钽电容爆炸烧毁原因分析
钽电容器的失效原因分析
钽电容器的失效原因分析对于钽电容器,使用者对它有两种截然不同的评价,一;可靠性很高,温频性能优良.二,容易失效,失效后容易爆炸燃烧,非常危险.为什么对于一种产品同时在使用者中间有两种评价呢?我们首先得清楚钽电容器的优点和缺点.实际上,上述的评价是针对钽电容器的优点和缺点进行的基本准确的描述.并无错误.1.温度性能优良;在-55-+125度内,容量变化率在-5-+12%之间,这是其他电容器难望其项背的一项非常重要的指标,此特点使它成为宽温性能要求较高的电路的首选电容器.2.体积容量比最高;目前为止,尽管铝电容器的小型化进步非常快,叠层陶瓷电容器[MLCC]的容量也可以越做越大,但钽电容器仍然具有最高的容量体积比.加之很宽的温度范围内性能出色的稳定性,它仍然是一些性能要求高,安装空间和面积有限电路的最佳选择.钽电容器的缺点-失效模式的危险性钽电容器一般使用在滤波电路和脉冲充放电电路.此类电路的特点是电路中不光存在功率很高的浪涌电压和电流,而且存在信号强度很高的交流纹波.由于钽电容器是一种极性产品,因此,交流纹波会导致它严重发热,超过散热的热平衡后,产品会出现热击穿现象.由于滤波电路基本都属于低阻抗电路,因此,开关的瞬间产生的远远超过稳态工作电压的浪涌电压也经常导致电路设计者忽略了浪涌的存在,在选择产品额定值时没有为确实存在的浪涌留出余量,因此,经常出现的过压击穿就被简单的认定为钽电容器的质量不够,掩盖了电路设计者对基本的低阻抗电路特征的无知.另外,由于不同规格的钽电容器的自有阻抗ESR不同,因此,不同规格产品的抗直流浪涌电流的能力也不相同,而使用者对此了解不够非常容易导致选择的产品型号不对.上述问题是导致钽电容器出现失效的基本原因.尽管是失效,不同品种的电容器的失效模式很不一样,而钽电容器的失效模式最为危险;如果击穿后电路通过的电流很大,击穿的产品会瞬间燃烧或爆炸,甚至能引发二次效应.这就是许多使用者对它诟病的根本原因.而造成此严重问题的原因不外呼两点; 设计选型不合适;产品质量本身存在问题.当产品的型号和电路特点及需求一致时,钽电容器的优点非常明显,可靠性更不存在问题. 此时使用者很容易忽略钽电容器的缺点.当产品使用出现问题时,一味地指责钽电容器的性能不好.上述原因一方面说明钽电容器存在抗浪涌能力和耐纹波差的弱点,同时也说明使用者对钽电容器的基本性能特点了解不够.因此,就出现上文所述的两种观点相反的评价.从根本上说评价都是对的,但有失全面.钽电容器的高可靠性和优点必须在正确使用的基础上才可以得以体现.而钽电容器的缺点也必须在认识到它的局限性时才可以避免. 从许多故障分析可得出以上结论.但钽电容器危险的缺点的确存在;不能失效,一失效就会出现灭顶之灾.钽电容器缺点的避免钽电容器的优点很多人都了解,缺点认识不够是普遍现象,因为它的失效机理较复杂,即使在生产钽电容器的工厂目前都存在不同甚至根本不清晰的认识,因此,使用者不可能对它的失效原理了解的更多.而此点非常危险,往往都是出现了严重的使用问题才发现使用方法有问题或钽电容器质量有问题.有时候,原因好象很难讲清楚.从根本上说,钽电容器的缺点无法避免,它只能靠使用者在设计时的电压选型上采取尽可能保守的方法才可以消除.失效时的模式是它的危险性的根本所在. 如果想消除钽电容器危险的失效模式,与改变一个成人的遗传一样是不可能的.氧化铌电容器铌电容器在紧缺的钽资源导致的钽电容器价格过高时被科技人员盯住,因为铌也是一种可以形成单向导电介质层的阀金属.因此,自钽电容器诞生不久,无数的技术人员为开发出与钽电容器性能基本相同的铌电容器费尽心血.但是,铌氧化物介质层的热稳定性一直无法从根本上得到解决;铌电容器的性能一直无法达到接近钽电容器的程度,特别是它的稳定性差,随时间延长,容量和阻抗及漏电流一直都在变化,而且高温性能根本不能和钽电容器相提并论.进入21实际,在此浪费了无数金钱和经历的科学家终于承认; 纯铌电容器的性能不能从生产技术的改变上得到根本性进步.实际上从1965-2000年的无数研究以不可避免的失败告终.导致铌电容器开发最终失败的根本原因仍然是铌电容器的生产延续了钽电容器的思路,在工艺原理上就存在致命的缺陷;因为铌介质层内的基材仍然是非常容易氧化的高纯度铌金属.因此,铌电容器就无法避免在击穿时类似于钽的燃烧和爆炸现象.同时,在高温时铌介质膜的氧迁移现象仍然是产品性能不稳定的根本原因.而这一点暂时没有得到解决.铌电容器的开发相当于50年绕回原点,形成了一个可笑的圆圈.氧化铌电容器的出现在21世纪初,在此费尽心血的一个美国人电容器专家和一个德国制造钽粉的工程师提出一种新的电容器工艺理论;使用氧化物而不是纯金属也可以生成单向导电的介质层作电容器.此理论看似简单,实际上却是革命性的,它打破了人们遵守了几十年的电容器介质形成理论;只有纯金属才能生成介质层.而且生成的介质层质量甚至更好.在钽电容器的制造过程中,单质态的钽金属粒子中含有其它元素对介质层质量的均一性影响重大.特别是氧含量高低对钽电容器的漏电流影响是致命的.因此, 使用高氧含量的铌粉会出现的问题似乎早已经决定.但是,陶瓷电容器的介质层特性引起了钽电容器专家的注意;使用氧化物一样可以形成具有单向导电性的介质层.而且,在电容器介质层电化学形成理论上我们显然过于墨守成规.我们总认为制造电容器的纯钽元素中氧含量高会导致漏电流大这一判断也适用于铌电容器.实际上只对了一半;当使用纯铌来生产铌电容器时,这一;理论正确,而对于铌氧化物,我们对其在电化学状态下的变化理论显然了解的很不够; 实际上,使用低价的铌氧化物一样可以通过简单的电化学方法生产出性能优良的五氧化二铌介质层,这样,一种新的电解电容器就问世了,它使用的基材根本不是杂质含量约低越好的钽或者铌,而是一种氧含量必须在14.5-15.5%的富含氧的一氧化铌.一氧化铌一直是玻璃及光学器材上大量使用的一种材料,使用它来生产电解电容器,完全是一种理论上的创新,因此使用它生产出的氧化铌电容器也就必然和钽电容器完全割断了血缘关系;它完全是一种具有许多新奇特性的电解电容器.氧化铌电容器与钽和铌电容器的区别;1.失效模式不一样;钽或铌电容器的失效模式基本相同;当击穿时容量丧失,当通过电流不加限制时会迅速燃烧或爆炸形成短路.氧化铌产品在即使是经受了十倍电压击穿时,仍然可以保持容量和损耗不变.即使是施加的电流很高,通过的电流仍然能够在10MA以内,产品的滤波特性仍然能够保持.使用在充放电电路,只是输出的功率密度下降.根本不燃烧不爆炸,不会形成短路.氧化铌产品的抗浪涌能力由于使用基材具有阻燃性,相同的电压下生成的介质层比钽介质层厚30%,因此具有更高的抗浪涌能力.同条件下抗浪涌能力高30%.氧化铌产品的耐纹波能力由于产品通过大电流时不会发热燃烧,因此耐纹波能力比钽高一倍.可以使用在存在较高纹波的开关电源电路.使用电压和额定电压钽和铌电容器由于通过电流大时会导致发热击穿,因此使用低阻抗电路时必须降额到额定电压的1/3才可以保证安全使用.氧化铌电容器的使用电压可以接近额定电压下使用.在室温时几乎不需要降额就可以保持高可靠性.可靠性以1000小时,60%的置信度算;钽电容器可靠性;1%氧化铌电容器可靠性;0.2%可靠性比钽电容器高5倍体积容量比与钽电容器基本相同,只是在一部分小容量上不能与钽相比.温度特性由于氧化铌电容器不容易燃烧和爆炸,因此可安全使用的漏电流标准比钽电容器大一倍.负温特性和正温特性基本相同耐焊接热性能可经受260度/10秒波峰焊或再流焊接性能不出现异常.频率特性与相同容量和电压的同壳号钽电容器相同价格由于使用了新材料和新技术,但价格与钽电容器相同或稍低.氧化铌电容器的缺点最高额定电压只能达到16V,无高压产品.结论从性能和安全性上比较,氧化铌电容器完全可以达到更高的可靠性.在安全性上完全避免了钽电容器的致命缺点,可以达到任何电路的安全性要求. 完全符合ROhS标准.在存在浪涌的开关电源电路上可以代替25V以下钽电容器.是25V以下的钽电容器的换代产品.图解:片式氧化铌。
电容为什么会爆炸?原因你一定猜不到
电容为什么会爆炸?原因你一定猜不到电解电容电解电容是通过电解质作用在电极上形成的氧化层作为绝缘层的电容,通常具有较大的容量。
电解质是液体、胶冻状富含离子的物质。
大多数电解电容都是有极性的,也就是在工作时,电容的正极的电压需要始终比负极电压高。
电解电容的高容量也是牺牲了很多其它的特性换来的,比如具有较大的漏电流、较大的等效串联电感和电阻、容值误差较大、寿命短等。
除了有极性的电解电容之外,也有无极性的电解电容。
在下图中,就是有两种1000uF,16V的电解电容,其中较大的是无极性,较小的是有极性的。
无极性和有极性电解电容电解电容内部可能是液体电解质或者固态聚合物,电极材料常用铝(Aluminum)或者钽(Tandalum)。
下图是常见到的有极性铝电解电容内部的结构。
两层电极之间有一层浸有电解液的纤维纸,再加一层绝缘纸转成圆柱形,密封在铝制壳内。
电解电容内部结构解剖开电解电容,可以清楚的看到它的基本结构。
为了防止电解液的蒸发和泄露,电容引脚部分使用了密封橡胶进行固定。
图中也显示了有极性和无极性的电解电容的内部体积的差别,在同样容量和耐压等级下,无极性的电解电容比有极性大了一倍左右。
无极性和有极性电解电容内部结构这样的差别主要来自于两种电容内部电极的面积出现了较大的差异。
下图左边是无极性的电容电极,右边是有极性的电极。
除了面积差异之外,两种电极厚度也有区别。
有极性的电容电极厚度较薄。
电解电容铝片不同的宽度电容爆炸当电容施加的电压超过其耐压时,或者对于有极性电解电容电压极性加反时,都会引起电容漏电流急剧上升,造成电容内部热量增加,电解液会产生大量的气体。
为了防止电容爆炸,在电容外壳的顶部压制有三条凹槽,这样便于电容顶部在高压下率先破裂,释放内部的压力。
电解电容顶部的爆破槽但是,有的电容在制作过程中,顶部的凹槽压制不合格,电容内部的压力会使得电容底部的密封橡胶被弹出,此时电容内部的压力突然释放,就会形成爆炸。
钽电容爆炸、烧毁原因分析
钽电容爆炸、烧毁原因分析经常碰到很多客户讨论钽电容爆炸问题,特别在开关电源、LED电源等行业,钽电容烧毁或爆炸是令研发技术人员最头痛的,让他们百思不得其解。
正因为钽电容失效模式的危险性,让很多研发技术人员都不敢再使用钽电容了,其实如果我们能够全面的了解钽电容的特性,找到钽电容失效(表现形式为烧毁或爆炸)的原因,钽电容并没有那么可怕。
毕竟钽电容的好处是显而易见的。
钽电容失效的原因总的来说可以分为钽电容本身的质量问题和电路设计问题两大类:电路设计和产品选型要求钽电容的产品性能参数可以满足电路信号特点,但是,往往我们不能保证上述两项工作都做的很到位,因此,在使用过程中就必然会出现这样那样的失效问题,现简单总结如下:1. 低阻抗电路使用电压过高导致的失效对于钽电容器使用的电路,只有两种;有电阻保护的电路和没有电阻保护的低阻抗电路. 对于有电阻保护的电路,由于电阻会起到降压和抑制大电流通过的效果,因此,使用电压可以达到钽电容器额定电压的60%. 没有电阻保护的电路有两种:a.前级输入已经经过整流和滤波,输出稳定的充放电电路.在此类电路,电容器被当作放电电源来使用,由于输入参数稳定没有浪涌,因此,尽管是低阻抗电路,可安全使用的电压仍然可以达到额定电压的50%都可以保证相当高的可靠性.b.电子整机的电源部分; 电容器并联使用在此类电路, 除了要求对输入的信号进行滤波外,往往同时还兼有按照一定频率和功率进行放电的要求. 因为是电源电路,因此,此类电路的回路阻抗非常低,以保证电源的输出功率密度足够. 在此类开关电源电路中[也叫DC-DC电路], 在每次开机和关机的瞬间,电路中会产生一个持续时间小于1微秒的高强度尖峰脉冲,其脉冲电压值至少可以达到稳定的输入值的3倍以上,电流可以达到稳态值的10倍以上,由于持续时间极短,因此,其单位时间内的能量密度非常高, 如果电容器的使用电压偏高,此时实际加在产品上的脉冲电压就会远远超过产品的额定值而被击穿. 因此,使用在此类电路中的钽电解电容器容许的使用电压不能超过额定值的1/3. 如果不分电路的回路阻抗类型,一概降额50%, 在回路阻抗最低的DC-DC电路,一开机就有可能瞬间出现击穿短路或爆炸现象.在此类电路中使用的电容器应该降额多少,一定要考虑到电路阻抗值的高低和输入输出功率的大小和电路中存在的交流纹波值的高低.因为电路阻抗高低可以决定开关瞬间浪涌幅度的大小。
钽电容失效机理
钽电容失效机理简单一点说是这样的。
1)钽电容的失效模式是短路形式。
故而在可靠性要求高的场合,如军品,宇航,汽车级电路中一般限制使用。
如星上就不用。
NASA好像也是规定不能用。
2)铝电解质电容其ESR可以做的很小的,如果我没有记错的话,可以到毫欧级。
文摘1:ESR(等效串联电阻),应该注意的问题前两天我负责的一个LDO测试工程师上电后发现输出振荡了。
我做的时候没有振荡,对照下来,输出电容不一样,我用的是10u的铝电解,他用的是钽电容。
因为我以前对这两种电容有过测试,所以,把他用的电容拿过来在Fluke,RCL测量仪上测试,ESR高达13欧姆(10kHz),而我以前的测试的10u钽电容一般只有0.5欧姆左右。
所以换成ESR=0.5欧姆的电容就没有振荡了。
在很多的电容介绍中,只是偶尔提到ESR这个概念,而没有具体说明数值,也许是种类繁多不好概括吧。
ESR与制作材料,频率,温度和电容值都有关。
一般来说,对同一种工艺、同一厂家生产的同一种电容,电容值与ESR 的乘积接近常数。
上面说的13欧姆的电容显然是有问题的(但没标准,只能按照经验判断了).,由于没做过系统,对各种电容的ESR不了解,最好请哪位大侠能公布各种电容的ESR作参考。
不过最好的办法是使用前量一下。
文摘2:关于使用固钽和液体钽电容的浅释彭宝霞(航天511所)摘要:本文对液体钽电容和固体钽电容的失效原因作了具体分析。
对这两种产品的使用提出自己的看法和建议。
关键词:液钽固钽可靠性钽电容器分为固体钽电容器和液体钽电容器。
它们在军用整机中大量使用。
例如:液体钽电容器在84年只有529厂和502所两个单位使用,用量不到2000只。
而95年五院各厂所的液体钽订货量将近1万只。
固体钽电容器更是大量使用。
随着固体钽电容器和液体钽的大量使用。
先后暴露的质量问题也不少。
我们了解到早期有单位禁止使用液钽,而近期的单位禁止使用固钽,这是怎么回事?一、早期某些单位禁用液钽,禁用的理由:1.液体钽电容器的漏液问题液体钽电容器工作电解质为酸性液体,如果产品密封不好,出现漏液。
钽电容器失效分析概述
钽电容器失效分析概述1、前言要对电容器进行严谨的失效分析,有必要全面了解电容器的结构。
电容器因其使用的材料及其结构不同分为不同的类型:钽电容器、陶瓷电容器、铝电容器等(见表1)。
每种电容器因其提供独有的特性而具有特殊的应用。
如同三明治一样,简单的电容器是把一个绝缘体材料夹在两个导体之间,通过导体施加偏置电压。
电容器容量(C)由如下等式给出,其中e,A和t分别表示介电常数,表面积以及厚度。
C = e A/t (等式1)表1 不同类型的电容器方式是增加等式1中的“A”表面积。
不同类型电容器获得的方式是不同的。
比如钽电容器,可通过使用多孔钽阳极来获得(高比表面积),通常阳极块是由钽粉连同钽丝一起压制并烧结后制成的。
然后用电化学的方式在高比表面积多孔钽阳极块上生成无定形Ta2O5电介质。
一般Ta2O5电介质层只有几十个纳米厚。
然后使用阴极材料浸渍多孔阳极块(MnO2 或是导电层),在小的容积中生成高容量(见图1)。
一般固体钽电容器使用在100V以下,其中多数情况下是使用在50V以下。
湿式钽电容器(阴极是液体)工作电压可以高一些,可以达到几百伏。
图1 (a)钽电容器结构示意图(b)所示的是钽阳极块内部的钽/电介质/MnO2阴极(c)所示的是阳极块内部的钽/电介质/导电聚合物阴极对于陶瓷和薄膜电容器来说,其电介质层和电极材料是分别交互堆积的,这种交互堆积的电极可以避免极性相对的电极接触。
图2所示的是陶瓷电容器的典型结构。
几十到上百(陶瓷电容器中)甚至上千(薄膜电容器)电极层堆积起来,已获得需要的容量。
图2 陶瓷电容器的典型结构因为不同类型电容器的材料和结构有明显的差异(见表1,图1和图2),所以引起电容器失效的原因也有所不同。
因此,每一种条件都需有特定的失效分析方法。
需要注意的是失效电容器的失效分析是一种全面的因果分析,包括对电路和应用条件的分析。
本文所论述的是片式钽电容器的失效分析概述。
钽电容器的电失效模式可以分成三种类型:高漏电流/短路、高等效串联电阻以及开路/低容量,多数的失效集中在高漏电流/短路上。
为什么轻易不要选择“钽电容”?
为什么轻易不要选择“钽电容”?第一、钽电容失效的模式很恐怖,轻则烧毁冒烟,重则火光四溅。
这里不去赘述“钽电容”的失效模式的原理。
通过这个失效的现象,就知道:如果电容失效,只是短路造成电路无法工作,或者工作不稳定,都是小问题,大不了退货。
但是如果造成了客户场地失火,则是需要赔偿对方的人员及财产损失的。
那就麻烦大了。
这是我们不要去选用钽电容的重要原因。
第二、钽电容的成本高看看我们的淘宝就可以知道100uF的钽电容与100uF的陶瓷电容的价格差别,大概钽电容的价格是陶瓷电容的10倍。
钽电容:10只8元;陶瓷电容100只5元。
如果电容容量需求在100uF以下的情况下,我们现在绝大多数下,耐压如果满足的情况下,我们一般需用陶瓷电容。
再大容量,或者再高耐压,陶瓷电容的封装大于1206的时候,尽量谨慎选择。
贴片陶瓷电容最主要的失效模式断裂(封装越大越容易失效):贴片陶瓷电容器作常见的失效是断裂,这是贴片陶瓷电容器自身介质的脆性决定的.由于贴片陶瓷电容器直接焊接在电路板上,直接承受来自于电路板的各种机械应力,而引线式陶瓷电容器则可以通过引脚吸收来自电路板的机械应力.因此,对于贴片陶瓷电容器来说,由于热膨胀系数不同或电路板弯曲所造成的机械应力将是贴片陶瓷电容器断裂的最主要因素。
第三、钽电容未来将耗尽,有钱你都买不到。
早在2007 年,美国国防后勤署(DLA)十多年来已贮存大量钽矿物,为履行美国国会的会议决定,该组织将耗尽其拥有的最后140,000磅钽材料。
从美国国防后勤署购买钽矿石的买主已包括HC Starck、DM Chemi-Met、ABS合金公司、Umicore、Ulba冶金公司和Mitsui采矿公司,这些代表了将这些钽矿石加工制成电容器级粉末、钽制品磨损件或切削工具的众多公司。
从美国国防后勤署购买这些钽矿石的投标人年复一年传统上是一贯的,这样当钽矿石供应变的吃紧时,因美国国防后勤署供应耗尽,一些公司只得抢夺新的矿石供应源。
钽电容器和氧化铌电容器的失效模式分析
钽电容器和氧化铌电容器的失效模式分析钽电容器具有体积容量比高,温度特性好,漏电流小的特点,但是,钽电容器的缺点也非常明显;抗浪涌能力是所有电容器中最差的,使用在存在较高浪涌的开关电源电路,由于此类电路中存在较高的电压和电流浪涌及较高的纹波电流,因此必须大幅度降额才能够保证安全使用。
另外,钽电容器的失效模式非常危险;一旦击穿,产品会迅速燃烧或爆炸,甚至能够引发连续击穿和火灾,这是任何用户都谈之色变的严重故障。
铌与钽一样,其无定型的五氧化物[五氧化二钽或五氧化二铌]都具有阻止直流电通过而容许交流电通过的特性。
因此,它们都可以被用来生产电解电容器,它们的基本材料都是超高纯度的单质态钽金属和铌金属。
由于它们都属于容易和氧发生氧化反应的金属,因此,当出现击穿时,缺陷部位通过的大电流产生的热量会导致介电层迅速被破坏,进而造成基材金属在高温下与氧迅速反应,短时间内就能够释放出大量的热能,最终导致产品燃烧或爆炸。
导致钽电容器在漏电流较大时能够迅速燃烧和爆炸的根本原因,是生产钽电容器的基材是物理和化学特性极不稳定的单质金属。
这是钽电容器不可避免的缺陷之一;在实际使用中为了避免此缺陷造成的问题,只有一个方法,那就是在实际使用中大幅度的降额,受限于体积限制,产品的耐压受到严格限制,因此,当钽电容器的使用电压较高时,钽电容器对电压过于敏感的缺点就暴露无遗。
这就是钽电容器在实际使用中经常出现问题的根本原因。
使用纯铌生产的铌电容器具有与钽电容器相同的缺陷,在温度特性上甚至更差。
基于五氧化二铌介质层的电化学形成理论,实际上,我们可以使用低价的铌氧化物[一氧化铌]来生产氧化铌电容器,与纯钽或纯铌电容器相比,氧化铌电容器的基材由纯铌变为一氧化铌。
使用一氧化铌生产的氧化铌阳极,一样可以使用类似的电化学原理,在一氧化铌表面形成一层可以控制的无定形五氧化二铌介质层作为电容器的介电层。
再经过阴极制备,我们就可以使用一氧化铌粉末生产出固体的片式氧化铌电容器。
钽电容失效的原因
钽电容失效的原因一个合格的钽电容在工作状态如果发生失效,基本的失效模式如下;钽电容失效方式分析网址:http://www.cdindustries.hk/钽电容的过压失效不同的使用电压和不同的工作温度与产品的额定电压会导致出现不同的寿命,如果一个产品的工作温度较低,使用的电压也较低,那么它的失效率就非常低。
从侧面同时也证明如果一只钽电容的漏电流较小就相当于产品的降额幅度更大,相当与这只产品的实验电压低或使用温度低。
KEMET如果一只产品的高温漏电流较小,其可靠性更高。
钽电容的浪涌失效当钽电容使用到开关电源电路中时,由于电路电阻很低,因此,电路中在开关的瞬间会产生1.5-2.5倍的瞬间浪涌电压和浪涌电流.而不同规格产品的ESR值一定,因此不同规格产品能够耐受的电流如下:I=V R/(1+ESR),在产品的ESR一定时,如果浪涌电流过高,产品也会因迅速的发热而导致击穿失效.因此,使用在此电路中时,稳态的工作电压不能大于1/3额定电压.同时还必须在电路设计时保证产生的直流浪涌值不大于产品容许的浪涌值.如果不遵守此基本原则,产品就会失效TAJV228K002RNJ钽电容的反向击穿在具体使用时,由于电路产生的热量积聚,产品工作时环境温度有可能达到50度以上,因此实际使用电压必须考虑到温度升高会导致产品的漏电流增加的问题.因此实际使用电压应该更低.由于钽电容漏电流随温度的增加而增加。
工作在温度较高时,最大工作电压必须降额使用。
在实际使用中过高的温度和使用电压对产品的可靠性影响非常大。
钽电容使用在电路中时,在正常的工作电压以外,还要受到浪涌电压和电流的冲击.因此,工作时实际加在产品上的电压=浪涌电压+工作电压+交流纹波电压.由于使用电路中的阻抗不一样,因此,当电路阻抗较低时,实际的浪涌电压在瞬间可以达到1.5-2.5倍的稳态工作电压.因此,使用在低阻抗电路中时,考虑到开关瞬间的浪涌冲击电压会远超过产品容许承受的电压冲击,因此稳态的工作电压不能超过额定值的1/3.否则,产品就非常容易出现瞬间的过压而击穿.因此, 钽电容在电路设计时必须为不断产生的浪涌留出电压余量.钽电容是典型的极性元件,由于其介质层特殊的物理结构,它基本不能承受反向电压.这里引用的反向电压值是指在任何时候出现在电容器上的最大反向电压。
钽电容可靠性学习小结
“钽电容器的可靠性和关键应用”学习小结(内容供参考,以英文原文的内容为准)(王白平评注:钽电容器本来是一种稳定性、可靠性很高的电容器,它刚开始所以主要应用在军工产品上,除了它的价格比较贵以外,更重要的原因是它的可靠性。
但是,我们生产的钽电容器,主要是片式钽电容器,总有上机以后发生爆炸烧毁等恶性质量事故出现。
使用在电源滤波或去耦等低阻抗电路中,容易发生此类故障,这是客观原因。
但是,产品的内在原因在哪里?如何预防?这是需要我们认真思考和努力解决的重大问题,因为这个问题,像A VX和KEMET这样的公司已经基本解决了。
我们要进行大批量生产,要进入更多、更大的客户,必须要及早解决这个问题,否则,产品没有市场,公司也就没有出路。
解决这个问题非常迫切,很有必要参考同行的经验,为此,再次推荐KEMET的这篇技术文章。
本文是对KEMET技术文章“钽电容器的可靠性和关键应用”翻译的总结摘要,这篇技术文章主要讨论了钽电容器可靠性的关键技术问题——提高钽电容器介质Ta2O5的稳定性、可靠性。
文章首先提出了使Ta2O5介质恶化的两个主要原因,这为以后讨论改善Ta2O5介质的可靠性提供了理论基础。
文章接着对钽电容器关键应用的两个方面——提高使用温度和提高使用电压,对Ta2O5介质的负面影响提出了看法。
随后,文章对改善Ta2O5介质——提高钽电容器的可靠性提出几项措施。
文章还介绍了聚合物阴极钽电容器的优点。
最后,文章提出了对钽电容器进行筛选的必要性和筛选的项目——加速老化、浪涌测试和再流焊试验)一、钽电容器的主要优点1、体积小、容量大;2、对电压和温度的高稳定性;3、长期稳定性(高可靠性)。
二、钽电容器的主要缺点1、钽电容器的关键成分Ta2O5介质固有的受热应力会不稳定;2、使用电压低,抗浪涌电压和浪涌电流能力差。
3、ESR相对较大。
三、提高钽电容器的可靠性关键是提高Ta2O5介质的可靠性1、Ta2O5介质的不稳定性原因:1)Ta2O5和Ta依照Ta-O均衡模式图,形成非-均衡对相。
电容器爆炸的原因分析及预防
电容器爆炸的原因分析及预防摘要:针对变电所电容器容易发生爆炸、损坏而影响正常供电现象结合电力系统电容器发生爆炸情况分析,提出对危害的预防的办法,指导实际操作工作。
关键词:矿区电力系统电容器爆炸分析预防电力电容器是一种无功补偿装置。
电力系统的负荷和供电设备如电动机、变压器、互感器等,除了消耗有功电力以外,还要“吸收”无功电力。
如果这些无功电力都由发电机供给,必将影响它的有功出力,不但不经济,而且会造成电压质量低劣,影响用户使用。
电容器在交流电压作用下能“发”无功电力(电容电流),如果把电容器并接在负荷(如电动机)或供电设备(如变压器)上运行,负荷或供电设备要“吸收”的无功电力,正好由电容器“发出”的无功电力供给,这就是并联补偿。
并联补偿减少了线路能量损耗,可改善电压质量,提高功率因数,提高系统供电能力。
铁煤集团供电部变电所做为矿区电力网络的主体,配备使用的是并联电容器。
随着运行时间的增加,电容器故障也相应增加。
在2010年元月份小康变电所就发生了一次电容器爆炸的事故。
针对此次事故,结合电力系统电容器爆炸原因对事故进行了分析。
近年来由于电力电容器投运越来越多,但由于管理不善及其他技术原因,常导致电力电容器损坏以致发生爆炸,原因有以下几种:1、电容器内部原因(1)电容器内部元件击穿:主要是由于制造工艺不良引起的。
(2)电容器对外壳绝缘损坏:电容器高压侧引出线由薄铜片制成,如果制造工艺不良,边缘不平有毛刺或严重弯折,其尖端容易产生电晕,电晕会使油分解、箱壳膨胀、油面下降而造成击穿。
另外,在封盖时,转角处如果烧焊时间过长,将内部绝缘烧伤并产生油污和气体,使电压大大下降而造成电容器损坏。
(3)密封不良和漏油:由于装配套管密封不良,潮气进入内部,使绝缘电阻降低;或因漏油使油面下降,导致极对壳放电或元件击穿。
(4)鼓肚和内部游离:由于内部产生电晕、击穿放电和内部游离,电容器在过电压的作用下,使元件起始游离电压降低到工作电场强度以下,由此引起物理、化学、电气效应,使绝缘加速老化、分解,产生气体,形成恶性循环,使箱壳压力增大,造成箱壁外鼓以致爆炸。
钽电容失效机理
钽电容失效机理简单一点说是这样的。
1)钽电容的失效模式是短路形式。
故而在可靠性要求高的场合,如军品,宇航,汽车级电路中一般限制使用。
如星上就不用。
NASA好像也是规定不能用。
2)铝电解质电容其ESR可以做的很小的,如果我没有记错的话,可以到毫欧级。
文摘1:ESR(等效串联电阻),应该注意的问题前两天我负责的一个LDO测试工程师上电后发现输出振荡了。
我做的时候没有振荡,对照下来,输出电容不一样,我用的是10u的铝电解,他用的是钽电容。
因为我以前对这两种电容有过测试,所以,把他用的电容拿过来在Fluke,RCL测量仪上测试,ESR高达13欧姆(10kHz),而我以前的测试的10u钽电容一般只有0.5欧姆左右。
所以换成ESR=0.5欧姆的电容就没有振荡了。
在很多的电容介绍中,只是偶尔提到ESR这个概念,而没有具体说明数值,也许是种类繁多不好概括吧。
ESR与制作材料,频率,温度和电容值都有关。
一般来说,对同一种工艺、同一厂家生产的同一种电容,电容值与ESR 的乘积接近常数。
上面说的13欧姆的电容显然是有问题的(但没标准,只能按照经验判断了).,由于没做过系统,对各种电容的ESR不了解,最好请哪位大侠能公布各种电容的ESR作参考。
不过最好的办法是使用前量一下。
文摘2:关于使用固钽和液体钽电容的浅释彭宝霞(航天511所)摘要:本文对液体钽电容和固体钽电容的失效原因作了具体分析。
对这两种产品的使用提出自己的看法和建议。
关键词:液钽固钽可靠性钽电容器分为固体钽电容器和液体钽电容器。
它们在军用整机中大量使用。
例如:液体钽电容器在84年只有529厂和502所两个单位使用,用量不到2000只。
而95年五院各厂所的液体钽订货量将近1万只。
固体钽电容器更是大量使用。
随着固体钽电容器和液体钽的大量使用。
先后暴露的质量问题也不少。
我们了解到早期有单位禁止使用液钽,而近期的单位禁止使用固钽,这是怎么回事?一、早期某些单位禁用液钽,禁用的理由:1.液体钽电容器的漏液问题液体钽电容器工作电解质为酸性液体,如果产品密封不好,出现漏液。
电容器爆炸原因
电容器爆炸原因分析在低压电力系统中,使用电力电容器是为了提高系统的功率因数,减少无功损耗。
电力电容器在运行中发生损坏甚至爆炸的事故时有发生,轻则损坏配电设备,重则破坏建筑物并引起火灾。
下面分析其原因并提出预防措施。
爆炸原因单个电力电容器由三个电容器连接成△形,装在变压器油的密封容器中,顶端引出三个接线端子,如图l所示。
图中C是由一组电容器(两只、三只或更多)并接而成。
设A、B相间某一电容器被击穿(见图2)。
图2是A、B相间的等效电路。
其R为被击穿电容的等效电阻。
由于电容器的击穿是一个逐渐的过程,等效电阻R是一个可变的动态电阻。
电容器击穿过程中,电容会产生焦耳热,焦耳热的表达式为。
因R动态电阻是由大变小,时间越长,产生的热量越多。
当电容有过大的漏电流或击穿时,电容器在很短时间内产生很大的热能,这些热能使电容器内的油分解产生大量气体,这时电容器壳体承受不了这种剧烈增大的压力,造成壳体损坏甚至爆炸。
这是主要原因。
其次,电容器作为功率因数补偿,电容器的投退量与系统有关。
若频繁操作时,来电的电压极性正好与电容组残留电荷极性相反,会产生很大电流,这也是电容器损坏的原因。
预防措施1.正常情况下,每组相电容器通过的电流有效值为I=,可根据电流量的大小,按1.5~2倍,配以快速熔断器。
若电容被击穿,则快速熔断器会熔化而切断电源,保护电容器不会继续产生热量。
2.在补偿柜上每相安装电流表,保证每相电流相差不超过±5%,若发现不平衡,立即退出运行,检查电容器。
3.监视电容器的温升情况。
4.加强对电容器组的巡检。
电容器漏电流过大通常有如下现象:电容器的引出线套管部位发生渗油;电容器鼓肚。
有些电容没有渗油,便会发生鼓肚现象。
发现上述情况,则电容器应退出运行,以防爆炸。
电容器损坏一般易发生在夏天高温期,在这段时间内,更应加强巡视。
引起电容器损坏以致发生爆炸的原因是:(1)电容器内部元件击穿:主要是由于制造工艺不良引起的.(2)电容器对外壳绝缘的损坏。
钽电容和独石电容器应用中的失效分析
钽电容和独石电容器应用中的失效分析随着科技的发展,钽电容和独石电容器作为常见的电子元器件被广泛应用于各种电路中。
然而,由于使用环境、设计问题、材料问题等多种因素的影响,这两种电容器在实际应用中也存在一定的失效问题。
本文将就钽电容和独石电容器应用中的失效进行分析。
首先,我们来了解一下钽电容和独石电容器的基本结构和工作原理。
钽电容器是一种以钽作为电介质材料的电容器,其电极由钽箔制成,最常见的型号有颗粒性钽电容器和固体钽电容器。
独石电容器则是一种以纳米厚度的二氧化锆薄膜作为介质的电容器,由于薄膜极薄,所以被称为独石电容器。
针对钽电容和独石电容器的失效问题,我们主要从以下几个方面进行分析。
首先是应力引起的失效。
钽电容器的电极材料是钽箔,而独石电容器的电极材料通常是金属薄膜,这些电极材料在应用中都会受到机械应力的影响。
例如,钽电容器在焊接过程中受到的热胀冷缩或是挤压力会导致电极材料内部产生应力聚集,长期以往会引起电极材料疲劳断裂。
而独石电容器由于电极材料是金属薄膜,其本身就比较脆弱,一旦受到外力或是温度应力过大,也容易出现断裂现象。
其次是介质老化引起的失效。
钽电容器的介质是氧化铝或是氧化钽,独石电容器的介质是二氧化锆薄膜,而这些介质材料在长时间工作的过程中会发生老化现象,导致电容器的容量变化或是漏电流的增加。
此外,环境中的潮湿度、温度等因素也会对电容器的介质老化产生一定的影响,加速失效的过程。
再次是过电流引起的失效。
过电流是钽电容和独石电容器应用中最容易导致失效的因素之一、在设计电路时,如果电流超过电容器所能承受的额定电流,就会导致电容器损坏。
过电流会产生过高的温度和电场,导致电容器的介质损坏或是电极材料熔断。
最后是电压应力引起的失效。
钽电容器和独石电容器的工作电压是限定的,如果电压超过了电容器所承受的额定电压,就会导致击穿现象。
击穿现象会引发电容器内部的氧化反应,进一步加剧电容器的劣化和失效。
综上所述,钽电容和独石电容器应用中的失效主要包括应力引起的失效、介质老化引起的失效、过电流引起的失效和电压应力引起的失效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钽电容爆炸|烧毁原因分析
经常碰到很多客户讨论钽电容爆炸问题,特别在开关电源、LED电源等行业,钽电容烧毁或爆炸是令研发技术人员最头痛的,让他们百思不得其解。
正因为钽电容失效模式的危险性,让很多研发技术人员都不敢再使用钽电容了,其实如果我们能够全面的了解钽电容的特性,找到钽电容失效(表现形式为烧毁或爆炸)的原因,钽电容并没有那么可怕。
毕竟钽电容的好处是显而易见的。
钽电容失效的原因总的来说可以分为钽电容本身的质量问题和电路设计问题两大类:
电路设计和产品选型
要求钽电容的产品性能参数可以满足电路信号特点,但是,往往我们不能保证上述两项工作都做的很到位,因此,在使用过程中就必然会出现这样那样的失效问题;现简单总结如下;
1. 低阻抗电路使用电压过高导致的失效;
对于钽电容器使用的电路,只有两种;有电阻保护的电路和没有电阻保护的低阻抗电路. 对于有电阻保护的电路,由于电阻会起到降压和抑制大电流通过的效果,因此,使用电压可以达到
钽电容器额定电压的60%. 没有电阻保护的电路有两种; 一;前级输入已经经过整流和滤波,输出稳定的充放电电路.在此类电路,电容器被当作放电电源来使用,由于输入参数稳定没有
浪涌,因此,尽管是低阻抗电路,可安全使用的电压仍然可以达到额定电压的50%都可以保证相当高的可靠性. 二;电子整机的电源部分; 电容器并联使用在此类电路, 除了要求对输入
的信号进行滤波外,往往同时还兼有按照一定频率和功率进行放电的要求. 因为是电源电路,因此,此类电路的回路阻抗非常低,以保证电源的输出功率密度足够. 在此类开关电源电路中[也叫DC-DC电路], 在每次开机和关机的瞬间,电路中会产生一个持续时间小于1微秒的高强度尖峰脉冲,其脉冲电压值至少可以达到稳定的输入值的3倍以上,电流可以达到稳态值的
10倍以上,由于持续时间极短,因此,其单位时间内的能量密度非常高, 如果电容器的使用电
压偏高,此时实际加在产品上的脉冲电压就会远远超过产品的额定值而被击穿. 因此,使用在此类电路中的钽电解电容器容许的使用电压不能超过额定值的1/3. 如果不分电路的回路阻抗类型,一概降额50%, 在回路阻抗最低的DC-DC电路,一开机就有可能瞬间出现击穿短路或爆炸现象.在此类电路中使用的电容器应该降额多少,一定要考虑到电路阻抗值的高低和
输入输出功率的大小和电路中存在的交流纹波值的高低.因为电路阻抗高低可以决定开关瞬间浪涌幅度的大小。
内阻越低的电路降额幅度就应该越多。
对于降额幅度大小,切不可一概而论. 必须经过精确的可靠性计算来确定降额幅度.
2.电路峰值输出电流过大(使用电压合适)
钽电容器在工作时可以安全承受的最大直流电流冲击I,与产品自身等效串联电阻ESR及额定电压UR存在如下数学关系;
I=UR/1+ESR
如果一只容量偏低的钽电容器使用在峰值输出电流很大的电路,这只产品就有可能由于电流过载而烧毁.这非常容易理解.
3. 钽电容器等效串联电阻ESR过高和电路中交流纹波过高导致的失效
当某只ESR过高的钽电容器使用在存在过高交流纹波的滤波电路,即使是使用电压远低于
应该的降额幅度, 有时候,在开机的瞬间仍然会发生突然的击穿现象; 出现此类问题的主要
原因是电容器的ESR和电路中的交流纹波大小严重不匹配. 电容器是极性元气件,在通过交流纹波时会发热,而不同壳号大小的产品能够维持热平衡的容许发热量不同.由于不同容量
的产品的ESR值相差较高,因此,不同规格的钽电容器能够安全耐受的交流纹波值也相差很大, 因此,如果某电路中存在的交流纹波超过使用的电容器可以安全承受的交流纹波值,产品就会出现热致击穿的现象.同样,如果电路中的交流纹波一定,而选择的钽电容器的实际ESR 值过高,产品也会出现相同的现象.
一般来说,在滤波和大功率充放电电路,必须使用ESR值尽可能低的钽电容器. 对于电路中
存在的交流纹波过高而导致的电容器失效问题,很多电路设计师都忽略其危害性或认识不够. 只是简单认定电容器质量存在问题. 此现象很多.
4 . 钽电容器漏电流偏大导致实际耐压不够
此问题的出现一般都由于钽电容器的实际耐压不够造成.当电容器上长时间施加一定场强时,如果其介质层的绝缘电阻偏低,此时产品的实际漏电流将偏大.而漏电流偏大的产品,实际耐
压就会下降.
出现此问题的另外一个原因是关于钽电容器的漏电流标准制定的过于宽松,导致有些根本不具备钽电解电容器生产能力的公司在生产质量低劣的钽电容器. 普通的室温时漏电流就偏大的产品,如果工作在较高的温度下,其漏电流会成指数倍增加,因此其高温下的实际耐压就会大幅度下降. 在使用温度较高时就会非常容易出现击穿现象.
高温时漏电流变化较小是所有电容器生产商努力的最重要目标之一,因此,此指标对可靠性的决定性影响不言而愈.
如果你选择使用的钽电容器的漏电流偏大,实际上它已经是废品,出问题因此成为必然.
5 .钽电容器使用时的生产过程因素导致的失效
很多用户往往只注意到钽电容器性能的选择和设计,而对于贴片钽电容安装使用时容易出现的问题视而不见;举例如下;
A, 不使用自动贴装而使用手工焊接, 产品不加预热,直接使用温度高于300度的电烙铁较长时间加热电容器,导致电容器性能受到过高温度冲击而失效.
B,手工焊接不使用预热台加热,焊接时一出现冷焊和虚焊就反复使用烙铁加热产品.
C,使用的烙铁头温度甚至达到500度. 这样可以焊接很快,但非常容易导致片式元气件失效
贴片钽电容实际使用时的可靠性实际上可以通过计算得出来,而我们的很多用户使用时设计余量不够,鲁棒性很差,小批实验通过纯属侥幸,在批生产时出现一致性质量问题. 此时,问题原因往往简单被推到电容器生产商身上,忽略对设计可靠性的查找. 钽电容器使用时的无故障间隔时间MTBF对于很多用户来讲还是一个陌生的概念. 很多使用者对可靠性工程认识肤浅.过于重视实验而忽略数学计算. 导致分电路设计可靠性比整机可靠性低,因此,批量生产时不断出现问题. 不懂得失效是一个概率问题,非简单的个体问题.实际上钽电容器使用时容易出现的故障原因和现象还很多, 无法在此一一论述.如果有使用时的新问题,可以及时交流.
钽电容质量问题
目前来说AVX和KEMET两个品牌算是一线品牌,占了市场90%以上的份额,其质量也是最好的,当然价格也是最贵的。
国内也有几家生产钽电容的工厂,但因为生产工艺和原材料质量问题,与AVX和KEMET的质量相差还是非常大的,国产钽电容的ESR普遍要高一个等级。
钽电容器如果性能不过关,其可靠性不光很低,而且非常容易失效.因此,选择正确且合适的产品是保证可靠性的首要条件.? 质量差的钽电容器如果被装到电路上,与安装了一个小****没有什么区别. 如果不能保证你选择的产品质量绝对过硬,我建议你不要使用钽电容器.特别是在DC-DC电路和大功率充放电电路.
如何识别AVX钽电容假货?
很多采购朋友对AVX钽电容假货问题非常头痛,贴片钽电容假货让他们伤透了脑筋。
在百度查了下,类似贴片钽电容假货、AVX钽电容假货、识别钽电容假货这样问题的人很 多。
答案也是五花八门,都不是很理想,有些还会误导大家。
那么有没有一个简单的方法来识别钽电容假货呢?带着这个目的,根据自己以往处理客诉的经验,跟大家分享以下五点,相信会对你有所帮助。
1. 钽电解电容焊脚形状,原装AVX钽电容焊脚正极跟负极不一样,正极的为“凹”型,也就是凹进去的,负极的是“口”型。
2. 编带上的印字,把货拆开,透明的编带上面大概每间隔25CM有打AVX的印字(是机器直接凹印上去的,没有颜色的),假货编带一般没有印AVX字的。
3. 贴片钽电容本体印字内容。
钽电容本体印字分上下两行,包括了AVX的LOGO标识、容量值、电压值、生产批号等4个信息,这些信息都是缺一不可的,如果对不上一般就是假货(碰到最多的情况是本体的左上角没有AVX的LOGO标识)。
钽电容封装尺寸大的,印字也会看得清晰点,有AVX钽电容规格尺寸太小,要借助放大镜才能看清楚。
4. 贴片钽电容本体印字的一致性和质量,很多翻新的AVX钽电容从以上三点是看不出它是假货的,因为它是用原装的旧货或者折机货或低压货(低一个电压低档,比如用10V的给你当16V的用)重新打磨后印字上去的,这个时候就要从本体印字的成色和一致性来判断了,翻新货的印字在内容和版式上与原装的不会有区别,但毕竟没有原厂的设备和模具好,所以细节上还是有明细的区别。
这些细节的区别分两个方面,一方面是成色,翻新的颜色一般要偏深红色一些而且深浅不一;另一方面是一致性,原装的一致性很好,印的字方方正正,翻新的会出现东倒西歪,本体之间相互比较感觉就像两个模具印出来的一样(是模具精度不好造成的)。
—–对于这一点,要正确、快速的判断出来是有一定难度的,这与个人的经验有一定关系。
5. 查规格书:如果你要的规格是规格书上如果没有的,那你买到假货的机率是非常大。
规格书上没有的规格虽然不敢说原厂100%不生产,至少说明不是常用的规格,代理商那肯定是没有库存的(不会有代理商会去订一些偏门的物料作库存),要订货的话,订货周期、最小订货量、预付款比例都是一般客户不能接受的。
所以我们建议客户在选型的时候一定要选择标准品,选择非标品到最后只会将自己搞死。