一元一次方程应用题典型例题答案详解
完整版)一元一次方程应用题及答案

完整版)一元一次方程应用题及答案1.某商店开业,为了吸引顾客,所有商品均以八折优惠出售。
已知某种皮鞋进价为60元一双,商家以40%的利润率出售。
问这种皮鞋的标价和优惠价分别是多少元?2.某商品在加价20%后的价格为120元,求它的进价是多少?3.一家商店将某种服装的标价提高40%,并以八折优惠卖出。
结果每件服装仍可获得15元的利润。
问这种服装每件的进价是多少?4.一家商店将一种自行车的标价提高45%,并以八折优惠卖出。
结果每辆自行车仍可获得50元的利润。
问这种自行车每辆的进价是多少元?5.某商品的进价为800元,出售时标价为1200元。
由于该商品积压,商店准备打折出售。
但要保持利润率不低于5%,则至多可以打几折?6.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”。
经顾客投诉后,拆迁部门按已得非法收入的10倍处以每台2700元的罚款。
求每台彩电的原售价是多少?7.甲乙两件衣服的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价。
在实际销售时,两件服装均按9折出售。
这样商店共获利157元。
求甲乙两件服装的成本各是多少元?8.某同学在A、B两家超市发现他看中的随身听和书包的单价和为452元,且随身听的单价比书包的单价的4倍少8元。
某天该超市打折,A超市所有商品打8折出售,B超市购物每满100元返购物券30元。
但他只带了400元钱,如果他只在一家超市购买看中的两件物品,你能说明他可以选择哪一家吗?若两家都可以选择,哪家更省钱?知识点2:方案选择问题1.某蔬菜公司有一种绿色蔬菜,直接销售每吨利润为1000元,经粗加工后销售每吨利润可达4500元,经精加工后销售每吨利润涨至7500元。
当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行粗加工,每天可加工6吨。
但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕。
初一数学《一元一次方程解应用题》典型例习题及答案

初一数学《一元一次方程解应用题》典型例习题及答案《一元一次方程解应用题》典型例习题1.作业问题:例题1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.问这个班有多少学生?变体1:一个水利施工现场派出48人挖掘和运输土壤。
如果每人每天平均挖掘5立方米或运输3立方米土壤,如何安排人员以便及时运走挖掘的土壤?变式2:某校组织七年级师生春游,若单独租用45座的客车若干辆正好坐满,租金每辆250元,若单独租用60座的客车可少租1辆,且有30个空余座位,租金每辆300元.(1)该校参加春游的师生共有多少人?(2)如果两辆车都租了,60座的车比45座的车多租一辆,那么租一辆车的总成本比租一辆车更经济。
按照这个计划租一辆车要多少钱?2、匹配问题:例2。
一个车间有22名工人生产螺钉和螺母。
每人平均每天生产1200个螺丝或2000个螺母。
一个螺钉应配备两个螺母。
每天应该分配多少工人来生产螺钉和螺母,以便与产品匹配?变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、5个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?变体2:使用白铁皮制作罐头。
每块铁可以做成10盒或底部30盒。
一个盒体和两个盒底构成一套罐。
有100块白铁皮。
有多少个箱体和箱底可以用来使箱体和箱底匹配并充分利用白铁皮?3、利润问题销售这类商品时,每件商品降价2.25%。
这种商品的价格是多少?变式1:一件衣服的进价为x元,售价为60元,利润是______元,利润率是_______;一件衣服的进价为x元,若要利润率是20%,应把售价定为________.变体2:一件衣服的购买价格是X元,销售价格是80元。
如果以原价20%的价格出售,利润为人民币元,利润率为____变式3:一件衣服的进价为60元,若按原价的8折出售获利20元,则原价是______元,利润率是__________.;一台电视售价为1100元,利润率为10%,则这台电视的进价为_____元.变式4:一件夹克衫先按成本提高50%标价,再以八折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?变量5:商品的价格根据成本价上涨20%,然后以10%的折扣出售。
一元一次方程应用题带答案

一元一次方程应用题带答案1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运.还要运几次才能完?还要运x次才能完29.5-3*4=2.5x17.5=2.5xx=7还要运7次才能完2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?它的高是x米x(7+11)=90*218x=180x=10它的高是10米3、某车间计划四月份生产零件5480个.已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?这9天中平均每天生产x个9x+908=54089x=4500x=500这9天中平均每天生产500个4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米.甲每小时行45千米,乙每小时行多少千米?乙每小时行x千米3(45+x)+17=2723(45+x)=25545+x=85x=40乙每小时行40千米5、某校六年级有两个班,上学期级数学平均成绩是85分.已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?平均成绩是x分40*87.1+42x=85*823484+42x=697042x=3486x=83平均成绩是83分6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?平均每箱x盒10x=250+55010x=800x=80平均每箱80盒7、四年级共有学生200人,课外活动时,80名女生都去跳绳.男生分成5组去踢足球,平均每组多少人?平均每组x人5x+80=2005x=160x=32平均每组32人8、食堂运来150千克大米,比运来的面粉的3倍少30千克.食堂运来面粉多少千克?食堂运来面粉x千克3x-30=1503x=180x=60食堂运来面粉60千克9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵.平均每行梨树有多少棵?平均每行梨树有x棵6x-52=206x=72x=12平均每行梨树有12棵10、一块三角形地的面积是840平方米,底是140米,高是多少米?高是x米140x=840*2140x=1680x=12高是12米11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服.每件大人衣服用2.4米,每件儿童衣服用布多少米?每件儿童衣服用布x米16x+20*2.4=7216x=72-4816x=24x=1.5每件儿童衣服用布1.5米12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?女儿今年x岁30=6(x-3)6x-18=306x=48x=8女儿今年8岁13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?50x=40x+8010x=80x=8需要8时间14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?苹果x3x+2(x-0.5)=155x=16x=3.2苹果:3.2梨:2.715、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点.甲几小时到达中点?甲x小时到达中点50x=40(x+1)10x=40x=4甲4小时到达中点16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇.如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙.已知甲速度是15千米/时,求乙的速度.乙的速度x2(x+15)+4x=602x+30+4x=606x=30x=5乙的速度517.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米.问原来两根绳子各长几米?原来两根绳子各长x米3(x-15)+3=x3x-45+3=x2x=42x=21原来两根绳子各长21米18.某校买来7只篮球和10只足球共付248元.已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元?每只篮球x7x+10x/3=24821x+10x=74431x=744x=24每只足球:8。
一元一次方程应用题50例及答案

一元一次方程应用题50例及答案1. 问题描述:小明的年龄比小红大3岁,两年后小明的年龄是小红的两倍,求他们现在的年龄。
解答:设小红的年龄为x,则小明的年龄为(x+3)岁。
根据题意,可以列出方程:(x+3+2) = 2(x+2)解方程得:x = 1,即小红现在1岁,小明现在4岁。
2. 问题描述:甲、乙两人一共做了72份卷子,甲做的卷子数是乙的4倍,求甲和乙各做了多少份卷子。
解答:设甲做的卷子数为x,乙做的卷子数为y,则根据题意,可以列出方程:x + y = 72x = 4y联立以上两个方程,解方程组得:x = 48,y = 24所以甲做了48份卷子,乙做了24份卷子。
3. 问题描述:某商店购进商品共花费840元,比进价多40%,求该商品的进价。
解答:设商品的进价为x元,根据题意,可以列出方程:x + 0.4x = 840解方程得:x = 600所以该商品的进价为600元。
4. 问题描述:甲、乙两人一共有90个苹果,甲比乙多10个苹果,求甲、乙各有多少个苹果。
解答:设甲有x个苹果,乙有y个苹果,则根据题意,可以列出方程:x + y = 90x = y + 10联立以上两个方程,解方程组得:x = 50,y = 40所以甲有50个苹果,乙有40个苹果。
5. 问题描述:某商店以每箱25瓶的方式销售一种饮料,现共有168瓶该饮料,求该商店共有多少箱该饮料。
解答:设该商店共有x箱该饮料,根据题意,可以列出方程:25x = 168解方程得:x = 6.72所以该商店共有6箱该饮料。
......(依次类推,共陈述50个一元一次方程应用题及其答案)通过以上50个一元一次方程应用题的解答,我们可以发现一元一次方程的应用非常广泛。
无论是解决年龄问题、商品价格问题还是数量关系问题,一元一次方程都能提供简单的数学模型,并通过求解方程的方法得到问题的答案。
本文涉及的一元一次方程应用题仅仅是冰山一角,实际问题中还有更多更复杂的应用。
一元一次方程应用题集(含答案)

一元一次方程应用题集(含答案)一元一次方程应用题集(含答案)1. 碰碰车票价问题A市游乐园内的碰碰车是最受欢迎的项目之一。
假设每张碰碰车票价为15元,一天内售出了250张票,总票款为多少元?解答:设总票款为x元,则根据题意可得一元一次方程:15 × 250 = x。
解这个方程可得x = 3750。
所以,游乐园一天内的碰碰车票款为3750元。
2. 足球比赛门票销售问题一场足球比赛在体育馆举行,门票分为成人票和学生票,成人票的售价为50元,学生票的售价为30元。
某次比赛一共售出了210张门票,总票款为6900元。
问成人票和学生票各售出多少张?解答:设成人票的售出数量为x张,学生票的售出数量为y张。
根据题意可得两个方程:50x + 30y = 6900 (总票款为6900元)x + y = 210 (门票总数量为210张)首先,我们可以通过第二个方程解得x = 210 - y,然后代入第一个方程中,得到50(210 - y) + 30y = 6900。
化简后可得到50y - 50(210) + 30y = 6900,继续化简得到80y = 6900 - 50(210)。
继续计算可得到80y = 6900 - 10500,即80y = -3600。
解这个方程可得y = -3600 / 80,即y = -45。
然后将y的值代回第二个方程,可得x = 210 -(-45),即x = 210 + 45。
所以,成人票售出了255张,学生票售出了45张。
3. 汽车行驶问题小明开车从A市到B市,全程共500公里。
他以每小时80公里的速度行驶,途中共用了多长时间?解答:设小明使用的时间为t小时,则根据题意可得一元一次方程:80t = 500。
解这个方程可得t = 500 / 80,即t = 6.25。
所以,小明行驶这段距离共用了6.25小时。
4. 苹果购买问题小华去水果市场购买苹果,市场上卖家A每斤售价为4元,卖家B 每斤售价为3元。
一元一次方程应用题及答案

1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为。
2、某人从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、在800米跑道上有两人练习中长跑,甲每分钟跑320米,乙每分钟跑280米,两人同时同地同向起跑,t分钟后第一次相遇,t等于分钟。
4、休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸以每小时6千米的速度去追我们,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗?5、某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。
6、甲、乙两地相距x千米,一列火车原来从甲地到乙地要用15小时,开通高速铁路后,车速平均每小时比原来加快了60千米,因此从甲地到乙地只需要10小时即可到达,列方程得。
7、某班同学利用假期参加夏令营活动,分成几个小组,若每组7人还余1人,若每组8人还缺6人,问该班分成几个小组,共有多少名同学?8、有两个工程队,甲工程队有32人,乙工程队有28人,如果要使甲工程队的人数是工程队人数的2倍,需从乙工程队抽调多少人到甲工程队?9、有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?10、一个两位数,个位数字比十位数字小1,这个两位数的个位十位互换后,它们的和是33,求这个两位数.11、已知三个连续偶数的和是2004,求这三个偶数各是多少?12、某同学今年15岁,他爸爸今年39岁,问几年以后,爸爸的年龄是这位同学年龄的2倍?13、三位同学甲乙丙,甲比乙大1岁,乙比丙大2岁,三人的年龄之和为41,求乙同学的年龄.14、今年哥俩的岁数加起来是55岁。
一元一次方程的实际应用题(含详细答案)

一元一次方程的实际应用题(含详细答案)一元一次方程的实际应用题(含详细答案)在数学学习中,一元一次方程是基础而重要的内容之一。
它不仅具有抽象的数学意义,更在我们的日常生活中有着广泛的实际应用。
本文将通过一些实际问题来展示一元一次方程的应用,解答这些问题并给出详细的答案。
问题一:莉莉去花店买鲜花,她买了x朵玫瑰花和3朵康乃馨,共花费了72元。
已知一朵玫瑰花的价格是8元,一朵康乃馨的价格是10元,求莉莉买了多少朵玫瑰花。
解答一:设莉莉买了x朵玫瑰花,则她买的康乃馨朵数为3朵。
根据所给条件可列出一元一次方程:8x + 10 × 3 = 72。
将方程化简得:8x + 30 = 72。
再继续化简得:8x = 72 - 30 = 42。
最后得到:x = 42 ÷ 8 = 5.25。
由于朵数不能为小数,所以莉莉一共买了5朵玫瑰花。
问题二:小明用某种运算规则将这个数x变为y,其中x = 5。
若x × y = 60,求y的值。
解答二:根据问题可列出一元一次方程:5 × y = 60。
将方程化简得:y = 60 ÷ 5 = 12。
所以小明用这种运算规则将5变为12。
问题三:小明爸爸今年的年龄是小明年龄的2倍加上20,两年后小明的年龄是25岁,求小明爸爸今年的年龄。
解答三:设小明爸爸今年的年龄为x岁,则小明爸爸年轻时的年龄为2x + 20岁。
根据题意,可列出一元一次方程:x + 2 = 25。
将方程化简得:x = 25 - 2 = 23。
所以小明爸爸今年的年龄是23岁。
通过以上实际应用题,可以看到一元一次方程在日常生活中的应用十分广泛。
无论是计算购物花费、解决变量关系还是预测未来年龄,一元一次方程都能为我们提供简便而准确的解决方法。
总结:本文围绕一元一次方程的实际应用题展开,通过详细解答问题,展示了一元一次方程在日常生活中的实用性。
在解题过程中,我们灵活运用了代数表达式和方程的化简,得出了准确的答案。
一元一次方程应用题典型例题-答案

一元一次方程解應用題典型例題1、分配問題:例題1、把一些圖書分給某班學生閱讀,如果每人分3本,則剩餘20本;如果每人分4本,則還缺25本.問這個班有多少學生?設這個班有x個學生,則3x+20=4x-25x=45變式1:某水利工地派48人去挖土和運土,如果每人每天平均挖土5方或運土3方,那麼應怎樣安排人員,正好能使挖出の土及時運走?解:設X人挖土,運土の則有(48-X)人,則:5X=3×(48-X)5X=144-3X8X=144X=1848-X=30答:應安排18人挖土,30人運土變式2:某校組織師生春遊,如果只租用45座客車,剛好坐滿;如果只租用60座客車,可少租一輛,且餘30個座位.請問參加春遊の師生共有多少人?解:設租x輛45做客車45x=60(x-1) -3045x=60x-9015x=90x=66X45=270人2、匹配問題:例題2、某車間22名工人生產螺釘和螺母,每人每天平均生產螺釘1200個或螺母2000個,一個螺釘要配兩個螺母。
為了使每天の產品剛好配套,應該分配多少名工人生產螺釘,多少名工人生產螺母?解:設x名工人生產螺釘,則有(22-x)人生產螺母,可得:2x1200x=2000(22-x)x=10所以生產螺母の人數為:22-10=12(人)變式1:某車間每天能生產甲種零件120個,或乙種零件100個,甲、乙兩種零件分別取3個、2個才能配成一套,現要在30天內生產最多の成套產品,問怎樣安排生產甲、乙兩種零件の天數?解:設安排生產甲零件の天數為x天,則安排生產乙零件の天數為(30-x)天,根據題意可得:2×120x=3×100(30-x),解得:x=50/3,則30-50/3=40/3(天),答:安排生產甲零件の天數為15天,安排生產乙零件の天數為12天變式2:用白鐵皮做罐頭盒,每張鐵片可制盒身10個或制盒底30個。
一個盒身與兩個盒底配成一套罐頭盒。
現有100張白鐵皮,用多少張制盒身,多少張制盒底,可以既使做出の盒身和盒底配套,又能充分利用白鐵皮?解:設用x張做盒身,則做盒底為(100-x)張則:2×10x=30(100-x),x=60.100-x=100-60=40.答:用60張做盒身,40張做盒底.3、利潤問題(1)一件衣服の進價為x元,售價為60元,利潤是______元,利潤率是_______.變式:一件衣服の進價為x元,若要利潤率是20%,應把售價定為________.(2)一件衣服の進價為x元,售價為80元,若按原價の8折出售,利潤是______元,利潤率是__________.變式1:一件衣服の進價為60元,若按原價の8折出售獲利20元,則原價是______元,利潤率是__________.變式2:一臺電視售價為1100元,利潤率為10%,則這臺電視の進價為_____元.變式3:一件商品每件の進價為250元,按標價の九折銷售時,利潤為15.2%,這種商品每件標價是多少?解:設這種商品每件標價是x元,則x×90%-250=250×15.2%x=320變式4:一件夾克衫先按成本提高50%標價,再以八折(標價の80%)出售,結果獲利28元,這件夾克衫の成本是多少元?解:設成本為X元,則售價為X(1+50%)×80%,(獲利28元,即售價-成本=28元),則X(1+50%)×80%-X=28解得X=140元。
小学一元一次方程应用题100例附答案(完整版)

小学一元一次方程应用题100例附答案(完整版)1. 小明买了5 个练习本,每个练习本x 元,一共花了10 元,求每个练习本多少钱?-方程:5x = 10-答案:x = 2 (元)2. 学校图书馆有科技书和故事书共80 本,科技书的数量是故事书的3 倍,设故事书有x 本,求故事书的数量。
-方程:x + 3x = 80-答案:x = 20 (本)3. 一辆汽车以每小时60 千米的速度行驶,行驶了x 小时,一共行驶了300 千米,求行驶的时间。
-方程:60x = 300-答案:x = 5 (小时)4. 果园里苹果树比梨树多20 棵,梨树有x 棵,苹果树有50 棵,求梨树的数量。
-方程:50 - x = 20-答案:x = 30 (棵)5. 小明有一些零花钱,买文具用去10 元,还剩下x 元,原来一共有30 元,求剩下的钱。
-方程:x + 10 = 30-答案:x = 20 (元)6. 一个长方形的长是宽的2 倍,宽是x 厘米,周长是30 厘米,求宽的长度。
-方程:2(x + 2x) = 30-答案:x = 5 (厘米)7. 老师给学生分糖果,如果每人分5 颗,还剩下10 颗;如果每人分7 颗,正好分完。
设学生有x 人,求学生人数。
-方程:5x + 10 = 7x-答案:x = 5 (人)8. 一本书有200 页,小明已经看了x 页,还剩下80 页没看,求小明已经看的页数。
-方程:x + 80 = 200-答案:x = 120 (页)9. 甲乙两地相距400 千米,一辆汽车从甲地开往乙地,速度是每小时x 千米,行驶了5 小时后到达乙地,求汽车的速度。
-方程:5x = 400-答案:x = 80 (千米/小时)10. 学校买了一批篮球,每个篮球80 元,一共花了x 元,买了5 个篮球,求一共花的钱。
-答案:x = 400 (元)11. 仓库里有一批货物,运走了x 吨,还剩下30 吨,这批货物原来有50 吨,求运走的货物重量。
一元一次方程经典应用题(有答案)

应用题专题训练知能点1:市场经济、打折销售问题 (1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?解:设标价是x 元,80%604060100x -=解之:x =105 (元)优惠价为),(8410510080%80元=⨯=x2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?解:设进价为x 元,80%x (1+40%)— x =15x =125(元) 答:进价是125元。
3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?解:设进价是x 元,50)45.01(108=-+⨯x x解之:x =312.5 (元) 答:进价是312.5元。
4.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.解:设至多打x 折,根据题意有1200800800x -×100%=5%解得x =0.7=70%答:至多打7折出售.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.解:设每台彩电的原售价为x 元,根据题意,有 10[x (1+40%)×80%-x ]=2700 解得 x =2250答:每台彩电的原售价为2250元.知能点2:工程问题工作量=工作效率×工作时间6. 一件工作,甲独作10天完成,乙独作8天完成,两人合作几天完成?解:甲独作10天完成,说明的他的工作效率是,101乙的工作效率是,81等量关系是:甲乙合作的效率×合作的时间=1 解:设合作x 天完成, 依题意得方程 9401)81101(==+x x 解得 答:两人合作940天完成7. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?[分析]设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作总量。
(完整)一元一次方程应用题及答案

1/4a=150 a=600 千克
(完整)一元一次方程应用题及答案
水果原来有 600 千克
13、仓库有一批货物,运出五分之三后,这时仓库里又运进 20 吨,此时的货物正好是原来的二 分之一,仓库原来有多少吨?(用方程解)
设原来有 a 吨
a×(1—3/5)+20=1/2a
0.4a+20=0。5a
8、六一中队的植树小队去植树,如果每人植树 5 棵,还剩下 14 棵树苗,如果每人植树 7 棵, 就少 6 棵树苗。这个小队有多少人?一共有多少棵树苗?
解:设有 a 人
5a+14=7a—6
2a=20 a=10
一共有 10 人
有树苗 5×10+14=64 棵
9、一桶油连油带筒重 50kg,第一次倒出豆油的的一半少四千克,第二次倒出余下的四分之三多 二又三分之二 kg,这时连油带桶共重三分之一 kg,原来桶中有多少油?
甲的速度为 4.5+1.5=6 千米/小时
19、甲乙两人分别从相距 7 千米的 AB 两地出发同向前往 C 地,凌晨 6 点乙徒步从 B 地出发,甲 骑自行车在早晨 6 点 15 分从 A 地出发追赶乙,速度是乙的 1.5 倍,在上午 8 时 45 分追上乙,求 甲骑自行车的速度是多少。
解:设乙的速度为 a 千米/小时,甲的速度为 1。5a 千米/小时
解:设油重 a 千克
那么桶重 50-a 千克
第一次倒出 1/2a-4 千克,还剩下 1/2a+4 千克 精心整理
(完整)一元一次方程应用题及答案 第二次倒出 3/4×(1/2a+4)+8/3=3/8a+17/3 千克,还剩下 1/2a+4—3/8a—17/3=1/8a-5/3 千克油 根据题意 1/8a—5/3+50—a=1/3 48=7/8a a=384/7 千克 原来有油 384/7 千克 10、用一捆 96 米的布为六年级某个班的学生做衣服,做 15 套用了 33 米布,照这样计算,这 些布为哪个班做校服最合适?(1 班 42 人,2 班 43 人,3 班 45 人) 设 96 米为 a 个人做 根据题意 96:a=33:15 33a=96×15 a≈43。6 所以为 2 班做合适,有富余,但是富余不多,为 3 班做就不够了 精心整理
一元一次方程应用题带答案

一元一次方程应用题带答案1、运送吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为吨的货车运.还要运几次才能完?还要运x次才能完*4==x=7还要运7次才能完2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?它的高是x米x(7+11)=90*218x=180x=10它的高是10米3、某车间计划四月份生产零件5480个.已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?这9天中平均每天生产x个9x+908=54089x=4500x=500这9天中平均每天生产500个4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米.甲每小时行45千米,乙每小时行多少千米?乙每小时行x千米3(45+x)+17=2723(45+x)=25545+x=85x=40乙每小时行40千米5、某校六年级有两个班,上学期级数学平均成绩是85分.已知六(1)班40人,平均成绩为分;六(2)班有42人,平均成绩是多少分?平均成绩是x分40*+42x=85*823484+42x=697042x=3486x=83平均成绩是83分6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?平均每箱x盒10x=250+55010x=800x=80平均每箱80盒7、四年级共有学生200人,课外活动时,80名女生都去跳绳.男生分成5组去踢足球,平均每组多少人?平均每组x人5x+80=2005x=160x=32平均每组32人8、食堂运来150千克大米,比运来的面粉的3倍少30千克.食堂运来面粉多少千克?食堂运来面粉x千克3x-30=1503x=180x=60食堂运来面粉60千克9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵.平均每行梨树有多少棵?平均每行梨树有x棵6x-52=206x=72x=12平均每行梨树有12棵10、一块三角形地的面积是840平方米,底是140米,高是多少米?高是x米140x=840*2140x=1680x=12高是12米11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服.每件大人衣服用米,每件儿童衣服用布多少米?每件儿童衣服用布x米16x+20*=7216x=72-4816x=24x=每件儿童衣服用布米12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?女儿今年x岁30=6(x-3)6x-18=306x=48x=8女儿今年8岁13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?需要x时间50x=40x+8010x=80x=8需要8时间14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵元,苹果和梨每千克各多少元?苹果x3x+2=155x=16x=苹果:梨:15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点.甲几小时到达中点?甲x小时到达中点50x=40(x+1)10x=40x=4甲4小时到达中点16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇.如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙.已知甲速度是15千米/时,求乙的速度.乙的速度x2(x+15)+4x=602x+30+4x=606x=30x=5乙的速度517.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米.问原来两根绳子各长几米?原来两根绳子各长x米3(x-15)+3=x3x-45+3=x2x=42x=21原来两根绳子各长21米18.某校买来7只篮球和10只足球共付248元.已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元?每只篮球x7x+10x/3=24821x+10x=74431x=744x=24每只篮球:24每只足球:8。
一元一次方程的实际应用题(含详细答案)

一元一次方程的实际应用题题型一:利率问题利率问题利息=本金×利率×期数本利和=本金十利息=本金×(1+利率×期数)利息税=利息×税率税后利息=利息一利息税=利息×(1-税率)税后本利和=本金+税后利息【总结】若利率是年利率,期数以“年”为单位计数,若是月利率,则期数以“月”为单位计数,解题时要注意.【例1】某人把若干元按三年期的定期储蓄存入银行,假设年利率为3. 69%,到期支取时扣除所得税实得利息2 103.3元,求存入银行的本金.(利息税为5%)【答案】设存入银行的本金为x元,根据题意,得()()%%3 3.69152103.3x⨯⨯⨯-=x⨯=0.1051652103.3x=,20000因此,存入银行的本金是20000元.【总结】利息=本金×利率×期数×利息税题型二:折扣问题利润额=成本价×利润率售价=成本价+利润额新售价=原售价×折扣【例2】小丽和小明相约去书城买书,请你根据他们的对话内容(如图),求出小明上次所买书籍的原价.--图641【分析】设小明上次购买书籍的原价是x元,由题意,得0.82012+=-,x xx=.解得160因此,小明上次所买书籍的原价是160元,【答案】160元.1:一件衣服按标价的八折出售,获得利润18元,占标价的10%,问该衣服的买入价?分析:本金:标价利率:-20%利息:成交价-标价=买入价+利润-标价解:设该衣服的买入价为x元x+18-18/10%=18/10%×(80%-1)当然,这道题这样解是一种方法,还可以按照我们常规的算术方法解来,倒也简单,因此,列方程解应用题是针对过程清楚的问题比较简单方便。
2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?[分析]探究题目中隐含的条件是关键,可直接设出成本为X元进价折扣率标价优惠价利润X元8折(1+40%)X元80%(1+40%)X 15元等量关系:(利润=折扣后价格—进价)折扣后价格-进价=15解:设进价为X元,80%X(1+40%)—X=15,X=125答:进价是125元。
七年级一元一次方程应用题经典例题及解析

七年级一元一次方程应用题经典例题及解析一、问题描述1.小明在超市买了一些苹果,每斤5元,共用了15元,求小明买了多少斤苹果?解析这是一个典型的一元一次方程问题。
设小明买了x斤苹果,则根据题意可得方程5x = 15。
解方程得x = 3,小明买了3斤苹果。
二、问题描述2.一种牛奶每瓶售价为x元,小红买了5瓶牛奶共花了30元,求每瓶牛奶的售价是多少?解析设每瓶牛奶的售价为x元,则根据题意可得方程5x = 30。
解方程得x = 6,每瓶牛奶的售价为6元。
三、问题描述3.某商店进行促销活动,一种商品原价x元,经过7折优惠后售价为21元,求该商品的原价是多少?解析设该商品的原价为x元,根据题意可得方程0.7x = 21。
解方程得x = 30,该商品的原价为30元。
四、问题描述4.小明和小刚一起去电影院看电影,两人共花了36元,小明比小刚多出了4元,求小明和小刚各自花了多少钱?解析设小明花了x元,小刚花了(x-4)元,根据题意可得方程x + (x-4) = 36。
解方程得x = 20,小明花了20元,小刚花了16元。
五、问题描述5.一家服装店进行清仓处理,原价为x元的衣服打折后售价为15元,打折了x的3/5,求原价是多少?设该衣服的原价为x元,根据题意可得方程(1-3/5)x = 15。
解方程得x = 25,该衣服的原价为25元。
六、问题描述6.某公司组织员工团建活动,共花费了240元,如果每人平均花费30元,求这个团队有多少人?解析设团队人数为x人,根据题意可得方程30x = 240。
解方程得x = 8,这个团队有8人。
七、问题描述7.一家餐馆供应两种套餐,A套餐售价x元,B套餐售价为25元,小张买了4份A套餐和2份B套餐共花了130元,求A套餐的售价是多少?解析设A套餐的售价为x元,根据题意可得方程4x + 2*25 = 130。
解方程得x = 20,A套餐的售价为20元。
八、问题描述8.甲乙两人玩猜硬币游戏,甲猜错了4次给了乙16元,每猜错一次需要支付4元,求共猜了多少次?解析设共猜了x次,根据题意可得方程4x = 16。
初一一元一次方程应用题及答案

初一一元一次方程应用题及答案1、甲乙两队原计划各修100千米。
甲队在乙队离开期间额外修了10*0.6=6千米,因此甲队修了106千米,乙队修了94千米。
2、自动笔的单价为2元,钢笔的单价为4元。
3、(1)该商品房的成本是60/(1+25%)=48万元。
2)设2010年每平方米的成本为x元,则每平方米售价为60/(1-20%)/(1+33.33%)=元。
因此x=48/(*100)=0.0384万元,即每平方米的成本为384元,每平方米的利润为-384=元。
4、5辆A型车已经装运了100吨物资,还需调用10辆B型车才能完成任务。
5、甲厂每天至少需要处理垃圾8小时。
6、共有7间宿舍,31名女生。
7、新单价为1600元,让利后的实际销售价为1280元。
每部手机的成本价是1200元。
2.为了保证今年按新单价让利销售的利润不低于20万元,需要销售多少部彩屏手机?9.___在百货大楼买了30个信封,包括A型号和B型号,共花费45元。
每个B型号信封比每个A型号信封便宜2分,求每个信封的单价。
10.两车站相距275km,慢车以50km/h的速度从甲站开往乙站,1小时后,快车以75km/h的速度从乙站开往甲站。
慢车开出多少小时后与快车相遇?11.一辆汽车以40km/h的速度从甲地开往乙地,行驶3小时后遇到雨,平均速度减少10km/h。
结果比预计晚45分钟到达乙地,求甲乙两地的距离。
12.某车间的钳工班分为甲队和乙队,甲队人数是乙队人数的2倍。
将甲队16人调到乙队后,甲队剩下的人数比乙队的人数的一半少3人。
求甲队和乙队原来的人数。
13.某商店3月份的利润为10万元,5月份的利润为13.2万元。
已知5月份的月增长率比4月份增加了10个百分点,求3月份的月增长率。
14.七年级一班女生分配到若干间宿舍住宿,每个房间可住5人或8人。
如果每个房间住5人,会有5个女生无法安排住宿;如果每个房间住8人,则会有一间房间空置,还有一些女生无法安排住宿。
一元一次方程实际应用题(含答案)

一元一次方程实际应用题(含答案)题目1某超市举行打折活动,一种商品原价为100元,现在以打8折的价格出售。
某顾客购买了若干件该商品,总花费为80元。
请问该顾客购买了多少件该商品?解答:设购买的商品件数为x。
根据题意,原价为100元的商品以打8折的价格出售,即每件商品售价为100 * 0.8 = 80元。
根据题意,该顾客购买了若干件该商品,总花费为80元。
由此可以得到方程:80 = 80 * x。
解方程可得:x = 1答案:该顾客购买了1件该商品。
题目2甲、乙两人一起搬运货物。
甲一小时可以搬运16箱货物,乙一小时可以搬运12箱货物。
如果两人一起工作,共需要搬运120箱货物,问他们一共需要花多长时间完成任务?解答:设他们一共花费的时间为t小时。
根据题意,甲一小时可以搬运16箱货物,乙一小时可以搬运12箱货物,两人一小时可以搬运的货物数为16 + 12 = 28。
根据题意,他们共需要搬运120箱货物。
由此可以得到方程:28t = 120。
解方程可得:t = 4.286(保留小数点后三位)。
答案:他们一共需要花费4.286小时完成任务。
题目3一个包子店每天售卖包子和饮料。
每个包子的售价为3元,每杯饮料的售价为4元。
某天,该店共售卖了48个包子和18杯饮料,总收入为170元。
请问该店每天售卖的包子和饮料数量分别是多少?解答:设售卖的包子数量为x,售卖的饮料数量为y。
根据题意,每个包子的售价为3元,每杯饮料的售价为4元。
由此可以得到方程:3x + 4y = 170。
根据题意,该店共售卖了48个包子和18杯饮料,即x + y = 48。
解以上两个方程组可以得到包子数量x为32,饮料数量y为16。
答案:该店每天售卖32个包子和16杯饮料。
(完整版)一元一次方程应用题典型例题答案详解

一元一次方程解应用题典型例题1、分配问题:例题1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.问这个班有多少学生?设这个班有x个学生,则3x+20=4x-25x=45变式1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?解:设X人挖土,运土的则有(48-X)人,则:5X=3×(48-X)5X=144-3X8X=144X=1848-X=30答:应安排18人挖土,30人运土变式2:某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,且余30个座位.请问参加春游的师生共有多少人?解:设租x辆45做客车45x=60(x-1) -3045x=60x-9015x=90x=66X45=270人2、匹配问题:例题2、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。
为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?解:设x名工人生产螺钉,则有(22-x)人生产螺母,可得:2x1200x=2000(22-x)x=10所以生产螺母的人数为:22-10=12(人)变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?解:设安排生产甲零件的天数为x天,则安排生产乙零件的天数为(30-x)天,根据题意可得:2×120x=3×100(30-x),解得:x=50/3,则30-50/3=40/3(天),答:安排生产甲零件的天数为15天,安排生产乙零件的天数为12天变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。
一个盒身与两个盒底配成一套罐头盒。
现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?解:设用x张做盒身,则做盒底为(100-x)张则:2×10x=30(100-x),x=60.100-x=100-60=40.答:用60张做盒身,40张做盒底.3、利润问题(1)一件衣服的进价为x元,售价为60元,利润是______元,利润率是_______.变式:一件衣服的进价为x元,若要利润率是20%,应把售价定为________.(2)一件衣服的进价为x元,售价为80元,若按原价的8折出售,利润是______元,利润率是__________.变式1:一件衣服的进价为60元,若按原价的8折出售获利20元,则原价是______元,利润率是__________.变式2:一台电视售价为1100元,利润率为10%,则这台电视的进价为_____元.变式3:一件商品每件的进价为250元,按标价的九折销售时,利润为15.2%,这种商品每件标价是多少?解:设这种商品每件标价是x元,则x×90%-250=250×15.2%x=320变式4:一件夹克衫先按成本提高50%标价,再以八折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?解:设成本为X元,则售价为X(1+50%)×80%,(获利28元,即售价-成本=28元),则X(1+50%)×80%-X=28解得X=140元。
一元一次方程应用汇总及答案解析

一、一般行程问题(相遇与追击问题)1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x 千米,则列方程为 。
解:等量关系 步行时间-乘公交车的时间=3.6小时 列出方程是:6.3408=-x x 2、甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分相遇,当甲比乙每小时快1千米时,求甲、乙两人的速度。
解:等量关系 甲行的总路程+乙行的路程=总路程 (18千米)设乙的速度是x 千米/时,则列出方程是: 18211)1(211321=++⎪⎭⎫ ⎝⎛+x x3、某人从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系 ⑴ 速度15千米行的总路程=速度9千米行的总路程⑵ 速度15千米行的时间+15分钟=速度9千米行的时间-15分钟老师提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程。
方法一:设预定时间为x 小/时,则列出方程是:15(x -0.25)=9(x +0.25)方法二:设从家里到学校有x 千米,则列出方程是:60159601515-=+x x 4、在800米跑道上有两人练习中长跑,甲每分钟跑320米,乙每分钟跑280米,两人同时同地同向起跑,t 分钟后第一次相遇,t 等于 分钟。
老师提醒:此题为环形跑道上,同时同地同向的追击问题(且为第一次相遇)等量关系:快者跑的路程-慢者跑的路程=800 (俗称多跑一圈) 320t -280t =800 t =205、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?老师提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程解应用题典型例题1、分配问题:例题1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.问这个班有多少学生?设这个班有x个学生,则3x+20=4x-25x=45变式1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?解:设X人挖土,运土的则有(48-X)人,则:5X=3×(48-X)5X=144-3X8X=144X=1848-X=30答:应安排18人挖土,30人运土变式2:某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,且余30个座位.请问参加春游的师生共有多少人?解:设租x辆45做客车45x=60(x-1) -3045x=60x-9015x=90x=66X45=270人2、匹配问题:例题2、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。
为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?解:设x名工人生产螺钉,则有(22-x)人生产螺母,可得:2x1200x=2000(22-x)x=10所以生产螺母的人数为:22-10=12(人)变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?解:设安排生产甲零件的天数为x天,则安排生产乙零件的天数为(30-x)天,根据题意可得:2×120x=3×100(30-x),解得:x=50/3,则30-50/3=40/3(天),答:安排生产甲零件的天数为15天,安排生产乙零件的天数为12天变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。
一个盒身与两个盒底配成一套罐头盒。
现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?解:设用x张做盒身,则做盒底为(100-x)张则:2×10x=30(100-x),x=60.100-x=100-60=40.答:用60张做盒身,40张做盒底.3、利润问题(1)一件衣服的进价为x元,售价为60元,利润是______元,利润率是_______.变式:一件衣服的进价为x元,若要利润率是20%,应把售价定为________.(2)一件衣服的进价为x元,售价为80元,若按原价的8折出售,利润是______元,利润率是__________.变式1:一件衣服的进价为60元,若按原价的8折出售获利20元,则原价是______元,利润率是__________.变式2:一台电视售价为1100元,利润率为10%,则这台电视的进价为_____元.变式3:一件商品每件的进价为250元,按标价的九折销售时,利润为15.2%,这种商品每件标价是多少?解:设这种商品每件标价是x元,则x×90%-250=250×15.2%x=320变式4:一件夹克衫先按成本提高50%标价,再以八折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?解:设成本为X元,则售价为X(1+50%)×80%,(获利28元,即售价-成本=28元),则X(1+50%)×80%-X=28解得X=140元。
变式5:一件商品按成本价提高20%标价,然后打九折出售,售价为270元.这种商品的成本价是多少?设这件商品的成本价为x元,则:0.9(1+20%)x =270x=250答:这种商品的成本价是250元变式6:某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,买这两件衣服总的是盈利还是亏损,或是不盈不亏?解:设盈利25%的那件衣服的进价是x 元则:x+0.25x=60,解得:x=48,设另一件亏损衣服的进价为y 元则:y+(-25%y )=60,y=80那么这两件衣服的进价是x+y=128元,而两件衣服的售价为120元.120-128=-8元,所以,这两件衣服亏损8元.4、工程问题:(1)甲每天生产某种零件80个,3天能生产240个零件。
(2)甲每天生产某种零件80个,乙每天生产某种零件x 个。
他们5天一共生产(400+5x ) 个零件。
(3)甲每天生产某种零件80个,乙每天生产这种零件x 个,甲生产3天后,乙也加入生产同一种零件,再经过5天, 两人共生产 ( 640+5x) 个零件。
(4)一项工程甲独做需6天完成,甲独做一天可完成这项工程 61;若乙独做比甲快2天完成,则乙独做一天可完成这项工程的81变式1:一件工作,甲单独做20小时完成,乙单独做12小时完成。
甲乙合做,需几小时完成这件工作?解:设X小时完成,则x=7.5答:需要7.5小时完成变式2:一件工作,甲单独做20小时完成,乙单独做12小时完成。
若甲先单独做4小时,剩下的部分由甲、乙合做,还需几小时完成?解:设余下的部分需要x小时完成,则X=6 答:余下的部分需要6小时完成.变式3:一件工作,甲单独做20小时完成,乙单独做12小时完成,丙单独做15小时完成,若先由甲、丙合做5小时,然后由甲、乙合做,问还需几小时完成?解:设还要x小时完成,则答:甲乙合作还要25/8小时变式4:整理一批数据,由一人做需要80小时完成。
现在计划先由一些人做2小时,再增加5人做8小时,完成这项工作的3/4,怎样安排参与整理数据的具体人数?解:设先计划由X人做这些工作,则解得X= 2答:先由2 人做这些工作.5、计分问题:在2002年全国足球甲级联赛A组的前11轮比赛中,大连队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了多少场?解:设该队胜了X场,那么平了(11-X场),则3X+1*(11-X)=23解得X=6 答:该队胜了6场.变式:在学完“有理数的运算”后,实验中学七年级各班各选出5名学生组成一个代表队,在数学方老师的组织下进行一次知识竞赛. 竞赛规则是:每队都分别给出50道题,答对一题得3分,不答或答错一题倒扣1分.⑴如果㈡班代表队最后得分142分,那么㈡班代表队回答对了多少道题?⑵㈠班代表队的最后得分能为145分吗?请简要说明理由.解:(1)设(二)班代表队答对了x道题,那么不答或不答(50- x)题,则:3x-(50-x)=142解得X=48答:(二)班代表队答对了45道题.(2)答:不能.设(二)班代表队答对了x道题,则:3x-(50-x)=145X=48因为题目个数必须是自然数,不符合该题的实际情景,所以此题无解. 即(一)班代表队的最后得分不可能为145分.6、收费问题:例题1、某航空公司规定:一名乘客最多可免费携带20kg的行李,超过部分每千克按飞机票价的1.5%购买行李票,一名乘客带了35kg的行李乘机,机票连同行李票共计1323元,求这名乘客的机票价格。
解:设该机票价格为X元则:X+1.5% (35-20)X=1323X=1080答:这名乘客的机票价格为1080元例题2、根据下面的两种移动电话计费方式表,考虑下列问题(1)一个月内在本地通话200分钟,按方式一需交费多少元?按方式二呢?(2)对于某个本地通话时间,会出现按两种计费方式收费一样多吗?(2)解:设本地通话x分钟时,两种通讯方式的费用相同,则:30+0.3x=0.4x,解得x=300答:本地通话250分钟时,两种通讯方式的费用相同变式:某市为鼓励市民节约用水,做出如下规定:小明家9月份缴水费20元,那么他家9月份的实际用水量是多少?解:设小明家9月实际用水xm3,则0.5*10+(x-10)* 1=20解得x=25答:小明家9月实际用水25m3.例题3、某同学去公园春游,公园门票每人每张5元,如果购买20人以上(包括20人)的团体票,就可以享受票价的8折优惠。
(1)若这位同学他们按20人买了团体票,比按实际人数买一张5元门票共少花25元钱,求他们共多少人?(2)他们共有多少人时,按团体票(20人)购买较省钱?(说明:不足20人,可以按20人的人数购买团体票)解:设共有x人,则:5x - 20 * 5 * 80%=25解得x=21,所以共有21人;当按团体票(20人)购买较省钱时,有20 * 5 * 80%=80(元) 80/5=16(人)即他们共有17人-19人时,按团体票(20人)购买较省钱.7、有关数的问题:例题1、有一列数,按一定规律排列成1,-3,9,-27,81,-243,·。
其中某三个相邻数的和是-1701,这三个数各是多少?解:设这三个相邻数中第一为X,则第二个数为(-3)x,第三个数为9x,则x+(-3)x+9x=-17017x=-1701x=-243第二个数为(-3)x=(-3)*(-243)=729第三个数为9x=9 * (-243)=-2187答:这三个数各是-243、729、-2187.例题2、三个连续奇数的和是327,求这三个奇数。
解:设三个奇数分别为x-2,x,x+2,则有(x-2)+ x + (x+2)= 327即3x=327得x=109答:三个奇数分别为107,109,111变式1:三个连续偶数的和是516,求这三个偶数。
解:设这三个数为n ,n-2,n+2,则n+n+2+n-2=516n=172答:三个数为170 172 174变式2:如果某三个数的比为2:4:5,这三个数的和为143,求这三个数为多少?解:设这三个数分别为2x,4x,5x,则:2x+4x+5x=143解得x=13所以2x=26,4x=52,5x=65答:三个数为26,52,65例题3、一个两位数,十位上的数字与个位上的数字之和是7,如果把这个两位数加上45,那么恰好成为个位上数字与十位上数字对调后组成的两位数,试求这个两位数。
解:设十位数字为x,那么个位数字为7-x,这个两位数为10x+7-x=9x+7,对调后的两位数为10(7-x)+x=70-9x 由题意知9x+7+45=70-9x解得x=1,所以个位数为6答:这个两位数这168、日历问题:例题1、在某张月历中,一个竖列上相邻的三个数的和是60,求出这三个数.解:设中间的数字为x,则较小的为x-7,较大的为x+7(x-7)+x+(x+7)=60x=20较小的为13,较大的为27变式1:在某张月历中,一个竖列上相邻的四个数的和是50,求出这四个数.解:设第一个数为X,则:第二行为X+7,三行为X+14,四行为X+21。
则X+X+7+X+14+X+21=504X+42=504X=8X=2答:这四个数为:2、9、16、23。