11、2020高考数学(文科)新精准大二轮精准练:专题五 第一讲 直线与圆 Word版含解析
2020届高考数学二轮复习第二部分专题五解析几何第1讲直线与圆专题强化练理
第1讲 直线与圆A 级 基础通关一、选择题1.已知直线l :x cos α+y sin α=1(α∈R)与圆C :x 2+y 2=r 2(r >0)相交,则r 的取值范围是( )A .0<r ≤1B .0<r <1C .r ≥1D .r >1解析:圆心到直线的距离为d =1cos 2α+sin 2α=1,故r >1. 答案:D2.已知命题p :“m =-1”,命题q :“直线x -y =0与直线x +m 2y =0互相垂直”,则命题p 是命题q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要解析:“直线x -y =0与直线x +m 2y =0互相垂直”的充要条件是1×1+(-1)·m 2=0⇔m =±1,所以命题p 是命题q 的充分不必要条件. 答案:A3.(2019·广东湛江一模)已知圆C :(x -3)2+(y -3)2=72,若直线x +y -m =0垂直于圆C 的一条直径,且经过这条直径的一个三等分点,则m =( )A .2或10B .4或8C .4或6D .2或4解析:圆C :(x -3)2+(y -3)3=72的圆心C 的坐标为(3,3),半径r =62, 因为直线x +y -m =0垂直于圆C 的一条直径,且经过这条直径的一个三等分点, 所以圆心到直线的距离为22,则有d =|6-m |1+1=22,解得m =2或m =10.答案:A4.直线ax -by =0与圆x 2+y 2-ax +by =0的位置关系是( ) A .相交 B .相切 C .相离D .不能确定解析:圆的方程化为标准方程得⎝ ⎛⎭⎪⎫x -a 22+⎝ ⎛⎭⎪⎫y +b 22=a 2+b 24.所以圆心坐标为⎝ ⎛⎭⎪⎫a 2,-b 2,半径r =a 2+b 22.所以圆心到直线ax -by =0的距离d =⎪⎪⎪⎪⎪⎪a 22+b 22a 2+b2=a 2+b 22=r .所以直线与圆相切. 答案:B5.(2019·安徽十校联考)过点P (2,1)作直线l 与圆C :x 2+y 2-2x -4y +a =0交于A ,B 两点,若P 为弦AB 中点,则直线l 的方程( )A .y =-x +3B .y =2x -3C .y =-2x +3D .y =x -1解析:圆C 的标准方程(x -1)2+(y -2)2=5-a ,知圆心C (1,2),因为P (2,1)是弦AB 的中点,则PC ⊥l .所以k CP =1-22-1=-1,所以直线l 的斜率k =1.故直线l 的方程为y -1=x -2,即y =x -1. 答案:D6.(2019·广东天河一模)已知圆C 的方程为x 2-2x +y 2=0,直线l :kx -y +2-2k =0与圆C 交于A ,B 两点,则当△ABC 面积最大时,直线l 的斜率k 为( )A .1B .6C .1或7D .2或6解析:由x 2-2x +y 2=0,得(x -1)2+y 2=1,则圆的半径r =1,圆心C (1,0), 直线l :kx -y +2-2k =0与圆C 交于A ,B 两点, 当CA 与CB 垂直时,△ABC 面积最大,此时△ABC 为等腰直角三角形,圆心C 到直线AB 的距离d =22, 则有|2-k |1+k2=22,解得k =1或k =7. 答案:C 二、填空题7.已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________,半径是________.解析:由已知方程表示圆,则a 2=a +2, 解得a =2或a =-1.当a =2时,方程不满足表示圆的条件,故舍去. 当a =-1时,原方程为x 2+y 2+4x +8y -5=0, 化为标准方程为(x +2)2+(y +4)2=25, 表示以(-2,-4)为圆心,5为半径的圆. 答案:(-2,-4) 58.一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.解析:由题意知,椭圆顶点的坐标为(0,2),(0,-2),(-4,0),(4,0).由圆心在x 轴的正半轴上知圆过顶点(0,2),(0,-2),(4,0).设圆的标准方程为(x -m )2+y 2=r 2, 则⎩⎪⎨⎪⎧m 2+4=r 2,(4-m )2=r 2.解得⎩⎪⎨⎪⎧m =32.r 2=254.所以该圆的标准方程为⎝ ⎛⎭⎪⎫x -322+y 2=254.答案:⎝ ⎛⎭⎪⎫x -322+y 2=2549.设抛物线y 2=4x 的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若∠FAC =120°,则圆的方程为_____________________________________________________.解析:由题意知该圆的半径为1,设圆心C (-1,a )(a >0),则A (0,a ).又F (1,0),所以AC →=(-1,0),AF →=(1,-a ).由题意知AC →与AF →的夹角为120°,得cos 120°=-11×1+a 2=-12,解得a = 3. 所以圆的方程为(x +1)2+(y -3)2=1. 答案:(x +1)2+(y -3)2=110.(2019·河北衡水二模)已知直线l 1过点P (3,0),直线l 1与l 2关于x 轴对称,且l 2过圆C :x 2+y 2-2x -2y +1=0的圆心,则圆心C 到直线l 1的距离为________.解析:由题意可知,圆C 的标准方程为(x -1)2+(y -1)2=1, 所以C (1,1),则l 2的斜率k CP =1-01-3=-12,因为l 1与l 2关于x 轴对称,所以直线l 1的斜率k =12,所以l 1:y =12(x -3),即x -2y -3=0,所以圆心C 到直线l 1的距离d =|1-2-3|1+4=455.答案:455B 级 能力提升11.(2018·江苏卷)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB →·CD →=0,则点A 的横坐标为________.解析:设A (a ,2a ),则a >0.又B (5,0),故以AB 为直径的圆的方程为(x -5)(x -a )+y (y -2a )=0. 由题意知C (a +52,a ).由⎩⎪⎨⎪⎧(x -5)(x -a )+y (y -2a )=0,y =2x , 解得⎩⎪⎨⎪⎧x =1,y =2,或⎩⎪⎨⎪⎧x =a ,y =2a .所以D (1,2). 又AB →·CD →=0,AB →=(5-a ,-2a ),CD →=(1-a +52,2-a ),所以(5-a ,-2a )·(1-a +52,2-a )=52a 2-5a -152=0, 解得a =3或a =-1. 又a >0,所以a =3. 答案:312.如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且|BC |=|OA |,求直线l 的方程. 解:圆M 的标准方程为(x -6)2+(y -7)2=25,所以圆心M (6,7),半径为5.(1)由圆心N 在直线x =6上,可设N (6,y 0). 因为圆N 与x 轴相切,与圆M 外切, 所以0<y 0<7,圆N 的半径为y 0, 从而7-y 0=5+y 0,解得y 0=1.因此,圆N 的标准方程为(x -6)2+(y -1)2=1. (2)因为直线l ∥OA ,所以直线l 的斜率为4-02-0=2.设直线l 的方程为y =2x +m , 即2x -y +m =0, 则圆心M 到直线l 的距离d =|2×6-7+m |5=|m +5|5. 因为|BC |=|OA |=22+42=25,又|MC |2=d 2+⎝ ⎛⎭⎪⎫|BC |22,即25=(m +5)25+5,解得m =5或m =-15.故直线l 的方程为2x -y +5=0或2x -y -15=0.。
2020版高考数学二轮复习专题五解析几何第1讲直线与圆学案文
第1讲直线与圆[做真题]1.(2016·高考全国卷Ⅱ)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=( )A.-错误!B.-错误!C。
3 D.2解析:选A.由圆的方程可知圆心(1,4).由点到直线的距离公式可得错误!=1,解得a=-错误!,故选A.2.(2018·高考全国卷Ⅰ)直线y=x+1与圆x2+y2+2y-3=0交于A,B两点,则|AB|=______.解析:将圆x2+y2+2y-3=0化为标准方程为x2+(y+1)2=4,则圆心坐标为(0,-1),半径r=2,所以圆心到直线x-y+1=0的距离d=错误!=错误!,所以|AB|=2错误!=2错误!=2错误!.答案:2错误!3.(2019·高考全国卷Ⅰ)已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,|MA|-|MP|为定值?并说明理由.解:(1)因为⊙M过点A,B,所以圆心M在AB的垂直平分线上.由已知A在直线x+y=0上,且A,B关于坐标原点O对称,所以M在直线y=x上,故可设M(a,a).因为⊙M与直线x+2=0相切,所以⊙M的半径为r=|a+2|.连接MA,由已知得|AO|=2,又MO⊥AO,故可得2a2+4=(a +2)2,解得a=0或a=4.故⊙M的半径r=2或r=6。
(2)存在定点P(1,0),使得|MA|-|MP|为定值.理由如下:设M(x,y),由已知得⊙M的半径为r=|x+2|,|AO|=2.由于MO⊥AO,故可得x2+y2+4=(x+2)2,化简得M的轨迹方程为y2=4x.因为曲线C:y2=4x是以点P(1,0)为焦点,以直线x=-1为准线的抛物线,所以|MP|=x+1.因为|MA|-|MP|=r-|MP|=x+2-(x+1)=1,所以存在满足条件的定点P.[明考情]1.直线方程、圆的方程、两直线的平行与垂直、直线与圆的位置关系是本讲高考的重点.2.考查的主要内容包括求直线(圆)的方程、点到直线的距离、直线与圆的位置关系判断、简单的弦长与切线问题,其难度多为中档题.直线的方程(基础型)[知识整合]三种距离公式(1)A(x1,y1),B(x2,y2)两点间的距离:|AB|=错误!.(2)点到直线的距离:d=错误!(其中点为(x0,y0),直线方程为Ax +By+C=0).(3)两平行直线间的距离:d=错误!(其中两平行直线的方程分别为l1:Ax+By+C1=0,l2:Ax+By+C2=0).两条直线平行与垂直的判定若两条不重合的直线l1,l2的斜率k1,k2存在,则l1∥l2⇔k1=k2,l1⊥l2⇔k1k2=-1.若给出的直线方程中存在字母系数,则要考虑斜率是否存在.[注意]要注意几种直线方程的局限性.点斜式、两点式、斜截式要求直线不能与x轴垂直.而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线.[考法全练]1.已知经过点A(-2,0)和点B(1,3a)的直线l1与经过点P(0,-1)和点Q(a,-2a)的直线l2互相垂直,则实数a的值为( )A.0 B.1C.0或1 D.-1或1解析:选C。
(新课标)2020版高考数学二轮复习专题五解析几何第1讲直线与圆练习文新人教A版
第1讲 直线与圆一、选择题1.若直线ax +2y +1=0与直线x +y -2=0互相垂直,则a 的值等于( ) A .1 B .-13C .-23D .-2解析:选D.直线ax +2y +1=0的斜率k 1=-a2,直线x +y -2=0的斜率k 2=-1,因为两直线相互垂直,所以k 1·k 2=-1,即(-a2)·(-1)=-1,所以a =-2.2.半径为2的圆C 的圆心在第四象限,且与直线x =0和x +y =22均相切,则该圆的标准方程为( )A .(x -1)2+(y +2)2=4 B .(x -2)2+(y +2)2=2 C .(x -2)2+(y +2)2=4 D .(x -22)2+(y +22)2=4解析:选C.设圆心坐标为(2,-a )(a >0),则圆心到直线x +y =22的距离d =|2-a -22|2=2,所以a =2,所以该圆的标准方程为(x -2)2+(y +2)2=4,故选C.3.已知直线l :y =x +1平分圆C :(x -1)2+(y -b )2=4的周长,则直线x =3与圆C 的位置关系是( )A .相交B .相切C .相离D .不能确定解析:选B.由已知得,圆心C (1,b )在直线l :y =x +1上,所以b =1+1=2,即圆心C (1,2),半径为r =2.由圆心C (1,2)到直线x =3的距离d =3-1=2=r 知,此时直线与圆相切.4.(2019·重庆市七校联合考试)两圆x 2+y 2+4x -4y =0和x 2+y 2+2x -8=0相交于M ,N 两点,则线段MN 的长为( )A.355 B .4 C.655D.1255解析:选D.两圆方程相减,得直线MN 的方程为x -2y +4=0,圆x 2+y 2+2x -8=0的标准方程为(x +1)2+y 2=9,所以圆x 2+y 2+2x -8=0的圆心为(-1,0),半径为3,圆心(-1,0)到直线MN 的距离d =35,所以线段MN 的长为232-⎝ ⎛⎭⎪⎫352=1255.故选D.5.(一题多解)在平面直角坐标系xOy 中,设直线x +y -m =0与圆O :x 2+y 2=8交于不同的两点A ,B ,若圆上存在点C ,使得△ABC 为等边三角形,则实数m 的值为( )A .±1B .±2C .±2 2D .±2 3解析:选B.通解:由题意知,点C 和圆心O 在直线AB 的同侧,且圆心O 在线段AB 的垂直平分线上,设线段AB 的中点为D ,圆O 的半径r =22,则|CD |=|OD |+r =32|AB |.因为|OD |=|m |2,|AB |=28-m 22,所以|m |2+22=32×28-m 22,解得m =±2.优解:设圆O 的半径为r ,则r =22,由圆周角∠ACB =60°,得圆心角∠AOB =120°,则圆心O 到直线x +y -m =0的距离d =12r =2,所以|m |2=2,解得m =±2.6.已知P (x ,y )是直线kx +y +4=0(k >0)上一动点,PA ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 分别是切点,若四边形PACB 的面积的最小值是2,则k 的值为( )A .1 B. 2 C. 3D .2解析:选D.由题意知,圆C 的圆心为C (0,1),半径r =1,四边形PACB 的面积S =2S △PBC ,若四边形PACB 的面积的最小值是2,则S △PBC 的最小值为1.而S △PBC =12r |PB |=12|PB |=1,则|PB |的最小值为2,此时|PC |取得最小值,而|PC |的最小值为圆心到直线的距离,所以|5|k 2+1=12+22=5,即k 2=4,由k >0,解得k =2. 二、填空题7.已知直线l :x +my -3=0与圆C :x 2+y 2=4相切,则m =________.解析:因为圆C :x 2+y 2=4的圆心为(0,0),半径为2,直线l :x +my -3=0与圆C :x 2+y 2=4相切,所以2=31+m2,解得m =±52. 答案:±528.(2019·广州市调研测试)若点P (1,1)为圆C :x 2+y 2-6x =0的弦MN 的中点,则弦MN 所在直线的方程为______.解析:由圆的方程易知圆心C 的坐标为(3,0),又P (1,1),所以k PC =0-13-1=-12.易知MN ⊥PC ,所以k MN ·k PC =-1,所以k MN =2.由弦MN 所在的直线经过点P (1,1),得所求直线的方程为y -1=2(x -1),即2x -y -1=0.答案:2x -y -1=09.已知圆C :(x -2)2+y 2=4,直线l 1:y =3x ,l 2:y =kx -1.若直线l 1,l 2被圆C 所截得的弦的长度之比为1∶2,则k 的值为______.解析:依题意知,圆C :(x -2)2+y 2=4的圆心为C (2,0),半径为2.圆心C 到直线l 1:y =3x 的距离为232=3,所以直线l 1被圆C 所截得的弦长为2×4-3=2.圆心C 到直线l 2:y =kx -1的距离d =|2k -1|1+k2,所以直线l 2被圆C 所截得的弦长为24-d 2,由题意知2∶(24-d 2)=1∶2,解得d =0,故直线l 2过圆心C .所以2k -1=0,解得k =12.答案:12三、解答题10.已知点P (0,5)及圆C :x 2+y 2+4x -12y +24=0.(1)若直线l 过点P 且被圆C 截得的线段长为43,求l 的方程; (2)求过P 点的圆C 的弦的中点的轨迹方程. 解:(1)如图所示,|AB |=43,将圆C 方程化为标准方程即(x +2)2+(y -6)2=16, 所以圆C 的圆心坐标为(-2,6),半径r =4,设D 是线段AB 的中点,则CD ⊥AB ,所以|AD |=23,|AC |=4,C 点坐标为(-2,6). 在Rt △ACD 中,可得|CD |=2. 若直线l 的斜率存在,设为k , 则直线l 的方程为y -5=kx , 即kx -y +5=0.由点C 到直线AB 的距离公式为|-2k -6+5|k 2+(-1)2=2,得k =34.故直线l 的方程为3x -4y +20=0.直线l 的斜率不存在时,也满足题意,此时方程为x =0. 所以所求直线l 的方程为x =0或3x -4y +20=0. (2)设过P 点的圆C 的弦的中点为D (x ,y ), 则CD ⊥PD ,即CD →·PD →=0,所以(x +2,y -6)·(x ,y -5)=0,化简得所求轨迹方程为x 2+y 2+2x -11y +30=0.11.(2018·高考全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.解:(1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x 得k 2x 2-(2k 2+4)x +k 2=0. Δ=16k 2+16>0,故x 1+x 2=2k 2+4k2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k2.由题设知4k 2+4k2=8,解得k =-1(舍去),k =1.因此l 的方程为y =x -1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3),即y =-x +5.设所求圆的圆心坐标为(x 0,y 0),则⎩⎪⎨⎪⎧y 0=-x 0+5,(x 0+1)2=(y 0-x 0+1)22+16. 解得⎩⎪⎨⎪⎧x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6.因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144.12.已知半径为5的圆的圆心在x 轴上,圆心的横坐标是整数,且与直线4x +3y -29=0相切.(1)设直线ax -y +5=0与圆相交于A ,B 两点,求实数a 的取值范围;(2)在(1)的条件下,是否存在实数a ,使得过点P (-2,4)的直线l 垂直平分弦AB ?若存在,求出实数a 的值;若不存在,请说明理由.解:(1)设圆心为M (m ,0)(m ∈Z ).因为圆与直线4x +3y -29=0相切,且圆的半径为5, 所以|4m -29|42+32=5,即|4m -29|=25. 因为m 为整数,所以m =1. 所以圆的方程是(x -1)2+y 2=25. 将ax -y +5=0变形为y =ax +5,并将其代入圆的方程,消去y 并整理,得(a 2+1)x 2+2(5a -1)x +1=0. 由于直线ax -y +5=0交圆于A ,B 两点, 故Δ=4(5a -1)2-4(a 2+1)>0,即12a 2-5a >0, 解得a <0或a >512.所以实数a 的取值范围是(-∞,0)∪⎝ ⎛⎭⎪⎫512,+∞. (2)设符合条件的实数a 存在. 由(1)得a ≠0,则直线l 的斜率为-1a.所以直线l 的方程为y =-1a(x +2)+4,即x +ay +2-4a =0.因为直线l 垂直平分弦AB , 所以圆心M (1,0)必在直线l 上. 所以1+0+2-4a =0, 解得a =34.因为34∈⎝ ⎛⎭⎪⎫512,+∞, 所以存在实数a =34,使得过点P (-2,4)的直线l 垂直平分弦AB .。
2020届高考数学大二轮复习层级二专题五解析几何第1讲直线与圆课时作业
第1讲 直线与圆限时40分钟 满分80分一、选择题(本大题共11小题,每小题5分,共55分)1.(2020·成都二诊)设a ,b ,c 分别是△ABC 中角A ,B ,C 所对的边,则直线sin A ·x +ay -c =0与bx -sin B ·y +sin C =0的位置关系是( )A .平行B .重合C .垂直D .相交但不垂直解析:C [由题意可得直线sin A ·x +ay -c =0的斜率k 1=-sin Aa,bx -sin B ·y +sin C =0的斜率k 2=b sin B ,故k 1k 2=-sin A a ·b sin B =-1,则直线sin A ·x +ay -c =0与直线bx -sin B ·y +sinC =0垂直,故选C.]2.(2020·杭州质检)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A .-53或-35B .-32或-23C .-54或-45D .-43或-34解析:D [点(-2,-3)关于y 轴的对称点为(2,-3),故可设反射光线所在直线的方程为y +3=k (x -2),∵反射光线与圆(x +3)2+(y -2)2=1相切,∴圆心(-3,2)到直线的距离d =|-3k -2-2k -3|k 2+1=1,化简得12k 2+25k +12=0,解得k =-43或-34.]3.(2020·广州模拟)若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上运动,则AB 的中点M 到原点的距离的最小值为( )A. 2 B .2 2 C .3 2D .4 2解析:C [由题意知AB 的中点M 的集合为到直线l 1:x +y -7=0和l 2:x +y -5=0的距离都相等的直线,则点M 到原点的距离的最小值为原点到该直线的距离.设点M 所在直线的方程为l :x +y +m =0,根据两平行线间的距离公式得,|m +7|2=|m +5|2,即|m +7|=|m +5|,所以m =-6,即l :x +y -6=0,根据点到直线的距离公式,得点M 到原点的距离的最小值为|-6|2=3 2.]4.(2020·河南六校联考)已知直线x +y =a 与圆x 2+y 2=1交于A ,B 两点,O 是坐标原点,向量OA →,OB →满足|OA →+OB →|=|OA →-OB →|,则实数a 的值为( )A .1B .2C .±1D .±2解析:C [由OA →,OB →满足|OA →+OB →|=|OA →-OB →|,得OA →⊥OB →, 因为直线x +y =a 的斜率是-1, 所以A ,B 两点在坐标轴上并且在圆上;所以(0,1)和(0,-1)两点都适合直线的方程,故a =±1.]5.(2020·怀柔调研)过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( )A .y =-34B .y =-12C .y =-32D .y =-14解析:B [圆(x -1)2+y 2=1的圆心为C (1,0),半径为1,以|PC |=1-12+-2-02=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12.故选B.] 6.(2020·温州模拟)已知圆C :(x -2)2+y 2=2,直线l :y =kx ,其中k 为[-3,3]上的任意一个实数,则事件“直线l 与圆C 相离”发生的概率为( )A.33B.34C.14D.3-33解析:D [当直线l 与圆C 相离时,圆心C 到直线l 的距离d =|2k |k 2+1>2,解得k >1或k <-1,又k ∈[-3,3],所以-3≤k <-1或1<k ≤3,故事件“直线l 与圆C 相离”发生的概率P =3-1+-1+323=3-33,故选D.] 7.(2019·潍坊三模)已知O 为坐标原点,A ,B 是圆C :x 2+y 2-6y +5=0上两个动点,且|AB |=2,则|OA →+OB →|的取值范围是( )A .[6-23,6+23]B .[3-3,3+3]C .[3,9]D .[3,6]解析:A [圆C :x 2+(y -3)2=4,取弦AB 的中点M ,连接CM ,CA ,在直角三角形CMA 中,|CA |=2,|MA |=1,则|CM |=|CA |2-|MA |2=3,则点M 的轨迹方程为x 2+(y -3)2=3,则|OA →+OB →|=2|OM →|∈[6-23,6+23].]8.(多选题)直线x -y +m =0与圆x 2+y 2-2x -1=0有两个不同的交点的一个充分不必要条件是( )A .0<m <1B .m <1C .-2<m <1D .-3<m <1解析:AC [本题主要考查直线与圆的位置关系的判断.圆x 2+y 2-2x -1=0的圆心为(1,0),半径为 2.因为直线x -y +m =0与圆x 2+y 2-2x -1=0有两个不同的交点,所以直线与圆相交,因此圆心到直线的距离d =|1+m |1+1<2,所以|1+m |<2,解得-3<m <1,求其充分条件,即求其子集,故由选项易得AC 符合.故选AC.]9.(2020·合肥质检)已知圆C 1:(x +2)2+(y -3)2=5与圆C 2相交于A (0,2),B (-1,1)两点,且四边形C 1AC 2B 为平行四边形,则圆C 2的方程为( )A .(x -1)2+y 2=5 B .(x -1)2+y 2=92C.⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=5 D.⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=92解析:A [通解 (常规求解法)设圆C 2的圆心坐标为(a ,b ),连接AB ,C 1C 2.因为C 1(-2,3),A (0,2),B (-1,1),所以|AC 1|=|BC 1|=5,所以平行四边形C 1AC 2B 为菱形,所以C 1C 2⊥AB 且|AC 2|= 5.可得⎩⎪⎨⎪⎧3-b -2-a ×1-2-1-0=-1,a 2+b -22=5,解得⎩⎪⎨⎪⎧a =1,b =0或⎩⎪⎨⎪⎧a =-2,b =3,则圆心C 2的坐标为(1,0)或(-2,3)(舍去).因为圆C 2的半径为5,所以圆C 2的方程为(x -1)2+y 2=5.故选A.优解 (特值验证法)由题意可知,平行四边形C 1AC 2B 为菱形,则|C 2A |=|C 1A |=22+2-32=5,即圆C 2的半径为5,排除B ,D ;将点A (0,2)代入选项A ,C ,显然选项A 符合.故选A.]10.(2020·惠州二测)已知圆C :x 2+y 2-2ax -2by +a 2+b 2-1=0(a <0)的圆心在直线3x -y +3=0上,且圆C 上的点到直线3x +y =0的距离的最大值为1+3,则a 2+b 2的值为( )A .1B .2C .3D .4解析:C [化圆C :x 2+y 2-2ax -2by +a 2+b 2-1=0(a <0)为标准方程得C :(x -a )2+(y -b )2=1,其圆心为(a ,b ),故3a -b +3=0,即b =3a +3,(a ,b )到直线3x +y =0的距离d =|3a +b |3+1=|3a +b |2=|3a +3a +3|2,因为圆C 上的点到直线3x +y =0的距离的最大值为1+3,故d +1=32|2a +1|+1=1+3,得到|2a +1|=2,解得a =-32或a =12(舍去),故b =3×⎝ ⎛⎭⎪⎫-32+3=-32,故a 2+b 2=⎝ ⎛⎭⎪⎫-322+⎝ ⎛⎭⎪⎫-322=3.选C.]11.(2019·烟台三模)已知圆C :(x -1)2+(y -4)2=10和点M (5,t ),若圆C 上存在两点A ,B 使得MA ⊥MB ,则实数t 的取值范围是( )A .[-2,6]B .[-3,5]C .[2,6]D .[3,5]解析:C [当MA ,MB 是圆C 的切线时,∠AMB 取得最大值,若圆C 上存在两点A ,B 使得MA ⊥MB ,则MA ,MB 是圆C 的切线时,∠AMB ≥90°,∠AMC ≥45°,且∠AMC <90°,如图,所以|MC |=5-12+t -42≤10sin 45°=20,所以16+(t -4)2≤20,所以2≤t ≤6,故选C.]二、填空题(本大题共5小题,每小题5分,共25分)12.(双空填空题)在平面直角坐标系xOy 中,已知圆C 过点A (0,-8),且与圆x 2+y 2-6x -6y =0相切于原点,则圆C 的方程为___________________________________________,圆C 被x 轴截得的弦长为________.解析:本题考查圆与圆的位置关系.将已知圆化为标准式得(x -3)2+(y -3)2=18,圆心为(3,3),半径为3 2.由于两个圆相切于原点,连心线过切点,故圆C 的圆心在直线y =x 上.由于圆C 过点(0,0),(0,-8),所以圆心又在直线y =-4上.联立y =x 和y =-4,得圆心C 的坐标(-4,-4).又因为点(-4,-4)到原点的距离为42,所以圆C 的方程为(x +4)2+(y +4)2=32,即x 2+y 2+8x +8y =0.圆心C 到x 轴距离为4,则圆C 被x 轴截得的弦长为2×422-42=8.答案:x 2+y 2+8x +8y =0 813.(2019·哈尔滨二模)设圆x 2+y 2-2x -2y -2=0的圆心为C ,直线l 过(0,3),且与圆C 交于A ,B 两点,若|AB |=23,则直线l 的方程为________________.解析:当直线l 的斜率不存在时,直线l 的方程为x =0,联立方程得⎩⎪⎨⎪⎧x =0,x 2+y 2-2x -2y -2=0.得⎩⎨⎧x =0,y =1-3或⎩⎨⎧x =0,y =1+3,∴|AB |=23,符合题意.当直线l 的斜率存在时,设直线l的方程为y =kx +3,∵圆x 2+y 2-2x -2y -2=0,即(x -1)2+(y -1)2=4,其圆心为C (1,1),圆的半径r =2,圆心C (1,1)到直线y =kx +3的距离d =|k -1+3|k 2+1=|k +2|k 2+1,∵d 2+⎝ ⎛⎭⎪⎫|AB |22=r 2,∴k +22k 2+1+3=4,解得k =-34,∴直线l 的方程为y =-34x +3,即3x +4y -12=0.综上,直线l 的方程为3x +4y -12=0或x =0.答案:x =0或3x +4y -12=014.若圆x 2+y 2=4与圆x 2+y 2+ax +2ay -9=0(a >0)相交,公共弦的长为22,则a =________.解析:联立两圆方程⎩⎪⎨⎪⎧x 2+y 2=4,x 2+y 2+ax +2ay -9=0,可得公共弦所在直线方程为ax +2ay -5=0, 故圆心(0,0)到直线ax +2ay -5=0的距离为|-5|a 2+4a2=5a(a >0).故222-⎝⎛⎭⎪⎫5a 2=22, 解得a 2=52,因为a >0,所以a =102. 答案:10215.(2018·江苏卷)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB →·CD →=0,则点A 的横坐标为________.解析:∵AB 为直径 ∴AD ⊥BD∴BD 即B 到直线l 的距离 |BD |=|0-2×5|12+22=2 5. ∵|CD |=|AC |=|BC |=r ,又CD ⊥AB . ∴|AB |=2|BC |=210 设A (a,2a ) |AB |=a -52+4a 2=210⇒a =-1或3(-1舍去)答案:316.(2020·厦门模拟)为保护环境,建设美丽乡村,镇政府决定为A ,B ,C 三个自然村建造一座垃圾处理站,集中处理A ,B ,C 三个自然村的垃圾,受当地条件限制,垃圾处理站M 只能建在与A 村相距5 km ,且与C 村相距31 km 的地方.已知B 村在A 村的正东方向,相距3 km ,C 村在B 村的正北方向,相距3 3 km ,则垃圾处理站M 与B 村相距________km.解析:以A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系(图略),则A (0,0),B (3,0),C (3,33). 由题意得垃圾处理站M 在以A (0,0)为圆心,5为半径的圆A 上,同时又在以C (3,33)为圆心,31为半径的圆C 上,两圆的方程分别为x 2+y 2=25和(x -3)2+(y -33)2=31.由⎩⎨⎧x 2+y 2=25,x -32+y -332=31,解得⎩⎪⎨⎪⎧x =5,y =0或⎩⎪⎨⎪⎧x =-52,y =532,∴垃圾处理站M 的坐标为(5,0)或⎝ ⎛⎭⎪⎫-52,532,∴|MB |=2或|MB |=⎝ ⎛⎭⎪⎫-52-32+⎝ ⎛⎭⎪⎫5322=7, 即垃圾处理站M 与B 村相距2 km 或7 km. 答案:2或7。
高考数学二轮复习 专题五 第1讲 直线与圆课件 理
0 的对称点仍在圆上,且圆与直线 x-y+1=0 相交的弦长为
2 2,则圆的方程是________.
解析 设圆的方程为(x-a)2+(y-b)2=r2,点 的对称点仍在圆上,说明圆心在直线 x+2y=0 上,即有
a+2b=0,又(2-a)2+(3-b)2=r2,而圆与直线 x-y+1=0 相交
考点整合
1.两直线平行或垂直 (1)两条直线平行:对于两条不重合的直线l1,l2,其斜率分别为 k1,k2,则有l1∥l2⇔k1=k2.特别地,当直线l1,l2的斜率都不存 在且l1与l2不重合时,l1∥l2. (2)两条直线垂直:对于两条直线l1,l2,其斜率分别为k1,k2, 则有l1⊥l2⇔k1·k2=-1.特别地,当l1,l2中有一条直线的斜率不 存在,另一条直线的斜率为零时,l1⊥l2.
2.圆的方程 (1)圆的标准方程:(x-a)2+(y-b)2=r2(r>0),圆心为(a,b),半 径为 r. (2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0),圆心 为-D2 ,-E2,半径为 r= D2+2E2-4F;对于二元二次方程 Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 表 示 圆 的 充 要 条 件 是 B=0, A=C≠0, D2+E2-4AF>0.
探究提高 (1)直线与圆相切时利用“切线与过切点的半径垂直, 圆心到切线的距离等于半径”建立切线斜率的等式,所以求切线 方程时主要选择点斜式. (2)过圆外一点求解切线长转化为圆心到圆外点距离,利用勾股定 理处理.
[微题型3] 与圆有关的弦长问题 【例 1-3】 (2015·泰州调研)若圆上一点 A(2,3)关于直线 x+2y=
5.直线与圆中常见的最值问题 (1)圆外一点与圆上任一点的距离的最值. (2)直线与圆相离,圆上任一点到直线的距离的最值. (3)过圆内一定点的直线被圆截得弦长的最值. (4)直线与圆相离,过直线上一点作圆的切线,切线长的最小值 问题. (5)两圆相离,两圆上点的距离的最值.
(全国通用)2020版高考数学二轮复习第二层提升篇专题五解析几何第1讲直线与圆讲义
第1讲 直线与圆[全国卷3年考情分析](1)圆的方程近几年成为高考全国课标卷命题的热点,需重点关注.此类试题难度中等偏下,多以选择题或填空题形式呈现.(2)直线与圆的方程偶尔单独命题,单独命题时有一定的深度,有时会出现在第11题或第15题位置,难度较大,对直线与圆的方程(特别是直线)的考查主要体现在圆锥曲线的综合问题上.[例1] (1)已知0<k <4,直线l 1:kx -2y -2k +8=0和直线l 2:2x +k 2y -4k 2-4=0与坐标轴围成一个四边形,则使这个四边形面积最小的k 的值为( )A.18 B.12 C.14D.2(2)若直线l 1:y =kx -k +2与直线l 2关于点(2,1)对称,则直线l 2过定点( ) A.(3,1) B.(3,0) C.(0,1)D.(2,1)[解析] (1)直线l 1,l 2恒过点P (2,4),直线l 1在y 轴上的截距为4-k ,直线l 2在x 轴上的截距为2k 2+2,因为0<k <4,所以4-k >0,2k 2+2>0,所以四边形的面积S =12×2×(4-k )+12×4×(2k 2+2)=4k 2-k +8=4⎝ ⎛⎭⎪⎫k -182+12716,故当k =18时,面积最小.(2)∵y =kx -k +2=k (x -1)+2,∴l 1:y =kx -k +2过定点(1,2).设定点(1,2)关于点(2,1)对称的点的坐标为(x ,y ),则⎩⎪⎨⎪⎧1+x2=2,2+y 2=1,得⎩⎪⎨⎪⎧x =3,y =0,∴直线l 2过定点(3,0).故选B.[答案] (1)A (2)B[解题方略]1.两直线的位置关系问题的解题策略求解与两条直线平行或垂直有关的问题时,主要是利用两条直线平行或垂直的充要条件,即斜率相等且纵截距不相等或斜率互为负倒数.若出现斜率不存在的情况,可考虑用数形结合的方法去研究或直接用直线的一般式方程判断.2.轴对称问题的两种类型及求解方法[跟踪训练]1.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2之间的距离为( )A.423B.4 2C.823D.2 2解析:选C 因为l 1∥l 2,所以1a -2=a 3≠62a,解得a =-1,所以l 1与l 2的方程分别为l 1:x -y +6=0,l 2:x -y +23=0,所以l 1与l 2的距离d =⎪⎪⎪⎪⎪⎪6-232=823.2.在平面直角坐标系内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|MQ |2=( )A.102B.10C.5D.10解析:选D 由题意知P (0,1),Q (-3,0),∵过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直,∴MP ⊥MQ ,∴|MP |2+|MQ |2=|PQ |2=9+1=10,故选D.[例2] (1)已知点A 是直角三角形ABC 的直角顶点,且A (2a ,2),B (-4,a ),C (2a +2,2),则三角形ABC 外接圆的方程是( )A.x 2+(y -3)2=5 B.x 2+(y +3)2=5 C.(x -3)2+y 2=5D.(x +3)2+y 2=5(2)圆心在直线y =-4x 上,并且与直线l :x +y -1=0相切于点P (3,-2)的圆的方程为________________.[解析] (1)∵AB ―→=(-4-2a ,a -2),AC ―→=(2,0),∴AB ―→·AC ―→=-8-4a =0,解得a =-2.∴A (-4,2),B (-4,-2),C (-2,2),|BC |=25,又BC 的中点坐标为(-3,0),∴三角形ABC 外接圆的圆心为(-3,0),半径为|BC |2=5,∴三角形ABC 外接圆的方程为(x +3)2+y 2=5.(2)设圆心M 为(x ,-4x ),k MP =2-4xx -3,k l =-1,所以k MP ·k l =-1,所以x =1,所以M (1,-4),所以r =|MP |=(1-3)2+(-4+2)2=2 2所以所求圆的方程为(x -1)2+(y +4)2=8. [答案] (1)D (2)(x -1)2+(y +4)2=8[解题方略] 求圆的方程的2种方法[跟踪训练]1.已知圆C 1:(x +2)2+(y -3)2=5与圆C 2相交于A (0,2),B (-1,1)两点,且四边形C 1AC 2B 为平行四边形,则圆C 2的方程为( )A.(x -1)2+y 2=5 B.(x -1)2+y 2=92C.⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=5 D.⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=92解析:选A 法一:(常规求解法)设圆C 2的圆心坐标为(a ,b ),连接AB ,C 1C 2.因为C 1(-2,3),A (0,2),B (-1,1),所以|AC 1|=|BC 1|=5,所以平行四边形C 1AC 2B 为菱形,所以C 1C 2⊥AB 且|AC 2|= 5.可得⎩⎪⎨⎪⎧3-b -2-a ×1-2-1-0=-1,a 2+(b -2)2=5,解得⎩⎪⎨⎪⎧a =1,b =0或⎩⎪⎨⎪⎧a =-2,b =3,则圆心C 2的坐标为(1,0)或(-2,3)(舍去).因为圆C 2的半径为5,所以圆C 2的方程为(x -1)2+y 2=5.故选A.法二:(特值验证法)由题意可知,平行四边形C 1AC 2B 为菱形,则|C 2A |=|C 1A |=22+(2-3)2=5,即圆C 2的半径为5,排除B 、D ;将点A (0,2)代入选项A 、C ,显然选项A 符合.故选A.2.若不同两点P ,Q 的坐标分别为(a ,b ),(3-b ,3-a ),则线段PQ 的垂直平分线l 的斜率为________,圆(x -2)2+(y -3)2=1关于直线l 对称的圆的方程为____________.解析:k PQ =3-a -b3-b -a=1,故直线l 的斜率为-1,由点斜式可知l 的方程为y =-x +3,圆心(2,3)关于直线y =-x +3的对称点为(0,1),故所求圆的方程为x 2+(y -1)2=1.答案:-1 x 2+(y -1)2=1考点三直线与圆的位置关系题型一 圆的切线问题[例3] (1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( ) A.3x +4y -4=0 B.4x -3y +4=0 C.x =2或4x -3y +4=0D.y =4或3x +4y -4=0(2)设点M (x 0,y 0)为直线3x +4y =25上一动点,过点M 作圆x 2+y 2=2的两条切线,切点为B ,C ,则四边形OBMC 面积的最小值为________.[解析] (1)当斜率不存在时,x =2与圆相切;当斜率存在时,设切线方程为y -4=k (x -2),即kx -y +4-2k =0,则|k -1+4-2k |k 2+1=1,解得k =43,则切线方程为4x -3y +4=0,故切线方程为x =2或4x -3y +4=0.(2)圆心O 到直线3x +4y =25的距离d =259+16=5, 则|OM |≥d =5,所以切线长|MB |=|OM |2-2≥d 2-2=23, 所以S 四边形OBMC =2S △OBM ≥2×12×23×2=46.[答案] (1)C (2)46[变式1] 本例(2)变为:过点A (1,3),作圆x 2+y 2=2的两条切线,切点为B ,C ,则四边形OBAC 的面积为________.解析:由相切可得S 四边形OBAC =2S △OBA ,因为△OAB 为直角三角形,且|OA |=10,|OB |=2, 所以|AB |=22,即S △OBA =12×22×2=2,所以S 四边形OBAC =2S △OBA =4. 答案:4[变式2] 本例(2)变为:设点M (x 0,y 0)为直线3x +4y =25上一动点,过点M 作圆x 2+y 2=2的两条切线l 1,l 2,则l 1与l 2的最大夹角的正切值是________.解析:设一个切点为B ,圆心O 到直线3x +4y =25的距离为d =259+16=5,则tan ∠OMB =|OB ||MB |≤223,所以tan2∠OMB =2tan ∠OMB1-tan 2∠OMB =21tan ∠OMB-tan ∠OMB≤24621.故所求最大夹角的正切值为24621. 答案:24621[解题方略] 直线与圆相切问题的解题策略直线与圆相切时利用“切线与过切点的半径垂直,圆心到切线的距离等于半径”建立关于切线斜率的等式,所以求切线方程时主要选择点斜式.过圆外一点求解切线段长的问题,可先求出圆心到圆外点的距离,再结合半径利用勾股定理计算.题型二 圆的弦长问题[例4] 已知圆C 经过点A (-2,0),B (0,2),且圆心C 在直线y =x 上,又直线l :y =kx +1与圆C 相交于P ,Q 两点.(1)求圆C 的方程;(2)过点(0,1)作直线l 1与l 垂直,且直线l 1与圆C 交于M ,N 两点,求四边形PMQN 面积的最大值.[解] (1)设圆心C (a ,a ),半径为r ,因为圆C 经过点A (-2,0),B (0,2),所以|AC |=|BC |=r ,即(a +2)2+(a -0)2=(a -0)2+(a -2)2=r , 解得a =0,r =2,故所求圆C 的方程为x 2+y 2=4.(2)设圆心C 到直线l ,l 1的距离分别为d ,d 1,四边形PMQN 的面积为S . 因为直线l ,l 1都经过点(0,1),且l 1⊥l , 根据勾股定理,有d 21+d 2=1.又|PQ |=2×4-d 2,|MN |=2×4-d 21, 所以S =12|PQ |·|MN |,即S =12×2×4-d 2×2×4-d 21=216-4(d 21+d 2)+d 21d 2=212+d 21d 2≤212+⎝ ⎛⎭⎪⎫d 21+d 222=212+14=7,当且仅当d 1=d 时,等号成立, 所以四边形PMQN 面积的最大值为7.[解题方略] 求解圆的弦长的3种方法[跟踪训练]1.已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点,若|MN |=255,则直线l 的方程为________.解析:直线l 的方程为y =kx +1,圆心C (2,3)到直线l 的距离d =|2k -3+1|k 2+1=|2k -2|k 2+1,由r 2=d 2+⎝ ⎛⎭⎪⎫|MN |22,得1=(2k -2)2k 2+1+15,解得k =2或12,故所求直线l 的方程为y =2x +1或y =12x +1.答案:y =2x +1或y =12x +12.(2019·山东枣庄期末改编)若点P (1,1)为圆x 2+y 2-6x =0中弦AB 的中点,则弦AB 所在直线的方程为________________,|AB |=________.解析:圆x 2+y 2+6x =0的标准方程为(x -3)2+y 2=9.又因为点P (1,1)为圆中弦AB 的中点,所以圆心与点P 所在直线的斜率为1-01-3=-12,故弦AB 所在直线的斜率为2,所以直线AB 的方程为y -1=2(x -1),即2x -y -1=0.圆心(3,0)与点P (1,1)之间的距离d =5,圆的半径r =3,则|AB |=2r 2-d 2=4.答案:2x -y -1=0 43.已知从圆C :(x +1)2+(y -2)2=2外一点P (x 1,y 1)向该圆引一条切线,切点为M ,O 为坐标原点,且有|PM |=|PO |,则当|PM |取最小值时点P 的坐标为________.解析:如图所示,连接CM ,CP .由题意知圆心C (-1,2),半径r = 2.因为|PM |=|PO |,所以|PO |2+r 2=|PC |2,所以x 21+y 21+2=(x 1+1)2+(y 1-2)2,即2x 1-4y 1+3=0.要使|PM |的值最小,只需|PO |的值最小即可.当PO 垂直于直线2x -4y +3=0时,即PO 所在直线的方程为2x +y =0时,|PM |的值最小,此时点P 为两直线的交点,则⎩⎪⎨⎪⎧2x -4y +3=0,2x +y =0,解得⎩⎪⎨⎪⎧x =-310,y =35,故当|PM |取最小值时点P 的坐标为⎝ ⎛⎭⎪⎫-310,35.答案:⎝ ⎛⎭⎪⎫-310,35数学建模——直线与圆最值问题的求解[典例] 已知圆O :x 2+y 2=9,过点C (2,1)的直线l 与圆O 交于P ,Q 两点,则当△OPQ 的面积最大时,直线l 的方程为( )A.x -y -3=0或7x -y -15=0B.x +y +3=0或7x +y -15=0C.x +y -3=0或7x -y +15=0D.x +y -3=0或7x +y -15=0[解析] 当直线l 的斜率不存在时,l 的方程为x =2,则P (2,5),Q (2,-5),所以S △OPQ =12×2×25=25,当直线l 的斜率存在时,设l 的方程为y -1=k (x -2)⎝ ⎛⎭⎪⎫k ≠12,则圆心到直线l 的距离d =|1-2k |1+k2,所以|PQ |=29-d 2,S △OPQ =12×|PQ |×d =12×29-d 2×d =(9-d 2)d 2≤9-d 2+d 22=92,当且仅当9-d 2=d 2,即d 2=92时,S △OPQ 取得最大值92,因为25<92,所以S △OPQ 的最大值为92,此时4k 2-4k +1k 2+1=92,解得k =-1或k =-7,此时直线l 的方程为x +y -3=0或7x +y -15=0,故选D.[答案] D [素养通路]本题考查了直线与圆的最值问题,结合题目的条件,设元、列式、建立恰当的函数,利用基本不等式模型解决相关的最值问题.考查了数学建模这一核心素养.[专题过关检测]A 组——“6+3+3”考点落实练一、选择题1.“ab =4”是“直线2x +ay -1=0与直线bx +2y -2=0平行”的( ) A.充要条件 B.充分不必要条件 C.必要不充分条件D.既不充分也不必要条件解析:选C 因为两直线平行,所以斜率相等,即-2a =-b2,可得ab =4,又当a =1,b =4时,满足ab =4,但是两直线重合,故选C.2.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是( ) A.相离 B.相交 C.外切D.内切解析:选B 圆O 1:x 2+y 2-2x =0,即(x -1)2+y 2=1,圆心是O 1(1,0),半径是r 1=1, 圆O 2:x 2+y 2-4y =0,即x 2+(y -2)2=4, 圆心是O 2(0,2),半径是r 2=2,因为|O 1O 2|=5,故|r 1-r 2|<|O 1O 2|<|r 1+r 2| 所以两圆的位置关系是相交.3.已知直线l 1过点(-2,0)且倾斜角为30°,直线l 2过点(2,0)且与直线l 1垂直,则直线l 1与直线l 2的交点坐标为( )A.(3,3)B.(2,3)C.(1,3)D.⎝ ⎛⎭⎪⎫1,32 解析:选C 直线l 1的斜率k 1=tan30°=33,因为直线l 2与直线l 1垂直,所以直线l 2的斜率k 2=-1k 1=-3,所以直线l 1的方程为y =33(x +2),直线l 2的方程为y =-3(x-2),联立⎩⎪⎨⎪⎧y =33(x +2),y =-3(x -2),解得⎩⎨⎧x =1,y =3,即直线l 1与直线l 2的交点坐标为(1,3).4.(2019·江苏徐州期末)若圆(x +1)2+y 2=m 与圆x 2+y 2-4x +8y -16=0内切,则实数m 的值为( )A.1B.11C.121D.1或121解析:选D 圆(x +1)2+y 2=m 的圆心坐标为(-1,0),半径为m ;圆x 2+y 2-4x +8y -16=0,即(x -2)2+(y +4)2=36,故圆心坐标为(2,-4),半径为6.由两圆内切得32+42=|m -6|,解得m =1或m =121.故选D.5.在平面直角坐标系中,O 为坐标原点,直线x -ky +1=0与圆C :x 2+y 2=4相交于A ,B 两点,OM ―→=OA ―→+OB ―→,若点M 在圆C 上,则实数k 的值为( )A.-2B.-1C.0D.1解析:选C 法一:设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x -ky +1=0,x 2+y 2=4得(k 2+1)y 2-2ky -3=0,则Δ=4k 2+12(k 2+1)>0,y 1+y 2=2k k 2+1,x 1+x 2=k (y 1+y 2)-2=-2k 2+1,因为OM ―→=OA ―→+OB ―→,故M ⎝ ⎛⎭⎪⎫-2k 2+1,2k k 2+1,又点M 在圆C 上,故4(k 2+1)2+4k 2(k 2+1)2=4,解得k =0.法二:由直线与圆相交于A ,B 两点,OM ―→=OA ―→+OB ―→,且点M 在圆C 上,得圆心C (0,0)到直线x -ky +1=0的距离为半径的一半,为1,即d =11+k2=1,解得k =0.6.(2019·广东省广州市高三测试)已知圆C :x 2+y 2=1,点A (-2,0)及点B (2,a ),若直线AB 与圆C 没有公共点,则a 的取值范围是( )A.(-∞,-1)∪(1,+∞)B.(-∞,-2)∪(2,+∞)C.⎝ ⎛⎭⎪⎫-∞,-433∪⎝ ⎛⎭⎪⎫433,+∞D.(-∞,-4)∪(4,+∞)解析:选C 由点A (-2,0)及点B (2,a ),得k AB =a 4,所以直线AB 的方程为y =a4(x +2),即ax -4y +2a =0.因为直线AB 与圆C 没有公共点,所以|2a |a 2+(-4)2>1,解得a >433或a <-433,所以a 的取值范围是⎝ ⎛⎭⎪⎫-∞,-433∪⎝ ⎛⎭⎪⎫433,+∞,故选C.二、填空题7.(2019·贵阳市第一学期监测)已知直线l 1:y =2x ,则过圆x 2+y 2+2x -4y +1=0的圆心且与直线l 1垂直的直线l 2的方程为________.解析:由题意,圆的标准方程为(x +1)2+(y -2)2=4,所以圆的圆心坐标为(-1,2),所以所求直线的方程为y -2=-12(x +1),即x +2y -3=0.答案:x +2y -3=08.已知直线l 过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且点P (0,4)到直线l 的距离为2,则直线l 的方程为________________.解析:由⎩⎪⎨⎪⎧x -2y +3=0,2x +3y -8=0得⎩⎪⎨⎪⎧x =1,y =2,所以直线l 1与l 2的交点为(1,2).显然直线x =1不满足P (0,4)到直线l 的距离为2.设直线l 的方程为y -2=k (x -1),即kx -y +2-k =0,因为P (0,4)到直线l 的距离为2,所以|-4+2-k |1+k 2=2,所以k =0或k =43.所以直线l 的方程为y =2或4x -3y +2=0.答案:y =2或4x -3y +2=09.(2019·广东六校第一次联考)已知点P (-1,2)及圆(x -3)2+(y -4)2=4,一光线从点P 出发,经x 轴上一点Q 反射后与圆相切于点T ,则|PQ |+|QT |的值为________.解析:点P 关于x 轴的对称点为P ′(-1,-2),如图,连接PP ′,P ′Q ,由对称性可知,P ′Q 与圆相切于点T ,则|PQ |+|QT |=|P ′T |.圆(x -3)2+(y -4)2=4的圆心为A (3,4),半径r =2,连接AP ′,AT ,则|AP ′|2=(-1-3)2+(-2-4)2=52,|AT |=r =2,所以|PQ |+|QT |=|P ′T |=|AP ′|2-|AT |2=4 3.答案:4 3 三、解答题10.已知圆(x -1)2+y 2=25,直线ax -y +5=0与圆相交于不同的两点A ,B . (1)求实数a 的取值范围;(2)若弦AB 的垂直平分线l 过点P (-2,4),求实数a 的值. 解:(1)把直线ax -y +5=0代入圆的方程, 消去y 整理,得(a 2+1)x 2+2(5a -1)x +1=0, 由于直线ax -y +5=0交圆于A ,B 两点, 故Δ=4(5a -1)2-4(a 2+1)>0, 即12a 2-5a >0,解得a >512或a <0,所以实数a 的取值范围是(-∞,0)∪⎝ ⎛⎭⎪⎫512,+∞. (2)由于直线l 为弦AB 的垂直平分线,且直线AB 的斜率为a ,则直线l 的斜率为-1a,所以直线l 的方程为y =-1a(x +2)+4,即x +ay +2-4a =0,由于l 垂直平分弦AB ,故圆心M (1,0)必在l 上,所以1+0+2-4a =0, 解得a =34,由于34∈⎝ ⎛⎭⎪⎫512,+∞, 所以a =34.11.在平面直角坐标系xOy 中,直线x -y +1=0截以原点O 为圆心的圆所得的弦长为 6. (1)求圆O 的方程;(2)若直线l 与圆O 相切于第一象限,且直线l 与坐标轴交于点D ,E ,当线段DE 的长度最小时,求直线l 的方程.解:(1)因为点O 到直线x -y +1=0的距离为12,所以圆O 的半径为⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫622=2, 故圆O 的方程为x 2+y 2=2.(2)设直线l 的方程为x a +yb=1(a >0,b >0),即bx +ay -ab =0, 由直线l 与圆O 相切,得|-ab |b 2+a 2=2,即1a 2+1b 2=12,则|DE |2=a 2+b 2=2(a 2+b 2)⎝ ⎛⎭⎪⎫1a 2+1b 2=4+2b 2a 2+2a2b2≥8,当且仅当a =b =2时取等号,此时直线l 的方程为x +y -2=0.12.已知A (2,0),直线4x +3y +1=0被圆C :(x +3)2+(y -m )2=13(m <3)所截得的弦长为43,且P 为圆C 上任意一点.(1)求|PA |的最大值与最小值;(2)圆C 与坐标轴相交于三点,求以这三个点为顶点的三角形的内切圆的半径. 解:(1)∵直线4x +3y +1=0被圆C :(x +3)2+(y -m )2=13(m <3)所截得的弦长为43, ∴圆心到直线的距离d =|-12+3m +1|5=(13)2-(23)2=1.∵m <3,∴m =2,∴|AC |=(-3-2)2+(2-0)2=29,∴|PA |的最大值与最小值分别为29+13,29-13. (2)由(1)可得圆C 的方程为(x +3)2+(y -2)2=13, 令x =0,得y =0或4;令y =0,得x =0或-6,∴圆C 与坐标轴相交于三点M (0,4),O (0,0),N (-6,0),∴△MON 为直角三角形,斜边|MN |=213, ∴△MON 内切圆的半径为4+6-2132=5-13.B 组——大题专攻强化练1.已知点M (-1,0),N (1,0),曲线E 上任意一点到点M 的距离均是到点N 的距离的3倍.(1)求曲线E 的方程;(2)已知m ≠0,设直线l 1:x -my -1=0交曲线E 于A ,C 两点,直线l 2:mx +y -m =0交曲线E 于B ,D 两点.当CD 的斜率为-1时,求直线CD 的方程.解:(1)设曲线E 上任意一点的坐标为(x ,y ), 由题意得(x +1)2+y 2=3·(x -1)2+y 2, 整理得x 2+y 2-4x +1=0,即(x -2)2+y 2=3为所求. (2)由题意知l 1⊥l 2,且两条直线均恒过点N (1,0).设曲线E 的圆心为E ,则E (2,0),设线段CD 的中点为P ,连接EP ,ED ,NP ,则直线EP :y =x -2.设直线CD :y =-x +t ,由⎩⎪⎨⎪⎧y =x -2,y =-x +t 解得点P ⎝ ⎛⎭⎪⎫t +22,t -22, 由圆的几何性质,知|NP |=12|CD |=|ED |2-|EP |2,而|NP |2=⎝ ⎛⎭⎪⎫t +22-12+⎝ ⎛⎭⎪⎫t -222,|ED |2=3,|EP |2=⎝ ⎛⎭⎪⎫|2-t |22,所以⎝ ⎛⎭⎪⎫t 22+⎝ ⎛⎭⎪⎫t -222=3-(t -2)22,整理得t 2-3t =0, 解得t =0或t =3,所以直线CD 的方程为y =-x 或y =-x +3. 2.已知点A (1,a ),圆x 2+y 2=4.(1)若过点A 的圆的切线只有一条,求a 的值及切线方程;(2)若过点A 且在两坐标轴上截距相等的直线被圆截得的弦长为23,求a 的值.解:(1)由过点A 的圆的切线只有一条,得点A 在圆上,故12+a 2=4,解得a =± 3. 当a =3时,A (1,3),根据直线的点斜式方程,易知所求的切线方程为x +3y -4=0;当a =-3时,A (1,-3),根据直线的点斜式方程,易知所求的切线方程为x -3y -4=0.综上所述,当a =3时,切线方程为x +3y -4=0;当a =-3时,切线方程为x -3y -4=0.(2)设直线方程为x +y =b ,由于直线过点A ,则1+a =b ,即a =b -1, 又圆心(0,0)到直线x +y =b 的距离d =|b |2.所以⎝ ⎛⎭⎪⎫|b |22+⎝ ⎛⎭⎪⎫2322=4,则b =±2,因此a =b -1=-1± 2.3.在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4,设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使|MA |=2|MO |,求圆心C 的横坐标a 的取值范围.解:(1)因为圆心在直线l :y =2x -4上,也在直线y =x -1上,所以解方程组⎩⎪⎨⎪⎧y =2x -4,y =x -1,得圆心C (3,2),又因为圆的半径为1,所以圆的方程为(x -3)2+(y -2)2=1,又因为点A (0,3),显然过点A ,圆C 的切线的斜率存在, 设所求的切线方程为y =kx +3,即kx -y +3=0, 所以|3k -2+3|k 2+12=1,解得k =0或k =-34,所以所求切线方程为y =3或y =-34x +3,即y -3=0或3x +4y -12=0.(2)因为圆C 的圆心在直线l :y =2x -4上, 所以设圆心C 为(a ,2a -4), 又因为圆C 的半径为1,则圆C 的方程为(x -a )2+(y -2a +4)2=1.设M (x ,y ),又因为|MA |=2|MO |,则有x 2+(y -3)2=2x 2+y 2,整理得x 2+(y +1)2=4,其表示圆心为(0,-1),半径为2的圆,设为圆D , 所以点M 既在圆C 上,又在圆D 上,即圆C 与圆D 有交点,所以2-1≤a 2+(2a -4+1)2≤2+1,解得0≤a ≤125,所以圆心C 的横坐标a 的取值范围为⎣⎢⎡⎦⎥⎤0,125.4.在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 解:(1)不能出现AC ⊥BC 的情况,理由如下: 设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0, 所以x 1x 2=-2. 又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.(2)证明:由(1)知BC 的中点坐标为⎝ ⎛⎭⎪⎫x 22,12, 可得BC 的中垂线方程为y -12=x 2⎝ ⎛⎭⎪⎫x -x 22. 由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2. 联立⎩⎪⎨⎪⎧x =-m 2,y -12=x 2⎝ ⎛⎭⎪⎫x -x 22,x 22+mx 2-2=0可得⎩⎪⎨⎪⎧x =-m 2,y =-12. 所以过A ,B ,C 三点的圆的圆心坐标为⎝ ⎛⎭⎪⎫-m 2,-12,半径r =m 2+92.故圆在y 轴上截得的弦长为2r 2-⎝ ⎛⎭⎪⎫m 22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.。
2020新高考数学二轮教师用书:专题五第1讲-直线与圆-
2020新高考数学二轮教师用书:专题五第1讲-直线与圆--CAL-FENGHAI.-(YICAI)-Company One1第1讲 直线与圆 [考情考向·高考导航]对于直线的考查,主要是求直线的方程;两条直线平行与垂直的判定;两条直线的交点和距离等问题.一般以选择题、填空题的形式考查.对于圆的考查,主要是结合直线的方程,用几何法或待定系数法确定圆的标准方程;对于直线与圆、圆与圆的位置关系等问题,含参数问题为命题热点,一般以选择题、填空题的形式考查,难度不大,涉及圆的解答题有逐渐强化的趋势.[真题体验]1.(2018·全国Ⅲ卷)直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是( )A .[2,6]B .[4,8]C .[2,32]D .[22,32]解析:A [由已知A (-2,0),B (0,-2).圆心(2,0)到直线x +y +2=0的距离为d =|2+0+2|2=22,又圆的半径为 2.∴点P 到直线x +y +2=0的距离的最小值为2,最大值为32,又|AB |=2 2.∴△ABP 面积的最小值为S min =12×22×2=2,最大值为S max =12×22×32=6.]2.(2018·北京卷)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x -my -2=0的距离.当θ,m 变化时,d 的最大值为( )A .1B .2C .3D .4解析:C [本题考查直线与圆的位置关系.点P (cos θ,sin θ)是单位圆x 2+y 2=1上的点,直线x -my -2=0过定点(2,0),当直线与圆相离时,d 可取到最大值,设圆心到直线的距离为d 0,d 0=21+m 2,d =d 0+1=21+m2+1,可知,当m =0时,d max =3,故选C.]3.(2018·天津卷)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________.解析:设圆的方程为x 2+y 2+Dx +Ey +F =0, 圆经过三点(0,0),(1,1),(2,0),则: ⎩⎪⎨⎪⎧F =0,1+1+D +E +F =0,4+0+2D +F =0,解得⎩⎪⎨⎪⎧D =-2,E =0,F =0,则圆的方程为x 2+y 2-2x =0. 答案:x 2+y 2-2x =04.(2018·全国Ⅰ卷)直线y =x +1与圆x 2+y 2+2y -3=0交于A ,B 两点,则|AB |=________.解析:圆方程可化为x 2+(y +1)2=4,∴圆心为(0,-1),半径r =2,圆心到直线x -y +1=0的距离d =22=2,∴|AB |=222-d 2=24-2=2 2. 答案:2 2[主干整合]1.两条直线平行与垂直的判定若两条不重合的直线l 1,l 2的斜率k 1,k 2存在,则l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1k 2=-1.若给出的直线方程中存在字母系数,则要考虑斜率是否存在.2.两个距离公式(1)两平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2. (2)点(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.3.圆的方程(1)圆的标准方程:(x -a )2+(y -b )2=r 2(r >0),圆心为(a ,b ),半径为r .(2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),圆心为⎝⎛⎭⎫-D 2,-E2,半径为r =D 2+E 2-4F2.4.直线与圆的位置关系的判定(1)几何法:把圆心到直线的距离d 和半径r 的大小加以比较:d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:将圆的方程和直线的方程联立起来组成方程组,利用判别式Δ来讨论位置关系:Δ>0⇔相交;Δ=0⇔相切;Δ<0⇔相离.热点一 直线的方程及其应用[例1] (1)(2020·大连模拟)“a =2”是“直线ax +y -2=0与直线2x +(a -1)y +4=0平行”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件[解析] A [由ax +y -2=0与直线2x +(a -1)y +4=0平行,得a (a -1)=2,∴a =-1,a =2.经检验当a =-1时,两直线重合(舍去).∴“a =2”是“直线ax +y -2=0与直线2x +(a -1)y +4=0平行”的充要条件.](2)(2020·厦门模拟)过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且到点P (0,4)的距离为2的直线方程为________________.[解析] 由⎩⎪⎨⎪⎧ x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2.所以l 1与l 2的交点为(1,2),当所求直线的斜率不存在时,所求直线为x =1,显然不符合题意.故设所求直线的方程为y -2=k (x -1), 即kx -y +2-k =0,因为P (0,4)到所求直线的距离为2,所以2=|-2-k |1+k 2,所以k =0或k =43.所以所求直线的方程为y =2或4x -3y +2=0. [答案] y =2或4x -3y +2=0(3)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i 的横、纵坐标分别为第i 名工人上午的工作时间和加工的零件数,点B i 的横、纵坐标分别为第i 名工人下午的工作时间和加工的零件数,i =1,2,3.①记Q i 为第i 名工人在这一天中加工的零件总数,则Q 1,Q 2,Q 3中最大的是________.②记p i 为第i 名工人在这一天中平均每小时加工的零件数,则p 1,p 2,p 3中最大的是________.[答案] ①Q 1 ②p 2求解直线方程应注意的问题(1)求解两条直线平行的问题时,在利用A 1B 2-A 2B 1=0建立方程求出参数的值后,要注意代入检验,排除两条直线重合的情况.(2)要注意几种直线方程的局限性.点斜式、两点式、斜截式要求直线不能与x 轴垂直.而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线.(3)求直线方程要考虑直线的斜率是否存在.(2020·宁德模拟)过点M (0,1)作直线,使它被两条直线l 1:x -3y +10=0,l 2:2x +y -8=0所截得的线段恰好被M 所平分,则此直线方程为____________.解析:过点M 且与x 轴垂直的直线是x =0,它和直线l 1,l 2的交点分别为⎝⎛⎭⎫0,103,(0,8),显然不符合题意,故可设所求直线方程为y =kx +1,其图象与直线l 1,l 2分别交于A ,B 两点,则有①⎩⎪⎨⎪⎧y A =kx A +1,x A -3y A +10=0,②⎩⎪⎨⎪⎧y B =kx B +1,2x B +y B -8=0. 由①解得x A =73k -1,由②解得x B =7k +2.因为点M 平分线段AB ,所以x A +x B =2x M , 即73k -1+7k +2=0,解得k =-14.故所求的直线方程为y =-14x +1,即x +4y -4=0.答案:x +4y -4=0热点二 圆的方程及应用[例2] (1)(山东高考题)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.[解析] 设圆C 的圆心为(a ,b )(b >0),由题意得a =2b >0,且a 2=(3)2+b 2,解得a =2,b =1.∴所求圆的标准方程为(x -2)2+(y -1)2=4. [答案] (x -2)2+(y -1)2=4(2)(2019·唐山三模)已知A (-2,0),B (0,2),实数k 是常数,M ,N 是圆x 2+y 2+kx =0上两个不同点,P 是圆x 2+y 2+kx =0上的动点,如果M ,N 关于直线x -y -1=0对称,则△P AB 面积的最大值是____________.[解析] 依题意得圆x 2+y 2+kx =0的圆心⎝⎛⎭⎫-k 2,0位于直线x -y -1=0上,于是有-k2-1=0,即k =-2,因此圆心坐标是(1,0),半径是1.由题意可得|AB |=22,直线AB 的方程是x -2+y2=1,即x -y +2=0,圆心(1,0)到直线AB 的距离等于|1-0+2|2=322,点P 到直线AB 的距离的最大值是322+1,△P AB 面积的最大值为12×22×32+22=3+ 2.[答案] 3+ 2求圆的方程的两种方法(1)几何法:通过研究圆的性质、直线和圆、圆和圆的位置关系,求出圆的基本量:圆心坐标和半径.如圆中弦所在的直线与圆心和弦中点的连线相互垂直,设圆的半径为r ,弦长为|AB |,弦心距为d ,则r 2=d 2+⎝⎛⎭⎫|AB |22等.(2)代数法:设出圆的方程,用待定系数法求解.在求圆的方程时,要根据具体的条件选用合适的方法,但一般情况下,应用几何法运算较简捷.(1)(2019·临沂三模)已知圆M 的圆心在x 轴上,且圆心在直线l 1:x =-2的右侧,若圆M 截直线l 1所得的弦长为23,且与直线l 2:2x -5y -4=0相切,则圆M 的标准方程为________________.解析:由已知,可设圆M 的圆心坐标为(a,0),a >-2,半径为r ,得⎩⎪⎨⎪⎧(a +2)2+(3)2=r 2,|2a -4|4+5=r ,解得满足条件的一组解为⎩⎪⎨⎪⎧a =-1,r =2,所以圆M 的方程为(x +1)2+y 2=4. 答案:(x +1)2+y 2=4(2)(2020·马鞍山模拟)圆心在曲线y =2x (x >0)上,且与直线2x +y +1=0相切的面积最小的圆的标准方程为________________.解析:由条件设圆心坐标为⎝⎛⎭⎫a ,2a (a >0),又因为圆与直线2x +y +1=0相切,所以圆心到直线的距离d =r =2a +2a +15≥4+15=5,当且仅当2a =2a ,即a =1时取等号,所以圆心坐标为(1,2),圆的半径的最小值为5,则所求圆的方程为(x -1)2+(y -2)2=5.答案:(x -1)2+(y -1)2=5热点三 直线(圆)与圆的位置关系点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于________.[解析]令P (2,0),如图,易知|OA |=|OB |=1,所以S △AOB =12|OA |·|OB |·sin ∠AOB =12sin ∠AOB ≤12,当∠AOB =90°时,△AOB 的面积取得最大值,此时过点O 作OH ⊥AB 于点H ,则|OH |=22, 于是sin ∠OPH =|OH ||OP|=222=12,易知∠OPH 为锐角,所以∠OPH =30°,则直线AB 的倾斜角为150°,故直线AB 的斜率为tan 150°=-33. [答案] -33(2)如图所示,已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P .①当|MN |=219时,则直线l 的方程为____________. ②若BQ →·BP →为定值,则这个定值为________. [解析] ①设圆A 的半径为R . ∵圆A 与直线l 1:x +2y +7=0相切, ∴R =|-1+4+7|5=2 5.∴圆A 的方程为(x +1)2+(y -2)2=20.a .当直线l 与x 轴垂直时,易知x =-2符合题意;b .当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +2),即kx -y +2k =0.连接AQ ,则AQ ⊥MN .∵|MN |=219,∴|AQ |=20-19=1. 由|AQ |=|k -2|k 2+1=1,得k =34,∴直线l 的方程为3x -4y +6=0.∴所求直线l 的方程为x =-2或3x -4y +6=0. ②∵AQ ⊥BP ,∴AQ →·BP →=0. ∵BQ →·BP →=(BA →+AQ →)·BP → =BA →·BP →+AQ →·BP →=BA →·BP →.当直线l 与x 轴垂直时,得P ⎝⎛⎭⎫-2,-25. 则BP →=⎝⎛⎭⎫0,-52,又BA →=(1,2), ∴BQ →·BP →=BA →·BP →=-5.当直线l 的斜率存在时,设直线l 的方程为y =k (x +2).由⎩⎪⎨⎪⎧y =k (x +2),x +2y +7=0,解得P ⎝ ⎛⎭⎪⎫-4k -71+2k ,-5k 1+2k .∴BP →=⎝ ⎛⎭⎪⎫-51+2k ,-5k 1+2k . ∴BQ →·BP →=BA →·BP →=-51+2k -10k 1+2k =-5.综上所述:BQ →·BP →为定值,其定值为-5. [答案] ①x =-2或3x -4y +6=0 ②-5直线(圆)与圆的位置关系的解题思路(1)讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量.(2)圆上的点与圆外点的距离的最值问题,可以转化为圆心到点的距离问题;圆上的点与直线上点的距离的最值问题,可以转化为圆心到直线的距离问题;圆上的点与另一圆上点的距离的最值问题,可以转化为两圆心之间的距离问题.(1)(2020·银川调研)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是____________.解析:由题意知圆M 的圆心为(0,a ),半径R =a ,因为圆M 截直线x +y =0所得线段的长度为22,所以圆心M 到直线x +y =0的距离d =|a |2=a 2-2(a >0),解得a =2,又知圆N 的圆心为(1,1),半径r =1,所以|MN |=2,则R -r <2<R +r ,所以两圆的位置关系为相交.答案:相交(2)(2020·江西七校联考)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.解析:圆C :(x -4)2+y 2=1,如图,直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,只需保证圆心C 到y =kx -2的距离小于等于2即可,∴|4k -2|1+k 2≤2⇒0≤k ≤43.∴k max =43.答案:43限时40分钟 满分80分一、选择题(本大题共11小题,每小题5分,共55分)1.(2020·成都二诊)设a ,b ,c 分别是△ABC 中角A ,B ,C 所对的边,则直线sin A ·x +ay -c =0与bx -sin B ·y +sin C =0的位置关系是( )A .平行B .重合C .垂直D .相交但不垂直解析:C [由题意可得直线sin A ·x +ay -c =0的斜率k 1=-sin A a ,bx -sin B ·y +sin C =0的斜率k 2=b sin B ,故k 1k 2=-sin A a ·bsin B =-1,则直线sin A ·x +ay -c =0与直线bx -sinB ·y +sinC =0垂直,故选C.]2.(2020·杭州质检)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A .-53或-35B .-32或-23C .-54或-45D .-43或-34解析:D [点(-2,-3)关于y 轴的对称点为(2,-3),故可设反射光线所在直线的方程为y +3=k (x -2),∵反射光线与圆(x +3)2+(y -2)2=1相切,∴圆心(-3,2)到直线的距离d =|-3k -2-2k -3|k 2+1=1,化简得12k2+25k +12=0,解得k =-43或-34.] 3.(2020·广州模拟)若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上运动,则AB 的中点M 到原点的距离的最小值为( )A. 2 B .2 2 C .3 2D .4 2解析:C [由题意知AB 的中点M 的集合为到直线l 1:x +y -7=0和l 2:x +y -5=0的距离都相等的直线,则点M 到原点的距离的最小值为原点到该直线的距离.设点M 所在直线的方程为l :x +y +m =0,根据两平行线间的距离公式得,|m +7|2=|m +5|2,即|m +7|=|m +5|,所以m =-6,即l :x +y -6=0,根据点到直线的距离公式,得点M 到原点的距离的最小值为|-6|2=3 2.]4.(2020·河南六校联考)已知直线x +y =a 与圆x 2+y 2=1交于A ,B 两点,O 是坐标原点,向量OA →,OB →满足|OA →+OB →|=|OA →-OB →|,则实数a 的值为( )A .1B .2C .±1D .±2解析:C [由OA →,OB →满足|OA →+OB →|=|OA →-OB →|,得OA →⊥OB →, 因为直线x +y =a 的斜率是-1, 所以A ,B 两点在坐标轴上并且在圆上;所以(0,1)和(0,-1)两点都适合直线的方程,故a =±1.]5.(2020·怀柔调研)过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( )A .y =-34 B .y =-12C .y =-32D .y =-14解析:B [圆(x -1)2+y 2=1的圆心为C (1,0),半径为1,以|PC |=(1-1)2+(-2-0)2=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12.故选B.]6.(2020·温州模拟)已知圆C :(x -2)2+y 2=2,直线l :y =kx ,其中k 为[-3,3]上的任意一个实数,则事件“直线l 与圆C 相离”发生的概率为( )A.33B.34C.14D.3-33解析:D [当直线l 与圆C 相离时,圆心C 到直线l 的距离d =|2k |k 2+1>2,解得k >1或k <-1,又k ∈[-3,3],所以-3≤k <-1或1<k ≤3,故事件“直线l 与圆C 相离”发生的概率P =(3-1)+(-1+3)23=3-33,故选D.]7.(2019·潍坊三模)已知O 为坐标原点,A ,B 是圆C :x 2+y 2-6y +5=0上两个动点,且|AB |=2,则|OA →+OB →|的取值范围是( )A .[6-23,6+23]B .[3-3,3+3]C .[3,9]D .[3,6]解析:A [圆C :x 2+(y -3)2=4,取弦AB 的中点M ,连接CM ,CA ,在直角三角形CMA 中,|CA |=2,|MA |=1,则|CM |=|CA |2-|MA |2=3,则点M 的轨迹方程为x 2+(y -3)2=3,则|OA →+OB →|=2|OM →|∈[6-23,6+23].]8.(多选题)直线x -y +m =0与圆x 2+y 2-2x -1=0有两个不同的交点的一个充分不必要条件是( )A .0<m <1B .m <1C .-2<m <1D .-3<m <1解析:AC [本题主要考查直线与圆的位置关系的判断.圆x 2+y 2-2x -1=0的圆心为(1,0),半径为 2.因为直线x -y +m =0与圆x 2+y 2-2x -1=0有两个不同的交点,所以直线与圆相交,因此圆心到直线的距离d =|1+m |1+1<2,所以|1+m |<2,解得-3<m <1,求其充分条件,即求其子集,故由选项易得AC 符合.故选AC.]9.(2020·合肥质检)已知圆C 1:(x +2)2+(y -3)2=5与圆C 2相交于A (0,2),B (-1,1)两点,且四边形C 1AC 2B 为平行四边形,则圆C 2的方程为( )A .(x -1)2+y 2=5B .(x -1)2+y 2=92C.⎝⎛⎭⎫x -122+⎝⎛⎭⎫y -122=5 D.⎝⎛⎭⎫x -122+⎝⎛⎭⎫y -122=92解析:A [通解 (常规求解法)设圆C 2的圆心坐标为(a ,b ),连接AB ,C 1C 2.因为C 1(-2,3),A (0,2),B (-1,1),所以|AC 1|=|BC 1|=5,所以平行四边形C 1AC 2B 为菱形,所以C 1C 2⊥AB 且|AC 2|= 5.可得⎩⎪⎨⎪⎧3-b -2-a ×1-2-1-0=-1,a 2+(b -2)2=5,解得⎩⎪⎨⎪⎧ a =1,b =0或⎩⎪⎨⎪⎧a =-2,b =3,则圆心C 2的坐标为(1,0)或(-2,3)(舍去).因为圆C 2的半径为5,所以圆C 2的方程为(x -1)2+y 2=5.故选A.优解 (特值验证法)由题意可知,平行四边形C 1AC 2B 为菱形,则|C 2A |=|C 1A |=22+(2-3)2=5,即圆C 2的半径为5,排除B ,D ;将点A (0,2)代入选项A ,C ,显然选项A 符合.故选A.]10.(2020·惠州二测)已知圆C :x 2+y 2-2ax -2by +a 2+b 2-1=0(a <0)的圆心在直线3x -y +3=0上,且圆C 上的点到直线3x +y =0的距离的最大值为1+3,则a 2+b 2的值为( )A .1B .2C .3D .4解析:C [化圆C :x 2+y 2-2ax -2by +a 2+b 2-1=0(a <0)为标准方程得C :(x -a )2+(y -b )2=1,其圆心为(a ,b ),故3a -b +3=0,即b =3a +3,(a ,b )到直线3x +y =0的距离d =|3a +b |3+1=|3a +b |2=|3a +3a +3|2,因为圆C 上的点到直线3x +y =0的距离的最大值为1+3,故d +1=32|2a +1|+1=1+3,得到|2a +1|=2,解得a =-32或a =12(舍去),故b =3×⎝⎛⎭⎫-32+3=-32,故a 2+b 2=⎝⎛⎭⎫-322+⎝⎛⎭⎫-322=3.选C.] 11.(2019·烟台三模)已知圆C :(x -1)2+(y -4)2=10和点M (5,t ),若圆C 上存在两点A ,B 使得MA ⊥MB ,则实数t 的取值范围是( )A .[-2,6]B .[-3,5]C .[2,6]D .[3,5]解析:C [当MA ,MB 是圆C 的切线时,∠AMB 取得最大值,若圆C 上存在两点A ,B 使得MA ⊥MB ,则MA ,MB 是圆C 的切线时,∠AMB ≥90°,∠AMC ≥45°,且∠AMC <90°,如图,所以|MC |=(5-1)2+(t -4)2≤10sin 45°=20,所以16+(t -4)2≤20,所以2≤t ≤6,故选C.] 二、填空题(本大题共5小题,每小题5分,共25分)12.(双空填空题)在平面直角坐标系xOy 中,已知圆C 过点A (0,-8),且与圆x 2+y 2-6x-6y=相切于原点,则圆C的方程为________________________________________________________________________,圆C 被x 轴截得的弦长为________.解析:本题考查圆与圆的位置关系.将已知圆化为标准式得(x -3)2+(y -3)2=18,圆心为(3,3),半径为3 2.由于两个圆相切于原点,连心线过切点,故圆C 的圆心在直线y =x 上.由于圆C 过点(0,0),(0,-8),所以圆心又在直线y =-4上.联立y =x 和y =-4,得圆心C 的坐标(-4,-4).又因为点(-4,-4)到原点的距离为42,所以圆C 的方程为(x +4)2+(y +4)2=32,即x 2+y 2+8x +8y =0.圆心C 到x 轴距离为4,则圆C 被x 轴截得的弦长为2×(42)2-42=8.答案:x 2+y 2+8x +8y =0 813.(2019·哈尔滨二模)设圆x 2+y 2-2x -2y -2=0的圆心为C ,直线l 过(0,3),且与圆C 交于A ,B 两点,若|AB |=23,则直线l 的方程为________________.解析:当直线l 的斜率不存在时,直线l 的方程为x =0,联立方程得⎩⎪⎨⎪⎧x =0,x 2+y 2-2x -2y -2=0. 得⎩⎨⎧ x =0,y =1-3 或⎩⎨⎧x =0,y =1+3,∴|AB |=23,符合题意.当直线l 的斜率存在时,设直线l 的方程为y =kx +3,∵圆x 2+y 2-2x -2y -2=0,即(x -1)2+(y -1)2=4,其圆心为C (1,1),圆的半径r =2,圆心C (1,1)到直线y =kx +3的距离d =|k -1+3|k 2+1=|k +2|k 2+1,∵d 2+⎝⎛⎭⎫|AB |22=r 2,∴(k +2)2k 2+1+3=4,解得k =-34,∴直线l 的方程为y =-34x +3,即3x +4y -12=0.综上,直线l 的方程为3x +4y -12=0或x =0.答案:x =0或3x +4y -12=014.若圆x 2+y 2=4与圆x 2+y 2+ax +2ay -9=0(a >0)相交,公共弦的长为22,则a =________.解析:联立两圆方程⎩⎪⎨⎪⎧x 2+y 2=4,x 2+y 2+ax +2ay -9=0,可得公共弦所在直线方程为ax +2ay -5=0, 故圆心(0,0)到直线ax +2ay -5=0的距离为|-5|a 2+4a2=5a(a >0). 故222-⎝⎛⎭⎫5a 2=22, 解得a 2=52,因为a >0,所以a =102. 答案:10215.(2018·江苏卷)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB →·CD →=0,则点A 的横坐标为________.解析:∵AB 为直径 ∴AD ⊥BD∴BD 即B 到直线l 的距离 |BD |=|0-2×5|12+22=2 5. ∵|CD |=|AC |=|BC |=r ,又CD ⊥AB . ∴|AB |=2|BC |=210 设A (a,2a )|AB |=(a -5)2+4a 2=210⇒a =-1或3(-1舍去) 答案:316.(2020·厦门模拟)为保护环境,建设美丽乡村,镇政府决定为A ,B ,C 三个自然村建造一座垃圾处理站,集中处理A ,B ,C 三个自然村的垃圾,受当地条件限制,垃圾处理站M 只能建在与A 村相距5 km ,且与C 村相距31 km 的地方.已知B 村在A 村的正东方向,相距3 km ,C 村在B 村的正北方向,相距3 3 km ,则垃圾处理站M 与B 村相距________km.解析:以A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系(图略),则A (0,0),B (3,0),C (3,33).由题意得垃圾处理站M 在以A (0,0)为圆心,5为半径的圆A 上,同时又在以C (3,33)为圆心,31为半径的圆C 上,两圆的方程分别为x 2+y 2=25和(x -3)2+(y -33)2=31.由⎩⎨⎧x 2+y 2=25,(x -3)2+(y -33)2=31,解得⎩⎪⎨⎪⎧x =5,y =0或⎩⎨⎧x =-52,y =532,∴垃圾处理站M 的坐标为(5,0)或⎝⎛⎭⎫-52,532,∴|MB |=2或|MB |=⎝⎛⎭⎫-52-32+⎝⎛⎭⎫5322=7, 即垃圾处理站M 与B 村相距2 km 或7 km. 答案:2或7。
2020浙江高考数学二轮讲义:专题五第1讲 直线与圆 Word版含解析
第1讲 直线与圆直线的方程[核心提炼]1.三种距离公式(1)A (x 1,y 1),B (x 2,y 2)两点间的距离: |AB |=(x 2-x 1)2+(y 2-y 1)2.(2)点到直线的距离:d =|Ax 0+By 0+C |A 2+B 2(其中点P (x 0,y 0),直线方程:Ax +By +C =0).(3)两平行直线间的距离:d =|C 2-C 1|A 2+B 2(其中两平行线方程分别为l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0).2.两条直线平行与垂直的判定若两条不重合的直线l 1,l 2的斜率k 1,k 2存在,则l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1k 2=-1.若给出的直线方程中存在字母系数,则要考虑斜率是否存在.[典型例题](1)(2019·温州十五校联合体联考)已知直线l 1:mx +(m +1)y +2=0,l 2:(m +1)x +(m +4)y -3=0,则“m =-2”是“l 1⊥l 2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)(2019·浙江新高考冲刺卷)已知m ∈R ,若点M (x ,y )为直线l 1:my =-x 和l 2:mx =y +m -3的交点,l 1和l 2分别过定点A 和B ,则|MA |·|MB |的最大值为________.【解析】 (1)当m =-2时,直线l 1,l 2的斜率分别为k 1=-2,k 2=12,此时k 1×k 2=-1,则l 1⊥l 2.而m =-1时,也有l 1⊥l 2,故选A.(2)动直线l 1:my =-x 过定点A (0,0),动直线l 2:mx =y +m -3化为m (x -1)-(y -3)=0,得x =1,y =3.过定点B (1,3). 因为此两条直线互相垂直, 所以|MA |2+|BM |2=|AB |2=10,所以10≥2|MA |·|MB |,所以|MA |·|BM |≤5, 当且仅当|MA |=|MB |时取等号. 【答案】 (1)A (2)5解决直线方程问题应注意的问题(1)求解两条直线平行的问题时,在利用A 1B 2-A 2B 1=0建立方程求出参数的值后,要注意代入检验,排除两条直线重合的可能性.(2)要注意几种直线方程的局限性.点斜式、斜截式要求直线不能与x 轴垂直.两点式不能表示垂直于坐标轴的直线,而截距式方程不能表示过原点的直线及垂直于坐标轴的直线.(3)求直线方程要考虑直线斜率是否存在.[对点训练]1.若两平行直线l 1:x -2y +m =0(m >0)与l 2:2x +ny -6=0之间的距离是5,则m +n =( )A .0B .1C .-2D .-1解析:选C.因为l 1,l 2平行,所以1×n =2×(-2),解得n =-4,即直线l 2:x -2y -3=0.又l 1,l 2之间的距离是5,所以|m +3|1+4=5,得m =2或m =-8(舍去),所以m +n =-2,故选C.2.(2019·金丽衢十二校高考模拟)直线l :x +λy +2-3λ=0(λ∈R )恒过定点________,P (1,1)到该直线的距离最大值为________.解析:直线l :x +λy +2-3λ=0(λ∈R )即λ(y -3)+x +2=0,令⎩⎪⎨⎪⎧y -3=0x +2=0,解得x =-2,y =3.所以直线l 恒过定点Q (-2,3), P (1,1)到该直线的距离最大值为|PQ |=32+22=13.答案:(-2,3)133.在△ABC 中,A (1,1),B (m ,m )(1<m <4),C (4,2),则当△ABC 的面积最大时,m =________.解析:由两点间距离公式可得|AC |=10,直线AC 的方程为x -3y +2=0,所以点B 到直线AC 的距离d =|m -3m +2|10,所以△ABC 的面积S =12|AC |·d =12|m -3m +2|=12|⎝⎛⎭⎫m -322-14|,又1<m <4,所以1<m <2,所以当m =32,即m =94时,S 取得最大值. 答案:94圆的方程及应用[核心提炼]1.圆的标准方程当圆心为(a ,b ),半径为r 时,其标准方程为(x -a )2+(y -b )2=r 2,特别地,当圆心在原点时,方程为x 2+y 2=r 2.2.圆的一般方程x 2+y 2+Dx +Ey +F =0,其中D 2+E 2-4F >0,表示以⎝⎛⎭⎫-D 2,-E 2为圆心,D 2+E 2-4F 2为半径的圆.[典型例题](1)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x+8y +5a =0表示圆,则圆心坐标是__________,半径是__________.(2)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________.【解析】 (1)由题可得a 2=a +2,解得a =-1或a =2.当a =-1时,方程为x 2+y 2+4x +8y -5=0,表示圆,故圆心为(-2,-4),半径为5.当a =2时,方程不表示圆.(2)设圆心为(a ,0)(a >0),则圆心到直线2x -y =0的距离d =|2a -0|4+1=455,得a =2,半径r =(a -0)2+(0-5)2=3,所以圆C 的方程为(x -2)2+y 2=9.【答案】 (1)(-2,-4) 5 (2)(x -2)2+y 2=9求圆的方程的两种方法(1)直接法:利用圆的性质、直线与圆、圆与圆的位置关系,数形结合直接求出圆心坐标、半径,进而求出圆的方程.(2)待定系数法:先设出圆的方程,再由条件构建系数满足的方程(组)求得各系数,进而求出圆的方程.[对点训练]1.圆心在曲线y =2x (x >0)上,且与直线2x +y +1=0相切的面积最小的圆的方程为( )A .(x -1)2+(y -2)2=5B .(x -2)2+(y -1)2=5C .(x -1)2+(y -2)2=25D .(x -2)2+(y -1)2=25解析:选A.y ′=⎝⎛⎭⎫2x ′=-2x 2,令-2x 2=-2,得x =1,得平行于直线2x +y +1=0的曲线y =2x (x >0)的切线的切点的横坐标为1,代入曲线方程得切点坐标为(1,2),以该点为圆心且与直线2x +y +1=0相切的圆的面积最小,此时圆的半径为55=5,故所求圆的方程为(x -1)2+(y -2)2=5.2.过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN |=( ) A .26 B .8 C .4 6D .10解析:选C.设圆的方程为x 2+y 2+Dx +Ey +F =0, 则⎩⎪⎨⎪⎧D +3E +F +10=0,4D +2E +F +20=0,D -7E +F +50=0.解得⎩⎪⎨⎪⎧D =-2,E =4,F =-20. 所以圆的方程为x 2+y 2-2x +4y -20=0. 令x =0,得y =-2+26或y =-2-26,所以M (0,-2+26),N (0,-2-26)或M (0,-2-26),N (0,-2+26),所以|MN |=4 6.3.(2019·宁波镇海中学高考模拟)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则m =________; |MP |=________.解析:因为圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称, 所以直线l :x +my +1=0过圆心C (1,2), 所以1+2m +1=0.解得m =-1.圆C :x 2+y 2-2x -4y +1=0,可化为(x -1)2+(y -2)2=4,圆心(1,2),半径r =2, 因为经过点M (m ,m )作圆C 的切线,切点为P , 所以|MP |=(1+1)2+(2+1)2-4=3.答案:-1 3直线与圆、圆与圆的位置关系[核心提炼]1.直线与圆的位置关系的判定(1)几何法:把圆心到直线的距离d和半径r的大小加以比较:d<r⇔相交;d=r⇔相切;d>r⇔相离.(2)代数法:将圆的方程和直线的方程联立起来组成方程组,利用判别式Δ来讨论位置关系:Δ>0⇔相交;Δ=0⇔相切;Δ<0⇔相离.2.圆与圆的位置关系的判定(1)d>r1+r2⇔两圆外离;(2)d=r1+r2⇔两圆外切;(3)|r1-r2|<d<r1+r2⇔两圆相交;(4)d=|r1-r2|(r1≠r2)⇔两圆内切;(5)0≤d<|r1-r2|(r1≠r2)⇔两圆内含.[典型例题](1)已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是22,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是() A.内切B.相交C.外切D.相离(2)已知点P(x,y)是直线kx+y+4=0(k>0)上一动点,P A,PB是圆C:x2+y2-2y=0的两条切线,A,B是切点,若四边形P ACB的最小面积是2,则k的值为()A.3 B.21 2C.2 2 D.2【解析】(1)由题知圆M:x2+(y-a)2=a2,圆心(0,a)到直线x+y=0的距离d=a2,所以2 a2-a2=22,解得a=2.圆M,圆N的圆心距|MN|=2,两圆半径之差为1,故两2圆相交.(2)如图,把圆的方程化成标准形式得x2+(y-1)2=1,所以圆心为(0,1),半径为r=1,四边形P ACB的面积S=2S△PBC,所以若四边形P ACB的最小面积是2,则S△PBC的最小值为1.而S△PBC=12r·|PB|,即|PB|的最小值为2,此时|PC|最小,|PC|为圆心到直线kx+y+4=0的距离d,此时d=|5|=12+22=5,k2+1即k2=4,因为k>0,所以k=2.【答案】(1)B(2)D解决直线与圆、圆与圆位置关系的方法(1)讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量.(2)圆上的点与圆外点的距离的最值问题,可以转化为圆心到点的距离问题;圆上的点与直线上点的距离的最值问题,可以转化为圆心到直线的距离问题;圆上的点与另一圆上点的距离的最值问题,可以转化为圆心到圆心的距离问题.[对点训练]1.(2019·高考浙江卷)已知圆C 的圆心坐标是(0,m ),半径长是r .若直线2x -y +3=0与圆C 相切于点A (-2,-1),则m =________,r =________.解析:法一:设过点A (-2,-1)且与直线2x -y +3=0垂直的直线方程为l :x +2y +t =0,所以-2-2+t =0,所以t =4,所以l :x +2y +4=0.令x =0,得m =-2,则r =(-2-0)2+(-1+2)2= 5.法二:因为直线2x -y +3=0与以点(0,m )为圆心的圆相切,且切点为A (-2,-1),所以m +10-(-2)×2=-1,所以m =-2,r =(-2-0)2+(-1+2)2= 5.答案:-252.(2019·绍兴柯桥区高三下学期考试)已知圆O 1和圆O 2都经过点A (0,1),若两圆与直线4x -3y +5=0及y +1=0均相切,则|O 1O 2|=________.解析:如图,因为原点O 到直线4x -3y +5=0的距离d =|5|42+(-3)2=1,到直线y =-1的距离为1,且到(0,1)的距离为1,所以圆O 1和圆O 2的一个圆心为原点O ,不妨看作是圆O 1, 设O 2(a ,b ),则由题意: ⎩⎪⎨⎪⎧b +1=a 2+(b -1)2b +1=|4a -3b +5|42+(-3)2,解得⎩⎪⎨⎪⎧a =2b =1.所以|O 1O 2|=22+12= 5.答案: 5直线、圆与其他知识的交汇问题[核心提炼]高考对直线和圆的考查重在基础,多以选择题、填空题形式出现,将直线和圆与函数、不等式、平面向量、数列及圆锥曲线、概率等知识交汇,体现命题创新.[典型例题](1)在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上.若P A →·PB →≤20,则点P 的横坐标的取值范围是________.(2)(2019·广东省五校协作体第一次诊断考试)两圆x 2+y 2+2ax +a 2-4=0和x 2+y 2-4by -1+4b 2=0恰有三条公切线,若a ∈R ,b ∈R 且ab ≠0,则1a 2+1b2的最小值为________.【解析】 (1)设P (x ,y ),则由P A →·PB →≤20可得, (-12-x )(-x )+(-y )(6-y )≤20, 即(x +6)2+(y -3)2≤65,所以P 为圆(x +6)2+(y -3)2=65上或其内部一点. 又点P 在圆x 2+y 2=50上,联立得⎩⎪⎨⎪⎧x 2+y 2=50,(x +6)2+(y -3)2=65, 解得⎩⎪⎨⎪⎧x =1,y =7或⎩⎨⎧x =-5,y =-5,即P 为圆x 2+y 2=50的劣弧MN 上的一点(如图). 易知-52≤x ≤1.(2)两圆x 2+y 2+2ax +a 2-4=0和x 2+y 2-4by -1+4b 2=0配方得,(x +a )2+y 2=4,x 2+(y -2b )2=1,依题意得两圆相外切,故a 2+4b 2=1+2=3,即a 2+4b 2=9,1a 2+1b 2=(a 29+4b 29)(1a2+1b 2)=19+a 29b 2+4b 29a 2+49≥59+2a 29b 2×4b 29a 2=1,当且仅当a 29b 2=4b 29a2,即a 2=2b 2时等号成立,故1a 2+1b 2的最小值为1. 【答案】 (1)[-52,1] (2)1对于这类问题的求解,首先要注意理解直线和圆等基础知识及它们之间的深入联系,其次要对问题的条件进行全方位的审视,特别是题中各个条件之间的相互关系及隐含条件的挖掘,再次要掌握解决问题常用的思想方法,如数形结合、化归与转化等思想方法.[对点训练]1.(2019·浙江新高考冲刺卷)如图,直线x +2y =a 与圆x 2+y 2=1相交于不同的两点A (x 1,y 1),B (x 2,y 2),O 为坐标原点,若OA →·OB →=a ,则实数a 的值为( )A.5-654B.65-54 C.5-554D.55-54解析:选A.OA →·OB →=cos ∠AOB =a , 所以AB =1+1-2cos ∠AOB =2-2a ,所以O 到直线AB 的距离d =1-⎝ ⎛⎭⎪⎫2-2a 22,又d =|a |5,所以1-⎝ ⎛⎭⎪⎫2-2a 22=|a |5,解得a =5-654或a =5+654>1(舍).2.已知圆C :(x -a )2+(y -b )2=1,设平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C与x 轴相切,则a 2+b 2的最大值为________.解析:作出可行域,如图,由题意知,圆心为C (a ,b ),半径r =1,且圆C 与x 轴相切,所以b =1.而直线y =1与可行域边界的交点为A (6,1),B (-2,1),目标函数z =a 2+b 2表示点C 到原点距离的平方,所以当点C 与点A 重合时,z 取到最大值,z max =37.答案:37专题强化训练1.(2019·杭州二中月考)已知直线3x -y +1=0的倾斜角为α,则12sin 2α+cos 2α=( )A.25 B .-15 C.14 D .-120解析:选A.由题设知k =tan α=3,于是12sin 2α+cos 2α=sin αcos α+cos 2αcos 2α+sin 2α=tan α+11+tan 2α=410=25. 2.(2019·义乌二模)在平面直角坐标系内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|MQ |2=( )A.102B.10 C .5D .10解析:选D.由题意知P (0,1),Q (-3,0),因为过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直,所以MP ⊥MQ ,所以|MP |2+|MQ |2=|PQ |2=9+1=10,故选D.3.(2019·杭州七市联考)已知圆C :(x -1)2+y 2=r 2(r >0).设条件p :0<r <3,条件q :圆C 上至多有2个点到直线x -3y +3=0的距离为1,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C.圆C :(x -1)2+y 2=r 2(r >0),圆心(1,0)到直线x -3y +3=0的距离d =|1-0+3|2=2.由条件q :圆C 上至多有2个点到直线x -3y +3=0的距离为1,可得0<r <3.则p 是q 的充要条件.故选C.4.在平面直角坐标系xOy 中,设直线l :y =kx +1与圆C :x 2+y 2=4相交于A ,B 两点,以OA ,OB 为邻边作平行四边形OAMB ,若点M 在圆C 上,则实数k 等于( )A .1B .2C .-1D .0解析:选D.由题意知圆心到直线l 的距离等于12r =1(r 为圆C 的半径),所以|k ×0-0+1|k 2+1=1,解得k =0.5.(2019·兰州市诊断考试)已知圆C :(x -3)2+(y -1)2=1和两点A (-t ,0),B (t ,0)(t >0),若圆C 上存在点P ,使得∠APB =90°,则t 的取值范围是( )A .(0,2]B .[1,2]C .[2,3]D .[1,3]解析:选D.依题意,设点P (3+cos θ,1+sin θ),因为∠APB =90°,所以AP →·BP →=0,所以(3+cos θ+t )(3+cos θ-t )+(1+sin θ)2=0,得t 2=5+23cos θ+2sin θ=5+4sin(θ+π3),因为sin(θ+π3)∈[-1,1],所以t 2∈[1,9],因为t >0,所以t ∈[1,3].6.圆C :x 2+y 2+Dx +Ey -3=0(D <0,E 为整数)的圆心C 到直线4x -3y +3=0的距离为1,且圆C 被截x 轴所得的弦长|MN |=4,则E 的值为( )A .-4B .4C .-8D .8 解析:选C.圆心C ⎝⎛⎭⎫-D 2,-E 2. 由题意得⎪⎪⎪⎪4×⎝⎛⎭⎫-D 2-3×⎝⎛⎭⎫-E 2+342+(-3)2=1,即|4D -3E -6|=10,①在圆C :x 2+y 2+Dx +Ey -3=0中,令y =0得x 2+Dx -3=0. 设M (x 1,0),N (x 2,0),则x 1+x 2=-D ,x 1x 2=-3. 由|MN |=4得|x 1-x 2|=4, 即(x 1+x 2)2-4x 1x 2=16, (-D )2-4×(-3)=16. 由D <0,所以D =-2.将D =-2代入①得|3E +14|=10, 所以E =-8或E =-43(舍去).7.动点A 与两个定点B (-1,0),C (5,0)的距离之比为12,则△ABC 面积的最大值为( )A .3B .6C .9D .12 解析:选D.设A 点坐标为(x ,y ). 因为|AB ||AC |=12,所以2(x +1)2+y 2=(x -5)2+y 2,化简得x 2+y 2+6x -7=0,即(x +3)2+y 2=16.所以A 的轨迹表示以(-3,0)为圆心,半径为4的圆. 所以△ABC 面积的最大值为 S max =12|BC |·r =12×6×4=12.8.(2019·浙江省名校联盟质量检测)已知点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,过点P 的直线l与圆C :x 2+y 2=14相交于A 、B 两点,则|AB |的最小值是( )A .2 6B .4 C. 6 D .2解析:选B.根据约束条件画出可行域,如图中阴影部分所示,设点P 到圆心的距离为d ,求|AB |的最小值等价于求d 的最大值,易知d max =12+32=10, 此时|AB |min =214-10=4,故选B .9.过点M ⎝⎛⎭⎫12,1的直线l 与圆C :(x -1)2+y 2=4交于A ,B 两点,C 为圆心,当∠ACB 最小时,直线l 的方程为________.解析:易知当CM ⊥AB 时,∠ACB 最小,直线CM 的斜率为k CM =1-012-1=-2,从而直线l 的斜率为k l =-1k CM =12,其方程为y -1=12⎝⎛⎭⎫x -12.即2x -4y +3=0. 答案:2x -4y +3=010.已知圆C 1:x 2+y 2-2mx +4y +m 2-5=0与圆C 2:x 2+y 2+2x -2my +m 2-3=0,若圆C 1与圆C 2相外切,则实数m =________.解析:对于圆C 1与圆C 2的方程,配方得圆C 1:(x -m )2+(y +2)2=9,圆C 2:(x +1)2+(y -m )2=4,则圆C 1的圆心C 1(m ,-2),半径r 1=3,圆C 2的圆心C 2(-1,m ),半径r 2=2.如果圆C 1与圆C 2相外切,那么有|C 1C 2|=r 1+r 2,即(m +1)2+(m +2)2=5,则m 2+3m -10=0,解得m =-5或m =2,所以当m =-5或m =2时,圆C 1与圆C 2相外切.答案:-5或211.已知圆C :(x -1)2+(y -2)2=2,若等边△P AB 的一边AB 为圆C 的一条弦,则|PC |的最大值为________.解析:已知圆C :(x -1)2+(y -2)2=2,所以圆心为C (1,2),半径r =2,若等边△P AB 的一边AB 为圆C 的一条弦,则PC ⊥AB .在△P AC 中,∠APC =30°,由正弦定理得|AC |sin 30°=|PC |sin ∠P AC,所以|PC |=22sin ∠P AC ≤22,故|PC |的最大值为2 2.答案:2 212.(2019·台州调研)已知动圆C 过A (4,0),B (0,-2)两点,过点M (1,-2)的直线交圆C 于E ,F 两点,当圆C 的面积最小时,|EF |的最小值为________.解析:依题意得,动圆C 的半径不小于12|AB |=5,即当圆C 的面积最小时,AB 是圆C的一条直径,此时点C 是线段AB 的中点,即点C (2,-1),又点M 的坐标为(1,-2),且|CM |=(2-1)2+(-1+2)2=2<5,所以点M 位于圆C 内,点M 为线段EF 的中点(过定圆内一定点作圆的弦,最短的弦是以该定点为中点的弦)时,|EF |最小,其最小值为2(5)2-(2)2=2 3. 答案:2 313.(2019·宁波市余姚中学期中检测)设直线系M :x cos θ+(y -2)sin θ=1(0≤θ≤2π),对于下列四个命题:①M 中所有直线均经过一个定点; ②存在定点P 不在M 中的任一条直线上;③对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上;④M中的直线所能围成的正三角形面积都相等.其中真命题的代号是________(写出所有真命题的代号).解析:因为点(0,2)到直线系M:x cos θ+(y-2)·sin θ=1(0≤θ≤2π)中每条直线的距离d =1cos2θ+sin2θ=1,直线系M:x cos θ+(y-2)·sin θ=1(0≤θ≤2π)表示圆x2+(y-2)2=1的切线的集合,①由于直线系表示圆x2+(y-2)2=1的所有切线的集合,其中存在两条切线平行,M中所有直线均经过一个定点不可能,故①不正确;②存在定点P不在M中的任一条直线上,观察知点(0,2)即符合条件,故②正确;③由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n(n≥3),存在正n 边形,其所有边均在M中的直线上,故③正确;④如图,M中的直线所能围成的正三角形有两类,其一是如△ABB′型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如△BDC型,此一类面积相等,但两类之间面积不等,所以M中的直线所能围成的正三角形面积大小不一定相等,故④不正确.答案:②③14.(2019·南京一模)如图,在平面直角坐标系中,分别在x轴与直线y=33(x+1)上从左向右依次取点A k,B k(k=1,2,…,其中A1是坐标原点),使△A k B k A k+1都是等边三角形,则△A10B10A11的边长是________.解析:直线y =33(x +1)的倾斜角为30°,与x 轴的交点为P (-1,0),又△A 1B 1A 2是等边三角形,所以∠PB 1A 2=90°,所以等边△A 1B 1A 2的边长为1,且A 2B 1∥A 3B 2∥…∥A 10B 9,A 2B 1与直线y =33(x +1)垂直,故△A 2B 1B 2,△A 3B 2B 3,△A 4B 3B 4,…,△A 10B 9B 10均为直角三角形,且依次得到A 2B 2=2,A 3B 3=4,A 4B 4=8,A 5B 5=16,A 6B 6=32,A 7B 7=64,A 8B 8=128,A 9B 9=256,A 10B 10=512,故△A 10B 10A 11的边长是512.答案:51215.在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 解:(1)不能出现AC ⊥BC 的情况,理由如下: 设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0, 所以x 1x 2=-2.又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.(2)证明:BC 的中点坐标为(x 22,12),可得BC 的中垂线方程为y -12=x 2(x -x 22).由(1)可得x 1+x 2=-m ,所以AB 的中垂线方程为x =-m2.联立⎩⎨⎧x =-m 2,y -12=x 2(x -x 22),又x 22+mx 2-2=0,可得⎩⎨⎧x =-m 2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为(-m 2,-12),半径r =m 2+92. 故圆在y 轴上截得的弦长为2r 2-(m2)2=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.16.已知圆C :x 2+y 2+2x -4y +3=0.(1)若圆C 的切线在x 轴和y 轴上的截距相等,求此切线的方程;(2)从圆C 外一点P (x 1,y 1)向该圆引一条切线,切点为M ,O 为坐标原点,且有|PM |=|PO |,求使|PM |取得最小值时点P 的坐标.解:(1)圆C 的标准方程为(x +1)2+(y -2)2=2.①当此切线在两坐标轴上的截距为零时,设此切线方程为y =kx , 由|k +2|1+k 2=2,得k =2±6;所以此切线方程为y =(2±6)x .②当此切线在两坐标轴上的截距不为零时,设此切线方程为x +y -a =0,由|-1+2-a |2=2,得|a -1|=2,即a =-1或a =3.所以此切线方程为x +y +1=0或x +y -3=0.综上,此切线方程为y =(2+6)x 或y =(2-6)x 或x +y +1=0或x +y -3=0. (2)由|PO |=|PM |,得|PO |2=|PM |2=|PC |2-|CM |2,即x 21+y 21=(x 1+1)2+(y 1-2)2-2,整理得2x 1-4y 1+3=0,即点P 在直线l :2x -4y +3=0上,当|PM |取最小值时,|PO |取最小值,此时直线PO ⊥l ,所以直线PO 的方程为2x +y =0. 解方程组⎩⎪⎨⎪⎧2x +y =02x -4y +3=0,得⎩⎨⎧x =-310y =35,故使|PM |取得最小值时,点P 的坐标为⎝⎛⎭⎫-310,35. 17.(2019·杭州市高三期末考试)如图,P 是直线x =4上一动点,以P 为圆心的圆Γ经定点B (1,0),直线l 是圆Γ在点B 处的切线,过A (-1,0)作圆Γ的两条切线分别与l 交于E ,F 两点.(1)求证:|EA |+|EB |为定值;(2)设直线l 交直线x =4于点Q ,证明:|EB |·|FQ |=|BF |·|EQ |. 证明:(1)设AE 切圆于M ,直线x =4与x 轴的交点为N , 则EM =EB , 所以|EA |+|EB |=|AM |=AP 2-PM 2=AP 2-PB 2=AN 2-BN 2=4为定值. (2)同理|F A |+|FB |=4,所以E ,F 均在椭圆x 24+y 23=1上,设直线EF 的方程为x =my +1(m ≠0),令x =4,y Q =3m ,直线与椭圆方程联立得(3m 2+4)y 2+6my -9=0, 设E (x 1,y 1),F (x 2,y 2),则y 1+y 2= -6m 3m 2+4,y 1y 2=-93m 2+4. 因为E ,B ,F ,Q 在同一条直线上,所以|EB |·|FQ |=|BF |·|EQ |等价于-y 1·3m +y 1y 2=y 2·3m -y 1y 2,所以2y 1y 2=(y 1+y 2)·3m,代入y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4成立,所以|EB |·|FQ |=|BF |·|EQ |.18.(2019·金华十校联考)已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.解:(1)设圆心C (a ,0)⎝⎛⎭⎫a >-52, 则|4a +10|5=2⇒a =0或a =-5(舍).所以圆C :x 2+y 2=4.(2)存在.当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t ,0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 2=4,y =k (x -1),得(k 2+1)x 2-2k 2x +k 2-4=0, 所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.若x 轴平分∠ANB ,则k AN =-k BN ⇒y 1x 1-t +y 2x 2-t =0⇒k (x 1-1)x 1-t+k (x 2-1)x 2-t =0⇒2x 1x 2-(t +1)(x 1+x 2)+2t =0⇒2(k 2-4)k 2+1-2k 2(t +1)k 2+1+2t =0⇒t =4,所以当点N 为(4,0)时,x 轴平分∠ANB .。
2020版高考数学二轮复习第二部分专题五解析几何第1讲直线与圆练习(含解析)
第1讲直线与圆[做真题]题型一圆的方程1.(2016·高考全国卷Ⅱ)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-43B.-错误!C.错误!D.2解析:选A。
由题可知,圆心为(1,4),结合题意得错误!=1,解得a=-错误!。
2.(2015·高考全国卷Ⅰ)一个圆经过椭圆x216+错误!=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为________.解析:由题意知a=4,b=2,上、下顶点的坐标分别为(0,2),(0,-2),右顶点的坐标为(4,0).由圆心在x轴的正半轴上知圆过点(0,2),(0,-2),(4,0)三点.设圆的标准方程为(x-m)2+y2=r2(0<m<4,r>0),则错误!解得错误!所以圆的标准方程为(x-错误!)2+y2=错误!。
答案:(x-错误!)2+y2=错误!3.(2018·高考全国卷Ⅱ)设抛物线C:y2=4x的焦点为F,过F 且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8。
(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.解:(1)由题意得F(1,0),l的方程为y=k(x-1)(k>0).设A(x1,y1),B(x2,y2).由错误!得k2x2-(2k2+4)x+k2=0.Δ=16k2+16>0,故x1+x2=错误!.所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=错误!。
由题设知错误!=8,解得k=-1(舍去),k=1。
因此l的方程为y=x-1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5。
设所求圆的圆心坐标为(x0,y0),则错误!解得错误!或错误!因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y +6)2=144.题型二直线与圆、圆与圆的位置关系1.(2018·高考全国卷Ⅲ)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[错误!,3错误!]D.[2错误!,3错误!]解析:选A。
(全国通用版)2020高考数学二轮复习 专题五 解析几何 第1讲 直线与圆学案 文
第1讲 直线与圆[考情考向分析] 考查重点是直线间的平行和垂直的条件、与距离有关的问题、直线与圆的位置关系(特别是弦长问题).此类问题难度属于中低档,一般以选择题、填空题的形式出现.热点一 直线的方程及应用 1.两条直线平行与垂直的判定若两条不重合的直线l 1,l 2的斜率k 1,k 2存在,则l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1k 2=-1.若给出的直线方程中存在字母系数,则要考虑斜率是否存在. 2.求直线方程要注意几种直线方程的局限性.点斜式、斜截式方程要求直线不能与x 轴垂直,两点式不能表示与坐标轴垂直的直线,而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线. 3.两个距离公式(1)两平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B2(A 2+B 2≠0). (2)点(x 0,y 0)到直线l :Ax +By +C =0的距离公式d =|Ax 0+By 0+C |A 2+B 2(A 2+B 2≠0).例 1 (1)(2018·上饶模拟)“a =-3”是“直线l 1:ax -(a +1)y +1=0与直线l 2:2x -ay -1=0垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 由直线l 1:ax -(a +1)y +1=0与直线l 2:2x -ay -1=0垂直可得,2a +a (a +1)=0,解得a =0或-3,所以“a =-3”是“直线l 1:ax -(a +1)y +1=0与直线l 2:2x -ay -1=0垂直”的充分不必要条件,故选A. (2)在平面直角坐标系xOy 中,直线l 1:kx -y +2=0与直线l 2:x +ky -2=0相交于点P ,则当实数k 变化时,点P 到直线x -y -4=0的距离的最大值为________. 答案 3 2解析 由题意得,当k ≠0时,直线l 1:kx -y +2=0的斜率为k ,且经过点A (0,2),直线l 2:x +ky -2=0的斜率为-1k,且经过点B (2,0),且直线l 1⊥l 2,所以点P 落在以AB 为直径的圆C 上,其中圆心坐标为C (1,1),半由圆心到直线x -y -4=0的距离为d =||1-1-42=22,所以点P 到直线x -y -4=0的最大距离为d +r =22+2=3 2.当k =0时,l 1⊥l 2,此时点P (2,2).点P 到直线x -y -4=0的距离d =|2-2-4|2=2 2.综上,点P 到直线x -y -4=0的距离的最大值为3 2.思维升华 (1)求解两条直线的平行或垂直问题时要考虑斜率不存在的情况. (2)对解题中可能出现的特殊情况,可用数形结合的方法分析研究.跟踪演练1 (1)(2018·上海市虹口区模拟)直线ax +(a -1)y +1=0与直线4x +ay -2=0互相平行,则实数a =________. 答案 2解析 当a ≠0时,a 4=a -1a ≠1-2,解得a =2.当a =0时,两直线显然不平行.故a =2.(2)(2018·濮阳模拟)圆x 2+(y -1)2=1的圆心到直线y =-x -2的距离为________. 答案322解析 圆x 2+(y -1)2=1的圆心到直线y =-x -2的距离为|0+1+2|2=322.热点二 圆的方程及应用 1.圆的标准方程当圆心为(a ,b ),半径为r 时,其标准方程为(x -a )2+(y -b )2=r 2,特别地,当圆心在原点时,方程为x 2+y 2=r 2.2.圆的一般方程x 2+y 2+Dx +Ey +F =0,其中D 2+E 2-4F >0,表示以⎝ ⎛⎭⎪⎫-D 2,-E 2为圆心,D 2+E 2-4F 2为半径的圆.例2 (1)圆心为(2,0)的圆C 与圆x 2+y 2+4x -6y +4=0相外切,则C 的方程为( ) A .x 2+y 2+4x +2=0 B .x 2+y 2-4x +2=0 C .x 2+y 2+4x =0 D .x 2+y 2-4x =0 答案 D解析 圆x 2+y 2+4x -6y +4=0,即(x +2)2+(y -3)2=9, 圆心为(-2,3),半径为3. 设圆C 的半径为r .由两圆外切知,圆心距为(2+2)2+(0-3)2=5=3+r , 所以r =2.故圆C 的方程为(x -2)2+y 2=4, 展开得x 2+y 2-4x =0.(2)已知圆M 与直线3x -4y =0及3x -4y +10=0都相切,圆心在直线y =-x -4上,则圆M 的方程为( ) A.()x +32+(y -1)2=1B.()x -32+()y +12=1C.()x +32+()y +12=1D.()x -32+(y -1)2=1答案 C解析 到两直线3x -4y =0及3x -4y +10=0的距离都相等的直线方程为3x -4y +5=0,联立方程组⎩⎪⎨⎪⎧3x -4y +5=0,y =-x -4,解得⎩⎪⎨⎪⎧x =-3,y =-1.两平行线之间的距离为2,所以半径为1,从而圆M 的方程为()x +32+()y +12=1.故选C.思维升华 解决与圆有关的问题一般有两种方法(1)几何法:通过研究圆的性质、直线与圆、圆与圆的位置关系,进而求得圆的基本量和方程. (2)代数法:即用待定系数法先设出圆的方程,再由条件求得各系数.跟踪演练 2 (1)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________,半径是________.答案 (-2,-4) 5解析 由已知方程表示圆,则a 2=a +2, 解得a =2或a =-1.当a =2时,方程不满足表示圆的条件,故舍去. 当a =-1时,原方程为x 2+y 2+4x +8y -5=0, 化为标准方程为(x +2)2+(y +4)2=25, 表示以(-2,-4)为圆心,5为半径的圆.(2)(2018·天津)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为____________. 答案 x 2+y 2-2x =0解析 方法一 设圆的方程为x 2+y 2+Dx +Ey +F =0. ∵圆经过点(0,0),(1,1),(2,0),∴⎩⎪⎨⎪⎧F =0,2+D +E +F =0,4+2D +F =0,解得⎩⎪⎨⎪⎧D =-2,E =0,F =0.∴圆的方程为x 2+y 2-2x =0. 方法二 画出示意图如图所示,则△OAB 为等腰直角三角形, 故所求圆的圆心为(1,0),半径为1, ∴所求圆的方程为(x -1)2+y 2=1, 即x 2+y 2-2x =0.热点三 直线与圆、圆与圆的位置关系1.直线与圆的位置关系:相交、相切和相离,判断的方法主要有点线距离法和判别式法.(1)点线距离法:设圆心到直线的距离为d ,圆的半径为r ,则d <r ⇔直线与圆相交,d =r ⇔直线与圆相切,d >r ⇔直线与圆相离.(2)判别式法:设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0(A 2+B 2≠0),方程组⎩⎪⎨⎪⎧Ax +By +C =0,(x -a )2+(y -b )2=r 2消去y ,得到关于x 的一元二次方程,其根的判别式为Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系有五种,即内含、内切、相交、外切、外离.设圆C 1:(x -a 1)2+(y -b 1)2=r 21,圆C 2:(x -a 2)2+(y -b 2)2=r 22,两圆心之间的距离为d ,则圆与圆的五种位置关系的判断方法如下: (1)d >r 1+r 2⇔两圆外离. (2)d =r 1+r 2⇔两圆外切. (3)|r 1-r 2|<d <r 1+r 2⇔两圆相交. (4)d =|r 1-r 2|(r 1≠r 2)⇔两圆内切. (5)0≤d <|r 1-r 2|(r 1≠r 2)⇔两圆内含.例3 (1)设圆C 1:x 2+y 2=1与圆C 2:(x -2)2+(y +2)2=1,则圆C 1与圆C 2的位置关系是( ) A .外离 B .外切 C .相交 D .内含 答案 A解析 圆心距为22+(-2)2=22>1+1,故两圆外离.(2)(2018·四川省高三“联测促改”活动)过点(1,0)且倾斜角为30°的直线被圆(x -2)2+y 2=1所截得的弦长为( ) A.32B .1 C. 3 D .2 3 答案 C解析 由题意得,直线方程为y =33(x -1), 即x -3y -1=0.圆心(2,0)到直线的距离为d =|2-1|2=12,故所求弦长为l =2r 2-d 2=21-⎝ ⎛⎭⎪⎫122= 3. 思维升华 (1)讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量.(2)圆上的点与圆外点的距离的最值问题,可以转化为圆心到点的距离问题;圆上的点与直线上点的距离的最值问题,可以转化为圆心到直线的距离问题;圆上的点与另一圆上点的距离的最值问题,可以转化为圆心到圆心的距离问题.跟踪演练3 (1)(2018·广州名校联考)已知直线y =ax 与圆C :x 2+y 2-2ax -2y +2=0交于两点A ,B ,且△CAB 为等边三角形,则圆C 的面积为________. 答案 6π解析 圆C 化为(x -a )2+(y -1)2=a 2-1, 且圆心C (a,1),半径R =a 2-1(a 2>1).∵直线y =ax 和圆C 相交,且△ABC 为等边三角形, ∴圆心C 到直线ax -y =0的距离为R sin 60°=32×a 2-1, 即d =|a 2-1|a 2+1=3(a 2-1)2.解得a 2=7.∴圆C 的面积为πR 2=π(7-1)=6π.(2)如果圆(x -a )2+(y -a )2=8上总存在到原点的距离为2的点,则实数a 的取值范围是( ) A .(-3,-1)∪(1,3) B .(-3,3)C .[1,1]D .[-3,-1]∪[1,3]答案 D解析 圆心(a ,a )到原点的距离为|2a |,半径r =22,圆上的点到原点的距离为d .因为圆(x -a )2+(y -a )2=8上总存在点到原点的距离为2,则圆(x -a )2+(y -a )2=8与圆x 2+y 2=2有公共点,r ′=2,所以r -r ′≤|2a |≤r +r ′,即1≤|a |≤3,解得1≤a ≤3或-3≤a ≤-1,所以实数a 的取值范围是[-3,-1]∪[1,3].真题体验1.(2016·山东改编)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是________. 答案 相交解析 ∵圆M :x 2+(y -a )2=a 2, ∴圆心坐标为M (0,a ),半径r 1=a , 圆心M 到直线x +y =0的距离d =|a |2,由几何知识得⎝ ⎛⎭⎪⎫|a |22+(2)2=a 2,解得a =2.∴M (0,2),r 1=2.又圆N 的圆心坐标为N (1,1),半径r 2=1, ∴|MN |=(1-0)2+(1-2)2= 2. 又r 1+r 2=3,r 1-r 2=1,∴r 1-r 2<|MN |<r 1+r 2,∴两圆相交.2.(2016·上海)已知平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1,l 2的距离是________. 答案2553.(2018·全国Ⅰ)直线y =x +1与圆x 2+y 2+2y -3=0交于A ,B 两点,则|AB |=________. 答案 2 2解析 由x 2+y 2+2y -3=0,得x 2+(y +1)2=4. ∴圆心C (0,-1),半径r =2.圆心C (0,-1)到直线x -y +1=0的距离d =|1+1|2=2,∴|AB |=2r 2-d 2=24-2=2 2.4.(2018·全国Ⅲ改编)直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是________. 答案 [2,6]解析 设圆(x -2)2+y 2=2的圆心为C ,半径为r ,点P 到直线x +y +2=0的距离为d ,则圆心C (2,0),r =2,所以圆心C 到直线x +y +2=0的距离为22,可得d max =22+r =32,d min =22-r = 2.由已知条件可得|AB |=22,所以△ABP 面积的最大值为12|AB |·d max =6,△ABP 面积的最小值为12|AB |·d min =2.综上,△ABP 面积的取值范围是[2,6]. 押题预测1.已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成的两段弧长比为1∶2,则圆C 的方程为( ) A.⎝ ⎛⎭⎪⎫x ±332+y 2=43 B.⎝⎛⎭⎪⎫x ±332+y 2=13 C .x 2+⎝ ⎛⎭⎪⎫y ±332=43 D .x 2+⎝⎛⎭⎪⎫y ±332=13押题依据 直线和圆的方程是高考的必考点,经常以选择题、填空题的形式出现,利用几何法求圆的方程也是数形结合思想的应用. 答案 C解析 由已知得圆心在y 轴上,且被x 轴所分劣弧所对的圆心角为2π3.设圆心坐标为(0,a ),半径为r ,则r sin π3=1,r cos π3=|a |,解得r =233,即r 2=43,|a |=33,即a =±33,故圆C 的方程为x 2+⎝ ⎛⎭⎪⎫y ±332=43. 2.设m ,n 为正实数,若直线(m +1)x +(n +1)y -4=0与圆x 2+y 2-4x -4y +4=0相切,则mn ( ) A .有最小值1+2,无最大值 B .有最小值3+22,无最大值 C .有最大值3+22,无最小值 D .有最小值3-22,最大值3+2 2押题依据 直线与圆的位置关系是高考命题的热点,本题与基本不等式结合考查,灵活新颖,加之直线与圆的位置关系本身承载着不等关系,因此此类题在高考中出现的可能性很大. 答案 B解析 由直线(m +1)x +(n +1)y -4=0与圆(x -2)2+(y -2)2=4相切,可得2|m +n |(m +1)2+(n +1)2=2,整理得m +n+1=mn .由m ,n 为正实数可知,m +n ≥2mn (当且仅当m =n 时取等号),令t =mn ,则2t +1≤t 2,因为t >0,所以t ≥1+2,所以mn ≥3+2 2.故mn 有最小值3+22,无最大值.故选B.3.若圆x 2+y 2=4与圆x 2+y 2+ax +2ay -9=0(a >0)相交,公共弦的长为22,则a =________.押题依据 本题已知公共弦长,求参数的范围,情境新颖,符合高考命题的思路. 答案102解析 联立两圆方程⎩⎪⎨⎪⎧x 2+y 2=4,x 2+y 2+ax +2ay -9=0,可得公共弦所在直线方程为ax +2ay -5=0, 故圆心(0,0)到直线ax +2ay -5=0的距离为 |-5|a 2+4a2=5a(a >0).故222-⎝⎛⎭⎪⎫5a 2=22, 解得a 2=52,因为a >0,所以a =102.A 组 专题通关1.若3π2<α<2π,则直线x cos α+y sin α=1必不经过( )A .第一象限B .第二象限C .第三象限D .第四象限答案 B解析 令x =0,得y =sin α<0, 令y =0,得x =cos α>0,直线过(0,sin α),(cos α,0)两点,因而直线不过第二象限.2.(2018·呼和浩特调研)设直线l 1:x -2y +1=0与直线l 2:mx +y +3=0的交点为A ,P ,Q 分别为l 1,l 2上任意两点,点M 为P ,Q 的中点,若|AM |=12|PQ |,则m 的值为( )A .2B .-2C .3D .-3 答案 A解析 根据题意画出图形,如图所示.直线l 1:x -2y +1=0 与直线l 2:mx +y +3=0 的交点为A ,M 为PQ 的中点, 若|AM |=12|PQ |,则PA ⊥QA ,即l 1⊥l 2,∴1×m +(-2)×1=0,解得m =2.3.我国魏晋时期的数学家刘徽创立了割圆术,也就是用内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长,这种用极限思想解决数学问题的方法是数学史上的一项重大成就.现作出圆x 2+y 2=2的一个内接正八边形,使该正八边形的其中4个顶点在坐标轴上,则下列4条直线中不是该正八边形的一条边所在直线的为( ) A .x +(2-1)y -2=0 B .(1-2)x -y +2=0 C .x -(2+1)y +2=0 D .(2-1)x -y +2=0答案 C解析 如图所示可知A (2,0),B (1,1),C (0,2),D (-1,1),所以直线AB ,BC ,CD 的方程分别为y =1-01-2(x -2),y =(1-2)x +2, y =(2-1)x + 2整理为一般式即x +()2-1y -2=0,()1-2x -y +2=0,()2-1x -y +2=0,故选C.4.(2018·吴忠模拟)与直线x -y -4=0和圆x 2+y 2+2x -2y =0都相切的半径最小的圆的方程是( ) A .(x +1)2+()y +12=2B .(x -1)2+()y +12=4C .(x -1)2+()y +12=2D .(x +1)2+()y +12=4答案 C解析 圆x 2+y 2+2x -2y =0的圆心为(-1,1),半径为2,过圆心(-1,1)与直线x -y -4=0垂直的直线方程为x +y =0,所求的圆心在此直线上,又圆心(-1,1)到直线x -y -4=0的距离为62=32,则所求圆的半径为2,设所求圆心为(a ,b ),且圆心在直线x -y -4=0的左上方,则|a -b -4|2=2,且a +b =0,解得a =1,b=-1(a =3,b =-3不符合半径最小,舍去),故所求圆的方程为(x -1)2+()y +12=2.5.(2018·孝义模拟)已知点P 是直线l :x +y -b =0上的动点,由点P 向圆O :x 2+y 2=1引切线,切点分别为M ,N ,且∠MPN =90°,若满足以上条件的点P 有且只有一个,则b 等于( )A .2B .±2 C. 2 D .± 2 答案 B解析 由题意得∠PMO =∠PNO =∠MON =90°, |MO |=|ON |=1, ∴四边形PMON 是正方形, ∴|PO |=2,∵满足以上条件的点P 有且只有一个, ∴OP 垂直于直线x +y -b =0, ∴2=|-b |1+1,∴b =±2.6.在平面直角坐标系xOy 中,圆O 的方程为x 2+y 2=4,直线l 的方程为y =k (x +2),若在圆O 上至少存在三点到直线l 的距离为1,则实数k 的取值范围是( ) A.⎣⎢⎡⎦⎥⎤0,33 B.⎣⎢⎡⎦⎥⎤-33,33 C.⎣⎢⎡⎦⎥⎤-12,12D.⎣⎢⎡⎦⎥⎤0,12 答案 B解析 根据直线与圆的位置关系可知,若圆O :x 2+y 2=4上至少存在三点到直线l :y =k (x +2)的距离为1,则圆心(0,0)到直线kx -y +2k =0的距离d 应满足d ≤1,即||2k k 2+1≤1,解得k 2≤13,即-33≤k ≤33,故选B.7.(2018·绵阳诊断)已知圆C 1:x 2+y 2=r 2,圆C 2:(x -a )2+()y -b 2=r 2(r >0)交于不同的A (x 1,y 1),B (x 2,y 2)两点,给出下列结论: ①a ()x 1-x 2+b ()y 1-y 2=0; ②2ax 1+2by 1=a 2+b 2; ③x 1+x 2=a ,y 1+y 2=b . 其中正确结论的个数是( ) A .0 B .1 C .2 D .3 答案 D解析 由圆C 1:x 2+y 2=r 2,圆C 2:(x -a )2+(y -b )2=r 2(r >0)相减, 得AB 所在直线方程为2ax +2by =a 2+b 2. 由2ax 1+2by 1-a 2-b 2=0,① 2ax 2+2by 2-a 2-b 2=0,②①-②得,a ()x 1-x 2+b ()y 1-y 2=0,①②正确;AB 的中点为直线AB 与直线C 1C 2的交点,又AB :2ax +2by -a 2-b 2=0,C 1C 2:bx -ay =0.由⎩⎪⎨⎪⎧2ax +2by -a 2-b 2=0,bx -ay =0,得⎩⎪⎨⎪⎧x =a2,y =b2,故有x 1+x 2=a ,y 1+y 2=b ,③正确,故选D.8.(2018·齐鲁名校教科研协作体模拟)直线x +y sin α-3=0(α∈R )的倾斜角的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤π4,3π4解析 若sin α=0,则直线的倾斜角为π2;若sin α≠0, 则直线的斜率k =-1sin α∈()-∞,-1]∪[1,+∞, 设直线的倾斜角为θ,则tan θ∈()-∞,-1]∪[1,+∞,故θ∈⎣⎢⎡⎭⎪⎫π4,π2∪ ⎝ ⎛⎦⎥⎤π2,3π4,综上可得直线的倾斜角的取值范围是⎣⎢⎡⎦⎥⎤π4,3π4.9.(2018·安徽省“皖南八校”联考)若过点(2,0)有两条直线与圆x 2+y 2-2x +2y +m +1=0相切,则实数m 的取值范围是________. 答案 (-1,1)解析 由题意过点(2,0)有两条直线与圆x 2+y 2-2x +2y +m +1=0相切, 则点(2,0)在圆外,即22-2×2+m +1>0,解得m >-1; 由方程x 2+y 2-2x +2y +m +1=0表示圆, 则(-2)2+22-4(m +1)>0,解得m <1. 综上,实数m 的取值范围是(-1,1).10.已知直线l :mx -y =1.若直线l 与直线x -my -1=0平行,则m 的值为________;动直线l 被圆x 2+2x +y 2-24=0截得的弦长的最小值为________.答案 -1 223解析 当m =0时,两直线不平行;当m ≠0时,由题意得m 1=-1-m,所以m =±1.当m =1时,两直线重合,所以m =1舍去,故m =-1. 因为圆的方程为x 2+2x +y 2-24=0, 所以(x +1)2+y 2=25,所以它表示圆心为C (-1,0),半径为5的圆. 由于直线l :mx -y -1=0过定点P (0,-1), 所以过点P 且与PC 垂直的弦长最短, 且最短弦长为252-(2)2=223.11.在平面直角坐标系xOy 中,已知圆C :(x +1)2+y 2=2,点A (2,0),若圆C 上存在点M ,满足|MA |2+|MO |2≤10,则点M 的纵坐标的取值范围是________. 答案 ⎣⎢⎡⎦⎥⎤-72,72 解析 设点M (x ,y ),因为|MA |2+|MO |2≤10, 所以(x -2)2+y 2+x 2+y 2≤10, 即x 2+y 2-2x -3≤0,因为(x +1)2+y 2=2,所以y 2=2-(x +1)2, 所以x 2+2-(x +1)2-2x -3≤0, 化简得x ≥-12.因为y 2=2-(x +1)2,所以y 2≤74,所以-72≤y ≤72. 12.设圆C 满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l :x -2y =0的距离为d .当d 最小时,圆C 的面积为________. 答案 2π解析 如图,设圆心坐标为C (a ,b ),则⎩⎨⎧r 2=a 2+1,r =2|b |,即2b 2=a 2+1,所以圆心C (a ,b )到直线x -2y =0的距离d =|a -2b |5,故d 2=(a -2b )25=15(a 2+4b 2-4ab ).由于a 2+b 2≥2ab ,即-4ab ≥-2a 2-2b 2, 故d 2=15(a 2+4b 2-4ab )≥15(2b 2-a 2)=15(当且仅当a =b 时取等号),此时r 2=a 2+1=2,故圆的面积S =πr 2=2π.B 组 能力提高13.已知圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方)且|AB |=2,过点A 任作一条直线与圆O :x 2+y 2=1相交于M ,N 两点,下列三个结论:①|NA ||NB |=|MA ||MB |;②|NB ||NA |-|MA ||MB |=2;③|NB ||NA |+|MA ||MB |=2 2.其中正确结论的序号是( )A .①② B.②③ C.①③ D.①②③ 答案 D解析 根据题意,利用圆中的特殊三角形,求得圆心及半径,即得圆的方程为(x -1)2+(y -2)2=2,并且可以求得A (0,2-1),B (0,2+1), 因为M ,N 在圆O :x 2+y 2=1上,所以可设M (cos α,sin α),N (cos β,sin β), 所以|NA |=(cos β-0)2+[sin β-(2-1)]2=2(2-1)(2-sin β),|NB |=(cos β-0)2+[sin β-(2+1)]2=2(2+1)(2-sin β), 所以|NA ||NB |=2-1,同理可得|MA ||MB |=2-1,所以|NA ||NB |=|MA ||MB |,|NB ||NA |-|MA ||MB |=12-1-(2-1)=2, |NB ||NA |+|MA ||MB |=22, 故①②③都正确.14.若对圆(x -1)2+(y -1)2=1上任意一点P (x ,y ),||3x -4y +a ||+3x -4y -9的取值与x ,y 无关,则实数a 的取值范围是( ) A .a ≤-4 B .-4≤a ≤6 C .a ≤-4或a ≥6 D .a ≥6答案 D 解析||3x -4y -9表示圆上的点到直线l 1:3x -4y -9=0的距离的5倍,||3x -4y +a 表示圆上的点到直线l 2:3x -4y +a =0的距离的5倍,所以||3x -4y +a ||+3x -4y -9的取值与x ,y 无关,即圆上的点到直线l 1,l 2的距离与圆上点的位置无关,所以直线3x -4y +a =0与圆相离或相切,并且l 1和l 2在圆的两侧,所以d =||3-4+a 5≥1,并且a >0,解得a ≥6,故选D.15.(2018·合肥质检)为保护环境,建设美丽乡村,镇政府决定为A ,B ,C 三个自然村建造一座垃圾处理站,集中处理A ,B ,C 三个自然村的垃圾,受当地条件限制,垃圾处理站M 只能建在与A 村相距5 km ,且与C 村相距31 km 的地方.已知B 村在A 村的正东方向,相距3 km ,C 村在B 村的正北方向,相距3 3 km ,则垃圾处理站M 与B 村相距________ km.答案 2或7解析 以A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系(图略),则A (0,0),B (3,0),C (3,33). 由题意得垃圾处理站M 在以A (0,0)为圆心,5为半径的圆A 上,同时又在以C (3,33)为圆心,31为半径的圆C 上,两圆的方程分别为x 2+y 2=25和(x -3)2+(y -33)2=31.由⎩⎨⎧x 2+y 2=25,(x -3)2+(y -33)2=31,解得⎩⎪⎨⎪⎧x =5,y =0或⎩⎪⎨⎪⎧x =-52,y =532,∴垃圾处理站M 的坐标为(5,0)或⎝ ⎛⎭⎪⎫-52,532,∴|MB |=2或|MB |=⎝ ⎛⎭⎪⎫-52-32+⎝ ⎛⎭⎪⎫5322=7, 即垃圾处理站M 与B 村相距2 km 或7 km.16.过点P (-3,0)作直线()a +2b x -(a +b )y -3a -4b =0(a ,b 不同时为零)的垂线,垂足为M ,已知点N (2,3),则|MN |的取值范围是________. 答案[]5-5,5+5解析 直线()a +2b x -(a +b )y -3a -4b =0(a ,b 不同时为零)化为a (x -y -3)+b (2x -y -4)=0,令⎩⎪⎨⎪⎧x -y -3=0,2x -y -4=0,解得⎩⎪⎨⎪⎧x =1,y =-2.∴直线()a +2b x -(a +b )y -3a -4b =0过定点Q (1,-2). ∴点M 在以PQ 为直径的圆上, 圆心为线段PQ 的中点C (-1,-1), 半径r =22+1=5, ∴线段MN 长度的最大值为 |CN |+r =32+42+5=5+5, 线段MN 长度的最小值为 |CN |-r =32+42-5=5- 5. ∴|MN |的取值范围是[5-5,5+5].。
2020新高考数学二轮教师用书:专题五第1讲 直线与圆
第1讲 直线与圆 [考情考向·高考导航]对于直线的考查,主要是求直线的方程;两条直线平行与垂直的判定;两条直线的交点和距离等问题.一般以选择题、填空题的形式考查.对于圆的考查,主要是结合直线的方程,用几何法或待定系数法确定圆的标准方程;对于直线与圆、圆与圆的位置关系等问题,含参数问题为命题热点,一般以选择题、填空题的形式考查,难度不大,涉及圆的解答题有逐渐强化的趋势.[真题体验]1.(2018·全国Ⅲ卷)直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是( )A .[2,6]B .[4,8]C .[2,32]D .[22,32]解析:A [由已知A (-2,0),B (0,-2).圆心(2,0)到直线x +y +2=0的距离为d =|2+0+2|2=22,又圆的半径为 2.∴点P 到直线x +y +2=0的距离的最小值为2,最大值为32,又|AB |=2 2.∴△ABP 面积的最小值为S min =12×22×2=2,最大值为S max =12×22×32=6.]2.(2018·北京卷)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x -my -2=0的距离.当θ,m 变化时,d 的最大值为( )A .1B .2C .3D .4解析:C [本题考查直线与圆的位置关系.点P (cos θ,sin θ)是单位圆x 2+y 2=1上的点,直线x -my -2=0过定点(2,0),当直线与圆相离时,d 可取到最大值,设圆心到直线的距离为d 0,d 0=21+m 2,d =d 0+1=21+m 2+1,可知,当m =0时,d max =3,故选C.]3.(2018·天津卷)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________. 解析:设圆的方程为x 2+y 2+Dx +Ey +F =0, 圆经过三点(0,0),(1,1),(2,0),则: ⎩⎪⎨⎪⎧F =0,1+1+D +E +F =0,4+0+2D +F =0,解得⎩⎪⎨⎪⎧D =-2,E =0,F =0,则圆的方程为x 2+y 2-2x =0. 答案:x 2+y 2-2x =04.(2018·全国Ⅰ卷)直线y =x +1与圆x 2+y 2+2y -3=0交于A ,B 两点,则|AB |=________. 解析:圆方程可化为x 2+(y +1)2=4,∴圆心为(0,-1),半径r =2,圆心到直线x -y +1=0的距离d =22=2,∴|AB |=222-d 2=24-2=2 2. 答案:2 2[主干整合]1.两条直线平行与垂直的判定若两条不重合的直线l 1,l 2的斜率k 1,k 2存在,则l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1k 2=-1.若给出的直线方程中存在字母系数,则要考虑斜率是否存在.2.两个距离公式(1)两平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2. (2)点(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.3.圆的方程(1)圆的标准方程:(x -a )2+(y -b )2=r 2(r >0),圆心为(a ,b ),半径为r .(2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),圆心为⎝⎛⎭⎫-D 2,-E2,半径为r =D 2+E 2-4F2.4.直线与圆的位置关系的判定(1)几何法:把圆心到直线的距离d 和半径r 的大小加以比较:d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:将圆的方程和直线的方程联立起来组成方程组,利用判别式Δ来讨论位置关系:Δ>0⇔相交;Δ=0⇔相切;Δ<0⇔相离.热点一 直线的方程及其应用[例1] (1)(2020·大连模拟)“a =2”是“直线ax +y -2=0与直线2x +(a -1)y +4=0平行”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件[解析] A [由ax +y -2=0与直线2x +(a -1)y +4=0平行,得a (a -1)=2,∴a =-1,a =2.经检验当a =-1时,两直线重合(舍去).∴“a =2”是“直线ax +y -2=0与直线2x +(a -1)y +4=0平行”的充要条件.](2)(2020·厦门模拟)过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且到点P (0,4)的距离为2的直线方程为________________.[解析] 由⎩⎪⎨⎪⎧ x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2.所以l 1与l 2的交点为(1,2),当所求直线的斜率不存在时,所求直线为x =1,显然不符合题意.故设所求直线的方程为y -2=k (x -1), 即kx -y +2-k =0,因为P (0,4)到所求直线的距离为2,所以2=|-2-k |1+k 2,所以k =0或k =43.所以所求直线的方程为y =2或4x -3y +2=0. [答案] y =2或4x -3y +2=0(3)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i 的横、纵坐标分别为第i 名工人上午的工作时间和加工的零件数,点B i 的横、纵坐标分别为第i 名工人下午的工作时间和加工的零件数,i =1,2,3.①记Q i 为第i 名工人在这一天中加工的零件总数,则Q 1,Q 2,Q 3中最大的是________. ②记p i 为第i 名工人在这一天中平均每小时加工的零件数,则p 1,p 2,p 3中最大的是________.[答案] ①Q 1 ②p 2求解直线方程应注意的问题(1)求解两条直线平行的问题时,在利用A 1B 2-A 2B 1=0建立方程求出参数的值后,要注意代入检验,排除两条直线重合的情况.(2)要注意几种直线方程的局限性.点斜式、两点式、斜截式要求直线不能与x 轴垂直.而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线.(3)求直线方程要考虑直线的斜率是否存在.(2020·宁德模拟)过点M (0,1)作直线,使它被两条直线l 1:x -3y +10=0,l 2:2x +y -8=0所截得的线段恰好被M 所平分,则此直线方程为____________.解析:过点M 且与x 轴垂直的直线是x =0,它和直线l 1,l 2的交点分别为⎝⎛⎭⎫0,103,(0,8),显然不符合题意,故可设所求直线方程为y =kx +1,其图象与直线l 1,l 2分别交于A ,B 两点,则有①⎩⎪⎨⎪⎧y A =kx A +1,x A -3y A +10=0,②⎩⎪⎨⎪⎧y B =kx B +1,2x B +y B -8=0.由①解得x A =73k -1,由②解得x B =7k +2.因为点M 平分线段AB ,所以x A +x B =2x M ,即73k -1+7k +2=0,解得k =-14.故所求的直线方程为y =-14x +1,即x +4y -4=0.答案:x +4y -4=0热点二 圆的方程及应用[例2] (1)(山东高考题)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.[解析] 设圆C 的圆心为(a ,b )(b >0),由题意得a =2b >0,且a 2=(3)2+b 2,解得a =2,b =1.∴所求圆的标准方程为(x -2)2+(y -1)2=4. [答案] (x -2)2+(y -1)2=4(2)(2019·唐山三模)已知A (-2,0),B (0,2),实数k 是常数,M ,N 是圆x 2+y 2+kx =0上两个不同点,P 是圆x 2+y 2+kx =0上的动点,如果M ,N 关于直线x -y -1=0对称,则△P AB 面积的最大值是____________.[解析] 依题意得圆x 2+y 2+kx =0的圆心⎝⎛⎭⎫-k 2,0位于直线x -y -1=0上,于是有-k2-1=0,即k =-2,因此圆心坐标是(1,0),半径是1.由题意可得|AB |=22,直线AB 的方程是x-2+y2=1,即x -y +2=0,圆心(1,0)到直线AB 的距离等于|1-0+2|2=322,点P 到直线AB 的距离的最大值是322+1,△P AB 面积的最大值为12×22×32+22=3+ 2.[答案] 3+ 2求圆的方程的两种方法(1)几何法:通过研究圆的性质、直线和圆、圆和圆的位置关系,求出圆的基本量:圆心坐标和半径.如圆中弦所在的直线与圆心和弦中点的连线相互垂直,设圆的半径为r ,弦长为|AB |,弦心距为d ,则r 2=d 2+⎝⎛⎭⎫|AB |22等.(2)代数法:设出圆的方程,用待定系数法求解.在求圆的方程时,要根据具体的条件选用合适的方法,但一般情况下,应用几何法运算较简捷.(1)(2019·临沂三模)已知圆M 的圆心在x 轴上,且圆心在直线l 1:x =-2的右侧,若圆M 截直线l 1所得的弦长为23,且与直线l 2:2x -5y -4=0相切,则圆M 的标准方程为________________.解析:由已知,可设圆M 的圆心坐标为(a,0),a >-2,半径为r ,得⎩⎪⎨⎪⎧(a +2)2+(3)2=r 2,|2a -4|4+5=r ,解得满足条件的一组解为⎩⎪⎨⎪⎧a =-1,r =2,所以圆M 的方程为(x +1)2+y 2=4. 答案:(x +1)2+y 2=4(2)(2020·马鞍山模拟)圆心在曲线y =2x (x >0)上,且与直线2x +y +1=0相切的面积最小的圆的标准方程为________________.解析:由条件设圆心坐标为⎝⎛⎭⎫a ,2a (a >0),又因为圆与直线2x +y +1=0相切,所以圆心到直线的距离d =r =2a +2a +15≥4+15=5,当且仅当2a =2a ,即a =1时取等号,所以圆心坐标为(1,2),圆的半径的最小值为5,则所求圆的方程为(x -1)2+(y -2)2=5.答案:(x -1)2+(y -1)2=5热点三 直线(圆)与圆的位置关系直观 想象 素养直观想象——圆的方程应用中的核心素养以学过的圆的相关知识为基础,借助曲线的方程感知一类问题共同特征的“直观想象”,然后利用“直观想象”解决问题.[例3] (1)(2020·湖北八校联考)过点(2,0)作直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于________.[解析]令P (2,0),如图,易知|OA |=|OB |=1,所以S △AOB =12|OA |·|OB |·sin ∠AOB =12sin ∠AOB ≤12,当∠AOB =90°时,△AOB 的面积取得最大值,此时过点O 作OH ⊥AB 于点H ,则|OH |=22, 于是sin ∠OPH =|OH ||OP |=222=12,易知∠OPH 为锐角,所以∠OPH =30°,则直线AB 的倾斜角为150°,故直线AB 的斜率为tan 150°=-33. [答案]-33(2)如图所示,已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P .①当|MN |=219时,则直线l 的方程为____________. ②若BQ →·BP →为定值,则这个定值为________. [解析] ①设圆A 的半径为R . ∵圆A 与直线l 1:x +2y +7=0相切, ∴R =|-1+4+7|5=2 5.∴圆A 的方程为(x +1)2+(y -2)2=20.a .当直线l 与x 轴垂直时,易知x =-2符合题意;b .当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +2),即kx -y +2k =0.连接AQ ,则AQ ⊥MN .∵|MN |=219,∴|AQ |=20-19=1. 由|AQ |=|k -2|k 2+1=1,得k =34,∴直线l 的方程为3x -4y +6=0.∴所求直线l 的方程为x =-2或3x -4y +6=0. ②∵AQ ⊥BP ,∴AQ →·BP →=0. ∵BQ →·BP →=(BA →+AQ →)·BP → =BA →·BP →+AQ →·BP →=BA →·BP →.当直线l 与x 轴垂直时,得P ⎝⎛⎭⎫-2,-25. 则BP →=⎝⎛⎭⎫0,-52,又BA →=(1,2), ∴BQ →·BP →=BA →·BP →=-5.当直线l 的斜率存在时,设直线l 的方程为y =k (x +2).由⎩⎪⎨⎪⎧y =k (x +2),x +2y +7=0,解得P ⎝ ⎛⎭⎪⎫-4k -71+2k ,-5k 1+2k . ∴BP →=⎝ ⎛⎭⎪⎫-51+2k ,-5k 1+2k .∴BQ →·BP →=BA →·BP →=-51+2k -10k 1+2k =-5.综上所述:BQ →·BP →为定值,其定值为-5. [答案] ①x =-2或3x -4y +6=0 ②-5直线(圆)与圆的位置关系的解题思路(1)讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量.(2)圆上的点与圆外点的距离的最值问题,可以转化为圆心到点的距离问题;圆上的点与直线上点的距离的最值问题,可以转化为圆心到直线的距离问题;圆上的点与另一圆上点的距离的最值问题,可以转化为两圆心之间的距离问题.(1)(2020·银川调研)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是____________.解析:由题意知圆M 的圆心为(0,a ),半径R =a ,因为圆M 截直线x +y =0所得线段的长度为22,所以圆心M 到直线x +y =0的距离d =|a |2=a 2-2(a >0),解得a =2,又知圆N 的圆心为(1,1),半径r =1,所以|MN |=2,则R -r <2<R +r ,所以两圆的位置关系为相交.答案:相交(2)(2020·江西七校联考)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.解析:圆C :(x -4)2+y 2=1,如图,直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,只需保证圆心C 到y =kx -2的距离小于等于2即可,∴|4k -2|1+k 2≤2⇒0≤k ≤43.∴k max =43.答案:43限时40分钟 满分80分一、选择题(本大题共11小题,每小题5分,共55分)1.(2020·成都二诊)设a ,b ,c 分别是△ABC 中角A ,B ,C 所对的边,则直线sin A ·x +ay -c =0与bx -sin B ·y +sin C =0的位置关系是( )A .平行B .重合C .垂直D .相交但不垂直解析:C [由题意可得直线sin A ·x +ay -c =0的斜率k 1=-sin A a ,bx -sin B ·y +sin C =0的斜率k 2=b sin B ,故k 1k 2=-sin A a ·bsin B =-1,则直线sin A ·x +ay -c =0与直线bx -sin B ·y+sin C =0垂直,故选C.]2.(2020·杭州质检)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A .-53或-35B .-32或-23C .-54或-45D .-43或-34解析:D [点(-2,-3)关于y 轴的对称点为(2,-3),故可设反射光线所在直线的方程为y +3=k (x -2),∵反射光线与圆(x +3)2+(y -2)2=1相切,∴圆心(-3,2)到直线的距离d =|-3k -2-2k -3|k 2+1=1,化简得12k2+25k +12=0,解得k =-43或-34.] 3.(2020·广州模拟)若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上运动,则AB 的中点M 到原点的距离的最小值为( )A. 2 B .2 2 C .3 2D .4 2解析:C [由题意知AB 的中点M 的集合为到直线l 1:x +y -7=0和l 2:x +y -5=0的距离都相等的直线,则点M 到原点的距离的最小值为原点到该直线的距离.设点M 所在直线的方程为l :x +y +m =0,根据两平行线间的距离公式得,|m +7|2=|m +5|2,即|m +7|=|m +5|,所以m =-6,即l :x +y -6=0,根据点到直线的距离公式,得点M 到原点的距离的最小值为|-6|2=3 2.] 4.(2020·河南六校联考)已知直线x +y =a 与圆x 2+y 2=1交于A ,B 两点,O 是坐标原点,向量OA →,OB →满足|OA →+OB →|=|OA →-OB →|,则实数a 的值为( )A .1B .2C .±1D .±2解析:C [由OA →,OB →满足|OA →+OB →|=|OA →-OB →|,得OA →⊥OB →, 因为直线x +y =a 的斜率是-1, 所以A ,B 两点在坐标轴上并且在圆上;所以(0,1)和(0,-1)两点都适合直线的方程,故a =±1.]5.(2020·怀柔调研)过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( )A .y =-34 B .y =-12C .y =-32D .y =-14解析:B [圆(x -1)2+y 2=1的圆心为C (1,0),半径为1,以|PC |=(1-1)2+(-2-0)2=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12.故选B.]6.(2020·温州模拟)已知圆C :(x -2)2+y 2=2,直线l :y =kx ,其中k 为[-3,3]上的任意一个实数,则事件“直线l 与圆C 相离”发生的概率为( )A.33B.34C.14D.3-33解析:D [当直线l 与圆C 相离时,圆心C 到直线l 的距离d =|2k |k 2+1>2,解得k >1或k <-1,又k ∈[-3,3],所以-3≤k <-1或1<k ≤3,故事件“直线l 与圆C 相离”发生的概率P =(3-1)+(-1+3)23=3-33,故选D.]7.(2019·潍坊三模)已知O 为坐标原点,A ,B 是圆C :x 2+y 2-6y +5=0上两个动点,且|AB |=2,则|OA →+OB →|的取值范围是( )A .[6-23,6+23]B .[3-3,3+3]C .[3,9]D .[3,6]解析:A [圆C :x 2+(y -3)2=4,取弦AB 的中点M ,连接CM ,CA ,在直角三角形CMA 中,|CA |=2,|MA |=1,则|CM |=|CA |2-|MA |2=3,则点M 的轨迹方程为x 2+(y -3)2=3,则|OA →+OB →|=2|OM →|∈[6-23,6+23].]8.(多选题)直线x -y +m =0与圆x 2+y 2-2x -1=0有两个不同的交点的一个充分不必要条件是( )A .0<m <1B .m <1C .-2<m <1D .-3<m <1解析:AC [本题主要考查直线与圆的位置关系的判断.圆x 2+y 2-2x -1=0的圆心为(1,0),半径为 2.因为直线x -y +m =0与圆x 2+y 2-2x -1=0有两个不同的交点,所以直线与圆相交,因此圆心到直线的距离d =|1+m |1+1<2,所以|1+m |<2,解得-3<m <1,求其充分条件,即求其子集,故由选项易得AC 符合.故选AC.]9.(2020·合肥质检)已知圆C 1:(x +2)2+(y -3)2=5与圆C 2相交于A (0,2),B (-1,1)两点,且四边形C 1AC 2B 为平行四边形,则圆C 2的方程为( )A .(x -1)2+y 2=5B .(x -1)2+y 2=92C.⎝⎛⎭⎫x -122+⎝⎛⎭⎫y -122=5 D.⎝⎛⎭⎫x -122+⎝⎛⎭⎫y -122=92解析:A [通解 (常规求解法)设圆C 2的圆心坐标为(a ,b ),连接AB ,C 1C 2.因为C 1(-2,3),A (0,2),B (-1,1),所以|AC 1|=|BC 1|=5,所以平行四边形C 1AC 2B 为菱形,所以C 1C 2⊥AB 且|AC 2|= 5.可得⎩⎪⎨⎪⎧3-b -2-a ×1-2-1-0=-1,a 2+(b -2)2=5,解得⎩⎪⎨⎪⎧ a =1,b =0或⎩⎪⎨⎪⎧a =-2,b =3,则圆心C 2的坐标为(1,0)或(-2,3)(舍去).因为圆C 2的半径为5,所以圆C 2的方程为(x -1)2+y 2=5.故选A.优解 (特值验证法)由题意可知,平行四边形C 1AC 2B 为菱形,则|C 2A |=|C 1A |=22+(2-3)2=5,即圆C 2的半径为5,排除B ,D ;将点A (0,2)代入选项A ,C ,显然选项A 符合.故选A.]10.(2020·惠州二测)已知圆C :x 2+y 2-2ax -2by +a 2+b 2-1=0(a <0)的圆心在直线3x -y +3=0上,且圆C 上的点到直线3x +y =0的距离的最大值为1+3,则a 2+b 2的值为( )A .1B .2C .3D .4解析:C [化圆C :x 2+y 2-2ax -2by +a 2+b 2-1=0(a <0)为标准方程得C :(x -a )2+(y-b )2=1,其圆心为(a ,b ),故3a -b +3=0,即b =3a +3,(a ,b )到直线3x +y =0的距离d =|3a +b |3+1=|3a +b |2=|3a +3a +3|2,因为圆C 上的点到直线3x +y =0的距离的最大值为1+3,故d +1=32|2a +1|+1=1+3,得到|2a +1|=2,解得a =-32或a =12(舍去),故b =3×⎝⎛⎭⎫-32+3=-32,故a 2+b 2=⎝⎛⎭⎫-322+⎝⎛⎭⎫-322=3.选C.] 11.(2019·烟台三模)已知圆C :(x -1)2+(y -4)2=10和点M (5,t ),若圆C 上存在两点A ,B 使得MA ⊥MB ,则实数t 的取值范围是( )A .[-2,6]B .[-3,5]C .[2,6]D .[3,5]解析:C [当MA ,MB 是圆C 的切线时,∠AMB 取得最大值,若圆C 上存在两点A ,B 使得MA ⊥MB ,则MA ,MB 是圆C 的切线时,∠AMB ≥90°,∠AMC ≥45°,且∠AMC <90°,如图,所以|MC |=(5-1)2+(t -4)2≤10sin 45°=20,所以16+(t -4)2≤20,所以2≤t ≤6,故选C.] 二、填空题(本大题共5小题,每小题5分,共25分)12.(双空填空题)在平面直角坐标系xOy 中,已知圆C 过点A (0,-8),且与圆x 2+y 2-6x-6y=相切于原点,则圆C的方程为________________________________________________________________________,圆C 被x 轴截得的弦长为________.解析:本题考查圆与圆的位置关系.将已知圆化为标准式得(x -3)2+(y -3)2=18,圆心为(3,3),半径为3 2.由于两个圆相切于原点,连心线过切点,故圆C 的圆心在直线y =x 上.由于圆C 过点(0,0),(0,-8),所以圆心又在直线y =-4上.联立y =x 和y =-4,得圆心C 的坐标(-4,-4).又因为点(-4,-4)到原点的距离为42,所以圆C 的方程为(x +4)2+(y +4)2=32,即x 2+y 2+8x +8y =0.圆心C 到x 轴距离为4,则圆C 被x 轴截得的弦长为2×(42)2-42=8.答案:x 2+y 2+8x +8y =0 813.(2019·哈尔滨二模)设圆x 2+y 2-2x -2y -2=0的圆心为C ,直线l 过(0,3),且与圆C 交于A ,B 两点,若|AB |=23,则直线l 的方程为________________.解析:当直线l 的斜率不存在时,直线l 的方程为x =0,联立方程得⎩⎪⎨⎪⎧x =0,x 2+y 2-2x -2y -2=0.得⎩⎨⎧ x =0,y =1-3 或⎩⎨⎧x =0,y =1+3,∴|AB |=23,符合题意.当直线l 的斜率存在时,设直线l 的方程为y =kx +3,∵圆x 2+y 2-2x -2y -2=0,即(x -1)2+(y -1)2=4,其圆心为C (1,1),圆的半径r =2,圆心C (1,1)到直线y =kx +3的距离d =|k -1+3|k 2+1=|k +2|k 2+1,∵d 2+⎝⎛⎭⎫|AB |22=r 2,∴(k +2)2k 2+1+3=4,解得k =-34,∴直线l 的方程为y =-34x +3,即3x +4y -12=0.综上,直线l 的方程为3x +4y -12=0或x =0.答案:x =0或3x +4y -12=014.若圆x 2+y 2=4与圆x 2+y 2+ax +2ay -9=0(a >0)相交,公共弦的长为22,则a =________.解析:联立两圆方程⎩⎪⎨⎪⎧x 2+y 2=4,x 2+y 2+ax +2ay -9=0,可得公共弦所在直线方程为ax +2ay -5=0, 故圆心(0,0)到直线ax +2ay -5=0的距离为|-5|a 2+4a2=5a(a >0). 故222-⎝⎛⎭⎫5a 2=22, 解得a 2=52,因为a >0,所以a =102. 答案:10215.(2018·江苏卷)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB →·CD →=0,则点A 的横坐标为________.解析:∵AB 为直径∴AD ⊥BD∴BD 即B 到直线l 的距离 |BD |=|0-2×5|12+22=2 5. ∵|CD |=|AC |=|BC |=r ,又CD ⊥AB . ∴|AB |=2|BC |=210 设A (a,2a )|AB |=(a -5)2+4a 2=210⇒a =-1或3(-1舍去) 答案:316.(2020·厦门模拟)为保护环境,建设美丽乡村,镇政府决定为A ,B ,C 三个自然村建造一座垃圾处理站,集中处理A ,B ,C 三个自然村的垃圾,受当地条件限制,垃圾处理站M 只能建在与A 村相距5 km ,且与C 村相距31 km 的地方.已知B 村在A 村的正东方向,相距3 km ,C 村在B 村的正北方向,相距3 3 km ,则垃圾处理站M 与B 村相距________km.解析:以A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系(图略),则A (0,0),B (3,0),C (3,33).由题意得垃圾处理站M 在以A (0,0)为圆心,5为半径的圆A 上,同时又在以C (3,33)为圆心,31为半径的圆C 上,两圆的方程分别为x 2+y 2=25和(x -3)2+(y -33)2=31.由⎩⎨⎧x 2+y 2=25,(x -3)2+(y -33)2=31,解得⎩⎪⎨⎪⎧x =5,y =0或⎩⎨⎧x =-52,y =532,∴垃圾处理站M 的坐标为(5,0)或⎝⎛⎭⎫-52,532,∴|MB |=2或|MB |=⎝⎛⎭⎫-52-32+⎝⎛⎭⎫5322=7, 即垃圾处理站M 与B 村相距2 km 或7 km. 答案:2或7。
2020高考数学课标二轮:专题能力训练直线与圆含解析
因为圆N与x轴相切,与圆M外切,
所以0<y0<7,于是圆N的半径为y0,
从而7-y0=5+y0,解得y0=1.
因此,圆N的标准方程为(x-6)2+(y-1)2=1.
(2)因为直线l∥OA,所以直线l的斜率为 =2.
设直线l的方程为y=2x+m,即2x-y+m=0,
∴S△ABP= ·|AB|·d'= d',∴2≤S△ABP≤6.
4.已知实数a,b满足a2+b2-4a+3=0,函数f(x)=asinx+bcosx+1的最大值记为φ(a,b),则φ(a,b)的最小值是()
A.1B.2C. +1D.3
答案:B
解析:由题意知φ(a,b)= +1,且a,b满足a2+b2-4a+3=0,即点(a,b)在圆C:(a-2)2+b2=1上,圆C的圆心为(2,0),半径为1, 表示圆C上的动点(a,b)到原点的距离,最小值为1,所以φ(a,b)的最小值为2.故选B.
(1)证明由题设知,圆C的方程为(x-t)2+ =t2+ ,化简,得x2-2tx+y2- y=0.当y=0时,x=0或2t,则A(2t,0);当x=0时,y=0或 ,则B ,故S△AOB= |OA|·|OB|= |2t|· =4为定值.
(2)解∵|OM|=|ON|,∴原点O在MN的中垂线上.
设MN的中点为H,则CH⊥MN,
所以k的取值范围为 .
(2)设M(x1,y1),N(x2,y2).
将y=kx+1代入方程(x-2)2+(y-3)2=1,
整理得(1+k2)x2-4(1+k)x+7=0.
2020版高考数学大二轮复习专题五解析几何第一讲直线与圆课件理
1.两条直线平行与垂直的判定 若两条不重合的直线 l1,l2 的斜率 k1,k2 存在,则 l1∥l2⇔k1= k2,l1⊥l2⇔k1k2=-1.若给出的直线方程中存在字母系数,则要 考虑斜率是否存在. 2.求直线方程 要注意几种直线方程的局限性.点斜式、两点式、斜截式要求 直线不能与 x 轴垂直.而截距式方程不能表示过原点的直线, 也不能表示垂直于坐标轴的直线.
专题五 解析几何
第一讲 直线与圆
C目录 ONTENTS
考点一 考点二 考点三 4 限时规范训练
[考情分析·明确方向] 1.近两年圆的方程成为高考全国课标卷命题的热点,需重点 关注.此类试题难度中等偏下,多以选择题或填空题形式考查. 2.直线与圆的方程偶尔单独命题,单独命题时有一定的深度, 有时也会出现在压轴题的位置,难度较大,对直线与圆的方程 (特别是直线)的考查主要体现在圆锥曲线的综合问题上.
3.两个距离公式 (1)两平行直线 l1:Ax+By+C1=0,l2:Ax+By+C2=0 间的距 离 d= |CA1-2+CB2|2. (2)点(x0,y0)到直线 l:Ax+By+C=0 的距离公式 d=|Ax0+A2B+y0B+2 C|. 4.与已知直线 l:Ax+By+C=0(A≠0,B≠0)平行的直线可设 为 Ax+By+m=0(m≠C),垂直的直线可设为 Bx-Ay+m=0.
答案:D
2.(2019·呼和浩特一模)已知直线 y=-34x-3 与 x,y 轴分别交 于 A,B 两点,动点 P 在圆 x2+y2-2x-2y+1=0 上,则△ABP 面积的最大值为________.
解析:根据题意,直线 y=-34x-3 与 x,y 轴分别交于 A,B 两点, 则 A(-4,0),B(0,-3),|AB|=5,
(新课标)2020版高考数学二轮复习专题五解析几何第1讲直线与圆练习理新人教A版(最新整理)
第1讲直线与圆一、选择题1.已知直线l1过点(-2,0)且倾斜角为30°,直线l2过点(2,0)且与直线l1垂直,则直线l1与直线l2的交点坐标为()A.(3,错误!) B.(2,错误!)C.(1,错误!)D.错误!解析:选C.直线l1的斜率k1=tan 30°=错误!,因为直线l2与直线l1垂直,所以直线l的斜率k2=-错误!=-错误!,所以直线l1的方程为y=错误!(x+2),直线l2的方程为y=2-错误!(x-2),联立错误!解得错误!即直线l1与直线l2的交点坐标为(1,错误!).2.圆C与x轴相切于T(1,0),与y轴正半轴交于A、B两点,且|AB|=2,则圆C的标准方程为( )A.(x-1)2+(y-错误!)2=2B.(x-1)2+(y-2)2=2C.(x+1)2+(y+错误!)2=4D.(x-1)2+(y-错误!)2=4解析:选A.由题意得,圆C的半径为1+1=错误!,圆心坐标为(1,错误!),所以圆C的标准方程为(x-1)2+(y-错误!)2=2,故选A.3.已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2错误!,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是( )A.内切B.相交C.外切D.相离解析:选B.圆M:x2+y2-2ay=0(a>0)可化为x2+(y-a)2=a2,由题意,M(0,a)到直线x+y=0的距离d=错误!,所以a2=错误!+2,解得a=2.所以圆M:x2+(y-2)2=4,所以两圆的圆心距为2,半径和为3,半径差为1,故两圆相交.4.(2019·皖南八校联考)圆C与直线2x+y-11=0相切,且圆心C的坐标为(2,2),设点P的坐标为(-1,y0).若在圆C上存在一点Q,使得∠CPQ=30°,则y0的取值范围是()A.[-错误!,错误!]B.[-1,5]C.[2-错误!,2+错误!]D.[2-2错误!,2+2错误!]解析:选C.由点C(2,2)到直线2x+y-11=0的距离为错误!=错误!,可得圆C的方程为(x-2)2+(y-2)2=5.若存在这样的点Q,当PQ与圆C相切时,∠CPQ≥30°,可得sin∠CPQ=错误!=错误!≥sin 30°,即CP≤2错误!,则错误!≤2错误!,解得2-错误!≤y≤2+错误!。
2020版高考数学二轮复习教程第二编专题五解析几何第1讲直线与圆练习理
第1讲直线与圆「考情研析」 1.考查直线间的平行和垂直的条件,与距离有关的问题.2。
考查直线与圆相切和相交的问题,与直线被圆所截得的弦长有关的问题。
核心知识回顾1。
直线的斜率直线过点A(x1,y1),B(x2,y2),其倾斜角为α错误!,则斜率k =错误!错误!=错误!tanα.2.直线的两种位置关系3.三种距离公式(1)两点间的距离:若A(x1,y1),B(x2,y2),则|AB|=错误!错误!.(2)点到直线的距离:点P(x0,y0)到直线Ax+By+C=0的距离d=错误!错误!.(3)两平行线的距离:若直线l1,l2的方程分别为l1:Ax+By+C1=0,l2:Ax+By+C2=0(C1≠C2),则两平行线的距离d=错误!错误!。
4.圆的方程(1)标准方程:错误!(x-a)2+(y-b)2=r2.(2)一般方程:方程x2+y2+Dx+Ey+F=0表示圆的充要条件是错误!D2+E2-4F>0,其中圆心是错误!错误!,半径r=错误!错误!.5.直线与圆的位置关系设圆心到直线的距离为d,圆的半径为r。
6.两圆的位置关系设圆O1的半径为r1,圆O2的半径为r2。
热点考向探究考向1 直线的方程及应用例1 (1)(2019·天津九校联考)“m=2”是“直线l1:mx+4y-6=0与直线l2:x+my-3=0平行"的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案D解析若直线l1:mx+4y-6=0与直线l2:x+my-3=0平行,则m2=4,m=±2,当m=2时,直线l1:2x+4y-6=0与直线l2:x+2y-3=0,两直线重合,舍去,所以“直线l1:mx+4y-6=0与直线l2:x+my-3=0平行”等价于“m=-2",所以“m=2"是“直线l1:mx+4y-6=0与直线l2:x+my-3=0平行"的既不充分也不必要条件.故选D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(2019·濂溪区校级期末)已知直线l 1:x -2y +1=0与直线l 2:x +ky -3=0平行,则实数k 的值为( ) A .-2 B .2 C .-12D.12解析:∵直线l 1:x -2y +1=0与直线l 2:x +ky -3=0平行, ∴11=k-2≠-31,解得k =-2. 故选A. 答案:A2.(2019·菏泽一模)圆(x -2)2+y 2=1与直线3x +4y +2=0的位置关系是( ) A .相交 B.相切C .相离D.以上三种情况都有可能 解析:∵圆心(2,0)到直线3x +4y +2=0的距离d =|6+2|9+16=85大于圆的半径r =1,所以圆与直线相离, 故选C.答案:C3.(2019·东莞市期末测试)过点(2,1)且在两坐标轴上的截距相等的直线方程为( )A .x -2y =0或x -y -1=0B .x -2y =0或x +y -3=0C .x +y -3=0或x -y -1=0D .x -2y =0解析:直线过点(2,1),且在两坐标轴上的截距相等, 当截距为0时,直线方程为:x -2y =0;当直线不过原点时,斜率为-1,直线方程:x +y -3=0. ∴直线方程为x -2y =0或x +y -3=0. 故选B. 答案:B4.设直线y =x -2与圆O :x 2+y 2=a 2相交于A ,B 两点,且|AB |=23,则圆O 的面积为( ) A .π B.2π C .4πD.8π解析:根据题意,圆O :x 2+y 2=a 2的圆心为(0,0),半径r =|a |, 圆心到直线y =x -2的距离d =|-2|1+1=1,又由弦长|AB |=23,则有a 2=1+⎝⎛⎭⎪⎫2322=4, 则圆O 的面积为S =πa 2=4π; 故选C. 答案:C5.(2019·郑州模拟)已知圆(x -a )2+y 2=1与直线y =x 相切于第三象限,则a 的值是( )A. 2B.- 2 C .±2D.-2解析:依题意得,圆心(a,0)到直线x -y =0的距离等于半径,即有|a |2=1,|a |= 2.又切点位于第三象限,结合图形(图略)可知,a =-2,故选B. 答案:B6.(2019·兴庆区校级一模)与3x +4y =0垂直,且与圆(x -1)2+y 2=4相切的一条直线是( ) A .4x -3y =6 B.4x -3y =-6 C .4x +3y =6D.4x +3y =-6解析:根据题意,要求直线与3x +4y =0垂直,设其方程为4x -3y +m =0, 若该直线与圆(x -1)2+y 2=4相切,则有|4+m |32+42=2,解得:m =6或-14,即要求直线的方程为4x -3y =-6或4x -3y =14, 故选B. 答案:B7.在平面直角坐标系xOy 中,已知A (-1,0),B (0,1),则满足|P A |2-|PB |2=4且在圆x 2+y 2=4上的点P 的个数为( ) A .0 B.1 C .2D.3解析:设P (x ,y ),则由|P A |2-|PB |2=4,得(x +1)2+y 2-x 2-(y -1)2=4,所以x +y -2=0.求满足条件的点P 的个数即为求直线与圆的交点个数,圆心到直线的距离d =|0+0-2|2=2<2=r ,所以直线与圆相交,交点个数为2.故满足条件的点P 有2个. 答案:C8.(2019·湛江一模)已知圆C:(x-3)2+(y-3)2=72,若直线x+y-m=0垂直于圆C的一条直径,且经过这条直径的一个三等分点,则m=()A.2或10 B.4或8C.4或6 D.2或4解析:根据题意,圆C:(x-3)2+(y-3)2=72,其圆心C(3,3),半径r=62,若直线x+y-m=0垂直于圆C的一条直径,且经过这条直径的一个三等分点,则圆心到直线的距离为22,则有d=|6-m|1+1=22,变形可得|6-m|=4,解可得:m=2或10,故选A.答案:A9.(2019·辽阳一模)已知直线l:3x-4y-15=0与圆C:x2+y2-2x-4y+5-r2=0(r>0)相交于A,B两点,若|AB|=6,则圆C的标准方程为()A.(x-1)2+(y-2)2=36B.(x-1)2+(y-2)2=25C.(x-1)2+(y-2)2=16D.(x-1)2+(y-2)2=49解析:化圆C:x2+y2-2x-4y+5-r2=0(r>0)为(x-1)2+(y-2)2=r2,可得圆心坐标为(1,2),半径为r,由圆心(1,2)到直线l:3x-4y-15=0的距离d=|3×1-4×2-15|32+(-4)2=4,且|AB|=6,得r2=32+42=25.∴圆C的标准方程为(x-1)2+(y-2)2=25. 故选B.答案:B10.(2019·宁夏银川九中模拟)直线l:kx+y+4=0(k∈R)是圆C:x2+y2+4x-4y +6=0的一条对称轴,过点A(0,k)作斜率为1的直线m,则直线m被圆C所截得的弦长为()A.22 B. 2C. 6D.2 6解析:圆C:x2+y2+4x-4y+6=0,即(x+2)2+(y-2)2=2,表示以C(-2,2)为圆心,2为半径的圆.由题意可得,直线l:kx+y+4=0经过圆心C(-2,2),所以-2k+2+4=0,解得k=3,所以点A(0,3),故直线m的方程为y=x+3,即x-y+3=0,则圆心C到直线m的距离d=|-2-2+3|2=12,所以直线m被圆C所截得的弦长为2×2-12= 6.故选C.答案:C11.(2018·高考全国卷Ⅲ)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P 在圆(x-2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6] B.[4,8]C.[2,32] D.[22,32]解析:设圆(x-2)2+y2=2的圆心为C,半径为r,点P到直线x+y+2=0的距离为d,则圆心C(2,0),r=2,所以圆心C到直线x+y+2=0的距离为22,可得d max=22+r=32,d min=22-r= 2.由已知条件可得AB=22,所以△ABP面积的最大值为12AB·d max=6,△ABP面积的最小值为12AB·d min=2.综上,△ABP面积的取值范围是[2,6].故选A.答案:A12.(2019·让胡路区校级二模)已知直线l:ax+by-3=0与圆M:x2+y2+4x-1=0相切于点P (-1,2),则直线l 的方程为________. 解析:根据题意,圆M :x 2+y 2+4x -1=0, 即(x +2)2+y 2=5,其圆心M (-2,0),直线l :ax +by -3=0与圆M :x 2+y 2+4x -1=0相切于点P (-1,2),则P 在直线l 上且MP 与直线l 垂直, k MP =2-0(-1)-(-2)=2,则有-a b =-12,则有b =2a ,又由P 在直线l 上,则有-a +2b -3=0, 解可得a =1,b =2,则直线l 的方程为x +2y -3=0; 故答案为:x +2y -3=0. 答案:x +2y -3=013.过点M ⎝ ⎛⎭⎪⎫12,1的直线l 与圆C :(x -1)2+y 2=4交于A ,B 两点,C 为圆心,当∠ACB 最小时,直线l 的方程为________.解析:易知当CM ⊥AB 时,∠ACB 最小,直线CM 的斜率为k CM =1-012-1=-2,从而直线l 的斜率为k l =-1k CM=12,其方程为y -1=12⎝ ⎛⎭⎪⎫x -12,即2x -4y +3=0.答案:2x -4y +3=014.(2019·泸州期末测试)已知圆C 的圆心在直线x -2y =0上,且经过点M (0,-1),N (1,6). (1)求圆C 的方程;(2)已知点A (1,1),B (7,4),若P 为圆C 上的一动点,求|P A |2+|PB |2的取值范围. 解析:(1)设圆心C (a ,b )则a -2b =0,则a =2b , 由|MC |=|NC |得(2b -0)2+(b +1)2=(2b -1)2+(b -6)2,解得b =2,a =4,∴圆的半径r =5,圆C 的方程为:(x -4)2+(y -2)2=25. (2)设P (x ,y ),则(x -4)2+(y -2)2=25, 即x 2+y 2=5+8x +4y则|P A |2+|PB |2=(x -1)2+(y -1)2+(x -7)2+(y -4)2=2x 2+2y 2-16x -10y +67=10+16x +8y -16x -10y +67=77-2y , ∵-3≤y ≤7,∴63≤77-2y ≤83 故|P A |2+|PB |2的取值范围是[63,83].15.(2019·鹤壁期末检测)已知圆O :x 2+y 2=4,直线l :y =kx -4. (1)若直线l 与圆O 交于不同的两点A ,B ,当∠AOB =π2时,求k 的值;(2)若EF ,GH 为圆O :x 2+y 2=4的两条相互垂直的弦,垂足为M (1,2),求四边形EGFH 的面积S 的最大值.解析:(1)∵∠AOB =π2,∴点O 到直线l 的距离d =22×2,∴4k 2+1=22×2,解得k =±7.(2)设圆心O 到直线EF ,GH 的距离分别为d 1,d 2,则d 21+d 22=|OM |2=3,|EF |2=24-d 21,|GH |2=24-d 22,∴S =12|EF |·|GH |=2(4-d 21)(4-d 22)=2(4-d 21)(1+d 21)=2-⎝ ⎛⎭⎪⎫d 21-322+254, ∴S ≤2×52=5,当且仅当d 21=32,即d 1=62时,等号成立. ∴四边形EGFH 的面积S 的最大值为5.。