统计学第五版 第十四章 统计指数
贾俊平《统计学》章节题库(含考研真题)(指数)【圣才出品】
A.21.9%和 10.19 亿元 B.21.9%和 7.81 亿元 C.8.49%和 10.19 亿元 D.8.49%和 7.81 亿元 【答案】C 【解析】由于收购总额指数(∑p1q1/∑p0q0)=收购量指数(∑p0q1/∑p0q0)×收购价 格指数(∑p1q1/∑p0q1),收购总额指数=1+15%=115%,收购价格指数=106%,所以 收购量指数=115%/106%=108.49%。即农产品收购量增加的百分比为 8.49%,因此增加 的收入为∑p0q1-∑p0q0=108.49%×∑p0q0-∑p0q0=120×8.49%=10.19(亿元)。
对数。我国商品零售价格指数采用固定权数的加权算术平均公式计算;又由于权数直接影响 指数的可靠性,因此每年要根据居民家庭收支调查的资料调整一次权数。
3.某种产品报告期与基期比较产量增长 26%,单位成本下降 32%,则生产费用支出 总额为基期的( )。[厦门大学 2014 研]
圣才电子书 十万种考研考证电子书、题库视频学习平台
第 14 章 指 数
一、单项选择题 1.某种商品销售额增长了 5%,商品零售价格增长 2%,则商品销售量增长( )。[中 央财经大学 2015 研] A.7% B.10% C.2.94% D.3% 【答案】C 【解析】销售额指数=销售量指数×销售价格指数,故销售量指数=(1+5%)/(1+ 2%)=102.94%,则销售量增长率=销售量指数-100%=2.94%。
A.服从正态分布 B.没有计量单位 C.取值在 0 和 1 之间 D.是相对数 【答案】A 【解析】经题干中的方法处理后,数据保持原分布不变,而原分布不一定是正态分布。
统计学各章计算题公式及解题方法
统计学各章计算题公式及解题方法第四章数据的概括性度量1.组距式数值型数据众数的计算:确定众数组后代入公式计算:下限公式:;上限公式:,其中,L为众数所在组下限,U为众数所在组上限,为众数所在组次数与前一组次数之差,为众数所在组次数与后一组次数之差,d为众数所在组组距2.中位数位置的确定:未分组数据为;组距分组数据为3.未分组数据中位数计算公式:4.单变量数列的中位数:先计算各组的累积次数(或累积频率)—根据位置公式确定中位数所在的组-对照累积次数(或累积频率)确定中位数(该公式假定中位数组的频数在该组内均匀分布)5.组距式数列的中位数计算公式:下限公式:;上限公式:,其中,为中位数所在组的频数,为中位数所在组前一组的累积频数,为中位数所在组后一组的累积频数6.四分位数位置的确定:未分组数据:;组距分组数据:7.简单均值:8.加权均值:,其中,为各组组中值统计学各章计算题公式及解题方法9.几何均值(用于计算平均发展速度):10.四分位差(用于衡量中位数的代表性):11.异众比率(用于衡量众数的代表性):12.极差:未分组数据:;组距分组数据:13.平均差(离散程度):未分组数据:;组距分组数据:14.总体方差:未分组数据:;分组数据:15.总体标准差:未分组数据:;分组数据:16.样本方差:未分组数据:;分组数据:17.样本标准差:未分组数据:;分组数据:18.标准分数:19.离散系数:第七章参数估计1.的估计值:置信水平α90%0.1 0。
05 1.65495% 0。
05 0.025 1.9699% 0.01 0。
005 2。
58统计学各章计算题公式及解题方法2.不同情况下总体均值的区间估计:总体分布样本量σ已知σ未知大样本(n≥30)正态分布小样本(n<30)非正态分布大样本(n≥30)其中,查p448 ,查找时需查n—1的数值3.大样本总体比例的区间估计:4.总体方差在置信水平下的置信区间为:5.估计总体均值的样本量:,其中,E为估计误差6.重复抽样或无限总体抽样条件下的样本量:,其中π为总体比例第八章假设检验1.总体均值的检验(已知或未知的大样本)[总体服从正态分布,不服从正态分布的用正态分布近似]假设双侧检验左侧检验右侧检验假设形式已知统计量未知拒绝域值决策,拒绝2.总体均值检验(未知,小样本,总体正态分布)假设双侧检验左侧检验右侧检验统计学各章计算题公式及解题方法假设形式已知统计量未知拒绝域值决策,拒绝注:已知的拒绝域同大样本3.一个总体比例的检验(两类结果,总体服从二项分布,可用正态分布近似)(其中为假设的总体比例)假设双侧检验左侧检验右侧检验假设形式统计量拒绝域值决策,拒绝4.总体方差的检验(检验)假设双侧检验左侧检验右侧检验假设形式统计量拒绝域值决策,拒绝5.统计量的参考数值0.1 0。
贾俊平《统计学》(第5版)章节题库-第14章 指 数【圣才出品】
第14章 指 数一、单项选择题1.考察总体中个别现象或个别项目数量变动的相对数称为( )。
A.个体指数B.总指数C.简单指数D.加权指数【答案】A【解析】个体指数是考察总体中个别现象或个别项目数量变动的相对数,如某种产品的产量指数、某种商品的价格指数等。
个体指数是计算总指数的基础。
2.反映数量指标变动程度的相对数称为( )。
A.数量指标指数B.质量指标指数C.简单指数D.加权指数【答案】A【解析】数量指标指数是反映数量指标变动程度的相对数,如商品销售量指数、工业产品产量指数等,数量指标通常采用实物计量单位。
3.综合反映多种项目数量变动的相对数称为( )。
A.数量指数B.质量指数C.个体指数D.总指数【答案】D【解析】总指数是综合反映多种项目数量变动的相对数,如多种产品的产量指数、多种商品的价格指数等。
4.拉氏指数方法是指在编制综合指数时( )。
A.用基期的变量值加权B.用报告期的变量值加权C.用固定某一时期的变量值加权D.选择有代表性时期的变量值加权【答案】A【解析】拉氏指数是1864年德国学者Laspeyres提出的一种价格指数计算方法,它在计算综合指数时将作为权数的同度量因素固定在基期。
5.帕氏指数方法是指在编制综合指数时( )。
A.用基期的变量值加权B.用报告期的变量值加权C.用固定某一时期的变量值加权D.选择有代表性时期的变量值加权【答案】B【解析】帕氏指数是1874年德国学者Paasche 提出的一种指数计算方法,它在计算综合指数时将作为权数的同度量因素固定在报告期。
6.拉氏指数的特点是( )。
A .权数固定在基期,不同时期的指数可以比较B .权数固定在基期,不同时期的指数不能比较C .权数固定在报告期,不同时期的指数可以比较D .权数固定在报告期,不同时期的指数不能比较【答案】A【解析】拉氏指数的特点是以基期变量值为权数,可以消除权数变动对指数的影响,从而使不同时期的指数具有可比性。
统计学第五版-第十四章--统计指数(1)培训讲学
第十四章 统计指数1.某企业生产甲、乙两种产品,资料如下:要求:(1)计算产量与单位成本个体指数。
(2)计算两种产品产量总指数以及由于产量增加而增加的生产费用。
(3)计算两种产品单位成本总指数以及由于成本降低而节约的生产费用。
解:(2)产量指数:%64.1155500063600010==∑∑qz q z()∑∑=-=-元860055000636000010qz q z(3)单位成本指数:%84.9963600635001011==∑∑qz q z()∑∑-=-=-元10063600635001011qz q z2.某商场销售的三种商品资料如下: 要求:(1)计算三种商品的销售额总指数。
(2)分析销售量和价格变动对销售额影响的绝对值和相对值。
解:(1)销售额总指数:%06.1212600031475011==∑∑qp q p()∑∑=-=-元547526*********011qp q p(2)价格的变动:%29.10928800314751011==∑∑qp q p()∑∑=-=-元267528800314751011qp q p销售量的变动:%77.1102600028800010==∑∑qp q p()∑∑=-=-元280026000288000010qp q p3.试根据下列资料分别用拉氏指数和帕氏指数计算销售量指数及价格指数。
解:价格指数: %5.924804441011==∑∑qp q p %765003800001==∑∑q p q p销售量指数 %965004800010==∑∑qp qp %8.1163804440111==∑∑q p q p4.某公司三种产品的有关资料如下表,试问三种产品产量平均增长了多少,产量增长对产值有什么影响?解:%125260325601001006050.110010.110025.10000010001==++⨯+⨯+⨯===∑∑∑∑p q p q q q p q p q k q()∑∑=-=-万元652603250010qp q p三种产品产量平均增长了25%,由于产量增长使得产值也相应增长了25%,绝对额增加65万元。
贾俊平《统计学》第五版第14章 指数
Ip
p p
0
1
4002 Biblioteka 50% 8001简单指数2.简单平均指数 将个体指数进行简单平均得到的总 指数。
Ip
p0 p1
n
Iq
q0 q 1
n
简单平均指数的计算
• 采用简单平均的方法计算价格指数。
商品 计量单位 P0 P1
彩电
蔬菜
台
公斤
8000
1
4000
2
Ip
p0 p 1
n
4000 2 8000 1 = =1.25=125% 2
加权指数
权数的确定(要点)
1. 根据现象之间的联系确定权数
计算数量指数时,应以相应的质量为权数 计算质量指数时,应以相应的物量为权数
2. 确定权数的所属时期
报告期总量加权的平均指数
(要点和计算公式)
1. 以报告期总量为权数对个体指数加权平均
2. 计算形式上采用调和平均形式
3. 计算公式为
质量指数:p1 0
pq p
1 p0
1
1 1
p1 q1
数量指数:q1 0
pq
1 1
1 q q p1q1 1 0
报告期总量加权的平均指数
(实例)
商品名称 粳 米 标准粉 花生油 计量 单位 公斤 公斤 公斤
销售量
1998 1200 1500 500 1999 1500 2000 600 3.6 2.3 9.8
单价(元)
1998 1999 4.0 2.4 10.6
拉氏指数(计算过程)
统计学六个指数的概念
统计学六个指数的概念统计学是一门研究数据收集、整理、分析和解释的学科,它提供了一系列指数来衡量和总结数据。
下面我将详细介绍六个重要的统计学指数。
1. 算术平均数:算术平均数是数据集中所有数值的总和除以数据个数。
它是最常用的统计指数之一,用来衡量数据集的集中趋势。
算术平均数对异常值非常敏感,因为它把所有数据都纳入计算中。
2. 中位数:中位数是将数据集按升序排列后,位于中间位置的数值。
如果数据集的个数为奇数,中位数就是中间位置的数值;如果数据集的个数为偶数,中位数就是中间两个数值的平均值。
中位数对于数据集中的异常值不敏感,它能更好地反映数据集的典型值。
3. 众数:众数是数据集中出现次数最多的数值。
一个数据集可以有一个或多个众数,也可以没有众数。
众数适用于描述分类数据和定性数据的分布情况。
4. 方差:方差是衡量数据集分散程度的指标。
它衡量了每个数据点与算术平均数的偏离程度。
方差越大,数据点相对于平均值的偏离就越大,数据分布越分散。
5. 标准差:标准差是方差的平方根,它是最常用的衡量数据集分散程度的指标之一。
标准差的计算相对方差来说更易于解释和理解,因为它与原始数据集的单位一致。
6. 相关系数:相关系数是衡量两个变量之间关联程度的指标。
相关系数介于-1和1之间,如果相关系数为正值,表示两个变量具有正相关关系;如果相关系数为负值,表示两个变量具有负相关关系;如果相关系数接近0,表示两个变量之间没有线性关系。
相关系数的绝对值越接近1,说明相关性越强。
总结:以上六个统计学指数涵盖了许多统计分析的要点,不同的指数适用于不同类型的数据和分析目的。
了解和使用这些指数可以帮助我们更好地理解和解释数据,提取其中的信息,并作出更明智的决策。
统计学14指数n解读
14 - 1
2011年2月
统计学
STATISTICS (第四版)
指数的含义
(index number)
1. 指数的实质是测定多项内容,例如,零售价格 指数反映的是零售市场几百万种商品价格变化 的整体状况
2. 指数的表现形式为动态相对数,既然是动态相 对数,就涉及到指标的基期对比,不同要素基 期的选择就成为指数方法需要讨论的问题。编 制指数的方法就是围绕上述两个问题展开的
商品 单位
大米 猪肉 服装 冰箱
百公斤 公斤 件 台
商品价格(元)
基期 报告期
p0
p1
300 18 100 2500
360 20 130 2000
销售量
基期 报告期
q0
q1
2400 2600 84000 95000
24000 23000
510
612
大米的价 p p1 0格 3 30 6 指 1 0 02% 数 0大米的销 q q1 0售 2 24 6 量 0 010 0 指 0.38% 3数
14 - 7
2011年2月
统计学
STATISTICS (第四版)
指数的意义
1. 指数法既古老、又新颖,既令人困惑、又 引人入胜。
2. 数百年来曾经吸引了众多经济学家和统计 学家悉心研究。
3. 其理论传统和实践积累都非常丰厚。 4. 在种类繁多的经济数量分析方法中,很难
找到一种方法比指数法的应用更为广泛。 5. 指数法的研究和应用水平是经济统计学发
猪肉的 价 p p1 01 2 格 8 01指 1.11% 1 数 猪肉的销 q q1 0售 8 94 5量 0 0 10 0指 1.0 0 13% 0数
统计学第五版第十四章统计指数
第十四章统计指数要求:(1)计算产量与单位成本个体指数。
(2)计算两种产品产量总指数以及由于产量增加而增加的生产费用。
(3)计算两种产品单位成本总指数以及由于成本降低而节约的生产费用。
解:(2)产量指数:63600 115.64%z°q°55000Z)qi Z)q0 63600 55000 8600 元(3 )单位成本指数:6350099.84% 如1 63600Z© 63500 63600 100元要求:(1)计算三种商品的销售额总指数。
(2)分析销售量和价格变动对销售额影响的绝对值和相对值。
解:(1)销售额总指数:P21 31475 121.06%P °q ° 26000Piq P °q ° 31475 260005475 元(2)价格的变动:pq 31475 109.29%P °q 128800Piqip °q i 31475 28800 2675 元销售量的变动:28800110.77%P °q °26000P 0q iP o q 。
28800 260002800 元3.试根据下列资料分别用拉氏指数和帕氏指数计算销售量指数及价格指数。
价格指数:一迪 444 —Piq0 鰹 P o q i 480P o q o 5004.某公司三种产品的有关资料如下表, 试问三种产品产量平均增长了多少, 产量增长对产值有什么影响?P 0q 1 P 0q 0 325 260 65万元三种产品产量平均增长了 25%由于产量增长使得产值也相应增长了25%绝对额增加65万元。
5. 三种商品销售资料如下,通过计算说明其价格总的变动情况。
q i销售量指数Po5 480 P o q o 50096%pg 444P i q o 380116.8%q 。
P 0q i P 0q 01.25 100 1.10 100 1.50 60 325q- -125%迪P °q 11 pqk p8634 144 26487 78%86 34 144 300. 760.90. 950. 8512.22%,绝对额减少 36.76万元。
统计学原理——统计指数
统计学原理——统计指数统计指数是一项重要的统计学原理,它用于评估和比较不同群体或变量之间的相对差异。
通过统计指数,我们可以对数据进行更深入的分析,了解不同群体的差异以及其对总体的贡献。
在统计学中,常用的统计指数有多种,其中包括平均数、标准差、相关系数、协方差等。
这些指数可以帮助我们从不同角度对数据进行分析和解释。
首先,平均数是最常见的统计指数之一、它用于衡量一组数据的集中趋势和中心位置。
平均数可以通过将所有数据值相加并除以数据的个数来计算得到。
通过计算平均数,我们可以了解数据的总体特征和整体水平。
其次,标准差是用于衡量数据的离散程度和波动性的指数。
它衡量数据的每个数据点与平均数之间的距离,并计算这些距离的平均值。
标准差越大,表示数据的分布越分散;标准差越小,表示数据的分布越集中。
另外,相关系数是用于衡量两个变量之间相关性的指数。
它可以告诉我们两个变量之间的线性相关程度,取值范围从-1到1、当相关系数为正时,表示两个变量之间存在正相关关系;当相关系数为负时,表示两个变量之间存在负相关关系;当相关系数接近于0时,表示两个变量之间几乎没有相关性。
此外,协方差是用于衡量两个变量之间总体变化趋势的指数。
它可以告诉我们两个变量之间的总体变化方向和程度。
当协方差为正时,表示两个变量之间存在正相关关系;当协方差为负时,表示两个变量之间存在负相关关系;当协方差接近于0时,表示两个变量之间几乎没有线性关系。
这些统计指数对于统计学原理的应用非常重要。
通过计算和分析这些指数,我们可以从不同的角度深入了解数据的特征和关系,从而更好地进行数据的解释和应用。
在实际应用中,统计指数可以帮助我们研究不同群体之间的差异,并为决策提供依据。
例如,我们可以使用平均数和标准差来比较两个地区的人均收入水平和收入分布情况;我们可以使用相关系数和协方差来研究两个变量之间的相关性,如广告投资和销售额之间的关系。
总之,统计指数是统计学原理中重要的一部分,它可以帮助我们对数据进行更深入的分析和解释。
统计学-统计指数
q1z 0 298 100% 115.95% q0 z 0 257
q1z 0
q0 z 0 298 257 41万元
单位成本总指数:
q1z1 285 100% 95.64% q1z 0 298
q1
z 1
q1z 0 285 298 13万元
总成本指数:
q1z1 285 100% 110.89% q0 z 0 257
商品销售量商品销售价格 商品销售总额
所研究的指数化指标 同度量因素 价值量指标
当研究价格的变动时,商品价格是质量指标,则与 之相联系的数量指标——销售量,就是同度量因素
商品销售量商品销售价格 商品销售总额
1 - 1同7 度量因素 所研究的指数化指标 价值量指标
经济、管理类 基础课程
统计学综合指数的编制思路是“先综合,后对比”
1 - 20
经济、管理类
基础课程
统计学
指数化指标
Kq
q1 p0 q0 p0
KP
p1 q1 p0 q1
同度量因素
指数化指标
指在指数分析中被研究的指标
同度量因素
指把不同度量的现象过渡成可以同度量的现
象的媒介因素,同时起到同度量 和权数 的
作用
1 - 21
经济、管理类
基础课综程合指数的计算形式和常用公式
1 - 13
经济、管理类
基础综课程合指数和意义:通过同度量因素,把不
统计学能直接相加的现象数值转化为可以直接
加总的价值形态总量,再将两个不同时 期的总量指标进行综合对比得到相应的 相对指标,以测定所研究现象数量的变 动程度。
依据所测定的指标性质不同,综合指 数可分为数量指标综合指数和质量 指标综合指数。
统计学第五版 第十四章 统计指数
第十四章 统计指数1.某企业生产甲、乙两种产品,资料如下:要求:(1)计算产量与单位成本个体指数。
(2)计算两种产品产量总指数以及由于产量增加而增加的生产费用。
(3)计算两种产品单位成本总指数以及由于成本降低而节约的生产费用。
解:(2)产量指数:%64.1155500063600010==∑∑qz q z()∑∑=-=-元860055000636000010qz q z(3)单位成本指数:%84.9963600635001011==∑∑qz q z()∑∑-=-=-元10063600635001011qz q z2.某商场销售的三种商品资料如下: 要求:(1)计算三种商品的销售额总指数。
(2)分析销售量和价格变动对销售额影响的绝对值和相对值。
解:(1)销售额总指数:%06.1212600031475011==∑∑qp q p()∑∑=-=-元547526*********011qp q p(2)价格的变动:%29.10928800314751011==∑∑qp q p()∑∑=-=-元267528800314751011qp q p销售量的变动:%77.1102600028800010==∑∑qp q p()∑∑=-=-元280026000288000010qp q p3.试根据下列资料分别用拉氏指数和帕氏指数计算销售量指数及价格指数。
解: 价格指数:%5.924804441011==∑∑qp q p %765003800001==∑∑q p q p销售量指数%965004800010==∑∑qp q p %8.1163804440111==∑∑q p q p4.某公司三种产品的有关资料如下表,试问三种产品产量平均增长了多少,产量增长对产值有什么影响?解:%125260325601001006050.110010.110025.10000010001==++⨯+⨯+⨯===∑∑∑∑p q p q q q p q p q k q()∑∑=-=-万元652603250010qp q p三种产品产量平均增长了25%,由于产量增长使得产值也相应增长了25%,绝对额增加65万元。
统计学第五版-第十四章--统计指数
第十四章 统计指数1.某企业生产甲、乙两种产品,资料如下:要求:(1)计算产量与单位成本个体指数。
(2)计算两种产品产量总指数以及由于产量增加而增加的生产费用。
(3)计算两种产品单位成本总指数以及由于成本降低而节约的生产费用。
解:(2)产量指数:%64.1155500063600010==∑∑qz q z()∑∑=-=-元860055000636000010qz q z(3)单位成本指数:%84.9963600635001011==∑∑qz q z()∑∑-=-=-元10063600635001011qz q z2.某商场销售的三种商品资料如下: 要求:(1)计算三种商品的销售额总指数。
(2)分析销售量和价格变动对销售额影响的绝对值和相对值。
解:(1)销售额总指数:%06.1212600031475011==∑∑qp q p()∑∑=-=-元547526*********011qp q p(2)价格的变动:%29.10928800314751011==∑∑qp q p()∑∑=-=-元267528800314751011qp q p销售量的变动:%77.1102600028800010==∑∑qp q p()∑∑=-=-元280026000288000010qp q p3.试根据下列资料分别用拉氏指数和帕氏指数计算销售量指数及价格指数。
解: 价格指数:%5.924804441011==∑∑qp q p %765003800001==∑∑q p q p销售量指数%965004800010==∑∑qp q p %8.1163804440111==∑∑q p q p4.某公司三种产品的有关资料如下表,试问三种产品产量平均增长了多少,产量增长对产值有什么影响?解:%125260325601001006050.110010.110025.10000010001==++⨯+⨯+⨯===∑∑∑∑p q p q q q p q p q k q()∑∑=-=-万元652603250010qp q p三种产品产量平均增长了25%,由于产量增长使得产值也相应增长了25%,绝对额增加65万元。
统计学基础(统计指数)
q 0 0 0
Kq
0
q1 (其中,kq ) q0
第三节 平均指数
三、作为综合指数变形的加权调和平均指数。 • q1 p1
质量指标综合指数 K p
q p
1
0
p1 p1 若有质量指标个体指数kp p0 p0 kp p1 将p0 代入原综合指数公式中得到: kp Kp qp 1 k q p
p1 q1 1.计算每一个项目的个体指数k p p 或kq 。 0 q
2.选定权数,计算个体指数的加权算术平均数 或加权调和平均数或加权几何平均数。
0
另外,有时用“相对数固定权数w”加权
第三节 平均指数
一、平均指数的编制原理:先对比,后平均。
• 编制平均指数有两大问题:采用哪种平均方法;权数 如何确定。 • (一)采用哪种平均方法。 • 从实用的角度看,一般采用算术平均法。其计算简单, 也比较直观。 • 但是,根据所掌握的资料和特定研究目的,有时也采 用调和平均法或几何平均法。
q p q p qp q p q p q p q p q p q p q p
1 1 1 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1
(一种商品时)
1 0
(多种商品时)
第四节 指数体系与因素分析
• 一、指数体系的概念与作用 • (二)指数体系的作用 1、利用指数之间的联系进行指数推算。 2、因素分析。即分析各因素变动对总变动影 响的方向与程度。
二、统计指数的种类
(二)按指数反映的时间状态的不同, 分为动态指数和静态指数。 –动态指数:时间上对比形成的指数。 –静态指数:如比较相对数、计划完 成相对数。
二、统计指数的种类
贾俊平《统计学》第14章 指数
基期和报告期
基期就是昨天发生的数据信息,报告期 就是今天发生的数据信息。 比如现在是2005,2005我收入100元, 比如现在是2005,2005我收入100元, 这个2005就是报告期了。如果说2005年我 这个2005就是报告期了。如果说2005年我 的收入比2004年增加了一倍,跟2004年进 的收入比2004年增加了一倍,跟2004年进 行比较,那么2004就是基期了。 行比较,那么2004就是基期了。
消费价格指数与零售价格指数区别
1、含义不同 零售价格指数是从卖方角度观察商品零 售价格变动情况, 售价格变动情况, 说明价格变动对卖者的影响 消费价格指数则是从买方角度观察居民 生活消费品零售价格和服务项目收费变动情 况, 说明价格变动对居民(购买者)生活的影响 说明价格变动对居民(购买者)
消费价格指数与零售价格指数区别
一组项目在不同时间上对比 有定基指数和环比指数之分
4. 区域性指数(regional index number) number)
一组项目在不同空间上对比
环比和同比
环比就是现在的统计周期和上一个统 计周期比较。例如2008年 月份与2008年 计周期比较。例如2008年7月份与2008年6 月份相比较称其为环比。 同比是与历史同时期比较,例如2005 同比是与历史同时期比较,例如2005 年7月份与2004年7月份相比。 月份与2004年
反映数量变动水平 如产品产量指数、 如产品产量指数、商品销售量指数等
2. 质量指数(qualitative index number) 质量指数(qualitative number)
反映事物内含数量的变动水平 如价格指数、 如价格指数、产品成本指数等
指数的分类
(个体指数与综合指数) 个体指数与综合指数)
统计学统计指数分析法
统计学统计指数分析法统计学是一项重要的科学方法,它可以帮助我们收集、整理、分析和解释数据。
统计指数分析法是统计学中的一种应用方法,可以帮助我们分析和解释多个指标之间的关系和趋势。
本文将介绍统计指数分析法的定义、原理和应用,并提供几个具体的实例。
统计指数分析法是一种将数据指标转化为相对数的方法。
它通过计算各个指标相对于其中一基准指标的比率或相对变化量,来反映多个指标之间的相对关系和变化趋势。
这种相对数常常被称为“指数”,用来比较不同指标的大小和变化。
统计指数分析法的原理是基于以下两个核心概念:权重和基期。
权重是指不同指标在整体中的重要性或权重,它可以通过主观判断或客观评估来确定。
基期是指参照的时间点或时间段,用来对比各个指标的变化情况。
在应用统计指数分析法时,首先需要选择一项基准指标。
基准指标可以是任何一个被认为比较合适的指标,比如一个最主要或最关键的指标。
然后,需要确定各个指标与基准指标的相关性和变化趋势。
这可以通过计算各个指标与基准指标的比率或相对变化量来实现。
最后,将这些相对数进行加权求和,得到一个综合指数,反映各个指标的整体变化趋势。
统计指数分析法在实际应用中具有广泛的用途。
一方面,它可以帮助我们分析和解释多个指标之间的关系。
比如,在金融领域,我们可以使用统计指数分析法来分析股票市场中各个指数的涨跌情况。
另一方面,它也可以帮助我们分析和解释一个指标的变化趋势。
比如,在经济领域,我们可以使用统计指数分析法来分析国内生产总值(GDP)的变化情况。
下面是几个具体的实例,以帮助理解统计指数分析法的应用。
1.指数股票市场分析:假设我们希望比较两个股票指数A和B的涨跌情况。
首先,我们选择其中一个指数作为基准指标,比如指数A。
然后,计算指数B相对于指数A的比率或相对变化量,并进行加权求和,得到一个综合指数。
通过分析这个综合指数的大小和趋势,我们可以得出指数B 相对于指数A的涨跌情况,以及它们之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十四章 统计指数
1.某企业生产甲、乙两种产品,资料如下:
要求:
(1)计算产量与单位成本个体指数。
(2)计算两种产品产量总指数以及由于产量增加而增加的生产费用。
(3)计算两种产品单位成本总指数以及由于成本降低而节约的生产费用。
解:
(2)产量指数:
%64.11555000
63600
01
0==
∑
∑q
z q z
()∑∑=-=-元860055000636000
01
0q
z q z
(3)单位成本指数:
%84.9963600
63500
1
011==
∑∑q
z q z
()∑∑-=-=-元10063600635001
01
1q
z q z
2.某商场销售的三种商品资料如下:
要求:
(1)计算三种商品的销售额总指数。
(2)分析销售量和价格变动对销售额影响的绝对值和相对值。
解: (1)销售额总指数:
%06.12126000
31475
01
1==
∑∑q
p q p
()∑∑=-=-元547526*********
01
1q
p q p
(2)价格的变动:
%29.10928800
31475
1
011==
∑∑q
p q p
()∑∑=-=-元267528800314751
01
1q
p q p
销售量的变动:
%77.11026000
28800
01
0==
∑∑q
p q p
()∑∑=-=-元280026000288000
01
0q
p q p
3.试根据下列资料分别用拉氏指数和帕氏指数计算销售量指数及价格指数。
解: 价格指数:
%5.924804441
011==∑∑q
p q p %765003800001==∑∑q p q p
销售量指数
%965004800
01
0==
∑∑q
p q
p %8.116380
4440111==∑∑q p q p
4.某公司三种产品的有关资料如下表,试问三种产品产量平均增长了多少,产量增长对产值有什么影响?
解:
%125260325601001006050.110010.110025.10
0000
1
0001==++⨯+⨯+⨯===∑∑∑∑p q p q q q p q p q k q
()∑∑=-=-万元652603250
01
0q
p q p
三种产品产量平均增长了25%,由于产量增长使得产值也相应增长了25%,绝对额增加65万元。
5.三种商品销售资料如下,通过计算说明其价格总的变动情况。
价格总指数
%78.8776
.300264
85
.014495.0349.08614434861
1
11
11
011==+
+++=
=
=
∑∑∑∑q
p k q p q
p q p k p
p
三种商品价格平均下降%,绝对额减少万元。
6.某商场上期销售收入为525万元,本期要求达到万元。
在规定销售价格下调%的条件下,该商场商品销售量要增加多少,才能使本期销售达到原定的目标?
∑∑∑∑∑∑⨯=0
01
1
01
10
11p
q p q q p q p q
p q p ∑∑⨯=0
001%4.975255.556p q p q
∴销售量指数%83.108%4.97%1060
01
0=÷==
∑∑q
p q
p k q
该商场商品销售量要增加%才能使本期销售达到原定的目标。
7.某地区2003年平均职工人数为万人,比2002年增加2%;2003年工资总额为167076万元,比2002年多支出9576万元。
试推算2002年职工的平均工资。
2002年平均职工人数 = ÷ = 225(万人)
2002年工资总额 = 167076—9576 = 157500(万元)
2002年职工的平均工资=工资总额÷平均职工人数=157500÷225=700元
8.某电子生产企业2003年和2002年三种主要产品的单位生产成本和产量资料如下:
要求:
(1)计算三种产品的产值总指数和产值增减总额。
(2)以2003年的产量为权数计算三种产品的加权单位产品成本综合指数,以及因单位成本变动的产值增减额。
(3)以2002年单位产品成本为权数计算三种产品的加权产量综合指数,以及由于产量变动的产值增减额。
解:
(1)三种产品的产值总指数
%87.123105150
130250
01
1==
∑∑q
z q
z
产值增减总额
()∑∑=-=-元251001051501302500
01
1q
z q z
(2)单位产品成本综合指数
%28.112116000
130250
1
011==
∑∑q
z q z
因单位成本变动的产值增减额
()∑∑=-=-元142501160001302501
01
1q
z q z
(3)三种产品产量综合指数
%32.110105150
116000
01
0==
∑∑q
z q z
由于产量变动的产值增减额()∑∑=-=-元108501051501160000
01
0q
z q z
9.某工厂有三个生产车间,基期和报告期各车间的职工人数和劳动生产率资料如下:试分析该企业劳动生产率的变动及其原因。
解:
总水平指数:
%78.9732
.618
.60
01
110
1
==
=
∑∑∑∑f
f x f f x x x ()万元14.032.618.601-=-=-x x
组水平变动指数:
%66.10202
.618
.61
1
011
1假定
1
==
=∑∑∑∑f
f x f f x x x
()万元16.002.618.6假定1=-=-x x
结构变动指数:
%25.9532.602
.60
假定==x x ()万元3.032.602.60假定-=-=-
x x
总水平指数=组水平变动指数×结构变动指数 %=%×%
()()
0101x x x x x x -+-=-假定假定
= + ()
计算结果表明,该企业的劳动生产率报告期比基期下降了2,。
22%,减少1400元,是由于企业结构发生了变动,使得公司的劳动生产率下降%,平均每车间减少3500元;由于各车间劳动生产率的提高,使企业劳动生产率提高了%,平均增加2100元共同作用的结果。
10.某市限购令前后的房价如下:
要求:
(1)计算价格指数。
(2)房价是上升了还是下降了?为什么? (1)价格指数
%89.1089000000
9800000
600100002001500060011000200160001
011==⨯+⨯⨯+⨯=
∑∑q
p q
p
(2)限购令后该市的房价不但没有下降,反而上升了%,主要原因是均价较低的郊区商品房成交套数增加,并且占全部成交套数的比重由2010年的50%上升到2011年的75%,而均价较高的市区商品房成交套数减少,并且占全部成交套数的比重由2010年的50%下降到2011年的25%。
结构的变化带来该市商品房平均价格下降250元的现象。