六年级数学概念整理

合集下载

小学六年级数学知识点汇总

小学六年级数学知识点汇总

1.数的认识与构成-自然数的概念:从1开始的整数序列。

-整数的概念:包括自然数、0和负整数。

-分数的概念:表示一个数被另一个数等分的形式。

-有理数的概念:包括整数和分数的集合。

-实数的概念:包括有理数和无理数的集合。

2.计算方法-加法:加法的交换律和结合律,进位法和退位法。

-减法:减法的巧算法和退位法。

-乘法:乘法的交换律和结合律,进位法和退位法。

-除法:除法的整数除法和余数除法。

3.分数运算-分数的加法和减法:找到两个分数的公共分母,然后进行加法或减法运算。

-分数的乘法和除法:分子相乘,分母相乘;除法转化为乘法,取倒数计算。

-分数的化简:分子和分母同时除以最大公因数进行化简。

4.单位换算-长度单位换算:厘米、分米、米、千米。

-容量单位换算:毫升、升、立方米。

-质量单位换算:克、千克、吨。

5.图形与几何-平面图形的认识:三角形、正方形、长方形、梯形、圆等。

-图形的特点和性质:边数、顶点数、对边、对角线等。

-判断图形相似:对应角相等、对应边成比例。

-判断图形的对称性:线对称和中心对称。

6.数据统计-线图和柱图:通过线条或柱形来表示数据的数量。

-折线图和散点图:通过连接线和散点来表示数据的变化趋势。

-数据的分析和比较:寻找规律,进行数据的对比。

7.时间与运算-时间的概念:秒、分钟、小时、天等单位。

-时间的运算:时间的加减法运算。

8.逻辑与推理-推理和问题解决:通过观察和思考,解决问题和推理。

-条件的判断和运用:通过条件来判断和推导结论。

9.适当扩展的知识点-负数的概念和运算:负数的加减乘除运算。

-小数的概念和运算:小数的加减乘除运算。

-比例与比例关系:找出两个量的比例关系。

-倍数与约数:找出数的倍数和约数。

-分形图形:通过重复图形来构成新图形。

以上是小学六年级数学知识点的一个汇总,希望对你的学习有帮助!。

人教版,六年级数学上册,概念与公式总结与归纳

人教版,六年级数学上册,概念与公式总结与归纳

人教版,六年级数学上册,概念与公式总
结与归纳
概念与公式总结与归纳:
1. 数的概念:
- 数是人们用来表示事物数量的符号,包括自然数、整数、分数、小数、负数等。

- 自然数由0和比0大的正整数组成,用N表示。

- 整数由正整数、0和负整数组成,用Z表示。

- 分数由整数和真分数组成,用Q表示。

- 小数是不能化成整数的有理数或无理数,用R表示。

2. 四则运算:
- 加法:两个数相加,结果为和。

- 减法:一个数减去另一个数,结果为差。

- 乘法:两个数相乘,结果为积。

- 除法:一个数除以另一个数,结果为商。

3. 数的大小比较:
- 两个数的大小比较可以使用不等号进行表示。

- 大于:用>表示。

- 小于:用<表示。

- 大于等于:用≥表示。

- 小于等于:用≤表示。

4. 使用等式:
- 等式是指两个数或两个代数式之间相等的关系。

- 等号的左右两边的值相等,可以用等号表示。

- 可以进行等式的运算、变形和求解。

5. 坐标系与图形:
- 坐标系是由两条相互垂直的直线组成的,用于表示点在平面
上的位置。

- x轴和y轴是两条相互垂直的直线,它们交叉的点称为原点O,表示为(0, 0)。

- 横坐标表示点在x轴上的位置,纵坐标表示点在y轴上的位置。

- 平面上的点可以用坐标来表示。

以上是人教版六年级数学上册的概念与公式总结与归纳。

希望对你的学习有所帮助!。

六年级数学(下册)概念汇总

六年级数学(下册)概念汇总

一、负数1.正数负数的意义:生活中具有相反意义的量可以用正数和负数表示。

2.正数和负数的读写方法:写正数,一般在数字前面加一个正号“+”,也可以省略不写;读正数,有正号的读正几,没有正号的直接读数。

写负数,在数字前面加负号“-”;读负数,读作负几。

3.认识数轴:在数轴上,0左边的数是负数,右边的数是正数。

二、百分数1.折扣:几折就表示十分之几,也就是现价是原价的百分之几十。

商品现价=原价×折扣2.成数:成数表示一个数是另一个数的十分之几,通称“几成”3.税率:应该缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率。

应纳税额=总价×税率4.利率:利息与本金的比率叫做利率。

利息=本金×利率×存期5.解决生活中的实际问题:应用百分数知识解决生活中的实际问题。

三、圆柱与圆锥1.圆柱特征:底面:两个底面完全相同,都是圆形。

侧面:沿高剪开,展开后是一个长方形或正方形。

高:两个底面之间的距离,有无数条。

2.圆锥特征:底面:一个底面,是圆形。

高:顶点到底面圆心的距离,只有一条。

3.面积:(1)底面积=圆周率×半径的平方,字母公式:S=πr ²。

(2)侧面积=底面周长×高,字母公式:Sπdh。

(3)表面积=侧面积+底面积×24.体积:物体所占空间的大小。

底面积×高,字母公式:V=Sh或V=πr ²h。

底面积×高×3/1,字母公式:V=3/1Sh或V3/1πr ²h。

四、比例1.比例的意义和性质:(1)表示两个比相等的式子叫做比例。

(2)在比例中,两个外项的积等于两个内项的积,这叫做比例的基本性质。

2.正比例和反比例:(1)用x和y分别表示两种相关联的量,用k表示它们的比值(一定),正比例关系可可以用这样的式子表示:x/y=k。

(2)用x和y分别表示两种相关联的量,用k表示它们的积(一定),反比例关系可以用这样式子表示:xy=k。

六年级数学定义和公式

六年级数学定义和公式

六年级数学定义和公式六年级是小学的最后一年,在这一年里,学生将会学习到更多高级的数学概念。

以下是六年级数学中一些主要的概念和公式:分数1. 定义:分数是表示部分与整体关系的数。

形式为 $\frac{p}{q}$,其中$p$ 是分子,$q$ 是分母。

2. 性质:基本性质:分数的分子和分母同时乘以或除以同一个非零数,分数的大小不变。

约分:简化分数的过程。

通分:将两个或多个分数化为同分母。

3. 运算:加法减法乘法除法小数1. 定义:小数是一种十进制表示的数,由整数部分、小数点和小数部分组成。

2. 性质:小数的末尾添上0或去掉0,小数的大小不变,但计数单位会改变。

3. 运算:加法减法乘法除法百分数1. 定义:百分数是一种特殊的分数,表示部分与整体的比例。

形式为$\%$ 或 $\frac{p}{100}$。

2. 性质:与分数相似,百分数也可以进行加、减、乘、除运算。

负数1. 定义:负数是小于0的数。

在数轴上,负数位于0的左侧。

2. 性质:负数与正数、0都有明确的界限和关系。

3. 运算:负数可以进行加、减、乘、除运算。

几何学基础1. 定义:几何学是研究形状、大小、图形的属性以及它们之间关系的科学。

2. 基础概念:点、线、面、角、多边形等。

3. 定理:如两点确定一条直线、内角和定理等。

4. 图形面积和体积公式:如矩形、三角形、圆的面积和体积公式等。

代数基础1. 定义:代数是研究数学中各种代数结构的科学。

2. 基础概念:变量、方程式、不等式等。

3. 运算律:加法交换律、结合律,乘法交换律、结合律、分配律等。

4. 一元一次方程式解法:通过移项、合并同类项等方法解方程式。

小学六年级数学公式与概念大全

小学六年级数学公式与概念大全

这篇关于⼩学六年级数学公式与概念⼤全,是⽆忧考特地为⼤家整理的,希望对⼤家有所帮助!第⼀部分: 概念1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同⼀个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

如:(2+4)×5=2×5+4×56、除法的性质:在除法⾥,被除数和除数同时扩⼤(或缩⼩)相同的倍数,商不变。

O除以任何不是O的数都得O。

简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前⾯的相乘,零不参加运算,有⼏个零都落下,添在积的末尾。

7、什么叫等式?等号左边的数值与等号右边的数值相等的式⼦叫做等式。

等式的基本性质:等式两边同时乘以(或除以)⼀个相同的数,等式仍然成⽴。

8、什么叫⽅程式?答:含有未知数的等式叫⽅程式。

9、什么叫⼀元⼀次⽅程式?答:含有⼀个未知数,并且未知数的次数是⼀次的等式叫做⼀元⼀次⽅程式。

学会⼀元⼀次⽅程式的例法及计算。

即例出代有χ的算式并计算。

10、分数:把单位“1”平均分成若⼲份,表⽰这样的⼀份或⼏分的数,叫做分数。

11、分数的加减法则:同分母的分数相加减,只把分⼦相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

12、分数⼤⼩的⽐较:同分母的分数相⽐较,分⼦⼤的⼤,分⼦⼩的⼩。

异分母的分数相⽐较,先通分然后再⽐较;若分⼦相同,分母⼤的反⽽⼩。

13、分数乘整数,⽤分数的分⼦和整数相乘的积作分⼦,分母不变。

14、分数乘分数,⽤分⼦相乘的积作分⼦,分母相乘的积作为分母。

15、分数除以整数(0除外),等于分数乘以这个整数的倒数。

16、真分数:分⼦⽐分母⼩的分数叫做真分数。

六年级数学知识点归纳总结

六年级数学知识点归纳总结

六年级数学知识点归纳总结六年级数学是小学数学的最后一个阶段,也是为上初中做准备的关键阶段。

六年级数学的内容主要包括:整数、分数、小数、计算、比例与比例、比较大小、面积与体积、图形的运动等。

下面是对六年级数学知识点的归纳总结。

一、整数1. 整数的概念和表示方法:自然数、零、负整数、正整数的概念,用数轴表示整数的大小关系。

2. 整数的加法和减法:同号相加、异号相减的规律,计算整数的加减等式和不等式。

3. 整数的乘法和除法:正负数相乘、相除的法则,求整数的商和余数,计算整数的乘除等式和不等式。

二、分数1. 分数的概念和表示方法:分子、分母的概念,用数线表示分数的大小关系。

2. 分数的加法和减法:同分母分数的加减法,分数的加减等式和比较大小。

3. 分数的乘法和除法:分数的乘法和除法的法则,计算分数的乘除等式和比较大小。

4. 分数的化简和约分:分数的约分法则,化简分数的方法。

三、小数1. 小数的概念和表示方法:小数点的意义,用数线表示小数的大小关系。

2. 小数和分数的关系:小数和分数的转换,小数和分数的加减乘除。

3. 小数的四则运算:小数的加法、减法、乘法、除法,小数的运算法则。

四、计算1. 快速计算的技巧:心算口诀和技巧,加减乘除的口诀。

2. 算式的变形和计算规则:算式的变形法则,计算顺序的规则。

3. 逻辑推理和计算题:通过逻辑推理解决计算题,通过计算解决逻辑题。

五、比例与比例1. 比例的概念和表示方法:比例的概念,比例的表示方法。

2. 比例中的四则运算:比例中的加减乘除,比例的运算法则。

3. 比例问题的应用:比例问题的解决方法,比例问题的应用。

六、比较大小1. 整数、分数、小数的比较大小:整数、分数、小数的大小比较方法。

2. 含有整数、分数、小数的混合运算:比较大小后进行混合运算的方法。

七、面积和体积1. 面积的概念和计算:面积的概念,不规则图形的面积计算。

2. 体积的概念和计算:体积的概念,长方体、正方体的体积计算。

六年级数学概念(630份)

六年级数学概念(630份)

一、概念1、分数乘整数的意义与整数乘法的意义相同:表示几个相同加数的和是多少。

如13×6表示6个13相加的和是多少。

一个数乘分数的意义:表示一个数的几分之几是多少。

如6×13表示6的13是多少。

2、分数乘整数的方法:分母不变,整数与分子的乘积作分子,能约分的要约分。

分数乘分数的方法:分子乘分子,分母乘分母,能约分的先约分,再相乘。

一个数乘大于1的数,积比原来的数大;一个数乘小于1的数,积比原来的数小。

3、分数除法和整数除法的意义相同:已知两个数的积和其中一个因数,求另一个因数是多少。

如:8÷13表示已知两个因数的积是8,其中一个因数是13,求另一个因数是多少。

分数除法的方法: 甲数除以乙数(0除外),等于甲数乘乙数的倒数。

一个数除以大于1的数,商比原来的数小;一个数除以小于1的数,商比原来的数大。

4、乘积是1的两个数互为倒数。

1的倒数是1,0没有倒数。

5、比的意义:两个数相除又叫做两个数的比。

比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

比的后项不能是零。

a÷b = a:b = ab(b≠0)6、比的基本性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

7、连接圆心和圆上任意一点的线段叫做半径,用r 表示;通过圆心并且两端都在圆上的线段叫做直径,用 d 表示。

8、圆的周长与它的直径的比值叫做圆周率。

将一个圆平均分成若干等份,可以拼成一个近似的长方形,长方形的长相当于圆周长的一半(r),宽相当于圆的半径(πr )。

9. 一个圆的半径扩大a倍,直径也扩大a倍,周长也扩大a倍,面积扩大a2倍。

10、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

折痕所在的这条直线叫做对称轴。

正方形有4条对称轴,长方形有2条对称轴。

等腰三角形有1条对称轴,等边三角形有3条对称轴。

小学六年级数学知识点大全

小学六年级数学知识点大全

一、基础知识1.数的认识:整数、正数、负数、零的概念2.数的读法和写法3.顺序比较与排序4.数的正序、逆序、顺序相等5.十进制的认识与运算二、基本运算1.加法的概念与运算法则2.减法的概念与运算法则3.乘法的概念与运算法则4.除法的概念与运算法则5.加减法、乘除法的混合运算6.乘方与开方三、数的性质与运算1.数的位数与数位的认识2.偶数与奇数的判断3.求一个数的相反数4.数与数的加减法性质5.乘法的交换律、结合律和分配律6.乘法的一些特殊性质7.除法的性质与应用四、单位换算1. 长度的单位换算(mm、cm、dm、m、km)2.容量的单位换算(mL、L)3. 质量的单位换算(g、kg、t)五、数的应用1.问题解决能力的训练2.两步及以上的问题解决3.阶梯问题的解决4.包含数学思想的问题解决六、四则混合运算1.四则混合运算的顺序2.分数的加减乘除法七、图形的认识与性质1.直线、线段与射线的认识2.角的认识与性质3.三角形、四边形及其分类4.圆的分类与计算5.长方形、正方形与平行四边形的性质6.梯形与矩形的性质八、计量单位1. 长度的计量单位(mm、cm、dm、m、km)2.容量的计量单位(mL、L)3. 质量的计量单位(g、kg、t)4.时间的计量单位(秒、分钟、小时、天)九、简单方程1.简单方程的解法2.利用方程式解决问题3.推理解决方程问题十、时钟与时间1.时钟的读法与写法2.时间的计算与比较3.年、月、星期的认识4.时间的应用问题十一、小数的认识与运算1.小数的读法与写法2.小数与分数的转换3.小数的比较与排序4.小数的四则运算。

上海市教材六年级数学上概念整理

上海市教材六年级数学上概念整理

上学期一.数的整除概念:整除、倍数和因数、奇数和偶数、素数和合数、分解素因数、公倍数和公约数、最小公倍数和最大公约数,互素(1)整除:整数a除以整数b,如果除得的商是整数且余数为零,我们说a能够被b整除,或则b能整除a。

、、都是整数。

注:除尽被除数和除数不一定是整数,商是整数或有限小数,a b c÷=,其中a b c没有余数。

(2)倍数和因数:整数a能够被b整除,a就叫做b的倍数,b就叫做a的因数。

(3)奇数和偶数:整数中能被2整除的整数叫做偶数(2n),余下的整数都是奇数[(2n+1)或(2n-1)](4)素数和合数:一个正整数,如果只有1和他本身两个因数,这样的数叫做素数(也叫做质数);除了1和本身以外还有别的因数,这样的数叫做合数。

其中:1既不是素数也不是合数。

(4)分解素因数:每个合数都可以写成几个素数相乘的形式,其中每个素数都是这个合数的因数,叫做这个合数的素因数。

把一个合数用素因数的相乘的形式表示出来,叫做分解素因数。

(7289243322233=⨯=⨯⨯⨯=⨯⨯⨯⨯)(5)公倍数和公约数:几个数公有的倍数,叫做这个几个数的公倍数,其中最小的一个叫做最小公倍数;几个数公有的因数,叫做这几个数的公因数,其中最大的一个叫做最大公约数。

求最大公因数的方法1.列举法:分别列出两个数的因数,从公因数中找出它们的最大公因数2.分解素因数法:把两个数分解素因数,最大公因数就是它们公有素因数的乘积3.短除法:用两个数的公因数去除,除到商互素为止,所有除数的乘积就是这两个数的最大公因数4.特征法:如果两个数是互素,那么最小数就是这个数的最大公因数。

(6)互素:如果两个整数的最大公因数为1,那么这两个数互素1~100的素数有:2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 972是偶数中唯一的素数;整数:正整数,负整数,零自然数(非负整数):正整数,零正整数:素数,合数,1二.分数概念:分数的种类、最简分数、约分、通分、分数的运算法则、倒数、分数和小数的互化(1)分数的种类:真分数、假分数、带分数。

小学六年级数学知识点归纳整理

小学六年级数学知识点归纳整理

一、整数1.整数的概念:包括正整数、零和负整数。

2.整数的比较:大于、小于和等于的判断。

3.整数的加减法:同号相加、异号相减。

4.整数的乘法:同号得正,异号得负。

5.整数的除法:同号得正,异号得负。

二、小数1.小数的读法和写法:如0.8读作"零点八"。

2.小数的大小比较:整数部分相等时,比较小数部分的大小。

3.小数的加减法:按位计算,注意进位和借位。

4.小数的乘法:先不考虑小数点,进行整数的乘法,最后确定小数点的位置。

5.小数的除法:先将除数和被除数都化为整数,然后进行整数的除法,最后确定小数点的位置。

三、分数1.分数的概念:包含真分数、假分数和整数。

2.分数的读法和写法:如2/3读作"二分之三"。

3.分数的大小比较:通分后比较分子的大小。

4.分数的加减法:通分后按位计算,注意约分。

5.分数的乘法:分子相乘,分母相乘。

6.分数的除法:被除数乘以倒数,然后进行分数的乘法。

四、百分数1.百分数的概念:表示百分之几,记作%。

2.百分数的转换:百分数转换为小数,除以100;小数转换为百分数,乘以100。

3.百分数的比较:转换为小数进行比较。

4.百分数的运算:加减法和乘除法同小数的运算。

五、几何图形1.平面图形的分类:包括三角形、四边形、多边形和圆等。

2.三角形的分类:包括等边三角形、等腰三角形、直角三角形和普通三角形等。

3.四边形的分类:包括矩形、正方形、菱形、长方形和梯形等。

4.图形的面积:根据图形的形状和尺寸,计算图形的面积。

5.图形的周长:计算图形边长的和。

6.图形的旋转和翻转:基本了解图形的旋转、翻转和对称性等。

六、代数方程1.方程的概念:等式中含有未知数的式子。

2.解方程:通过逆运算,求得方程的解。

3. 一元一次方程:形如ax+b=0的方程。

4.一元一次方程的应用问题:通过方程来解决实际问题。

七、数据统计1.数据的收集和整理:通过观察、实践和调查收集数据,并整理成表格或图表。

六年级数学的知识点总结

六年级数学的知识点总结

六年级数学的知识点总结一、整数与有理数1. 整数的基本概念:整数由正整数、零和负整数组成。

整数相加、相减的规则。

2. 整数的运算:整数的加法、减法、乘法和除法运算规则。

3. 有理数的概念:有理数包括整数和分数,有理数的大小关系与比较。

二、分数与小数1. 分数的基本概念:分数的定义,分子、分母、真分数、假分数等。

2. 分数的运算:分数的加法、减法、乘法、除法运算规则,分数的化简。

3. 小数的概念与运算:小数的读法,小数的四则运算与恒等式。

三、比例与百分数1. 比例的概念与性质:比例的含义,比例的延伸与比例的性质。

2. 解决实际问题的比例:比例的应用,解决实际问题的计算与分析。

3. 百分数的概念与应用:百分数的定义,百分数的转化,百分数的应用。

四、图形的认识与计算1. 图形的基本属性:点、线、线段、角、三角形、四边形等的概念与性质。

2. 计算图形的面积与周长:长方形、正方形、三角形等图形的面积与周长计算。

3. 运用比例解决图形问题:图形的相似与全等,相似与全等图形的计算与应用。

五、代数的认识与应用1. 代数式的基本概念:字母的代表数,代数式与算式的关系。

2. 代数式的计算:代数式的加法、减法与乘法,代数式的合并与展开。

3. 解一元一次方程:一元一次方程的解法,利用方程解决实际问题。

六、统计与概率1. 统计的基本概念:数据的收集与整理,直方图与折线图的制作与分析。

2. 概率的初步认识:随机事件的概念,概率的基本定义与计算。

3. 利用概率解决问题:利用概率分析与预测,解决实际问题的计算与讨论。

以上是六年级数学的知识点总结,通过对每个知识点的概念、性质、运算规则和应用进行了简要介绍。

希望这份总结能够帮助你回顾六年级数学学习的重点内容,并提供一定的学习指导。

记得多做习题和实际问题的应用练习,加深对知识点的理解和运用能力的提升。

祝你在数学学习中取得优异的成绩!。

人教版六年级数学上册概念知识点整理

人教版六年级数学上册概念知识点整理

下面是人教版六年级数学上册的概念知识点整理:1.数的认识-认识自然数、整数、分数、小数等概念-认识正数、负数和零的概念-了解数的大小比较和排列2.数的读法和写法-数字的读法和写法-十进制的概念,理解位权和数位-简单数的四则运算3.整数的加法和减法-整数的加减法运算-用数轴表示整数的加减法过程-整数运算的法则和性质-解决实际问题的整数运算4.有理数的加法和减法-有理数的加减法运算-解决实际问题的有理数运算5.小数的认识-认识小数的概念和意义-小数的读法和写法-小数的大小比较和排序6.小数的加法和减法-小数的加减法运算-用模拟算法和抽象算法解决小数运算问题7.分数的认识-分数的概念和意义-分数的读法和写法-分数的比较和排序8.分数的加法和减法-分数的加减法运算-分数运算的法则和性质-解决实际问题的分数运算9.对分数的认识-认识多个单位组成的分数-认识真分数、假分数和带分数10.分数的乘法-分数的乘法运算-解决实际问题的分数乘法11.分数的除法-分数的除法运算-解决实际问题的分数除法12.分数和小数的互化-分数和小数的互化过程-分数和小数的相互转换13.常用分数和小数的计算-分数和小数的计算技巧-解决实际问题的分数和小数的计算14.单位换算-体重、长度、容量等常用单位的换算-解决实际问题的单位换算15.图形的认识-认识直线、射线、线段等几何概念-认识多边形、圆等图形16.直角和直角三角形-认识直角和直角三角形的性质和特征-计算直角三角形的长度17.图形的相似-认识相似图形的概念和性质-判定相似图形的条件-计算相似图形的长度比和面积比。

六年级上册所有公式概念

六年级上册所有公式概念

六年级上册所有公式概念
六年级上册涉及的数学公式和概念主要包括以下内容:
1. 周长公式:周长是指一个封闭图形一周的长度。

对于长方形,周长等于2倍的长加宽;对于正方形,周长是边长的4倍。

对于圆,周长是2π乘以半径。

2. 面积公式:面积是指一个物体表面或封闭图形所占的平面大小。

对于长方形,面积是长乘以宽;对于正方形,面积是边长的平方;对于平行四边形,面积是底乘以高;对于三角形,面积是底乘以高再除以2;对于梯形,面积是(上底+下底)乘以高再除以2。

圆的面积是π乘以半径的平方。

3. 表面积公式:对于长方体,表面积是2倍的长乘以宽加2倍的长乘以高再加2倍的宽乘以高;对于正方体,表面积是6倍的棱长的平方;对于圆柱体,表面积是侧面积加两个底面积(侧面积是2π乘以半径乘以高,底面积是π乘以半径的平方)。

4. 体积公式:体积是指一个物体所占的空间大小。

对于长方体,体积是长乘以宽乘以高;对于正方体,体积是棱长的三次方;对于圆柱体,体积是π乘以半径的平方乘以高;对于圆锥,体积是1/3乘以π乘以半径的平方乘以高。

此外,还有三角形的内角和为180度等概念。

以上信息仅供参考,如有需要,建议查阅数学教材或咨询数学老师。

六年级数学上册知识点

六年级数学上册知识点

六年级数学上册知识点
一、数的概念
1、数的概念:数是用来表示物体数量的符号。

2、整数:正整数、负整数和零。

3、有理数:分数、小数和百分数。

4、数的运算:加、减、乘、除、拆分、因式分解、求和、求积、求余数等。

二、图形
1、平面图形:三角形、矩形、正方形、梯形、菱形、圆形、
椭圆形等。

2、立体图形:正方体、长方体、圆柱体、球体等。

3、图形的属性:边、角、面等。

三、几何
1、几何概念:点、线、面、体等。

2、几何图形:直角坐标系、平行四边形、正多边形、圆、椭
圆等。

3、几何关系:平行、垂直、相交、等边、等腰、等角、等比、等量等。

四、数列
1、数列的概念:数列是由一组有限数构成的有序集合。

2、等差数列:等差数列是每一项与它的前一项之差都相等的
数列。

3、等比数列:等比数列是每一项与它的前一项之比都相等的
数列。

4、数列的性质:等差数列的性质、等比数列的性质、等比数
列的前n项和、数列的通项公式等。

五、概率
1、概率的概念:概率是表示事件发生的可能性的量度。

2、概率的计算:概率的计算方法,包括概率的定义法、概率
的计数法和概率的比例法。

3、概率的公式:概率的乘法公式、加法公式、贝叶斯公式等。

六年级数学知识点归纳

六年级数学知识点归纳

六年级数学知识点归纳1. 数的认识- 整数:包括正整数、负整数和零,表示数量的多少。

- 分数:表示一个整体被平均分成若干份后,取其中一份或几份的数。

- 小数:表示将一个整体分成十份、百份、千份等,取其中一份或几份的数。

- 百分数:表示一个数是另一个数的百分之几。

2. 数的运算- 加法:将两个或多个数相加,得到它们的和。

- 减法:从一个数中减去另一个数,得到它们的差。

- 乘法:表示重复相加的过程,即一个数乘以另一个数,得到它们的积。

- 除法:将一个数分成若干份,每份的大小相等,求每份的大小。

- 四则混合运算:先进行乘除法,再进行加减法,按照运算顺序进行计算。

3. 几何图形- 平面图形:包括直线、射线、线段、角、三角形、四边形、圆等。

- 立体图形:包括长方体、正方体、圆柱、圆锥、球等。

- 图形的周长:围成封闭图形的线段的总长度。

- 图形的面积:封闭图形内部的平面大小。

- 图形的体积:立体图形所占空间的大小。

4. 度量单位- 长度单位:米、厘米、毫米等。

- 面积单位:平方米、平方厘米、平方毫米等。

- 体积单位:立方米、立方厘米、立方毫米等。

- 质量单位:千克、克等。

5. 数据的收集与处理- 数据的收集:通过观察、调查、实验等方法获取数据。

- 数据的整理:将收集到的数据进行分类、排序、制表等。

- 数据的分析:对数据进行分析,找出数据之间的关系和规律。

6. 应用题- 行程问题:涉及速度、时间和路程的关系。

- 工程问题:涉及工作效率、工作时间和工作量的关系。

- 经济问题:涉及价格、数量和总价的关系。

- 比例问题:涉及两个或多个量之间的比例关系。

7. 逻辑推理- 归纳推理:从个别事实中归纳出一般规律。

- 演绎推理:从一般规律推导出个别事实。

- 类比推理:通过比较两个或多个对象的相似性,推断它们在其他方面的相似性。

8. 数学思维- 抽象思维:从具体事物中抽象出数学概念和规律。

- 空间思维:对空间图形进行想象和推理。

小学六年级数学知识点梳理

小学六年级数学知识点梳理

一、整数1.整数的概念:正整数、负整数、零的概念及表示方法。

2.整数的大小关系:相反数的大小关系,同号数相加、相减的大小关系,正数与零的大小关系。

3.整数的加法:同号数相加,异号数相加。

4.整数的减法:认识减法的四种定义,正整数的减法,负整数的减法。

5.整数的乘法:同号数相乘,异号数相乘,零的性质。

6.整数的除法:同号数相除,异号数相除。

二、有理数1.有理数的概念:整数的概念及表示方法,有理数的概念及表示方法。

2.有理数的加法和减法:有理数的加法,有理数的减法。

3.有理数的乘法和除法:有理数的乘法,有理数的除法。

三、分数1.分数的概念:真分数、假分数、带分数的概念及表示方法。

2.分数的比较大小:同分母分数比较大小,同分子分数比较大小,分数和整数的关系。

3.分数的加法和减法:分数的加法,分数的减法。

4.分数的乘法和除法:分数的乘法,分数的除法。

四、小数1.小数的概念:小数点及其运算规则,小数的读法和写法。

2.小数的比较大小:整数和小数的大小关系,小数与小数的大小关系。

3.小数的加法和减法:小数的加法,小数的减法。

4.小数的乘法和除法:小数的乘法,小数的除法。

五、长方形1.长方形的概念:长方形的特点及性质。

2.长方形的周长:认识周长的概念,周长与边长的关系。

3.长方形的面积:认识面积的概念,面积与长宽的关系。

六、三角形1.三角形的概念:三角形的特点及性质。

2.三角形的周长:三角形周长的计算方法。

3.三角形的面积:三角形面积的计算方法。

七、圆1.圆的概念:正圆、圆心、半径、直径的概念及表示方法。

2.圆的周长与面积:圆的周长的计算方法,圆的面积的计算方法。

八、数据的收集和整理1.数据的概念:数据的分类,数据的整理和处理。

2.分类数据的统计:频数、频率和众数的概念,统计图、统计图表的制作和解读。

小学六年级数学必备知识点整理

小学六年级数学必备知识点整理

一、数的认识和数的运算1.数的概念:自然数、零、整数、分数、小数的认识。

2.数的大小:数的比较,大于、小于、等于的关系。

3.加法:数的加法,加法的性质,加法法则,应用。

4.减法:数的减法,减法的性质,减法法则,应用。

5.乘法:数的乘法,乘法的性质,乘法法则,应用。

6.除法:数的除法,除法的性质,除法法则,应用。

7.分数的认识和分数的加减乘除运算。

二、数的应用1.解决实际问题:进行加、减、乘、除的运算,应用到实际生活中。

2.解决带字的数学问题:设未知数,列方程组解方程,为带字的数学问题建立方程。

3.面积和周长计算:认识面积的概念,计算几何图形的面积,认识周长的概念。

4.多边形的运算:计算多边形的周长,计算多边形的内角和,应用到实际问题中。

三、几何图形1.平面几何:点、直线、线段、直角、梯形、平行线、垂直线等的认识。

2.三角形的认识:三角形分类,三角形内角和,三角形的面积。

3.四边形的认识:四边形的分类,平行四边形,矩形,正方形,菱形等。

4.圆形的认识:圆的基本概念,圆的面积和周长的计算。

5.立体几何:正方体、长方体、四面体等的认识,计算立体图形的体积。

四、数据统计1.数据的收集和整理:用图表表示数据,用图表分析数据。

2.直方图的理解和应用:利用直方图分析数据,读懂直方图。

3.平均数的计算:算数平均数的概念和计算方法,应用到实际问题中。

4.上、中、下四分位数的理解和计算:利用四分位数分析数据。

五、时间和钟表1.认识钟表:认识小时和分钟的刻度,认识指针的运动。

2.认识时间:认识时间的概念,读写时间,计算时间差。

3.日历的认识和应用:使用日历,计算日期的间隔。

六、图形的变换1.图形的平移:图形的平移概念,平移的方法和规律,应用。

2.图形的翻转:图形的翻转概念,翻转的方法和规律,应用。

3.图形的旋转:图形的旋转概念,旋转的方法和规律,应用。

七、数的整体关系1.因数和倍数:因数的概念和判断,倍数的概念和判断,公因数和公倍数的认识。

六年级数学上册全册概念背诵知识点总结

六年级数学上册全册概念背诵知识点总结

六年级数学全册概念背诵知识点总结1、分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

一个数与分数相乘,可以看作是求这个数的几分之几是多少。

2、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

但分子分母不能为零。

3、分数乘整数:数形结合、转化化归4、倒数:乘积是1的两个数叫做互为倒数。

5、分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/3。

3/4是4/3的倒数,也可以说4/3是3/4的倒数。

6、整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是1/12,12是1/12的倒数。

7、小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/1。

用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。

分数、整数也都使用这种规律。

8、分数除法:分数除法是分数乘法的逆运算。

9、分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

10、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

11、分数除法应用题:先找单位1。

单位1已知,求部分量或对应分率用乘法,求单位1用除法。

12、分数混合运算的运算顺序与整数混合运算的运算顺序完全相同,都是先算乘除,再算加减,有括号的先算括号里的。

①如果是同一级运算,按照从左到右的顺序依次计算。

②如果是分数连乘,可先进行约分,再进行计算;③如果是分数乘除混合运算时,要先把除法转换成乘法,然后按乘法运算。

数学六年级知识点汇总

数学六年级知识点汇总

数学六年级知识点汇总一、数学六年级知识点汇总二、整数整数的概念与表示方法、正整数、负整数、零、相反数、数轴、绝对值、加法法则、减法法则等知识点。

三、分数分数的概念与表示方法、分子与分母、分数的大小比较、分数的简化与扩展、分数的加减法、分数的乘除法、分数与整数的运算等知识点。

四、小数小数的概念与表示方法、小数点的读法、小数与分数的相互转化、小数的大小比较、小数的加减法、小数的乘法、小数的除法等知识点。

五、多位数运算多位数的概念与读法、多位数的加法、多位数的减法、多位数的乘法、多位数的除法、多位数的综合运算等知识点。

六、约数与倍数约数的概念与判断、最大公约数、最小公倍数、除数与被除数、倍数与因数等知识点。

七、平方与平方根平方数的概念与判断、平方根的概念与求解、完全平方数、非完全平方数等知识点。

八、几何图形线段、直线、射线、角的概念与分类、平行线、垂线、直角、锐角、钝角、三角形、四边形、正方形、长方形、平行四边形、圆等知识点。

九、面积与周长图形的面积计算、图形的周长计算、面积与周长的关系等知识点。

十、数据分析数据的收集与整理、数据的图表表示、数据的分析与解读等知识点。

十一、实际问题的应用将数学知识应用于实际问题解决中的能力培养等知识点。

以上是数学六年级知识点的汇总,通过学习这些知识点,能够帮助同学们在数学学科上建立扎实的基础,提高解决问题的能力。

在学习过程中,要注重理论与实际的结合,尽可能多地进行练习与应用,以巩固所学的知识。

希望同学们在六年级的学习中能够取得优异的成绩!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章数和数的运算1. 整数:自然数都是整数,整数包括自然数。

2. 自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

一个物体也没有,用0表示。

0也是自然数。

3.计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。

这样的计数法叫做十进制计数法。

4 .数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5.数的整除:整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a 能被b整除,或者说b能整除a 。

如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。

倍数和约数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的约数。

6.一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。

例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。

7.一个数的倍数的个数是无限的,其中最小的倍数是它本身。

3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。

8.个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。

个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

9.能被2整除的数叫做偶数。

不能被2整除的数叫做奇数。

0也是偶数。

自然数按能否被2 整除的特征可分为奇数和偶数。

10.一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

11.一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如4、6、8、9、12都是合数。

12. 1不是质数也不是合数,自然数除了1外,不是质数就是合数。

如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

13.每个合数都可以写成几个质数相乘的形式。

其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例如把28分解质因数28=2×2×714.几个数公有的约数,叫做这几个数的公约数。

其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。

其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。

15.公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:1和任何自然数互质。

相邻的两个自然数互质。

两个不同的质数互质。

当合数不是质数的倍数时,这个合数和这个质数互质。

16.如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。

如果两个数是互质数,它们的最大公约数就是1。

17.几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。

18.如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。

19.小数的分类纯小数:整数部分是零的小数,叫做纯小数。

例如:0.25 、0.368 都是纯小数。

带小数:整数部分不是零的小数,叫做带小数。

例如: 3.25 、 5.26 都是带小数。

有限小数:小数部分的数位是有限的小数,叫做有限小数。

例如:41.7 、25.3 、0.23 都是有限小数。

无限小数:小数部分的数位是无限的小数,叫做无限小数。

例如:4.33 …… 3.1415926 ……20.无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。

例如:∏21.循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。

例如:3.555 …… 0.0333 …… 12.109109 ……22.一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。

例如:3.99 ……的循环节是“ 9 ” ,0.5454 ……的循环节是“ 54 ” 。

纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。

例如:3.111 …… 0.5656 ……混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。

3.1222 ……0.03333 ……写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。

如果循环节只有一个数字,就只在它的上面点一个点。

例如: 3.777 …… 简写作0.5302302 …… 简写作。

23.分数的意义 :把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

24.分数的分类真分数:分子比分母小的分数叫做真分数。

真分数小于1。

假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。

假分数大于或等于1。

带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

25 .约分和通分把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。

分子分母是互质数的分数,叫做最简分数。

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

26.表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。

百分数通常用"%"来表示。

百分号是表示百分数的符号。

27. 整数的读法:从高位到低位,一级一级地读。

读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。

每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

28.小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。

小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。

29.一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。

有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

(1)准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。

改写后的数是原数的准确数。

例如把1254300000 改写成以万做单位的数是125430 万;改写成以亿做单位的数12.543 亿。

(2)近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。

例如:1302490015 省略亿后面的尾数是13 亿。

四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。

例如:省略345900 万后面的尾数约是35 万。

省略4725097420 亿后面的尾数约是47 亿。

30. 比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。

比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。

分数的分母和分子都不相同的,先通分,再比较两个数的大小。

31. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

分数化成小数:用分母去除分子。

能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

32.一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。

33.小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。

百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

34.分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。

35. 成为互质关系的两个数:1和任何自然数互质;相邻的两个自然数互质;当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公约数只有1时,这两个合数互质。

36.商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。

小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。

37.小数点位置的移动引起小数大小的变化(1) 小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……(2)小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……38.把两个数合并成一个数的运算叫做加法。

已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。

加法和减法互为逆运算。

求几个相同加数的和的简便运算叫做乘法。

已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。

乘法和除法互为逆运算。

在乘法里,0和任何数相乘都得0. 1和任何数相乘都的任何数。

在除法里,0不能做除数。

因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。

39. 加数+加数=和一个加数=和-另一个加数被减数-除数=差减数=被减数-差被减数=差+减数一个因数×一个因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数40.加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。

相关文档
最新文档