卷文科数学试卷及答案
2024年高考数学试卷(文)(全国甲卷)(含答案)
绝密★启用前2024年普通高等学校招生全国统一考试全国甲卷文科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}1,2,3,4,5,9A =,{}1B x x A =+Î,则A B =I ( )A. {}1,2,3,4B. {}1,2,3 C. {}3,4 D. {}1,2,9【答案】A 【解析】【分析】根据集合B 的定义先算出具体含有的元素,然后根据交集的定义计算.【详解】依题意得,对于集合B 中的元素x ,满足11,2,3,4,5,9x +=,则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =,于是{1,2,3,4}A B Ç=.故选:A2. 设z =,则z z ×=( )A. -iB. 1C. -1D. 2【答案】D 【解析】【分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【详解】依题意得,z =,故22i 2zz =-=.故选:D3. 若实数,x y 满足约束条件43302202690x y x y x y --³ìï--£íï+-£î,则5z x y =-最小值为( )A. 5B.12C. 2-D. 72-【答案】D 【解析】【分析】画出可行域后,利用z 的几何意义计算即可得.【详解】实数,x y 满足43302202690x y x y x y --³ìï--£íï+-£î,作出可行域如图:由5z x y =-可得1155y x z =-,即z 的几何意义为1155y x z =-的截距的15-,则该直线截距取最大值时,z 有最小值,此时直线1155y x z =-过点A ,联立43302690x y x y --=ìí+-=î,解得321x y ì=ïíï=î,即3,12A æöç÷èø,则min 375122z =-´=-.故选:D.4. 等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( )A. 2- B.73C. 1D.29【答案】D 【解析】的【分析】可以根据等差数列的基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【详解】方法一:利用等差数列的基本量由91S =,根据等差数列的求和公式,911989193612S a d a d ´=+=Û+=,又371111222628(936)99a a a d a d a d a d +=+++=+=+=.故选:D方法二:利用等差数列的性质根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式,193799()9()122a a a a S ++===,故3729a a +=.故选:D方法三:特殊值法不妨取等差数列公差0d =,则9111199S a a ==Þ=,则371229a a a +==.故选:D5. 甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( )A.14B.13C.12D.23【答案】B 【解析】【分析】分类讨论甲乙的位置,得到符合条件的情况,然后根据古典概型计算公式进行求解.【详解】当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种;当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=.故选:B6. 已知双曲线2222:1(0,0)y x C a b a b-=>>的上、下焦点分别为()()120,4,0,4F F -,点()6,4P -在该双曲线上,则该双曲线的离心率为( )A. 4B. 3C. 2D.【答案】C 【解析】【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.【详解】由题意,()10,4F -、()20,4F 、()6,4P -,则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =-=-=,则28224c e a ===.故选:C.7. 曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为( )A.16B.C.12D. 【答案】A 【解析】【分析】先求出切线方程,再求出切线的截距,从而可求面积.【详解】()563f x x =¢+,所以()03f ¢=,故切线方程为3(0)131y x x =--=-,故切线的横截距为13,纵截距为1-,故切线与坐标轴围成的面积为1111236´´=故选:A.8. 函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A. B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【详解】()()()()()22ee sin e e sin xx x x f x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42ef æöæö=-+->-+-=-->->ç÷ç÷èøèø,故可排除D.故选:B.9. 已知cos cos sin a a a =-πtan 4a æö+=ç÷èø( )A. 1+B. 1- C.D. 1【答案】B 【解析】【分析】先将cos cos sin aa -a弦化切求得tan a ,再根据两角和的正切公式即可求解.【详解】因为cos cos sin aa a=-,所以11tan =-a ,tan 1Þa =,所以tan 1tan 11tan 4a +p æö==a +ç÷-aèø,故选:B .原10题略10. 设a b 、是两个平面,m n 、是两条直线,且m a b =I .下列四个命题:①若//m n ,则//n a 或//n b ②若m n ^,则,n n a b^^③若//n a ,且//n b ,则//m n ④若n 与a 和b 所成的角相等,则m n^其中所有真命题的编号是( )A. ①③ B. ②④C. ①②③D. ①③④【答案】A【解析】【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③.【详解】对①,当n Ìa ,因为//m n ,m b Ì,则//n b ,当n b Ì,因为//m n ,m a Ì,则//n a ,当n 既不在a 也不在b 内,因为//m n ,,m m a b ÌÌ,则//n a 且//n b ,故①正确;对②,若m n ^,则n 与,a b 不一定垂直,故②错误;对③,过直线n 分别作两平面与,a b 分别相交于直线s 和直线t ,因为//n a ,过直线n 的平面与平面a 的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s Ë平面b ,t Ì平面b ,则//s 平面b ,因为s Ì平面a ,m a b =I ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n a b Ç=与a 和b 所成的角相等,如果//,//a b n n ,则//m n ,故④错误;综上只有①③正确,故选:A.11. 在ABC V 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A.32B.C.D.【答案】C 【解析】【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac p==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin A C +=.故选:C.二、填空题:本题共4小题,每小题5分,共20分.原13题略12. 函数()sin f x x x =在[]0,π上的最大值是______.【答案】2【解析】【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】()πsin 2sin 3f x x x x æö==-ç÷èø,当[]0,πx Î时,ππ2π,333x éù-Î-êúëû,当ππ32x -=时,即5π6x =时,()max 2f x =.故答案为:213. 已知1a >,8115log log 42a a -=-,则=a ______.【答案】64【解析】【分析】将8log ,log 4a a 利用换底公式转化成2log a 来表示即可求解.【详解】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=,2log 1a Þ=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案:64.为14. 曲线33y x x =-与()21y x a =--+在()0,¥+上有两个不同的交点,则a 的取值范围为______.【答案】()2,1-【解析】【分析】将函数转化为方程,令()2331x x x a -=--+,分离参数a ,构造新函数()3251,g x x x x =+-+结合导数求得()g x 单调区间,画出大致图形数形结合即可求解.【详解】令()2331x x x a -=--+,即3251a x x x =+-+,令()()32510,g x x x x x =+-+>则()()()2325351g x x x x x =+-=+-¢,令()()00g x x ¢=>得1x =,当()0,1x Î时,()0g x ¢<,()g x 单调递减,当()1,x ¥Î+时,()0g x ¢>,()g x 单调递增,()()01,12g g ==-,因为曲线33y x x =-与()21y x a =--+在()0,¥+上有两个不同的交点,所以等价于y a =与()g x 有两个交点,所以()2,1a Î-.故答案为:()2,1-三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.15. 已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 通项公式.【答案】(1)153n n a -æö=ç÷èø的(2)353232næö-ç÷èø【解析】【分析】(1)利用退位法可求公比,再求出首项后可求通项;(2)利用等比数列的求和公式可求n S .【小问1详解】因为1233n n S a +=-,故1233n n S a -=-,所以()12332n n n a a a n +=-³即153n n a a +=故等比数列的公比为53q =,故1211523333533a a a a =-=´-=-,故11a =,故153n n a -æö=ç÷èø.【小问2详解】由等比数列求和公式得5113353523213n nn S éùæö´-êúç÷èøêúæöëû==-ç÷èø-.16. 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求点M 到ABF 的距离.【答案】(1)证明见详解; (2【解析】【分析】(1)结合已知易证四边形BCDM 为平行四边形,可证//BM CD,进而得证;(2)作FO AD ^,连接OB ,易证,,OB OD OF 三垂直,结合等体积法M ABF F ABM V V --=即可求解.【小问1详解】因为//,2,4,BC AD BC AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 为平行四边形,所以//BM CD ,又因BM Ë平面CDE ,CD Ì平面CDE ,所以//BM 平面CDE ;【小问2详解】如图所示,作BO AD ^交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =,结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =,所以ABM V 为等边三角形,O 为AM中点,所以OB =,又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =,四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM V 与AFM △底边上中点O 重合,OF AM ^,3OF ==,因为222OB OF BF +=,所以OB OF ^,所以,,OB OD OF 互相垂直,由等体积法可得M ABF F ABM V V --=,2112333F ABM ABM V S FO -=×=×=△,222cos 2FA AB FBFAB FAB FA AB+-Ð===Ð=×11sin 222FAB S FA AB FAB =××Ð==△,设点M 到FAB的距离为d ,则1133M FAB F ABM FAB V V S d d --==××==△解得d =M 到ABF .为17. 已知函数()()1ln 1f x a x x =--+.(1)求()f x 的单调区间;(2)若2a £时,证明:当1x >时,()1ex f x -<恒成立.【答案】(1)见解析(2)见解析【解析】【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当1x >时,1e 21ln 0x x x --++>即可.【小问1详解】()f x 定义域为(0,)+¥,11()ax f x a x x¢-=-=当0a £时,1()0ax f x x -¢=<,故()f x 在(0,)+¥上单调递减;当0a >时,1,x a ¥æöÎ+ç÷èø时,()0f x ¢>,()f x 单调递增,当10,x a æöÎç÷èø时,()0f x ¢<,()f x 单调递减.综上所述,当0a £时,()f x 在(0,)+¥上单调递减;0a >时,()f x 在1,a ¥æö+ç÷èø上单调递增,在10,a æöç÷èø上单调递减.【小问2详解】2a £,且1x >时,111e ()e (1)ln 1e 21ln x x x f x a x x x x ----=--+-³-++,令1()e 21ln (1)x g x x x x -=-++>,下证()0g x >即可.11()e 2x g x x -¢=-+,再令()()h x g x ¢=,则121()e x h x x-¢=-,显然()h x ¢在(1,)+¥上递增,则0()(1)e 10h x h ¢¢>=-=,即()()g x h x =¢在(1,)+¥上递增,故0()(1)e 210g x g ¢¢>=-+=,即()g x 在(1,)+¥上单调递增,故0()(1)e 21ln10g x g >=-++=,问题得证18. 设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M æöç÷èø在C 上,且MF x ^轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ^轴.【答案】(1)22143x y += (2)证明见解析【解析】【分析】(1)设(),0F c ,根据M 的坐标及MF ^x 轴可求基本量,故可求椭圆方程.(2)设:(4)AB y k x =-,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y -,结合韦达定理化简前者可得10Q y y -=,故可证AQ y ^轴.【小问1详解】设(),0F c ,由题设有1c =且232b a =,故2132a a -=,故2a =,故b =,故椭圆方程为22143x y +=.【小问2详解】直线AB 的斜率必定存在,设:(4)AB y k x =-,()11,A x y ,()22,B x y ,由223412(4)x y y k x ì+=í=-î可得()2222343264120k x k x k +-+-=,故()()422Δ102443464120k k k =-+->,故1122k -<<,又22121222326412,3434k k x x x x k k-+==++,而5,02N æöç÷èø,故直线225:522y BN y x x æö=-ç÷èø-,故22223325252Q y y y x x --==--,所以()1222112225332525Q y x y y y y y x x ´-+-=+=--()()()12224253425k x x k x x -´-+-=-()222212122264123225825834342525k k x x x x k k k k x x -´-´+-++++==--2222212824160243234025k k k k k x --+++==-,故1Q y y =,即AQ y ^轴.(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意D 的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.19. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1r r q =+.(1)写出C 的直角坐标方程;(2)设直线l :x t y t a=ìí=+î(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.【答案】(1)221y x =+(2)34a =【解析】【分析】(1)根据cos xr r q ìï=í=ïî可得C 的直角方程.(2)将直线的新的参数方程代入C 的直角方程,法1:结合参数s 的几何意义可得关于a 的方程,从而可求参数a 的值;法2:将直线的直角方程与曲线的直角方程联立,结合弦长公式可求a 的值.【小问1详解】由cos 1r r q =+,将cos xr r q ìï=í=ïîcos 1r r q =+,1x =+,两边平方后可得曲线直角坐标方程为221y x =+.【小问2详解】对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+.法1:直线l 的斜率为1故直线的参数方程可设为x y ì=ïïíïïî,s ÎR .将其代入221y x =+中得()221)210s a s a +-+-=设,A B 两点对应的参数分别为12,s s ,则)()212121,21s s a s s a +=--=-,且()()22Δ818116160a a a =---=->,故1a <,12AB s s\=-=2==,解得34a =.法2:联立221y x a y x =+ìí=+î,得22(22)10x a x a +-+-=,()22Δ(22)41880a a a =---=-+>,解得1a <,的设()()1122,,,A x y B x y ,2121222,1x x a x x a \+=-=-,则AB ==2=,解得34a =20. 实数,ab 满足3a b +³.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-³.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)直接利用22222()a b a b +³+即可证明.(2)根据绝对值不等式并结合(1)中结论即可证明.【小问1详解】因为()()2222222022a b a ab b a b b a -+=--++=³,当a b =时等号成立,则22222()a b a b +³+,因为3a b +³,所以22222()a b a b a b +³+>+;【小问2详解】222222222222()a b b a a b b a a b a b -+-³-+-=+-+22222()()()()(1)326a b a b a b a b a b a b =+-+³+-+=++-³´=。
2023年高考数学(全国甲卷)文科数学(含答案及详细解析)
2023年高考数学真题试卷(全国甲卷)文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,集合,则()A.B.C.D.2.()A.B.1C.D.3.已知向量,则()A.B.C.D.4.某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.B.C.D.5.记为等差数列的前项和.若,则()A.25B.22C.20D.156.执行下边的程序框图,则输出的()A.21B.34C.55D.897.设为椭圆的两个焦点,点在上,若,则()A.1B.2C.4D.58.曲线在点处的切线方程为()A.B.C.D.9.已知双曲线的离心率为,其中一条渐近线与圆交于A,B两点,则()A.B.C.D.10.在三棱锥中,是边长为2的等边三角形,,则该棱锥的体积为()A.1B.C.2D.311.已知函数.记,则()A.B.C.D.12.函数的图象由的图象向左平移个单位长度得到,则的图象与直线的交点个数为()A.1B.2C.3D.4二、填空题:本大题共4小题,每小题5分,共20分.13.记为等比数列的前项和.若,则的公比为.14.若为偶函数,则.15.若x,y满足约束条件,则的最大值为.16.在正方体中,为的中点,若该正方体的棱与球的球面有公共点,则球的半径的取值范围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.记的内角的对边分别为,已知.(1)求;(2)若,求面积.18.如图,在三棱柱中,平面.(1)证明:平面平面;(2)设,求四棱锥的高.19.一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.218.820.221.322.523.225.826.527.530.132.634.334.835.635.635.836.237.340.543.2试验组的小白鼠体重的增加量从小到大排序为7.89.211.412.413.215.516.518.018.819.219.820.221.622.823.623.925.128.232.336.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于m的数据的个数,完成如下列联表对照组试验组(ⅱ)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:,0.1000.0500.0102.7063.841 6.63520.已知函数.(1)当时,讨论的单调性;(2)若,求的取值范围.21.已知直线与抛物线交于两点,.(1)求;(2)设为的焦点,为上两点,且,求面积的最小值.22.已知点,直线(为参数),为的倾斜角,与轴正半轴、轴正半轴分别交于,且.(1)求;(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程.23.已知.(1)求不等式的解集;(2)若曲线与轴所围成的图形的面积为2,求.答案解析部分1.【答案】A【解析】【解答】,故选:A【分析】先计算补集,再求并集即得答案.2.【答案】C【解析】【解答】,故选:C【分析】利用复数乘法运算计算由得出答案。
2024年全国统一高考数学试卷(文科)(甲卷)[含答案]
2024年全国统一高考数学试卷(文科)(甲卷)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的.1.集合,2,3,4,5,,,则 {1A =9}{|1}B x x A =+∈(A B = )A .,2,3,B .,2,C .,D .,2,{14}{13}{34}{19}2.设,则 z =(z z ⋅=)A .B .1C .D .2i-1-3.若实数,满足约束条件则的最小值为 x y 4330,220,2690,x y x y x y --⎧⎪--⎨⎪+-⎩ 5z x y =-()A .5B .C .D .122-72-4.等差数列的前项和为,若, {}n a n n S 91S =37(a a +=)A .B .C .1D .2-73295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是 ()A .B .C .D .141312236.已知双曲线的两个焦点分别为、,且经过点,则双曲线的离心率是 1(0,4)F 2(0,4)F -(6,4)P -C ()A .4B .3C .2D 7.曲线在处的切线与坐标轴围成的面积为 6()31f x x x =+-(0,1)-()A .BC .D .16128.函数的区间,的图像大致为 2()()sin xx f x x e ex -=-+-[ 2.8- 2.8]()A .B .C .D .9.已知 cos cos sin ααα=-tan()(4πα+=)A .B .CD.1+1-1-10.已知直线与圆交于,两点,则的最小值为 20ax y a ++-=22:410C x y y ++-=A B ||AB ()A .2B .3C .4D .611.已知、是两个平面,、是两条直线,.下列四个命题:αβm n m αβ= ①若,则或//m n //n α//n β②若,则,m n ⊥n α⊥n β⊥③若,且,则//n α//n β//m n ④若与和所成的角相等,则n αβm n ⊥其中,所有真命题的编号是 ()A .①③B .②③C .①②③D .①③④12.在中,内角,,所对边分别为,,,若,,则 ABC ∆A B C a b c 3B π=294b ac =sin sin (A C +=)A .BCD32二、填空题:本题共4小题,每小题5分,共20分.13.函数在,上的最大值是 ()sin f x x x =[0]π14.已知甲、乙两个圆台上下底面的半径均为和,母线长分别为和,则两个圆台的2r 1r 122()r r -123()r r -体积之比 .V V =甲乙15.已知,,则 .1a >8115log log 42a a -=-a =16.曲线与在上有两个不同的交点,则的取值范围为 .33y x x =-2(1)y x a =--+(0,)+∞a 三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)已知等比数列的前项和为,且.{}n a n n S 1233n n S a +=-(1)求的通项公式;{}n a (2)求数列的通项公式.{}n S 18.(12分)某工厂进行生产线智能化升级改造.升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有的把握认为甲、乙两车间产品的优级品率存在差异?能否有的把握认为甲、乙两车间产95%99%品的估级品率存在差异?(2)已知升级改造前该工厂产品的优级品率.设为升级改造后抽取的件产品的优级品率.如0.5p =p n 果,则认为该工厂产品的优级品率提高了.根据抽取的150件产品的数据,能否认p p >+12.247)≈附:,22()()()()()n ad bc K a b c d a c b d -=++++2()P K k 0.0500.0100.001k3.8416.63510.82819.(12分)如图,在以,,,,,为顶点的五面体中,四边形与四边形均A B C D E F ABCD CDEF 为等腰梯形,,,,,,,//AB CD //CD EF 2AB DE EF CF ====4CD =AD BC ==AE =为的中点.M CD (1)证明:平面;//EM BCF (2)求点到的距离.M ADE20.(12分)已知函数.()(1)1f x a x lnx =--+(1)求的单调区间;()f x (2)若时,证明:当时,恒成立.2a 1x >1()x f x e -<21.(12分)已知椭圆的右焦点为,点在椭圆上,且轴.2222:1(0)x y C a b a b +=>>F 3(1,2M C MF x ⊥(1)求椭圆的方程;C (2)过点的直线与椭圆交于,两点,为线段的中点,直线与交于,证明:(4,0)P C A B N FP NB MF Q 轴.AQ y ⊥(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线xOy O x 的极坐标方程为.C cos 1ρρθ=+(1)写出的直角坐标方程;C (2)直线为参数),若与交于、两点,,求的值.:(x tl t y t a =⎧⎨=+⎩C l A B ||2AB =a [选修4-5:不等式选讲]23.实数,满足.a b 3a b + (1)证明:;2222a b a b +>+(2)证明:.22|2||2|6a b b a -+-2024年全国统一高考数学试卷(文科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的.1.集合,2,3,4,5,,,则 {1A =9}{|1}B x x A =+∈(A B = )A .,2,3,B .,2,C .,D .,2,{14}{13}{34}{19}【解析】:,2,3,4,5,,,1,2,3,4,,{1A =9}{|1}{0B x x A =+∈=8}则,2,3,.故选:.{1A B = 4}A 2.设,则 z =(z z ⋅=)A .B .1C .D .2i-1-解法一:,则.故选:.z =z =()2z z ⋅=⋅=D 解法二:22z z z ⋅==3.若实数,满足约束条件则的最小值为 x y 4330,220,2690,x y x y x y --⎧⎪--⎨⎪+-⎩5z x y =-()A .5B .C .D .122-72-【解析】:作出不等式组所表示的平面区域,如图所示:4330,220,2690,x y x y x y --⎧⎪--⎨⎪+-⎩将约束条件两两联立可得3个交点:,,,(0,1)C -3(,1)2A 1(3,)2B 由得,则可看作直线在轴上的截距,5z x y =-1155y x z =-15z -1155y x z =-y 经检验可知,当直线经过点,时,最小,代入目标函数可得:.3(2A 1)z 72min z =-故选:.D 4.等差数列的前项和为,若, {}n a n n S 91S =37(a a +=)A .B .C .1D .2-7329解法一:,则,解得.故选:.91S =193799()9()122a a a a S ++===3729a a +=D 解法二:利用等差数列的基本量由,根据等差数列的求和公式,,91S =9119891,93612dS a a d ⨯=+=∴+=.()37111122262893699a a a d a d a d a d +=+++=+=+=解法三:特殊值法不妨取等差数列公差,则,则.故选:D0d =9111199S a a ==⇒=371229a a a +==解法四:【构造法】:设的公差为,利用结论是首项为,公差为的等差数列,{}n a d n S n ⎧⎫⎨⎬⎩⎭1a 2d 则,,()911118428922S d a a d a d =+=+=+371112628a a a d a d a d +=+++=+则,所以.故选:D ()()9111371118428==92229S d a a d a d a a =+=+=++3729a a +=解法五:根据题意,故选:D375922299a a a S +===5.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是 ()A .B .C .D .14131223【解析】:甲、乙、丙、丁四人排成一列共有种可能,4424A =丙不在排头,且甲或乙在排尾的情况有种可能,故.故选:.1122228C C A=81243P ==B 6.已知双曲线的两个焦点分别为、,且经过点,则双曲线的离心率是 1(0,4)F 2(0,4)F -(6,4)P -C ()A .4B .3C.2D 解法一:因为双曲线的两个焦点分别为、,且经过点,1(0,4)F 2(0,4)F -(6,4)P -所以,,,12||8F F =1||6PF =2||10PF ==则双曲线的离心率.故选:.C 2822106c e a ===-C 解法二:点纵坐标相同,所以是通径的一半即1P F 、1||PF 21||6b PF a ==则即,则双曲线的离心率.故选:.2166a a -=2a =C 224c e a ===C 解法三:双曲线的离心率C 121221086F F e PF PF ===--解法四 :根据焦点坐标可知4c =,根据焦点在y 轴上设双曲线方程为22221y xa b -=,则22221636116a b a b ⎧-=⎪⎨⎪+=⎩,则2a b =⎧⎪⎨=⎪⎩2c e a ==7.曲线在处的切线与坐标轴围成的面积为 6()31f x x x =+-(0,1)-()A .BC .D .1612【解析】:因为,所以,曲线在处的切线斜率,6()3f x x x =+5()63f x x '=+(0,1)-3k =故曲线在处的切线方程为,即,(0,1)-13y x +=31y x =-则其与坐标轴围成的面积.故选:.1111236S =⨯⨯=A 8.函数的区间,的图像大致为 2()()sin x x f x x ee x -=-+-[ 2.8-2.8]()A .B .C .D .解法一:,2()()sin x x f x x e e x -=-+-则,故为偶函数,故错误;22()()()sin()()sin ()x x x x f x x e e x x e e x f x ---=--+--=-+-=()f x AC (1),故错误,正确.f 1111111()sin11()sin 1062242e e e e e e eπ-=-+->-+-=-->->D B 故选:.B 解法二:函数为偶函数。
2023年全国统一高考数学试卷(文科)(甲卷)(解析版)
2023年全国统一高考数学试卷(文科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设全集U={1,2,3,4,5},集合M={1,4},N={2,5},则N∪∁U M=( )A.{2,3,5}B.{1,3,4}C.{1,2,4,5}D.{2,3,4,5}【答案】A【解答】解:因为U={1,2,3,4,5},集合M={1,4},N={2,5},所以∁U M={2,3,5},则N∪∁U M={2,3,5}.故选:A.2.(5分)=( )A.﹣1B.1C.1﹣i D.1+i【答案】C【解答】解:==1﹣i.故选:C.3.(5分)已知向量=(3,1),=(2,2),则cos〈+,﹣〉=( )A.B.C.D.【答案】B【解答】解:根据题意,向量=(3,1),=(2,2),则+=(5,3),﹣=(1,﹣1),则有|+|==,|﹣|==,(+)•(﹣)=2,故cos〈+,﹣〉==.故选:B.4.(5分)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .B .C .D .【答案】D【解答】解:某校文艺部有4名学生,其中高一、高二年级各2名,从这4名学生中随机选2名组织校文艺汇演,基本事件总数n ==6,这2名学生来自不同年级包含的基本事件个数m ==4,则这2名学生来自不同年级的概率为P ===.故选:D .5.(5分)记S n 为等差数列{a n }的前n 项和.若a 2+a 6=10,a 4a 8=45,则S 5=( )A .25B .22C .20D .15【答案】C【解答】解:等差数列{a n }中,a 2+a 6=2a 4=10,所以a 4=5,a 4a 8=5a 8=45,故a 8=9,则d ==1,a 1=a 4﹣3d =5﹣3=2,则S 5=5a 1+=10+10=20.故选:C .6.(5分)执行下边的程序框图,则输出的B =( )A.21B.34C.55D.89【答案】B【解答】解:模拟执行程序框图,如下:n=3,A=1,B=2,k=1,k≤3,A=1+2=3,B=3+2=5,k=2,k≤3,A=3+5=8,B=8+5=13,k=3,k≤3,A=8+13=21,B=21+13=34,k=4,k>3,输出B=34.故选:B.A.1B.2C.4D.5【答案】B【解答】解:根据题意,点P在椭圆上,满足•=0,可得∠F1PF2=,又由椭圆C:+y2=1,其中c2=5﹣1=4,可得|PF1|•|PF2|=2,故选:B.8.(5分)曲线y=在点(1,)处的切线方程为( )A.y=x B.y=x C.y=x+D.y=x+【答案】C【解答】解:因为y=,y′==,故函数在点(1,)处的切线斜率k=,切线方程为y﹣=(x﹣1),即y=.故选:C.9.(5分)已知双曲线C:﹣=1(a>0,b>0)的离心率为,C的一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,则|AB|=( )A.B.C.D.【答案】D【解答】解:双曲线C:﹣=1(a>0,b>0)的离心率为,可得c=a,所以b=2a,所以双曲线的渐近线方程为:y=±2x,一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,圆的圆心(2,3),半径为1,圆的圆心到直线y=2x的距离为:=,所以|AB|=2=.故选:D.10.(5分)在三棱锥P﹣ABC中,△ABC是边长为2的等边三角形,PA=PB=2,PC=,则该棱锥的体积为( )A.1B.C.2D.3【答案】A【解答】解:如图,PA=PB=2,AB=BC=2,取AB的中点D,连接PD,CD,可得AB⊥PD,AB⊥CD,又PD∩CD=D,PD、CD⊂平面PCD,∴AB⊥平面PCD,在△PAB与△ABC中,求得PD=CD=,在△PCD中,由PD=CD=,PC=,得PD2+CD2=PC2,则PD⊥CD,∴,∴×AB=.故选:A.11.(5分)已知函数f(x)=.记a=f(),b=f(),c=f(),则( )A.b>c>a B.b>a>c C.c>b>a D.c>a>b【答案】A【解答】解:令g(x)=﹣(x﹣1)2,则g(x)的开口向下,对称轴为x=1,∵,而=,∴,∴,∴由一元二次函数的性质可知g()<g(),∵,而,∴,∴,综合可得,又y=e x为增函数,∴a<c<b,即b>c>a.故选:A.12.(5分)函数y=f(x)的图象由y=cos(2x+)的图象向左平移个单位长度得到,则y=f(x)的图象与直线y=x﹣的交点个数为( )A.1B.2C.3D.4【答案】C【解答】解:y=cos(2x+)的图象向左平移个单位长度得到f(x)=cos (2x+)=﹣sin2x,在同一个坐标系中画出两个函数的图象,如图:y=f(x)的图象与直线y=x﹣的交点个数为:3.故选:C.二、填空题:本大题共4小题,每小题5分,共20分。
2024全国高考真题 全国甲卷 文科数学+答案
三、解答题:共 70 分.解答应写出文字说明,证明过程或演算步骤.第 17 题第 21 题为必
考题,每个考题考生必须作答.第 22、23 题为选考题,考生根据要求作答.
(一)必考题:共 60 分.
15. 已知等比数列{ }的前项和为 ,且2 = 3+1 − 3.
(1)求{ }的通项公式;
【12 题答案】2
【13 题答案】64
【14 题答案】(−2,1)
三、解答题:
(一)必考题:共 60 分.
【15 题答案】
−1
(1) = (5)
3ห้องสมุดไป่ตู้
3 5
3
(2) ( ) −
2 3
2
【16 题答案】
(1)证明见详解;
6√13
(2)
13
【17 题答案】
(1)见解析
(2)见解析
【18 题答案】
)
)
C.
D.
9. 已知
cos
= 3 ,则tan ( + 4 ) =(
cos − sin
A. 2√3 + 1
B. 2√3 − 1
)
C.
√3
2
D. 1 − √3
10. 设、是两个平面,、是两条直线,且 ∩ = .下列四个命题:
.
①若//,则//或//
②若 ⊥ ,则 ⊥ , ⊥
(2)求点到的距离.
17 已知函数() = ( − 1) − + 1.
(1)求() 单调区间;
(2)若 ≤ 2时,证明:当 > 1时, f ( x ) e
18. 设椭圆:
的的
2
2
2
2022年全国统一高考数学试卷和答案(文科)(甲卷)
2022年全国统一高考数学试卷(文科)(甲卷)和答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设集合A={﹣2,﹣1,0,1,2},B={x|0≤x<},则A ∩B=()A.{0,1,2}B.{﹣2,﹣1,0}C.{0,1}D.{1,2}2.(5分)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差3.(5分)若z=1+i,则|iz+3|=()A.4B.4C.2D.24.(5分)如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A.8B.12C.16D.205.(5分)将函数f(x)=sin(ωx+)(ω>0)的图像向左平移个单位长度后得到曲线C,若C关于y轴对称,则ω的最小值是()A.B.C.D.6.(5分)从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.B.C.D.7.(5分)函数f(x)=(3x﹣3﹣x)cosx在区间[﹣,]的图像大致为()A.B.C.D.8.(5分)当x=1时,函数f(x)=alnx+取得最大值﹣2,则f′(2)=()A.﹣1B.﹣C.D.19.(5分)在长方体ABCD﹣A1B1C1D1中,已知B1D与平面ABCD 和平面AA1B1B所成的角均为30°,则()A.AB=2ADB.AB与平面AB1C1D所成的角为30°C.AC=CB1D.B1D与平面BB1C1C所成的角为45°10.(5分)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S甲和S乙,体积分别为V甲和V乙.若=2,则=()A.B.2C.D.11.(5分)已知椭圆C:+=1(a>b>0)的离心率为,A1,A2分别为C的左、右顶点,B为C的上顶点.若•=﹣1,则C的方程为()A.+=1B.+=1C.+=1D.+y2=112.(5分)已知9m=10,a=10m﹣11,b=8m﹣9,则()A.a>0>b B.a>b>0C.b>a>0D.b>0>a 二、填空题:本题共4小题,每小题5分,共20分。
高考全国甲卷:《文科数学》2022年考试真题与答案解析
高考精品文档高考全国甲卷文科数学·2022年考试真题与答案解析同卷地区贵州省、四川省、云南省西藏自治区、广西自治区高考全国甲卷:《文科数学》2022年考试真题与答案解析一、选择题本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合5{2,1,0,1,2},02A B x x ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B =( ) A.{}0,1,2 B.{2,1,0}-- C.{0,1} D.{1,2} 答案:A2.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图,则( )A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差 答案:B3.若1i z =+.则|i 3|z z +=( ) A.B.C.D.答案:D4.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )A.8B.12C.16D.20 答案:B5.将函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭的图像向左平移π2个单位长度后得到曲线C ,若C 关于y轴对称,则ω的最小值是( )A.16B.14C.13D.12 答案:C6.从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为( )A.15B.13C.25D.23答案:C7.函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( )A.B.C.D.答案:A8.当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( ) A.1-B.12-C.12 D.1 答案:B9.在长方体1111ABCD A B C D -中,已知1B D 与平面ABCD 和平面11AA B B 所成的角均为30°,则( ) A.2AB AD =B.AB 与平面11AB C D 所成的角为30°C.1AC CB =D.1B D 与平面11BB C C 所成的角为45︒ 答案:D10.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=V V 甲乙( )B.答案:C11.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点。
2023年全国乙卷文科高考数学试题+答案解析
绝密★启用前2023年普通高等学校招生全国统一考试(全国乙卷∙文科)数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.2+i 2+2i 3 =()A.1B.2C.5D.5【答案】C【解析】∵2+i 2+2i 3=2-2i -1=1-2i ,∴|2+i 2+2i 3|=1-2i =12+(-2)2=5,选C 。
2.设全集U ={0,1,2,4,6,8},集合M ={0,4,6},N ={0,1,6},则M ⋃C U N =()A.{0,2,4,6,8} B.{0,1,4,6,8}C.{1,2,4,6,8}D.U【答案】A【解析】∵N ={2,4,8},∴M ⋃C U N ={0,2,4,6,8},选A.3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.30【答案】D【解析】如图所示,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2, AA 1=3,点H ,I ,J ,K 为所在棱上靠近点B 1,C 1,D 1,A 1的三等分点,O ,L ,M ,N 为所在棱的中点,则三视图所对应的几何体为长方体ABCD -A 1B 1C 1D 1去掉长方体ONIC 1-LMHB 1之后所得的几何体,该几何体表面积为:2×(2×2)+4×(2×3)-2×(1×1)=30,选D 。
4.在△BC 中,内角A,B,C 的对边分别是a,b,c,若acosB -bcosA =c,且C =π5,则∠B =()A.π10B.π5C.3π10D.2π5【答案】C【解析】∵sinAcosB -sinBcosA =sinC,即sinAcosB -sinBcosA =sin (A +B )=sinAcosBsinBcosA,∴sinBcosA =0,∵B ∈(0,π),∴sinB >0,∴cosA =0,A =π2,∴B =π-A -C =3π10,选C 。
高三文科数学试卷(含答案)经典题
高三文科数学试卷一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}24M x x =<,{}2230N x x x =--<,且M N =A .{}2x x <-B .{}3x x >C .{}12x x -<<D .{}23x x << 2.若函数2()log f x x =,则下面必在()f x 反函数图像上的点是反函数图像上的点是A .(2)aa , B .1(2)2-,C .(2)a a ,D .1(2)2-,3.右图为某几何体三视图,按图中所给数据,该几何体的体积为右图为某几何体三视图,按图中所给数据,该几何体的体积为A .64+163B . 16+334C .163D . 16 4.在各项都为正数的等比数列}{n a 中,首项为3,前3项和为项和为21,则=++543a a a ( )A .33 B .72 C .84 D .189 5. 将函数)32sin(p+=x y 的图像向右平移12p=x 个单位后所得的图像的一个对称轴是:个单位后所得的图像的一个对称轴是:A. 6p=x B. 4p=x C. 3p=x D. 2p=x6. 若以连续抛掷两次骰子分别得到的点数m ,n 作为点P 的坐标,则点P 落在圆落在圆1022=+y x 内(含边界)的概率为内(含边界)的概率为A .61 B .41 C .92D .3677.下列有关命题的说法正确的是.下列有关命题的说法正确的是A .“21x =”是“1-=x ”的充分不必要条件”的充分不必要条件 B .“2=x ”是“0652=+-x x ”的必要不充分条件.”的必要不充分条件. C .命题“x R $Î,使得210x x ++<”的否定是:“x R "Î, 均有210x x ++<”.D .命题“若x y =,则sin sin x y =”的逆否命题为真命题.”的逆否命题为真命题.P T O ,m)三点共线, 则m的值为 ..程序框图(即算法流程图)如图所示,其输出结果是 . a b b a a b 2的值为 .p所得的弦长为所得的弦长为. pp .开始开始 a =1 a =3a +1 a >100? 结束结束是否a =a +1 输出a33]3型号型号 甲样式甲样式 乙样式乙样式 丙样式丙样式 500ml2000 z 3000 700ml3000 4500 5000 A B C 2a0AF F F 13OF QN MQ a b a 21n +722p)ppp3122p]1 333222,0),(2,0),2a a --22,a 2)2a a a -22a -22a -222123a a -- QN MQ )33x x-1a£ïíïx=>上恒成立,0x >\只要24aa ì£ïí解:(1)由121n n na a a +=+得:1112n na a +-=且111a=,所以知:数列1n a ìüíýîþ是以1为首项,以2为公差的等差数列,为公差的等差数列, …………2分所以所以1112(1)21,21n nn n a a n =+-=-=-得:; ------------4分(2)由211n n b a =+得:212112,n n n n b b n=-+=\= , 从而:11(1)n n b b n n +=+ ------------6分则 122311111223(1)n n n T b b b b b b n n +=+++=+++´´+=11111111()()()()1223341n n -+-+-++-+ 1111nn n =-=++ ------------9分(3)已知)1()1)(1)(1(12531-++++=n nb b b b P 246213521n n =····- 22212(4)(4)1,221n nn n n n +<-\<- 设:nn T n 2124523+´´´= ,则n n T P >从而:nn n n T P P n n n 2121223423122+´-´´´´=> 21n =+故:故: 21n T n >+ ------------14分。
2023年成人高考----数学(文科、理科)真题试卷及答案
2023年成人高等学校招生全国统一考试数学(文史财经类)第Ⅰ卷 选择题共85分一、选择题(本大题共17小题;每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合{}12=∈=x R x M ,{}13=∈=x R x N ,则=N M ( ).A.{}1B.{}1-C.{}1-,1 D.∅2.函数sin(11)y x =+的最大值是( ).A.11B.1C.1-D.11-3.设α是第一象限角,1sin 3α=,则sin 2α=( ).A.49B.3C.9D.234.设2log x a =,则22log 2x =( ).A.221a +B.221a -C.21a -D.21a +5.设甲:sin x =,乙:cos x =则( ). A.甲是乙的充分非必要条件 B.甲是乙的必要非充分条件 C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件 6.下列函数中,为增函数的是( ).A.3y x =B.2y x =C.2y x =-D.3y x =-7.已知点(12)M ,,(23)N ,,则直线MN 的斜率为( ). A.53 B.1 C.1- D.53- 8.如果点()1,1A 和()4,2B 关于直线b kx y +=对称,则=k ( ).A.3-B.13-C.13D.39.若向量()1a =,-1,()1b x =,,且2a b +=,则x =( ).A.4-B.1-C.1D.410.设40πα<<,则=-ααcos sin 21( ).A.ααcos sin +B.ααcos sin --C.ααcos sin -D.ααsin cos -11.设()x ax x x f ++=23为奇函数,则=a ( ). A.1B.0C.1-D.2-12.等比数列{}n a 中21a =,2q =,则5a =( ).A.18B.14C.4D.813.函数2()2f x x x =-+的值域为( ).A.[)0+∞,B.[)1+∞,C.(]-∞,1D.(]-∞,014.一批产品共有5件,其中4件为正品,1件为次品,从中一次取出2件均为正品的概率为( ). A.0.6B.0.5C.0.4D.0.315.函数()321-=x x f 的定义域为( ). A. RB. {}1 C. {}1≤x xD. {}1≥x x16.若0x y <<,则( ).A.11x y< B.x y y x< C.2x y+> D.2y xx y+> 17.一个袋子中装有标号分别为1,2,3,4的四个球,采用有放回的方式从袋中摸球两次,每次摸出一个球,则恰有一次摸出2号球的概率为( ).A.18B.14 C.38D.12第Ⅱ卷 非选择题共65分二、填空题(本大题共4小题;每小题4分,共16分)18.过点()02,作圆122=+y x 的切线,切点的横坐标为 . 19.曲线21x y =在点()11,处的切线方程是 . 20.函数ax x y +-=2图像的对称轴为2=x ,则=a . 21.九个学生期末考试的成绩分别为79 63 88 94 99 77 89 81 85 这九个学生成绩的中位数为 .三、解答题(本大题共4小题,共49分.解答应写出推理.演算步骤.) 22.本小题满分12分.记ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知060=B ,ac b =2,求A .. 23.本小题满分12分.已知等差数列{}n a 中,1356a a a ++=,24612a a a ++=. (1).求{}n a 的首项与公差; (2).求{}n a 的前n 项和n S . 24.本小题满分12分.已知抛物线2:2(0)C y px p =>的焦点到准线的距离为1. (1).求C 的方程;(2).若(1)(0)A m m >,为C 上一点,O 为坐标原点,求C 上另一点B 的坐标,使得OA OB ⊥. 25.本小题满分13分.已知函数()()a x x x f --=24)(. (1).求()x f ';(2).若()81=-'f ,求)(x f 在区间[]40,的最大值与最小值.2023年成人高等学校招生全国统一考试数学(文史财经类)试参考答案一、选择题.二、填空题. 18.【参考答案】1219.【参考答案】23y x =-+ 20.【参考答案】4 21.【参考答案】85三、解答题共4小题,12+12+12+13分,共49分. 22.【参考答案】60O A =. 23.【参考答案】(1) 122a d =-=,; (2) 23n S n n =-.24.【参考答案】(1) 22y x =; (2) (4,B -. 25.【参考答案】(1) '2()38f x x x a =--; (2) max (0)12y f ==,min (3)6y f ==-.2023年成人高等学校招生全国统一考试数学(理工农医类)第Ⅰ卷 选择题共85分一、选择题(本大题共17小题;每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合{}12=∈=x R x M ,{}13=∈=x R x N ,则=N M ( ).A.{}1B.{}1-C.{}1-,1 D.∅2.函数sin(11)y x =+的最大值是( ).A.11B.1C.1-D.11-3.设α是第一象限角,1sin 3α=,则sin 2α=( ).A.49B.3C.9D.234.设2log x a =,则22log 2x =( ).A.221a +B.221a -C.21a -D.21a +5.设甲:sin x =,乙:cos x =,则( ). A.甲是乙的充分非必要条件 B.甲是乙的必要非充分条件 C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件 6.下列函数中,为增函数的是( ).A.3y x =B.2y x =C.2y x =-D.3y x =-7.已知点(12)M ,,(23)N ,,则直线MN 的斜率为( ). A.53B.1C.1-D.53-8.2(1)i +=( ). A.2-B.2C.2i -D.2i9.若向量()1a =,-1,()1b x =,,且2a b +=,则x =( ). A.4-B.1-C.1D.410.341()x x+展开式中的常数项为( ).A.4B.3C.2D.111.空间向量()1a =,1,0,()1b =,2,3则a b ⋅=( ). A.2B.3C.6D.812.等比数列{}n a 中21a =,2q =,则5a =( ).A.18B.14C.4D.813.函数2()2f x x x =-+的值域为( ).A.[)0+∞,B.[)1+∞,C.(]-∞,1D.(]-∞,014.设函数2()1x f x x =+,则1()f a=( ). A.()f aB.()f a -C.1()f a D.1()f a -15.正四面体任意两个面所成的二面角的余弦值为( ). A.12B.13C.14 D.1516.若0x y <<,则( ).A.11x y< B.x y y x< C.2x y+> D.2y xx y+> 17.一个袋子中装有标号分别为1,2,3,4的四个球,采用有放回的方式从袋中摸球两次,每次摸出一个球,则恰有一次摸出2号球的概率为( )A.18B.14 C.38D.12第Ⅱ卷 非选择题共65分二、填空题(本大题共4小题;每小题4分,共16分)18.圆心为坐标原点且与直线250x y +-=相切的圆的方程为 .19.棱长为2的正方体中,M N ,为不共面的两条棱的中点,则=MN . 20.若点()2,4在函数12x y a -=的图像上,则a = .21.已知随机变量X 的分布列是则q = .三、解答题(本大题共4小题,共49分.解答应写出推理.演算步骤.) 22.本小题满分12分.记ABC ∆的内角A B C ,,的对边分别为a b c ,,,若::21)a b c =. 求A B C ,,. 23.本小题满分12分.已知等差数列{}n a 中,1356a a a ++=,24612a a a ++=. (1).求{}n a 的首项与公差; (2).求{}n a 的前n 项和n S . 24.本小题满分12分.已知抛物线2:2(0)C y px p =>的焦点到准线的距离为1. (1).求C 的方程;(2).若(1)(0)A m m >,为C 上一点,O 为坐标原点,求C 上另一点B 的坐标,使得OA OB ⊥. 25.本小题满分13分.设函数()322361f x x ax x =+++是增函数.(1).求a 的取值范围.(2).若()f x 在区间[]13,的最小值为9,求a .2023年成人高等学校招生全国统一考试数学(理工农医类)试参考答案一、选择题.二、填空题.18.【参考答案】225x y +=19.【参考答案 20.【参考答案】221.【参考答案】12-三、解答题共4小题,12+12+12+13分,共49分. 22.【参考答案】456075o O O A B C ===,,. 23.【参考答案】(1) 122a d =-=,; (2) 23n S n n =-.24.【参考答案】(1) 22y x =; (2) (4,B -. 25.【参考答案】(1) 22a -<<; (2) 0a =.。
2023高考全国甲卷数学真题及答案(文数)
2023高考全国甲卷数学真题及答案(文数)2023年普通高等学校招生全国统一考试文科数学试题2023年普通高等学校招生全国统一考试文科数学参考答案学好高考数学的技巧高考数学题目的总结比较。
建立自己的题库。
多做。
主要是指做高考数学习题,学数学一定要做习题,并且应该适当地多做些。
养成好的学习习惯,做好预习,把预习没看懂的东西,第二天上课着重听。
抓住课堂。
高考数学理科学习重在平日功夫,不适于突击复习。
高质量完成作业。
所谓高质量是指高正确率和高速度。
翻译:把中文翻译成为数学语言,包括:字母表示未知数、图像表示函数式或几何题目、概率语言等等。
该方法常用于函数,几何以及不等式等题目。
特殊化:在面对抽象或者难以理解的题目的时候,我们尝试用最极端最特殊的数字来代替变量,帮助我们理解题目。
该方法常用于在选择题目中排除选项,在解大题的过程中也经常会用到特殊化的结论。
盯住目标:把高考数学目标和已知结合,联想相关的定理、定义、方法。
在压轴题目中,往往需要不断转化目标,即盯住目标需要反复使用!各省高考用卷情况1、新高考一卷(8个省份)适用省份:山东、河北、湖北、福建、湖南、广东、江苏,浙江考试科目:语文、数学、外语、物理、化学、生物、政治、历史、地理、信息技术等。
特点:语文、数学、外语三门考试由教育部考试中心统一命题;物理、历史、化学、政治、生物、地理由各省自行命题。
其中广东、福建、江苏、湖南、湖北、河北6个省是3+1+2模式的高考省份,山东省是综合改革3+3省份。
2、新高考二卷(3个省份)适用省份:海南、辽宁、重庆考试科目:语文、数学、外语、物理、化学、生物、政治、历史、地理等。
特点:语文、数学、外语三门考试由教育部考试中心统一命题;物理、历史、化学、政治、生物、地理由各省自行命题。
其中辽宁、重庆两省市是3+1+2省份,海南是综合改革3+3省份。
3、全国甲卷(5个省份)适用省份:云南、贵州、四川、西藏、广西考试科目:语文、数学、外语、文综、理综特点:语文、数学、外语、文科综合、理科综合均由教育部考试中心统一命题。
高三文科数学试卷带答案
一、选择题(本大题共10小题,每小题5分,共50分)1. 下列各数中,无理数是()A. √4B. 3/5C. √9/16D. √2答案:D解析:无理数是不能表示为两个整数比的实数,只有√2是无理数。
2. 函数y=2x+1在定义域内是()A. 增函数B. 减函数C. 奇函数D. 偶函数答案:A解析:函数的斜率为正,所以是增函数。
3. 已知向量a=(2, -3),向量b=(4, 6),则向量a与向量b的夹角是()A. 0°B. 90°C. 180°D. 120°答案:D解析:向量a与向量b的点积为24 + (-3)6 = -12,向量a的模长为√(2^2 + (-3)^2) = √13,向量b的模长为√(4^2 + 6^2) = √52。
点积公式为a·b =|a||b|cosθ,所以cosθ = -12/(√13√52) ≈ -0.5,夹角θ ≈ 120°。
4. 已知函数f(x) = x^2 - 4x + 3,其对称轴是()A. x = 1B. x = 2C. x = 3D. x = 4答案:B解析:二次函数的对称轴为x = -b/2a,所以对称轴为x = -(-4)/21 = 2。
5. 已知等差数列{an}的第一项为2,公差为3,则第10项是()A. 25B. 28C. 31D. 34答案:D解析:等差数列的通项公式为an = a1 + (n-1)d,所以第10项为2 + (10-1)3 = 2 + 27 = 29。
6. 若复数z满足|z-1| = |z+1|,则z在复平面上的位置是()A. 实轴B. 虚轴C. 第一象限D. 第二象限答案:A解析:|z-1| = |z+1|表示z到点1和点-1的距离相等,因此z在实轴上。
7. 已知圆C的方程为x^2 + y^2 = 25,点P(3, 4)到圆C的最短距离是()A. 4B. 5C. 6D. 7答案:B解析:圆心到点P的距离为√(3^2 + 4^2) = 5,圆的半径为5,所以最短距离为5 - 5 = 0。
2023年全国甲卷高考数学文科真题解析
2023年普通高等学校招生全国统一考试(全国甲卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集{}1,2,3,4,5U =,集合{}{}1,4,2,5M N ==,则N ∪C U M =( ) A. {}2,3,5 B. {}1,3,4C. {}1,2,4,5D. {}2,3,4,5【答案】A【详解】因为全集{1,2,3,4,5}U =,集合{1,4}M =,所以∁U M ={2,3,5}, 又{2,5}N =,所以N ∪∁U M ={2,3,5}, 故选:A.2.()()()351i 2i 2i +=+−( )A. 1−B. 1C. 1i −D. 1i +【答案】C 【详解】()()351i 51i 1i (2i)(2i)5+−==−+−故选:C.3. 已知向量()()3,1,2,2a b ==,则cos ,a b a b +−=( ) A.117B.17C.D.【答案】B【详解】因为(3,1),(2,2)a b ==,所以()()5,3,1,1a b a b +=−=−,则225334,11a b a b +=+=−=+=()()()51312a b a b +⋅−=⨯+⨯−=,所以()()cos ,1734a b a b a b a b a b a b+⋅−+−===+−. 故选:B.4. 某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( ) A.16B.13C.12D.23【答案】D【详解】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有24C 6=件, 其中这2名学生来自不同年级的基本事件有1122C C 4=, 所以这2名学生来自不同年级的概率为4263=. 故选:D.5. 记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =( ) A. 25 B. 22C. 20D. 15【答案】C【详解】方法一:设等差数列{}n a 的公差为d ,首项为1a ,依题意可得,2611510a a a d a d +=+++=,即135a d +=,又()()48113745a a a d a d =++=,解得:11,2d a ==, 所以515455210202S a d ⨯=+⨯=⨯+=. 故选:C.方法二:264210a a a +==,4845a a =,所以45a =,89a =, 从而84184a a d −==−,于是34514a a d =−=−=, 所以53520S a ==. 故选:C.6. 执行下边的程序框图,则输出的B =( )A. 21B. 34C. 55D. 89【答案】B【详解】当1k =时,判断框条件满足,第一次执行循环体,123A =+=,325B =+=,112k =+=; 当2k =时,判断框条件满足,第二次执行循环体,358A =+=,8513B =+=,213k =+=; 当3k =时,判断框条件满足,第三次执行循环体,81321A =+=,211334B =+=,314k =+=; 当4k =时,判断框条件不满足,跳出循环体,输出34B =. 故选:B.7. 设12,F F 为椭圆22:15xC y +=的两个焦点,点P 在C 上,若120PF PF ⋅=,则12PF PF ⋅=( )A. 1B. 2C. 4D. 5【答案】B【详解】方法一:因为120PF PF ⋅=,所以1290FPF ∠=, 从而122121tan 4512FP F Sb PF PF ===⨯⋅,所以122PF PF ⋅=.故选:B. 方法二:因为120PF PF ⋅=,所以1290FPF ∠=,由椭圆方程可知,25142c c =−=⇒=,所以22221212416PF PF F F +===,又122PF PF a +==,平方得:22121212216220PF PF PF PF PF PF ++=+=,所以122PF PF ⋅=.故选:B.8. 曲线e 1=+x y x 在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为( )A. e4y x =B. e 2y x =C. e e 44y x =+ D. e 3e24y x =+ 【答案】C【详解】设曲线e 1xy x =+在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为()e 12y k x −=−,因为e 1xy x =+,所以()()()22e 1e e 11x xxx x y x x +−'==++,所以1e|4x k y ='==所以()e e124y x −=− 所以曲线e 1xy x =+在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为e e 44y x =+.故选:C9. 已知双曲线22221(0,0)x y a b a b −=>>22(2)(3)1x y −+−=交于A ,B 两点,则||AB =( )A.B.C.D.【答案】D【详解】由e =,则222222215c a b b a a a+==+=, 解得2ba=, 所以双曲线的一条渐近线不妨取2y x =,则圆心(2,3)到渐近线的距离5d ==,所以弦长||5AB ===.故选:D10. 在三棱锥−P ABC 中,ABC 是边长为2的等边三角形,2,PA PB PC ===则该棱锥的体积为( )A. 1B.C. 2D. 3【答案】A【详解】取AB 中点E ,连接,PE CE ,如图,ABC 是边长为2的等边三角形,2PA PB ==,,PE AB CE AB ∴⊥⊥,又,PE CE ⊂平面PEC ,PE CE E =,AB ∴⊥平面PEC ,又22PE CE ==⨯=PC = 故222PC PE CE =+,即PE CE ⊥,所以11121332B PEC A PEC PEC V V V S AB −−=+=⋅=⨯=△,故选:A11. 已知函数()2(1)e x f x −−=.记,,222a f b f c f ⎛⎫⎛⎛⎫=== ⎪ ⎪⎝⎭⎝⎭⎝⎭,则( )A. b c a >>B. b a c >>C. c b a >>D. c a b >>【答案】A【详解】令2()(1)g x x =−−,则()g x 开口向下,对称轴为1x =,4112⎛−−−=− ⎝⎭,而22491670−=+=−>,所以41102222⎛−−−=−> ⎝⎭,即1122−>−由二次函数性质知g g <,因为4112222⎛⎫−−−=− ⎪ ⎪⎝⎭,而22481682)0−=+==<,即1122−<−,所以)22g g >,综上,2g g g <<, 又e x y =为增函数,故a c b <<,即b c a >>.故选:A. 12. 函数()y f x =的图象由cos 26y x π⎛⎫=+⎪⎝⎭的图象向左平移6π个单位长度得到,则()y f x =的图象与直线1122y x =−的交点个数为( ) A. 1B. 2C. 3D. 4【答案】C【详解】因为πcos 26y x ⎛⎫=+⎪⎝⎭向左平移π6个单位所得函数为πππcos 2cos 2sin 2662y x x x ⎡⎤⎛⎫⎛⎫=++=+=− ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以()sin 2f x x =−,而1122y x =−显然过10,2⎛⎫− ⎪⎝⎭与()1,0两点,作出()f x 与1122y x =−的部分大致图像如下,考虑3π3π7π2,2,2222x x x =−==,即3π3π7π,,444x x x =−==处()f x 与1122y x =−的大小关系,当3π4x =−时,3π3πsin 142f ⎛⎫⎛⎫−=−−=− ⎪ ⎪⎝⎭⎝⎭,13π1π4284312y +⎛⎫=⨯−−=−<− ⎪⎝⎭; 当3π4x =时,3π3πsin 142f ⎛⎫=−= ⎪⎝⎭,13π13π412428y −=⨯−=<;当7π4x =时,7π7πsin 142f ⎛⎫=−= ⎪⎝⎭,17π17π412428y −=⨯−=>;所以由图可知,()f x 与1122y x =−的交点个数为3. 故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13. 记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为________. 【答案】12−【详解】若1q =,则由6387S S =得118673a a ⋅=⋅,则10a =,不合题意. 所以1q ≠.当1q ≠时,因为6387S S =, 所以()()6311118711a q a q qq−−⋅=⋅−−,即()()638171q q ⋅−=⋅−,即()()()33381171q q q ⋅+−=⋅−,即()3817q ⋅+=,解得12q =−. 14. 若()2π(1)sin 2f x x ax x ⎛⎫=−+++ ⎪⎝⎭为偶函数,则=a ________. 【答案】2 【详解】()()()222π1sin 1cos (2)1cos 2f x x ax x x ax x x a x x ⎛⎫=−+++=−++=+−++ ⎪⎝⎭,且函数为偶函数,20a ∴−=,解得2a =,15. 若x ,y 满足约束条件323,2331,x y x y x y −≤⎧⎪−+≤⎨⎪+≥⎩,则32z x y =+的最大值为________.【答案】15【详解】作出可行域,如图,由图可知,当目标函数322zy x =−+过点A 时,z 有最大值,由233323x y x y −+=⎧⎨−=⎩可得33x y =⎧⎨=⎩,即(3,3)A ,所以max 332315z =⨯+⨯=.16. 在正方体1111ABCD A B C D −中,4,AB O =为1AC 的中点,若该正方体的棱与球O 的球面有公共点,则球O 的半径的取值范围是________.【答案】 【详解】设球的半径为R .当球是正方体的外接球时,恰好经过正方体的每个顶点,所求的球的半径最大,若半径变得更大,球会包含正方体,导致球面和棱没有交点,正方体的外接球直径2R '为体对角线长1AC ==2R R ''==,故max R =分别取侧棱1111,,,AA BB CC DD 的中点,,,M H G N ,显然四边形MNGH 是边长为4的正方形,且O 为正方形MNGH 的对角线交点,连接MG ,则MG =MNGH 的外接圆,球的半径达到最小,即R 的最小值为综上,R ∈.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17. 记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c aA+−=.(1)求bc ; (2)若cos cos 1cos cos a B b A ba Bb A c−−=+,求ABC 面积.【答案】(1)1 (2)4【小问1详解】因为2222cos a b c bc A =+−,所以2222cos 22cos cos b c a bc A bc A A+−===,解得:1bc =.【小问2详解】 由正弦定理可得cos cos sin cos sin cos sin cos cos sin cos sin cos sin a B b A b A B B A B a B b A c A B B A C−−−=−++()()()()()sin sin sin sin 1sin sin sin A B A B B BA B A B A B −−−=−==+++,变形可得:()()sin sin sin A B A B B −−+=,即2cos sin sin A B B −=,而0sin 1B <≤,所以1cos 2A =−,又0πA <<,所以sin 2A =,故ABC 的面积为11sin 122ABC S bc A ==⨯=△. 18. 如图,在三棱柱111ABC A B C -中,1A C ⊥平面,90ABC ACB ∠=︒.(1)证明:平面11ACC A ⊥平面11BB C C ;(2)设11,2AB A B AA ==,求四棱锥111A BB C C −的高. 【答案】(1)证明见解析. (2)1 【小问1详解】证明:因为1A C ⊥平面ABC ,BC ⊂平面ABC , 所以1A C BC ⊥,又因为90ACB ∠=,即AC BC ⊥,1,AC AC ⊂平面11ACC A,1AC AC C ⋂=, 所以BC⊥平面11ACC A ,又因为BC ⊂平面11BCC B , 所以平面11ACC A ⊥平面11BCC B . 【小问2详解】 如图,过点1A 作11A O CC ⊥,垂足为O .因为平面11ACC A ⊥平面11BCC B ,平面11ACC A 平面111BCC B CC =,1AO ⊂平面11ACC A , 所以1A O ⊥平面11BCC B ,所以四棱锥111A BB C C −的高为1AO .因为1A C ⊥平面ABC ,,AC BC ⊂平面ABC ,所以1A C BC ⊥,1AC AC ⊥, 又因为1A B AB =,BC 为公共边,所以ABC 与1A BC 全等,所以1AC AC =. 设1AC AC x ==,则11AC x =,所以O 为1CC 中点,11112OC AA ==, 又因为1AC AC ⊥,所以22211AC AC AA +=,即2222x x +=,解得x =所以11AO ===,所以四棱锥111A BB C C −的高为1.19. 一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g ).试验结果如下: 对照组的小白鼠体重的增加量从小到大排序为15.2 18.8 20.2 21.3 22.5 23.2 25.8 26.5 27.5 30.1 32.6 34.3 34.8 35.6 35.6 35.8 36.2 37.3 40.5 43.2试验组的小白鼠体重的增加量从小到大排序为 7.8 9.2 11.4 12.4 13.2 15.5 16.5 18.0 18.8 19.2 19.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5 (1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m ,再分别统计两样本中小于m 与不小于m 的数据的个数,完成如下列联表95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:()()()()22()n ad bc K a b c d a c b d −=++++,(2)(i )23.4m =;列联表见解析,(ii )能 【小问1详解】 试验组样本平均数为:1(7.89.211.412.413.215.516.518.018.819.219.820.220+++++++++++ 39621.622.823.623.925.128.232.336.5)19.820++++++++== 【小问2详解】(i )依题意,可知这40只小鼠体重的中位数是将两组数据合在一起,从小到大排后第20位与第21位数据的平均数,由原数据可得第11位数据为18.8,后续依次为19.2,19.8,20.2,20.2,21.3,21.6,22.5,22.8,23.2,23.6,,故第20位为23.2,第21位数据为23.6, 所以23.223.623.42m +==,故列联表为:(ii )由(i )可得,2240(661414) 6.400 3.84120202020K ⨯⨯−⨯==>⨯⨯⨯, 所以能有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异.20. 已知函数()2sin π,0,cos 2x f x ax x x ⎛⎫=−∈ ⎪⎝⎭. (1)当1a =时,讨论()f x 的单调性;(2)若()sin 0f x x +<,求a 的取值范围.【答案】(1)()f x 在π0,2⎛⎫ ⎪⎝⎭上单调递减 (2)0a ≤【小问1详解】因为1a =,所以()2sin π,0,cos 2x f x x x x ⎛⎫=−∈ ⎪⎝⎭, 则()()22432cos cos 2cos sin sin cos 2sin 11cos cos x x x x xx x f x x x −−+'=−=− ()3333222cos cos 21cos cos cos 2cos cos x x x x x x x−−−+−==, 令cos t x =,由于π0,2x ⎛⎫∈ ⎪⎝⎭,所以()cos 0,1t x =∈, 所以()()()23233222cos cos 22221211x x t t t t t tt t t +−=+−=−+−=−++−()()2221t t t =++−, 因为()2222110t t t ++=++>,10t −<,33cos 0x t =>,所以()233cos cos 20cos x x f x x+−'=<在π0,2⎛⎫ ⎪⎝⎭上恒成立, 所以()f x 在π0,2⎛⎫ ⎪⎝⎭上单调递减. 【小问2详解】法一:构建()()2sin πsin sin 0cos 2x g x f x x ax x x x ⎛⎫=+=−+<< ⎪⎝⎭, 则()231sin πcos 0cos 2x g x a x x x +⎛⎫'=−+<< ⎪⎝⎭, 若()()sin 0g x f x x =+<,且()()00sin 00g f =+=,则()0110g a a '=−+=≤,解得0a ≤,当0a =时,因为22sin 1sin sin 1cos cos x x x x x ⎛⎫−=− ⎪⎝⎭,又π0,2x ⎛⎫∈ ⎪⎝⎭,所以0sin 1x <<,0cos 1x <<,则211cos x>, 所以()2sin sin sin 0cos x f x x x x +=−<,满足题意; 当a<0时,由于π02x <<,显然0ax <, 所以()22sin sin sin sin sin 0cos cos x x f x x ax x x x x+=−+<−<,满足题意; 综上所述:若()sin 0f x x +<,等价于0a ≤,所以a 的取值范围为(],0−∞.法二: 因为()2232222sin cos 1sin sin cos sin sin sin cos cos cos cos x x x x x x x x x x x x−−−===−, 因为π0,2x ⎛⎫∈ ⎪⎝⎭,所以0sin 1x <<,0cos 1x <<, 故2sin sin 0cos x x x−<在π0,2⎛⎫ ⎪⎝⎭上恒成立, 所以当0a =时,()2sin sin sin 0cos x f x x x x +=−<,满足题意; 当a<0时,由于π02x <<,显然0ax <, 所以()22sin sin sin sin sin 0cos cos x x f x x ax x x x x+=−+<−<,满足题意; 当0a >时,因为()322sin sin sin sin cos cos x x f x x ax x ax x x+=−+=−, 令()32sin π0cos 2x g x ax x x ⎛⎫=−<< ⎪⎝⎭,则()22433sin cos 2sin cos x x x g x a x+'=−, 注意到()22433sin 0cos 02sin 000cos 0g a a +'=−=>, 若π02x ∀<<,()0g x '>,则()g x 在π0,2⎛⎫ ⎪⎝⎭上单调递增, 注意到()00g =,所以()()00g x g >=,即()sin 0f x x +>,不满足题意; 若0π02x ∃<<,()00g x '<,则()()000g g x ''<, 所以在π0,2⎛⎫ ⎪⎝⎭上最靠近0x =处必存在零点1π20,x ⎛⎫∈ ⎪⎝⎭,使得()10g x '=, 此时()g x '在()10,x 上有()0g x '>,所以()g x 在()10,x 上单调递增,则在()10,x 上有()()00g x g >=,即()sin 0f x x +>,不满足题意;综上:0a ≤.21. 已知直线210x y −+=与抛物线2:2(0)C y px p =>交于,A B 两点,|AB |=4√15.(1)求p ;(2)设F 为C 的焦点,,M N 为C 上两点,且0FM FN ⋅=,求MFN △面积的最小值.【答案】(1)2p =(2)12−【小问1详解】设()(),,,A A B B A x y B x y ,由22102x y y px−+=⎧⎨=⎩可得,2420y py p −+=,所以4,2A B A B y y p y y p +==, 所以A B AB y ==−==即2260p p −−=,因为0p >,解得:2p =.【小问2详解】因为()1,0F ,显然直线MN 的斜率不可能为零,设直线MN :x my n =+,()()1122,,,M x y N x y ,由24y x x my n⎧=⎨=+⎩可得,2440y my n −−=,所以,12124,4y y m y y n +==−, 22161600m n m n ∆=+>⇒+>,因为0MF NF ⋅=,所以()()1212110x x y y −−+=,即()()1212110my n my n y y +−+−+=,亦即()()()()2212121110m y y m n y y n ++−++−=, 将12124,4y y m y y n +==−代入得,22461m n n =−+,()()22410m n n +=−>, 所以1n ≠,且2610n n−+≥,解得3n ≥+或3n ≤−设点F 到直线MN 的距离为d ,所以d =12MN y ==−=1==−,所以MNF的面积()2111122S MN d n =⨯⨯=−=−,而3n ≥+3n ≤−,所以,当3n =−MNF 的面积(2min 212S =−=−(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22. 已知点()2,1P ,直线2cos ,:1sin x t l y t αα=+⎧⎨=+⎩(t 为参数),α为l 的倾斜角,l 与x 轴正半轴、y 轴正半轴分别交于,A B ,且4PA PB ⋅=.(1)求α;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求l 的极坐标方程.【答案】(1)3π4(2)cos sin 30ραρα+−= 【小问1详解】因为l 与x 轴,y 轴正半轴交于,A B 两点,所以ππ2α<<, 令0x =,12cos t α=−,令0y =,21sin t α=−, 所以21244sin cos sin 2PA PB t t ααα====,所以sin 21α=±, 即π2π2k α=+,解得π1π,42k k α=+∈Z , 因为ππ2α<<,所以3π4α=. 【小问2详解】由(1)可知,直线l 的斜率为tan 1α=−,且过点()2,1,所以直线l 的普通方程为:()12y x −=−−,即30x y +−=,由cos ,sin x y ραρα==可得直线l 的极坐标方程为cos sin 30ραρα+−=.[选修4-5:不等式选讲](10分)23. 已知()2||, 0 f x x a a a =−−>.(1)求不等式()f x x <的解集;(2)若曲线()y f x =与x 轴所围成的图形的面积为2,求a .【答案】(1),33a a ⎛⎫ ⎪⎝⎭(2)2 【小问1详解】若x a ≤,则()22f x a x a x =−−<,即3x a >,解得3a x >,即3a x a <≤, 若x a >,则()22f x x a a x =−−<, 解得3x a <,即3a x a <<, 综上,不等式的解集为,33a a ⎛⎫⎪⎝⎭. 【小问2详解】 2,()23,x a x a f x x a x a −+≤⎧=⎨−>⎩. 画出()f x 的草图,则()f x 与坐标轴围成ABC ABC 的高为3,(0,),,0,,022a a a D a A B ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,所以||=AB a 所以S △ABC =12|AB |⋅a =12a 2=2,解得a =2。
全国高考文科全国卷数学试题及答案
年普通高等学校招生全国统一考试文科数学卷3注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上;2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;回答非选择题时,将答案写在答题卡上;写在本试卷上无效;3.考试结束后,将本试卷和答题卡一并交回;一、选择题:本大题共12小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是符合题目要求的;1.已知集合A={1,2,3,4},B={2,4,6,8},则A B中元素的个数为A.1 B.2 C.3 D.42.复平面内表示复数(2)=-+的点位于z i iA.第一象限B.第二象限C.第三象限D.第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量单位:万人的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.已知4sin cos 3αα-=,则sin 2α=A .79- B .29- C . 29D .795.设,x y 满足约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩,则z x y =-的取值范围是A .-3,0B .-3,2C .0,2D .0,36.函数1()sin()cos()536f x x x ππ=++-的最大值为A .65B .1C .35D .157.函数2sin 1xy x x=++的部分图像大致为 A . B .C .D .8.执行右面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为 A .5 B .4 C .3 D .29.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .π B .34π C .2πD .4π10.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥11.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为12,A A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63B .33C .23D .1312.已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =A .12-B .13C .12D .1二、填空题:本题共4小题,每小题5分,共20分; 13.已知向量(2,3),(3,)a b m =-=,且a b ⊥,则m = .14.双曲线2221(0)9x y a a -=>的一条渐近线方程为35y x =,则a = .15.ABC ∆的内角,,A B C 的对边分别为,,a b c ;已知60,3C b c ===,则A =_________;16.设函数1,0,()2,0,x x x f x x +≤⎧=⎨>⎩ 则满足1()()12f x f x +->的x 的取值范围是__________;三、解答题:共70分;解答应写出文字说明、证明过程或演算步骤;第17~21题为必考题,每个试题考生都必须作答;第22、23题为选考题,考生根据要求作答; 一必考题:共60分; 17.12分设数列{}n a 满足123(21)2n a a n a n +++-=.1求{}n a 的通项公式; 2求数列{}21na n +的前n 项和. 18.12分某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温单位:℃有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:10,1515,2020,2525,3030,3535,40最高气温天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率;1求六月份这种酸奶一天的需求量不超过300瓶的概率;2设六月份一天销售这种酸奶的利润为Y单位:元,当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.19.12分如图,四面体ABCD中,△ABC是正三角形,AD=CD.1证明:AC⊥BD;2已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.20.12分在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为0,1.当m 变化时,解答下列问题:1能否出现AC ⊥BC 的情况说明理由;2证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 21.12分已知函数()2(1)ln 2x ax a x f x =+++. 1讨论()f x 的单调性; 2当0a <时,证明3()24f x a≤--. 二选考题:共10分;请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分;22.选修4―4:坐标系与参数方程10分在直角坐标系xOy 中,直线1l 的参数方程为2,x t y kt =+⎧⎨=⎩t 为参数,直线2l 的参数方程为2,x m my k =-+⎧⎪⎨=⎪⎩m 为参数,设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C .1写出C 的普通方程:2以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设3l:(cos sin )0ρθθ+-=,M 为3l 与C 的交点,求M 的极径.23.选修4—5:不等式选讲10分已知函数()||||f x x x =+1--2.1求不等式()f x ≥1的解集;2若不等式()f x x x m 2≥-+的解集非空,求m 的取值范围.年普通高等学校招生全国统一考试文科数学参考答案一、选择题1.B 2.C 3.A 4.A 5.B 6.A 7.D 8.D 9.B 10.C 11.A 12.C 二、填空题13.2 14.5 15.75° 16.1(,)4-+∞三、解答题 17.解: 1因为123(21)2n a a n a n +++-=,故当2n ≥时, 1213(23)2(1)n a a n a n -+++-=-两式相减得(21)2n n a -= 所以2(2)21n a n n =≥- 又由题设可得12a = 从而{}n a 的通项公式为221n a n =- 2记{}21na n +的前n 项和为n S 由1知21121(21)(21)2121n a n n n n n ==-++--+ 则1111112 (1335212121)n nS n n n =-+-++-=-++ 18.解:1这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为216360.690++=,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为2当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则64504450900Y =⨯-⨯=;若最高气温位于区间20,25,则63002(450300)4450300Y =⨯+--⨯=;若最高气温低于20,则62002(450200)4450100Y =⨯+--⨯=-所以,Y 的所有可能值为900,300,-100Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为3625740.890+++=,因此Y 大于零的概率的估计值为 19.解:1取AC 的中点O ,连结,DO BO ,因为AD CD =,所以AC DO ⊥又由于ABC ∆是正三角形,故BO AC ⊥从而AC ⊥平面DOB ,故AC BD ⊥2连结EO由1及题设知90ADC ∠=,所以DO AO = 在Rt AOB ∆中,222BO AO AB += 又AB BD =,所以ODABCE222222BO DO BO AO AB BD +=+==,故90DOB ∠=由题设知AEC ∆为直角三角形,所以12EO AC =又ABC ∆是正三角形,且AB BD =,所以12EO BD =故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1:120.解:1不能出现AC BC ⊥的情况,理由如下:设12(,0),(,0)A x B x ,则12,x x 满足220x mx +-=,所以122x x =- 又C 的坐标为0,1,故AC 的斜率与BC 的斜率之积为121112x x --⋅=-,所以不能出现AC BC ⊥的情况 2BC 的中点坐标为21(,)22x ,可得BC 的中垂线方程为221()22x y x x -=- 由1可得12x x m +=-,所以AB 的中垂线方程为2mx =-联立22,21()22m x x y x x ⎧=-⎪⎪⎨⎪-=-⎪⎩又22220x mx +-=,可得,212m x y ⎧=-⎪⎪⎨⎪=-⎪⎩所以过A,B,C 三点的圆的圆心坐标为1(,)22m --,半径2r =故圆在y轴上截得的弦长为3=,即过A,B,C 三点的圆在y 轴上截得的弦长为定值; 21.解:1fx 的定义域为(0,)+∞,1(1)(21)()221x ax f x ax a xx++'=+++=若0a ≥,则当(0,)x ∈+∞时,()0f x '>,故()f x 在(0,)+∞单调递增若0a <,则当1(0,)2x a ∈-时,()0f x '>;当1(,)2x a∈-+∞时,()0f x '< 故()f x 在1(0,)2a -单调递增,在1(,)2a-+∞单调递减; 2由1知,当0a <时,()f x 在12x a=-取得最大值,最大值为 111()ln()1224f a a a-=--- 所以3()24f x a ≤--等价于113ln()12244a a a---≤--,即11ln()1022a a-++≤ 设()ln 1g x x x =-+,则1()1g x x '=- 当(0,1)x ∈时,()0g x '>;当(1,)x ∈+∞,()0g x '<; 所以()g x 在0,1单调递增,在(1,)+∞单调递减; 故当1x =时,()g x 取得最大值,最大值为(1)0g = 所以当0x >时,()0g x ≤从而当0a <时,11ln()1022a a -++≤,即3()24f x a≤-- 22.解: 1消去参数t 得1l 的普通方程1:(2)l y k x =-;消去参数m t 得2l 的普通方程21:(2)l y x k=+ 设(,)P x y ,由题设得(2),1(2).y k x y x k =-⎧⎪⎨=+⎪⎩消去k 得224(0)x y y -=≠ 所以C 的普通方程为224(0)x y y -=≠2C 的极坐标方程为222(cos sin )4(22,)ρθθθπθπ-=<<≠联立222(cos sin )4,(cos sin )0ρθθρθθ⎧-=⎪⎨+=⎪⎩得cos sin 2(cos sin )θθθθ-=+ 故1tan 3θ=-,从而2291cos ,sin 1010θθ== 代入222(cos sin )4ρθθ-=得25ρ=,所以交点M23.解:13,1,()21,12,3,2x f x x x x -<-⎧⎪=--≤≤⎨⎪>⎩当1x <-时,()1f x ≥无解;当12x -≤≤时,由()1f x ≥得,211x -≥,解得12x ≤≤; 当2x >时,由()1f x ≥解得2x >所以()1f x ≥的解集为{|1}x x ≥2由2()f x x x m ≥-+得2|1||2|m x x x x ≤+---+,而 22|1||2|||1||2||x x x x x x x x +---+≤++--+235(||)24x =--+5 4≤且当32x=时,25|1||2|4x x x x+---+=故m的取值范围为5 (,]4 -∞。
2023年全国统一高考数学试卷(文科)(乙卷)含答案解析
绝密★启用前2023年全国统一高考数学试卷(文科)(乙卷)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I 卷(选择题)一、单选题:本题共12小题,每小题5分,共60分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.|2+i 2+2i 3|=( ) A. 1B. 2C. √ 5D. 52.设全集U ={0,1,2,4,6,8},集合M ={0,4,6},N ={0,1,6},则M ∪∁U N =( ) A. {0,2,4,6,8}B. {0,1,4,6,8}C. {1,2,4,6,8}D. U3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( ) A. 24 B. 26 C. 28 D. 304.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若acosB −bcosA =c ,且C =π5,则∠B =( ) A. π10 B. π5C.3π10D.2π55.已知f(x)=xe xe ax −1是偶函数,则a =( )A. −2B. −1C. 1D. 26.正方形ABCD 的边长是2,E 是AB 的中点,则EC⃗⃗⃗⃗⃗ ⋅ED ⃗⃗⃗⃗⃗ =( )A. √ 5B. 3C. 2√ 5D. 57.设O 为平面坐标系的坐标原点,在区域{(x,y)|1≤x 2+y 2≤4}内随机取一点,记该点为A ,则直线OA 的倾斜角不大于π4的概率为( ) A. 18B. 16C. 14D. 128.函数f(x)=x 3+ax +2存在3个零点,则a 的取值范围是( ) A. (−∞,−2)B. (−∞,−3)C. (−4,−1)D. (−3,0)9.某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( ) A. 56B. 23C. 12D. 1310.已知函数f(x)=sin(ωx +φ)在区间(π6,2π3)单调递增,直线x =π6和x =2π3为函数y =f(x)的图像的两条对称轴,则f(−5π12)=( ) A. −√ 32B. −12C. 12D. √ 3211.已知实数x ,y 满足x 2+y 2−4x −2y −4=0,则x −y 的最大值是( ) A. 1+3√ 22B. 4C. 1+3√ 2D. 712.设A ,B 为双曲线x 2−y 29=1上两点,下列四个点中,可为线段AB 中点的是( )A. (1,1)B. (−1,2)C. (1,3)D. (−1,−4)第II 卷(非选择题)二、填空题:本题共4小题,每小题5分,共20分。
2023年高考数学(四川卷)(文科)(word版+答案)全解析
2023年普通高等学校招生全国统一考试(四川)数 学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到8页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己地姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出解析后,用铅笔把答题卡上对应题目地解析标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它解析标号。
不能答在试卷卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出地四个选项中,只有一项是符合题目要求地。
参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24RS π=如果事件A 、B 相互独立,那么 其中R 表示球地半径)()()(B P A P B A P ⋅=⋅ 球地体积公式如果事件A 在一次试验中发生地概率是P,那么334R V π=n 次独立重复试验中恰好发生k 次地概率 其中R 表示球地半径kn k kn n P P C k P --=)1()(一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出地四个选项中,只有一项是符合题目要求地。
1、设集合U={1,2,3,4,5},A={1,2,3},B={2,3,4} ,则C U (A ∩B )=(A ){2,3} (B ) {1,4,5} (C ){4,5} (D ){1,5}2、函数1ln(21),()2y x x =+>-地反函数是(A )11()2x y e x R =- ∈ (B )21()x y e x R =- ∈ (C ) 1(1()2xy e x R =- ) ∈ (D )21()xy e x R =- ∈3、 设平面向量(3,5(2,1)a b = ) ,=- ,则2a b -=(A )(7,3) (B )(7,7) (C )(1,7) (D )(1,3)4、(tanx+cotx)cos 2x=(A )tanx (B )sinx (C )cosx (D )cotx 5、不等式2||2x x -<地解集为(A )(-1,2) (B )(-1,1) (C )(-2,1) (D )(-2,2)6、将直线3y x =绕原点逆时针旋转90°,再向右平移1个单位,所得到地直线为(A )1133y x =-+ (B )113y x =-+ (C )33y x =- (D )31y x =+7、△ABC 地三个内角A 、B 、C 地对边边长分别是a b c 、、 ,若a =,A=2B,则cosB=(A ) (B (C (D学校 班级 姓名 考号/密///////////封/////////////线/////////////内/////////////不/////////////要/////////////答/////////////题///////8、设M 是球O 地半径OP 地中点,分别过M 、O 作垂直于OP 地平面,截球面得到两个圆,则这两个圆地面积比值为(A )14(B )12(C )23(D )349、定义在R 上地函数()f x 满足:()(2)13,(1)2,f x f x f ∙+==则(99)f =(A )13 (B ) 2 (C )132(D )21310、设直线l α⊂平面,过平面α外一点A 且与l 、α都成30°角地直线有且只有(A )1条 (B )2条 (C )3条 (D )4条11、已知双曲线22:1916x y C -=地左右焦点分别为F 1、F 2 ,P 为C 地右支上一点,且||||212PF F F =,则△PF 1F 2 地面积等于(A )24 (B )36 (C )48 (D )9612、若三棱柱地一个侧面是边长为2地正方形,另外两个侧面都是有一个内角为60°地菱形,则该棱柱地体积为(A(B) (C)(D)第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分。
2021年全国统一高考真题数学试卷(文科)(含答案及解析)
2021年普通高等学校招生全国统一考试(全国乙卷) 数学(文)一、选择题1.已知全集{1,2,3,4,5}U =,集合{1,2}M =,{3,4}N =,则)(U C M N =( )A.{5}B.{1,2}C.{3,4}D.{1,2,3,4} 2.设43iz i =+,则z =( )A.34i --B.–34i +C.34i -D.34i +3.已知命题:,sin 1p x R x ∃∈<;命题||:,1x q x R e ∈∀≥,则下列命题中为真命题的是( ) A.p q ∧ B.p q ⌝∧ C.p q ∧⌝ D.()p q ⌝∨4.函数()sincos 33x xf x =+的最小正周期和最大值分别是( ) A.3πB.3π和2C.6πD.6π和25.若,x y 满足约束条件2,3,4,y x y x y ≤≤+≥⎧⎪-⎨⎪⎩则3z x y =+的最小值为( )A.18B.10C.6D.46.225coscos 1212ππ-=( ) A.12B.3C.2D.27.在区间1(0,)2随机取1个数,则取到的数小于13的概率为( ) A.34 B.23 C.13 D.168.下列函数中最小值为4的是( )A.224y x x =++ B.4|sin ||sin |y x x =+C.222x xy -=+ D.4n ln l y x x=+9.设函数1(1)xf x x-=+,则下列函数中为奇函数的是( ) A.1()1f x -- B.1()1f x -+ C.1()1f x +- D.1()1f x ++10.在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为A.2π B.3π C.4π D.6π 11.设B 是椭圆C :2215x y +=的上顶点,点P 在C 上,则PB 的最大值为A.52212.设0a ≠,若x a =为函数2()()()f x a x a x b =--的极大值点,则A.a b <B.a b >C.2ab a <D.2ab a > 二、填空题13.已知向量(2,5)a =,(,4)b λ=,若//a b ,则λ= .14.双曲线22145x y -=的右焦点到直线280x y +-=的距离为 .15.记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,面积为,60B =︒,223a c ac +=,则b = .16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为 (写出符合要求的一组答案即可).17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下: 旧设备 9.810.310.0 10.2 9.9 9.8 10.0 10.1 10.2 9.7 新设备 10.1 10.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21s 和22s .(1)求x ,y ,21s ,22s ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果2212210s s y x +-≥不认为有显著提高).18.如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ﹔(2)若1PD DC ==,求四棱锥P ABCD -的体积.19.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a ,成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S ,和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 20.已知抛物线C :22(0)y px p =>的焦点F 到准线的距离为2. (1)求C 的方程,(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值. 21.已知函数32()1f x x x ax =-++. (1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标. 22.在直角坐标系xOy 中,C 的圆心为)(2,1C ,半径为1.(1)写出C 的一个参数方程;(2)过点)(4,1F 作C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立坐标系,求这两条切线的极坐标方程. 23.已知函数()|||3|f x x a x =-++. (1)当1a =时,求不等式()6f x ≥的解集; (2)若()f x a >-,求a 的取值范围.答案及解析一、选择题1.已知全集{1,2,3,4,5}U =,集合{1,2}M =,{3,4}N =,则)(U C M N =( )A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}2.设43iz i =+,则z =( ) A.34i -- B.–34i + C.34i - D.34i +3.已知命题:,sin 1p x R x ∃∈<;命题||:,1x q x R e ∈∀≥,则下列命题中为真命题的是( ) A.p q ∧B.p q ⌝∧C.p q ∧⌝D.()p q ⌝∨答案: A 解析:根据正弦函数的值域sin [1,1]x ∈-,sin 1x <,故x R ∃∈,p 为真命题,而函数||x y e =为偶函数,且0x ≥时,1x y e =≥,故x R ∀∈,||1x y e =≥恒成立.则q 也为真命题,所以p q∧为真,选A. 4.函数()sin cos 33x xf x =+的最小正周期和最大值分别是( )A.3πB.3π和2C.6πD.6π和2 答案: C 解析:()sin()34x f x π=+max ()f x =,2613T ππ==. 故选C.5.若,x y 满足约束条件2,3,4,y x y x y ≤≤+≥⎧⎪-⎨⎪⎩则3z x y =+的最小值为( )A.18B.10C.6D.4答案: C 解析:根据约束条件可得图像如下,3z x y =+的最小值,即3y x z =-+,y 轴截距最小值.根据图像可知3y x z =-+过点(1,3)B 时满足题意,即min 336z =+=.6.225cos cos 1212ππ-=( ) A.12B.33 C.22 3 答案: D 解析:2222223()sin cos 25cos cos cos cos cos 12121212121262ππππππππ-=-=--==∴选D. 7.在区间1(0,)2随机取1个数,则取到的数小于13的概率为( ) A.34 B.23 C.13 D.16答案: B解析:在区间1(0,)2随机取1个数,可知总长度12d =,取到的数小于13,可知取到的长度范围13d '=,根据几何概型公式123132d p d '===,∴选B.8.下列函数中最小值为4的是( ) A.224y x x =++ B.4|sin ||sin |y x x =+C.222x xy -=+D.4n ln l y x x=+答案: C 解析:对于A ,22224213(1)33y x x x x x =++=+++=++≥.不符合, 对于B ,4|sin ||sin |y x x =+,令|sin |[0,1]t x =∈,∴4y t t=+,根据对勾函数min 145y =+=不符合, 对于C ,242222x x x xy -==++,令20xt =>,∴4224y t t =+≥=⨯=, 当且仅当2t =时取等,符合,对于D ,4n ln l y x x =+,令ln t x R =∈,4y t t=+. 根据对勾函数(,4][4,)y ∈-∞-+∞,不符合.9.设函数1(1)xf x x-=+,则下列函数中为奇函数的是( ) A.1()1f x --B.1()1f x -+C.1()1f x +-D.1()1f x ++答案: B 解析:12()111x f x x x-==-+++, ()f x 向右平移一个单位,向上平移一个单位得到2()g x x=为奇函数. 所以选B.10.在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为A.2πB.3πC.4πD.6π 答案: D 解析:做出图形,11//AD BC ,所以1PBC ∠为异面直线所成角,设棱长为1.1BC,12B P =,12PC =,BP =. 2221111312cos 22BC BP C P PBC BP BC +-+-∠===⋅,即16PBC π∠=,故选D.11.设B 是椭圆C :2215x y +=的上顶点,点P 在C 上,则PB 的最大值为 A.526 5D.2 答案: A 解析:方法一:由22:15x C y +=,(0,1)B 则C 的参数方程:5sin x y θθ⎧=⎪⎨=⎪⎩.22||(sin 1)(5cos )PB θθ=-+24sin 2sin 6θθ=--+212554(sin )442θ=-++≥.∴max 5||2PB =,故选A. 方法二:设00(,)P x y ,则220001([1,1])5x y y +=∈-①,(0,1)B . 因此22200||(1)PB x y =+-②将①式代入②式化简得:22012525||4()444PB y =-++≥,当且仅当014y =-时||PB 的最大值为52,故选A.12.设0a ≠,若x a =为函数2()()()f x a x a x b =--的极大值点,则A.a b <B.a b >C.2ab a <D.2ab a > 答案: D 解析:2()2()()()()(32)f x a x a x b a x a a x a x b a '=--+-=---当0a >时,原函数先增再减后增.原函数在()0f x '=的较小零点时取得极大值. 即23a b a +<,即a b <,∴2a ab <. 当0a <时,原函数先减再增后减.原函数在()0f x '=的较大零点时取得极大值. 即23a b a +>,a b >,2a ab <,故选D. 二、填空题13.已知向量(2,5)a =,(,4)b λ=,若//a b ,则λ= . 答案:85解析:由已知//a b 可得82455λλ⨯=⇒=. 14.双曲线22145x y -=的右焦点到直线280x y +-=的距离为 . 答案:5解析:22145x y -=的右焦点为(3,0),到直线280x y +-=的距离22|38|512d -==+. 15.记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,面积为3,60B =︒,223a c ac +=,则b = .答案:22解析: 由面积公式1sin 32S ac B ==,且60B =︒,解得4ac =, 又由余弦定理2222cos b a c ac B =+-,223a c ac +=,且0b > 解得22b =.16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为 (写出符合要求的一组答案即可).答案: ②⑤或③④ 解析:由高度可知,侧视图只能为②或③.侧视图为②,如图(1),平面PAC ⊥平面ABC ,2PA PC ==5BA BC ==2AC =,俯视图为⑤.俯视图为③,如图(2),PA ⊥平面ABC ,1PA =,5AC AB ==,2BC =,俯视图为④.17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下: 旧设备 9.810.310.0 10.2 9.9 9.8 10.0 10.1 10.2 9.7 新设备 10.1 10.4 10.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21s 和22s .(1)求x ,y ,21s ,22s ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果2212210s s y x +-≥不认为有显著提高). 答案:见解析 解析:9.810.31010.29.99.81010.110.29.71010x ++++++++==+;10.110.410.11010.110.310.610.510.410.510.310y ++++++++==+.211(0.040.090.040.010.040.010.040.09)10s =+++++++10.360.03610=⨯= 221(0.040.010.040.090.040.090.040.010.04)10s =++++++++10.40.0410=⨯=. (2)10.3100.3y x -=-=22120.0360.04221010s s ++=20.0076=. ∵则0.30.0920.0760.0304=>=,所以可判断新设备生产产品的该项指标的均值较旧设备有显著提高; 没有显著提高.18.如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ﹔(2)若1PD DC ==,求四棱锥P ABCD -的体积.答案: 见解析 解析:19.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a ,成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S ,和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 答案: 见解析 解析:设{}n a 的公比为q ,则1n n a q -=,因为1a ,23a ,39a 成等差数列,所以21923q q +=⨯,解得13q =, 故11()3n n a -=,11313(1)12313n n n S -==--. 又3n n n b =,则1231123133333n n n n nT --=+++++,两边同乘13,则234111231333333n n n n nT +-=+++++,两式相减,得23412111113333333n n n nT +=+++++-,即1111(1)1133(1)332333121n n n n n n n T ++-=-=---, 整理得31323(1)4323423n n n nn n T +=--=-⨯⨯, 323314322()(1)04232323n n n n nn n T S ++-=---=-<⨯⨯,故2n n S T <.20.已知抛物线C :22(0)y px p =>的焦点F 到准线的距离为2. (1)求C 的方程,(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值. 答案:见解析 解析:(1)由焦点到准线的距离为p ,则2p =. 抛物线c 的方程:24y x =.(2)设点200(,)4y P y ,(,)Q Q Q x y ,(1,0)F .∵9PQ QF =.∴222000009499(,)9(1,)4104910Q Q Q Q Q Q Q Q Q Q y y x x x y x y y x y y y x y y ⎧+⎪⎧-=-=⎪⎪--=--⇒⇒⎨⎨⎪⎪-=-⎩=⎪⎩则020001193944Q OQ Qy y k y y x y ===≤=++. ∴直线OQ 斜率的最大值为13. 21.已知函数32()1f x x x ax =-++. (1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标. 答案: 见解析 解析:(1)2()32f x x x a '=-+(i )当4120a ∆=-≤,即13a ≥时,()0f x '≥恒成立,即()f x 在()f x 在x ∈R 上单调递增.(ii )当4120∆=->,即13a <时,()0f x '=解得,113x =,213x +=.∴()f x 在113(,)3a --∞,113()3a -+∞单调递增,在113113(33a a-+单调递减,综上所述:当13a ≥时,()f x 在R 上单调递增;当13a <时,()f x 在113113(,33a a-++单调递减.(2)设可原点切线的切点为32(,1)t t t at -++,切线斜率2()32k f t t t a '==-+.又321t t at k t -++=,可得322132t t at t t a t-++=-+.化简得2(1)(21)0t t t -++=,即1t =.∴切点为(1,1)a +,斜率1k a =+,切线方程为(1)y a x =+,将(1)y a x =+,321y x x ax =-++联立可得321(1)x x ax a x -++=+,化简得2(1)(1)0x x -+=,解得11x =,21x =-.∴过原点的切线与()y f x =公共点坐标为(1,1)a +,(1,1)a ---.22.在直角坐标系xOy 中,C 的圆心为)(2,1C ,半径为1.(1)写出C 的一个参数方程;(2)过点)(4,1F 作C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立坐标系,求这两条切线的极坐标方程. 答案: 见解析 解析: (1)C 的参数方程为2cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数)(2)C 的方程为22(2)(1)1x y -+-=①当直线斜率不存在时,直线方程为4x =,此时圆心到直线距离为2r >,舍去;②当直线斜率存在时,设直线方程为1(4)y k x -=-,化简为410kx y k --+=, 此时圆心(2,1)C 到直线的距离为1d r ===,化简得2||k =,两边平方有2241k k =+,所以k =代入直线方程并化简得40x -+=或40x +-=化为极坐标方程为5cos sin 4sin()46πρθθρθ=⇔+=或cos sin 4sin()46πρθθρθ+=⇔+=+23.已知函数()|||3|f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集; (2)若()f x a >-,求a 的取值范围. 答案: 见解析 解析:当1a =时,()6|1||3|6f x x x ≥⇔-++≥,当3x ≤-时,不等式136x x ⇔---≥,解得4x ≤-; 当31x -<<时,不等式136x x ⇔-++≥,解得x ∈∅; 当1x ≥时,不等式136x x ⇔-++≥,解得2x ≥. 综上,原不等式的解集为(,4][2,)-∞-+∞. (2)若()f x a >-,即min ()f x a >-,因为()|||3||()(3)||3|f x x a x x a x a =-++≥--+=+(当且仅当()(3)0x a x -+≤时,等号成立),所以min ()|3|f x a =+,所以|3|a a +>-,即3a a +<或3a a +>-,解得3(,)2a ∈-+∞.。
2023年全国统一高考数学试卷(文科)(乙卷)(解析版)
2023年全国统一高考数学试卷(文科)(乙卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)|2+i2+2i3|=( )A.1B.2C.D.5【答案】C【解答】解:由于|2+i2+2i3|=|1﹣2i|=.故选:C.2.(5分)设全集U={0,1,2,4,6,8},集合M={0,4,6},N={0,1,6},则M∪∁U N =( )A.{0,2,4,6,8}B.{0,1,4,6,8}C.{1,2,4,6,8}D.U【答案】A【解答】解:由于∁U N={2,4,8},所以M∪∁U N={0,2,4,6,8}.故选:A.3.(5分)如图,网格纸上绘制的是一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A.24B.26C.28D.30【答案】D【解答】解:根据几何体的三视图转换为直观图为:该几何体是由两个直四棱柱组成的几何体.如图所示:故该几何体的表面积为:4+6+5+5+2+2+2+4=30.故选:D.4.(5分)在△ABC中,内角A,B,C的对边分别是a,b,c,若a cos B﹣b cos A=c,且C=,则∠B=( )A.B.C.D.【答案】C【解答】解:由a cos B﹣b cos A=c得sin A cos B﹣sin B cos A=sin C,得sin(A﹣B)=sin C=sin(A+B),即sin A cos B﹣sin B cos A=sin A cos B+sin B cos A,即2sin B cos A=0,得sin B cos A=0,在△ABC中,sin B≠0,∴cos A=0,即A=,则B=π﹣A﹣C==.故选:C.5.(5分)已知f(x)=是偶函数,则a=( )A.﹣2B.﹣1C.1D.2【答案】D【解答】解:∵f(x)=的定义域为{x|x≠0},又f(x)为偶函数,∴f(﹣x)=f(x),∴,∴,∴ax﹣x=x,∴a=2.故选:D.6.(5分)正方形ABCD的边长是2,E是AB的中点,则•=( )A.B.3C.2D.5【答案】B【解答】解:正方形ABCD的边长是2,E是AB的中点,所以=﹣1,,,=2×2=4,则•=()•()=+++=﹣1+0+0+4=3.故选:B.7.(5分)设O为平面坐标系的坐标原点,在区域{(x,y)|1≤x2+y2≤4}内随机取一点,记该点为A,则直线OA的倾斜角不大于的概率为( )A.B.C.D.【答案】C【解答】解:如图,PQ为第一象限与第三象限的角平分线,根据题意可得构成A的区域为圆环,而直线OA的倾斜角不大于的点A构成的区域为图中阴影部分,∴所求概率为=.故选:C.8.(5分)函数f(x)=x3+ax+2存在3个零点,则a的取值范围是( )A.(﹣∞,﹣2)B.(﹣∞,﹣3)C.(﹣4,﹣1)D.(﹣3,0)【答案】B【解答】解:f′(x)=3x2+a,若函数f(x)=x3+ax+2存在3个零点,则f′(x)=3x2+a=0,有两个不同的根,且极大值大于0极小值小于0,即判别式Δ=0﹣12a>0,得a<0,由f′(x)>0得x>或x<﹣,此时f(x)单调递增,由f′(x)<0得﹣<x<,此时f(x)单调递减,即当x=﹣时,函数f(x)取得极大值,当x=时,f(x)取得极小值,则f(﹣)>0,f()<0,即﹣(﹣+a)+2>0,且(﹣+a)+2<0,即﹣×+2>0,①,且×+2<0,②,则①恒成立,由×+2<0,2<﹣×,平方得4<﹣×,即a3<﹣27,则a<﹣3,综上a<﹣3,即实数a的取值范围是(﹣∞,﹣3).故选:B.9.(5分)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )A.B.C.D.【答案】A【解答】解:某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,甲、乙两位参赛同学构成的基本事件总数n=6×6=36,其中甲、乙两位参赛同学抽到不同主题包含的基本事件个数m==30,则甲、乙两位参赛同学抽到不同主题概率为P===.故选:A.10.(5分)已知函数f(x)=sin(ωx+φ)在区间(,)单调递增,直线x=和x=为函数y=f(x)的图像的两条对称轴,则f(﹣)=( )A.﹣B.﹣C.D.【答案】D【解答】解:根据题意可知=,∴T=π,取ω>0,∴ω==2,又根据“五点法“可得,k∈Z,∴φ=,k∈Z,∴f(x)=sin(2x)=sin(2x﹣),∴f(﹣)=sin(﹣)=sin(﹣)=sin=.故选:D.11.(5分)已知实数x,y满足x2+y2﹣4x﹣2y﹣4=0,则x﹣y的最大值是( )A.1+B.4C.1+3D.7【答案】C【解答】解:根据题意,x2+y2﹣4x﹣2y﹣4=0,即(x﹣2)2+(y﹣1)2=9,其几何意义是以(2,1)为圆心,半径为3的圆,设z=x﹣y,变形可得x﹣y﹣z=0,其几何意义为直线x﹣y﹣z=0,直线y=x﹣z与圆(x﹣2)2+(y﹣1)2=9有公共点,则有≤3,解可得1﹣3≤z≤1+3,故x﹣y的最大值为1+3.故选:C.12.(5分)设A,B为双曲线x2﹣=1上两点,下列四个点中,可为线段AB中点的是( )A.(1,1)B.(﹣1,2)C.(1,3)D.(﹣1,﹣4)【答案】D【解答】解:设A(x1,y1),B(x2,y2),AB中点为(x0,y0),,①﹣②得k AB==9×=9×,即﹣3<9×<3⇒,即或,故A、B、C错误,D正确.故选:D.二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
零件尺寸
经计算得 , , , ,其中 为抽取的第 个零件的尺寸, .
(1)求 的相关系数 ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若 ,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).
(2)一天内抽检零件中,如果出现了尺寸在 之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
从而 .
由题设知 ,即 ,解得 .
所以直线AB的方程为 .
21.(12分)(1)函数 的定义域为 ,
,
①若 ,则 ,在 单调递增.
②若 ,则由 得 .
当 时, ;当 时, ,所以 在 单调递减,在 单调递增.
③若 ,则由 得 .
当 时, ;当 时, ,故 在 单调递减,在 单调递增.
(2)①若 ,则 ,所以 .
3.考试结束后,监考员将试题卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A= ,B= ,则
A.A B= B.A B
C.A B D.A B=R
2.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是
(2)(i)由于 ,由样本数据可以看出抽取的第13个零件的尺寸在 以外,因此需对当天的生产过程进行检查.
(ii)剔除离群值,即第13个数据,剩下数据的平均数为 ,这条生产线当天生产的零件尺寸的均值的估计值为.
,பைடு நூலகம்
剔除第13个数据,剩下数据的样本方差为 ,
这条生产线当天生产的零件尺寸的标准差的估计值为 .
②若 ,则由(1)得,当 时, 取得最小值,最小值为 .从而当且仅当 ,即 时, .
③若 ,则由(1)得,当 时, 取得最小值,最小值为 .从而当且仅当 ,即 时 .
综上, 的取值范围为 .
22.[选修4-4:坐标系与参数方程](10分)
解:(1)曲线 的普通方程为 .
当 时,直线 的普通方程为 .
13.已知向量a=(–1,2),b=(m,1).若向量a+b与a垂直,则m=______________.
14.曲线 在点(1,2)处的切线方程为_________________________.
15.已知 ,tanα=2,则 =__________。
16.已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径。若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为________。
C.A≤1000和n=n+1D.A≤1000和n=n+2
11.△ABC的内角A、B、C的对边分别为a、b、c。已知 ,a=2,c= ,则C=
A. B. C. D.
12.设A、B是椭圆C: 长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
21.(12分)
已知函数 =ex(ex﹣a)﹣a2x.
(1)讨论 的单调性;
(2)若 ,求a的取值范围.
(二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.[选修4―4:坐标系与参数方程](10分)
在直角坐标系xOy中,曲线C的参数方程为 (θ为参数),直线l的参数方程为 .
当 时,①式化为 ,从而 ;
当 时,①式化为 ,从而 .
所以 的解集为 .
(2)当 时, .
所以 的解集包含 ,等价于当 时 .
又 在 的最小值必为 与 之一,所以 且 ,得 .
所以 的取值范围为 .
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
(一)必考题:60分。
17.(12分)
记Sn为等比数列 的前n项和,已知S2=2,S3=-6.
(1)求 的通项公式;
(2)求Sn,并判断Sn+1,Sn,Sn+2是否成等差数列。
A.x1,x2,…,xn的平均数B.x1,x2,…,xn的标准差
C.x1,x2,…,xn的最大值D.x1,x2,…,xn的中位数
3.下列各式的运算结果为纯虚数的是
A.i(1+i)2B.i2(1-i)C.(1+i)2D.i(1+i)
4.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是
20.(12分)解:
(1)设A(x1,y1),B(x2,y2),则 , , ,x1+x2=4,
于是直线AB的斜率 .
(2)由 ,得 .
设M(x3,y3),由题设知 ,解得 ,于是M(2,1).
设直线AB的方程为 ,故线段AB的中点为N(2,2+m),|MN|=|m+1|.
将 代入 得 .
当 ,即 时, .
(2)在平面 内作 ,垂足为 .
由(1)知, 平面 ,故 ,可得 平面 .
设 ,则由已知可得 , .
故四棱锥 的体积 .
由题设得 ,故 .
从而 , , .
可得四棱锥 的侧面积为
.
19. (12分)【解析】(1)由样本数据得 的相关系数为
.
由于 ,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.
A. B. C. D.
5.已知F是双曲线C:x2- =1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3).则△APF的面积为
A. B. C. D.
6.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是
7.设x,y满足约束条件 则z=x+y的最大值为
2017年高考全国卷1文数答案
14.
15.
16.
17.(12分)【解析】(1)设 的公比为 .由题设可得 ,解得 , .
故 的通项公式为 .
(2)由(1)可得 .
由于 ,
故 , , 成等差数列.
18. (12分)【解析】(1)由已知 ,得 , .
由于 ,故 ,从而 平面 .
又 平面 ,所以平面 平面 .
(1)若a=?1,求C与l的交点坐标;
(2)若C上的点到l的距离的最大值为 ,求a.
23.[选修4—5:不等式选讲](10分)
已知函数f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│.
(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.
(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?
(ⅱ)在 之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到)
附:样本 的相关系数 , .
20.(12分)
设A,B为曲线C:y= 上两点,A与B的横坐标之和为4.
(1)求直线AB的斜率;
(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM BM,求直线AB的方程.
由 解得 或 .
从而 与 的交点坐标为 , .
(2)直线 的普通方程为 ,故 上的点 到 的距离为
.
当 时, 的最大值为 .由题设得 ,所以 ;
当 时, 的最大值为 .由题设得 ,所以 .
综上, 或 .、
23.[选修4-5:不等式选讲](10分)
解:(1)当 时,不等式 等价于 .①
当 时,①式化为 ,无解;
A.0B.1C.2D.3
8..函数 的部分图像大致为
9.已知函数 ,则
A. 在(0,2)单调递增B. 在(0,2)单调递减
C.y= 的图像关于直线x=1对称D.y= 的图像关于点(1,0)对称
10.如图是为了求出满足 的最小偶数n,学|科网那么在 和 两个空白框中,可以分别填入
A.A>1000和n=n+1B.A>1000和n=n+2
18.(12分)
如图,在四棱锥P-ABCD中,AB 19.(12分)
为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:
抽取次序
1
2
3
4
5
6
7
8
零件尺寸
抽取次序
9
10
11
12
13
14
15
卷文科数学试卷及答案
2017年普通高等学校招生全国统一考试
文科数学
考生注意:
1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。