≥; 当数列{}n a 为等比数列时,且3a ,1011a ,2019a 同号,所以3a ,1011a ,2019a 均大于零, 故()2021202110110T a =>.故选:AC【点睛】本题考查等差数列与等比数列,考查逻辑推理能力,转化与化归的数学思想,属于中档题25.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大B .在数列{}n a 中,3a 或4a 最大C .310S S =D .当8n ≥时,0n a <解析:AD【分析】利用等差数列的通项公式可以求70a >,80a <,即可求公差0d <,然后根据等差数列的性质判断四个选项是否正确.【详解】因为67S S <,所以7670S S a -=> , 因为78S S >,所以8780S S a -=<, 所以等差数列{}n a 公差870d a a =-<, 所以{}n a 是递减数列,故1a 最大,选项A 正确;选项B 不正确; 10345678910770S S a a a a a a a a -=++++++=>, 所以310S S ≠,故选项C 不正确; 当8n ≥时,80n a a ≤<,即0n a <,故选项D 正确; 故选:AD【点睛】本题主要考查了等差数列的性质和前n 项和n S ,属于基础题.。

高中数学专题练习《等差数列的概念》含详细解析

高中数学专题练习《等差数列的概念》含详细解析

4.2 等差数列4.2.1 等差数列的概念基础过关练题组一 等差数列的概念及其应用1.下列数列不是等差数列的是( )A.1,1,1,1,1B.4,7,10,13,16C.13,23,1,43,53D.-3,-2,-1,1,22.给出下列命题:①数列6,4,2,0是公差为2的等差数列;②数列a,a-1,a-2,a-3是公差为-1的等差数列;③等差数列的通项公式一定能写成a n =kn+b 的形式(k,b 为常数);④数列{2n+1}(n ∈N *)是等差数列.其中正确命题的序号是( )A.①②B.①③C.②③④ D.③④题组二 等差中项3.若a=13+2,b=13-2,则a,b 的等差中项为( )A.3B.2C.32 D.224.已知在△ABC 中,三个内角A,B,C 成等差数列,则角B 等于( )A.30° B.60° C.90° D.120°5.已知m 和2n 的等差中项是4,2m 和n 的等差中项是5,则m 和n 的等差中项是( )6.若5,x,y,z,21成等差数列,则x+y+z的值为( )A.26B.29C.39D.52题组三 等差数列的通项公式及其应用7.已知{a n}为等差数列,若a1=1,公差d=2,a n=15,则n的值为( )A.5B.6C.7D.88.(2020山东淄博一中高二上期中)在数列{a n}中,a1=1,a n+1-a n=2,n∈N*,则a25的值为( )A.49B.50C.89D.999.(2020天津耀华中学高二上期中)已知数列{a n}是等差数列,若a1=2,a4=2a3,则公差d=( )A.0B.2C.-1 D.-210.(2020河南郑州高二上期末)设数列{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为 .11.在-3和6之间插入两个数a,b,使这四个数成等差数列,则公差为 .12.已知数列{a n}是等差数列,且a n=an2+n(n∈N*),则实数a= . 题组四 等差数列的性质及其应用13.在等差数列{a n}中,若a3+a4+a5+a6+a7=450,则a2+a8的值等于( )A.45B.75C.180D.30014.(2020河南新乡高二上期末)在等差数列{a n}中,a2+a6=3,a3+a7=7,则公差d=( )15.(2019河南商丘九校高二期末联考)在单调递增的等差数列{a n}中,若a3=1,a2a4=34,则a1=( )A.-1B.0C.14D.1216.已知等差数列{a n}的公差为d(d≠0),且a3+a6+a10+a13=32,若a m=8,则m的值为( )A.12B.8C.6D.417.设数列{a n},{b n}都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5= .18.首项为a1,公差为d(d∈N*)的等差数列{a n}满足下列两个条件:①a3+a5+a7=93;②满足a n>100的n的最小值是15.试求公差d和首项a1的值.能力提升练题组一 等差数列的通项公式及其应用1.()在数列{an}中,a1=3,且对任意大于1的正整数n,点(a n,a n-1)在直线x-y-3=0上,则( )A.a n=3nB.a n=3nC.a n=n-3D.a n=3n22.()已知等差数列{an }的首项为a,公差为1,b n=a n+1a n,若对任意的正整数n都有b n≥b5,则实数a的取值范围是( )A.(-∞,-4)∪(-3,+∞)B.(-4,-3)C.(-∞,-5)∪(-4,+∞)D.(-5,-4)3.()已知数列{an}中,a1=1,a n-1-a n=a n a n-1(n≥2,n∈N*),则a10= .4.(2020辽宁沈阳东北育才实验学校高二上月考,)已知数列{a n}满足a n+1=6a n-4a n+2,且a1=3(n∈N*).(1)证明:;(2)求数列{a n}的通项公式.题组二 等差数列的性质及其应用}中,a1+a4+a7=39,a2+a5+a8=33,则a6=( )5.()在等差数列{aA.10B.9C.8D.76.(2020山东招远一中高二上月考,)在一个首项为23,公差为整数的等差数列中,前6项均为正数,从第7项起为负数,则公差为( )A.-2B.-3C.-4D.-5}满足a1+a2+a3+…+a101=0,则7.(多选)()已知单调递增的等差数列{a下列各式一定成立的有( )A.a1+a101>0B.a2+a100=0C.a3+a100≤0D.a51=08.(2020河南濮阳高二上期末,)已知各项都为正数的等差数列{a n}中,a5=3,则a3a7的最大值为 .题组三 等差数列的综合应用9.(2020山东日照高二上期末,)我国古代著名的著作《周髀算经》中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷长一丈三尺五寸;夏至晷长一尺六寸.意思是:一年有二十四个节气,每相邻两个节分;且“冬至”时日影长度最大,为1350气之间的日影长度差为9916分;“夏至”时日影长度最小,为160分.则“立春”时日影长度为( )A.9531分3B.10521分2C.11512分3D.12505分610.(多选)()已知数列{a}的前n项和为S n(S n≠0),且满足a n+4S n-1S n=0(n≥2,n∈N*),a1=1,则下列说法中正确的是( )4A.数列{a n}的前n项和为S n=14nB.数列{a n}的通项公式为a n=14n(n+1)C.数列{a n}为递增数列D.11.(2020天津一中高二上期中,)已知数列{a n}满足a1=15,且3a n+1=3a n-2(n∈N*),若a k a k+1<0,则正整数k= .12.(2020山东青岛高三上期末,)在下面的数表中,已知每行、每列中的数都成等差数列.第1列第2列第3列…第1行123…第2行246…第3行369………………那么位于表中的第n行第(n+1)列的数是 .13.()数列{a}满足a1=1,a n+1=(n2+n-λ)a n(n∈N*),λ是常数.(1)当a2=-1时,求λ及a3的值;(2)判断是否存在实数λ使得数列{a n}为等差数列,并说明理由.14.(2019四川成都七中高二期中,)已知正项数列{a n}满足a2n=(2n-1)a n+2n(n∈N*).(1)求证:数列{a n}是等差数列;(2)若数列{b n}满足b n=a n-40,且数列{b n}的最大项为b p,最小项为b q,n-11求p+q的值.15.()在数列{a}中,a1=1,3a n a n-1+a n-a n-1=0(n≥2,n∈N*).(1)证明:;(2)求数列{a n}的通项公式;(3)若λa n+1≥λ对任意的n≥2,n∈N*恒成立,求实数λ的取值范围.a n16.()已知无穷等差数列{a},首项a1=3,公差d=-5,依次取出项数能被4除余3的项组成数列{b n}.(1)求b1和b2;(2)求{b n}的通项公式;(3){b n}中的第503项是{a n}中的第几项?答案全解全析基础过关练1.D 根据等差数列的定义可知,选项D中的数列不是等差数列.故选D.2.C 根据等差数列的定义可知,数列6,4,2,0的公差为-2,①错误;易知②③④均正确.3.A 设a,b的等差中项为x,则2x=a+b=13+2+13-2=23,所以x=3.4.B 因为A,B,C成等差数列,所以B是A,C的等差中项,则有A+C=2B,又因为A+B+C=180°,所以3B=180°,即B=60°.5.B 由已知得m+2n=8,2m+n=10,解得m=4, n=2,所以m和n的等差中项为m+n2=3.6.C ∵5,x,y,z,21成等差数列,∴y既是5和21的等差中项也是x和z的等差中项.∴5+21=2y,x+z=2y,∴y=13,x+z=26,∴x+y+z=39.7.D ∵a1=1,d=2,∴a n=a1+(n-1)d=1+2n-2=15,解得n=8.故选D.8.A 由a n+1-a n =2得数列{a n }是公差为d=2的等差数列,又a 1=1,所以a 25=a 1+24d=1+24×2=49.故选A.9.D 依题意得a 1+3d=2(a 1+2d),将a 1=2代入,得2+3d=2(2+2d),解得d=-2.故选D.10.答案 a n =6n-3(n ∈N *)解析 设等差数列{a n }的公差为d,由a 1=3,a 2+a 5=36,得a 1=3,a 1+d +a 1+4d =36,解得d=6,∴a n =a 1+(n-1)d=3+(n-1)×6=6n-3(n ∈N *).即{a n }的通项公式为a n =6n-3(n ∈N *).11.答案 3解析 设该等差数列为{a n },其首项为a 1,公差为d,由题知,a 1=-3,a 4=6,即a 1=―3,a 1+3d =6,解得d=3.12.答案 0解析 ∵{a n }是等差数列,且a n =an 2+n,∴a n 是关于n 的一次函数,∴a=0.13.C 由题意得,a 3+a 7=a 4+a 6=2a 5,∴a 3+a 4+a 5+a 6+a 7=(a 3+a 7)+(a 4+a 6)+a 5=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180.14.B 解法一:∵(a 3+a 7)-(a 2+a 6)=2d,且a 3+a 7=7,a 2+a 6=3,∴d=7―32=2.故选B.解法二:∵a 3+a 7=2a 5=7,a 2+a 6=2a 4=3,∴a 5=72,a 4=32,∴d=a 5-a 4=2.故选B.15.B 设等差数列{a n }的公差为d.由已知得a 3=1,a 2a 4=(a 3-d)(a 3+d)=34,解得d=±12.∵{a n }为单调递增的等差数列,∴d=12,又∵a 3=a 1+2d=1,∴a 1=0.故选B.16.B 由等差数列的性质,得a 3+a 6+a 10+a 13=(a 3+a 13)+(a 6+a 10)=2a 8+2a 8=4a 8=32,∴a 8=8,∴a m =a 8,又d ≠0,∴m=8.17.答案 35解析 由{a n },{b n }都是等差数列可知{a n +b n }也是等差数列,设{a n +b n }的公差为d,则a 3+b 3=(a 1+b 1)+2d,则2d=21-7,即d=7.所以a 5+b 5=(a 1+b 1)+4d=35.18.解析 ∵a 3+a 5+a 7=93,∴3a 5=93,∴a 5=31,由②知a n >100,即a n =a 5+(n-5)d>100,∴n>69d +5.∵满足a n >100的n 的最小值是15,∴14≤69d +5<15,∴6910<d ≤233,又d ∈N *,∴d=7,∴a 1=a 5-4d=3.能力提升练1.D ∵点(a n ,a n -1)在直线x-y-3=0上,∴a n -a n -1=3,∴数列{a n }是首项为3,公差为3的等差数列.∴数列{a n }的通项公式为a n =3+(n-1)3=3n,∴a n =3n 2.故选D.2.D 解法一:依题意得,a n =a+(n-1)×1=n+a-1,∴b n =n +an +a -1=1+1n +a -1.设函数y=1x +a -1+1,画出图象,如图.结合题意知,1-a ∈(5,6),∴5<1-a<6,解得-5<a<-4,故选D.解法二:∵等差数列{a n }的首项为a,公差为1,∴a n =a+n-1,∴b n =a n +1a n =1+1a n =1+1a +n -1,若对任意的正整数n 都有b n ≥b 5,则有(b n )min =b 5=1+1a +4,结合数列{b n }的单调性可知,b 5<b 4,b 5<b 6,即1+1a +4<1+1a +3,1+1a +4<1+1a +5,解得-5<a<-4.故选D.3.答案 110解析 易知a n ≠0,∵数列{a n }满足a n-1-a n =a n a n-1(n ≥2,n ∈N *),∴1an-1a n -1=1(n ≥2,n ∈N *),1,公差为1的等差数列,∴1a 10=1+(10-1)×1=10,∴a 10=110.4.解析 (1)证明:由已知得,1a 1-2=13―2=1,1a n +1-2=16a n -4a n +2-2=a n +2(6a n -4)-2(a n +2)=a n +24a n -8=(a n -2)+44(a n -2)=1a n -2+14,因此1a n +1-2-1a n -2=14,n ∈N *,1,公差为14的等差数列.(2)由(1)知1a n -2=1a 1-2+(n-1)×14=n +34,所以a n =2n +10n +3,n ∈N *.5.B 设等差数列{a n }的公差为d,∵在等差数列{a n }中,a 1+a 4+a 7=3a 4=39,a 2+a 5+a 8=3a 5=33,∴a 4=13,a 5=11,∴d=a 5-a 4=-2,∴a 6=a 5+d=11-2=9,故选B.6.C 设该等差数列为{a n },公差为d(d ∈Z),则a 1=23,a n =23+(n-1)d,由题意可知a 6>0,a 7<0,即23+(6―1)d >0,23+(7―1)d <0,解得-235<d<-236.因为d 是整数,所以d=-4.7.BD 设等差数列{a n }的公差为d,易知d>0,∵等差数列{a n }满足a 1+a 2+a 3+…+a 101=0,且a 1+a 101=a 2+a 100=…=a 50+a 52=2a 51,∴a 1+a 2+a 3+…+a 101=(a 1+a 101)+(a 2+a 100)+…+(a 50+a 52)+a 51=101a 51=0,∴a 51=0,a 1+a 101=a 2+a 100=2a 51=0,故B,D 正确,A 错误.又∵a 51=a 1+50d=0,∴a 1=-50d,∴a 3+a 100=(a 1+2d)+(a 1+99d)=2a 1+101d=2×(-50d)+101d=d>0,故C 错误.故选BD.8.答案 9解析 因为等差数列{a n }的各项都为正数,所以a 3>0,a 7>0,所以a 3a 7=(a 5)2=9,当且仅当a 3=a 7=3时等号成立.所以a 3a 7的最大值为9.9.B 由题意可知,从“冬至”到“夏至”,每个节气的日影长度依次构成等差数列,设该等差数列为{a n },公差为d,又知“冬至”时日影长度最大,设为a 1=1 350;“夏至”时日影长度最小,设为a 13=160.则a 13=1 350+12d=160,解得d=-1 19012=-9916,∴“立春”时日影长度为a4=1 350+-9905212(分).故选B.10.AD 由a n =S n -S n-1,a n +4S n-1S n =0,n ≥2,n ∈N *,得S n -S n-1=-4S n-1S n,n ≥2,n ∈N *,又S n ≠0,∴1S n -1S n -1=4(n ≥2,n ∈N *).∵a 1=14,∴1S1=4,4为首项,4为公差的等差数列,∴1S n =4+4(n-1)=4n,n ∈N *,,S n =14n ,n ∈N *,∴当n ≥2时,a n =S n -S n-1=14n -14(n -1)=-14n (n -1),经检验,当n=1时,不符合上式,∴a n ,n =1,14n(n -1),n≥2,n ∈N *,综上可知AD 正确.故选AD.11.答案 23解析 解法一:∵3a n+1=3a n -2,∴a n+1-a n =-23,∴数列{a n }是以15为首项,-23为公差的等差数列.设公差为d,则a n =a 1+(n-1)d=15-23(n-1)=-23n+473.∴a k a k+1=-23k +-23(k +1)+=-23k +-23k +即(2k-47)(2k-45)<0,解得452<k<472,又∵k ∈N *,∴k=23.解法二:同解法一可得a n =-23n+473,∵d=-23<0,∴数列{a n }为单调递减数列,∴由a k a k+1<0可得a k >0,a k +1<0,即-23k +473>0,-23(k +1)+473<0,解得452<k<472,又∵k ∈N *,∴k=23.12.答案 n 2+n解析 由题意可得,第n 行的第一个数是n,第n 行的数构成以n 为首项,n 为公差的等差数列,其中第(n+1)项为n+n ·n=n 2+n.所以题表中的第n 行第(n+1)列的数是n 2+n.13.解析 (1)因为a n+1=(n 2+n-λ)a n (n ∈N *),且a 1=1,所以当a 2=-1时,得-1=2-λ,解得λ=3.从而a 3=(22+2-3)×(-1)=-3.(2)不存在实数λ使得{a n }为等差数列.理由如下:由a 1=1,a n+1=(n 2+n-λ)a n ,得a 2=2-λ,a 3=(6-λ)(2-λ),a 4=(12-λ)(6-λ)(2-λ).若存在实数λ,使得{a n }为等差数列,则a 3-a 2=a 2-a 1,即(5-λ)(2-λ)=1-λ,解得λ=3.于是a 2-a 1=1-λ=-2,a 4-a 3=(11-λ)(6-λ)(2-λ)=-24,a 2-a 1≠a 4-a 3,这与{a n }为等差数列矛盾.所以不存在实数λ使得{a n }为等差数列.14.解析 (1)证明:∵a 2n =(2n-1)a n +2n,∴a 21=a 1+2,解得a 1=2或a 1=-1.又∵a n >0,∴a 1=2.由a 2n =(2n-1)a n +2n,得a 2n-(2n-1)a n -2n=(a n -2n)(a n +1)=0,∵a n >0,n ∈N *,∴a n =2n,∴a n+1-a n =2(n+1)-2n=2,∴数列{a n }是以2为首项,2为公差的等差数列.(2)结合(1)可得b n =a n -40n -11=2n -40n -11=2×n -10n -11=21+∴当n ≤3,n ∈N *时,{b n }单调递减,且b n <2;当n ≥4,n ∈N *时,{b n }单调递减,且b n >2.∴当n=4时,b n 最大;当n=3时,b n 最小.故p=4,q=3,∴p+q=7.15.解析 (1)证明:由3a n a n-1+a n -a n-1=0(n ≥2,n ∈N *),得1a n -1a n -1=3(n ≥2,n ∈N *),又1a 1=1,1为首项,3为公差的等差数列.(2)由(1)可得1a n =1+3(n-1)=3n-2,所以a n =13n -2(n ∈N *).(3)因为λa n +1a n ≥λ对任意的n ≥2,n ∈N *恒成立,即λ3n -2+3n-2≥λ对任意的n ≥2,n ∈N *恒成立,所以只需λ≤(3n -2)23n -3对任意的n ≥2,n ∈N *恒成立即可.令f(n)=(3n -2)23n -3(n ≥2,n ∈N *),则只需满足λ≤f(n)min 即可.因为f(n+1)-f(n)=(3n +1)23n -(3n -2)23n -3=9n 2-9n -13n (n -1)=3-13n (n -1),所以当n ≥2时, f(n+1)-f(n)>0,即f(2)<f(3)<f(4)<…,所以f(n)min =f(2).又f(2)=163,所以λ≤163.所以实数λ的取值范围为-∞,16.解析 (1)∵a 1=3,d=-5,∴a n =8-5n.数列{a n}中项数被4除余3的项是{a n}中的第3项,第7项,第11项,…,∴b1=a3=-7,b2=a7=-27.(2)设{a n}中的第m项是{b n}中的第n项,即b n=a m,则m=3+4(n-1)=4n-1,∴b n=a m=a4n-1=8-5×(4n-1)=13-20n,即{b n}的通项公式为b n=13-20n.(3)b503=13-20×503=-10047,设它是{a n}的第s项,则-10047=8-5s,解得s=2011,即{b n}中的第503项是{a n}中的第2011项.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大题考法专项训练
A 级——中档题保分练
1.已知数列{a n }为等比数列,首项a 1=4,数列{b n }满足b n =log 2a n ,且b 1+b 2+b 3=12.
(1)求数列{a n }的通项公式; (2)令c n =
4b n ·b n +1+a n ,求数列{c n }的前n 项和S n .
2.已知首项为2的数列{a n }的前n 项和为S n ,S n =
a n +1-23
,设b n =log 2a n . (1)求数列{a n }的通项公式;
(2)判断数列{b n }是否为等差数列,并说明理由;
(3)求数列⎩⎨⎧⎭
⎬⎫4(b n +1)(b n +3)的前n 项和T n .
3.(2019·福州模拟)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.
(1)求数列{b n }的通项公式;
(2)令c n =(a n +1)n +1
(b n +2)n
,求数列{c n }的前n 项和T n .
B级——拔高题满分练
1.(2020届高三·长沙摸底)已知数列{a n}的首项a1=3,a3=7,且对任意的n∈N*,都有a n-2a n+1+a n+2=0,数列{b n}满足b n=a2n-1,n∈N*.
(1)求数列{a n},{b n}的通项公式;(2)求使b1+b2+…+b n>2 019成立的最小正整数n的值.
2.已知{a n}是各项都为正数的数列,其前n项和为S n,且S n为a n与1
a n的等差中项.
(1)求数列{a n}的通项公式;(2)设b n=(-1)n
a n,求{
b n}的前n项和T n.
3.(2019·天津高考)设{a n}是等差数列,{b n}是等比数列,公比大于0.已知a1=b1=3,b2=a3,b3=4a2+3.
(1)求{a n}和{b n}的通项公式.
(2)设数列{c n}满足c n=求a1c1+a2c2+…+a2n c2n(n∈N*).
数列大题考法专训练答案
A 级——中档题保分练
1.解:(1)由b n =log 2a n 和b 1+b 2+b 3=12,得log 2(a 1a 2a 3)=12, ∴a 1a 2a 3=212. 设等比数列{a n }的公比为q , ∵a 1=4,∴a 1a 2a 3=4·4q ·4q 2=26·q 3=212, 解得q =4, ∴a n =4·4n -
1=4n .
(2)由(1)得b n =log 24n =2n , c n =42n ·2(n +1)+4n =1n (n +1)+4n =1n -1n +1+4n . 设数列⎩⎨⎧⎭
⎬⎫1n (n +1)的前n 项和为A n , 则A n =1-12+12-13+…+1n -1n +1=n n +1, 设数列{4n
}的前n 项和为B n , 则B n =4-4n ·41-4=43(4n -1), ∴S n =n n +1+43(4n -1).
2.解:(1)依题意得a 1=2,则n =1时,S 1=
a 2-23=a 1, ∴a 2=8. n ≥2时,S n -1=a n -23,则a n =S n -S n -1=a n +1-23-a n -23
,整理得a n +1a n =4. 又a 2a 1
=4,∴数列{a n }是首项为2,公比为4的等比数列,∴a n =2·4n -1=22n -1. (2)b n =log 2a n =log 222n -1=2n -1, 则b n +1-b n =2n +1-(2n -1)=2,且b 1=1,∴数列{b n }是等差数列.
(3)由(2)得b n =2n -1,

4(b n +1)(b n +3)=42n (2n +2)=1n (n +1)=1n -1n +1, ∴T n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1=n n +1.
3.解:(1)因为S n =3n 2+8n ,所以当n ≥2时,a n =S n -S n -1=3n 2+8n -[3(n -1)2+8(n -1)]=6n +5. 当n =1时,a 1=S 1=11也符合上式, 所以a n =6n +5,n ∈N *. 于是,b n +1+b n =a n =6n +5. 因为{b n }是等差数列, 所以可设b n =kn +t (k ,t 均为常数),
则有k (n +1)+t +kn +t =6n +5, 即2kn +k +2t =6n +5对任意的n ∈N *恒成立, 所以⎩⎪⎨⎪⎧ 2k =6,k +2t =5,解得⎩⎪⎨⎪⎧
k =3,t =1,故b n =3n +1. (2)因为a n =6n +5,b n =3n +1,
所以c n =(a n +1)n +1(b n +2)n =(6n +6)n +1(3n +3)n
=2n ×(6n +6). 于是,T n =12×2+18×22+24×23+…+2n ×(6n +6),①
所以2T n =12×22+18×23+24×24+…+2n ×6n +2n +1×(6n +6),②
①-②得,-T n =24+6(22+23+…+2n )-2n +1×(6n +6)=24+6×22-2n ×21-2
-2n +1×(6n +6)=-2n +1×6n , 故T n =2n +1×6n =2n +
2×3n .
B 级——拔高题满分练
1.解:(1)令n =1,得a 1-2a 2+a 3=0,解得a 2=5.
又由a n -2a n +1+a n +2=0,知a n +2-a n +1=a n +1-a n =…=a 2-a 1=2, 故数列{a n }是首项a 1=3,公差d =2的等差数列,于是a n =2n +1,b n =a 2n -1=2n +1.
(2)由(1)知,b n =2n +1.
于是b 1+b 2+...+b n =(21+22+ (2)
)+n =2(1-2n )1-2+n =2n +1+n -2. 令f (n )=2n +
1+n -2,易知f (n )是关于n 的单调递增函数, 又f (9)=210+9-2=1 031,f (10)=211+10-2=2 056, 故使b 1+b 2+…+b n >2 019成立的最小正整数n 的值是10.
2.解:(1)由题意知,2S n =a n +1a n ,即2S n a n -a 2n =1,① 当n =1时,由①式可得S 1=1;
当n ≥2时,a n =S n -S n -1,代入①式,得2S n (S n -S n -1)-(S n -S n -1)2=1,整理得S 2n -S 2n -1=1.
所以{S 2n }是首项为1,公差为1的等差数列,S 2n =1+n -1=n .
因为{a n }的各项都为正数,所以S n =n , 所以a n =S n -S n -1=n -n -1(n ≥2). 又a 1=S 1=1,所以a n =n -n -1.
(2)b n =(-1)n a n =(-1)n n -n -1
=(-1)n (n +n -1), 当n 为奇数时,
T n =-1+(2+1)-(3+2)+…+(n -1+n -2)-(n +n -1)=-n ; 当n 为偶数时,
T n =-1+(2+1)-(3+2)+…-(n -1+n -2)+(n +n -1)=n . 所以{b n }的前n 项和T n =(-1)n n .
3.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .
依题意,得⎩⎪⎨⎪⎧ 3q =3+2d ,3q 2=15+4d ,解得⎩⎪⎨⎪⎧
d =3,q =3, 故a n =3+3(n -1)=3n ,b n =3×3n -1=3n . 所以数列{a n }的通项公式为a n =3n ,{b n }的通项公式为b n =3n .
(2)a 1c 1+a 2c 2+…+a 2n c 2n =(a 1+a 3+a 5+…+a 2n -1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n )
=⎣⎡⎦
⎤n ×3+n (n -1)2×6+(6×31+12×32+18×33+…+6n ×3n ) =3n 2+6(1×31+2×32+…+n ×3n ).
记T n =1×31+2×32+…+n ×3n ,①
则3T n =1×32+2×33+…+n ×3n +1,②
②-①得,2T n =-3-32-33-…-3n +n ×3n +1=-3(1-3n )1-3
+n ×3n +1=(2n -1)3n +1+32. 所以a 1c 1+a 2c 2+…+a 2n c 2n =3n 2+6T n =3n 2+3×(2n -1)3n +1+32=(2n -1)3n +2+6n 2+92
(n ∈N *).。

相关文档
最新文档