二次函数章末测试题3(含答案)

合集下载

二次函数单元测试题及答案

二次函数单元测试题及答案

二次函数单元测试题及答案一、选择题(每题3分,共30分)1. 若二次函数y=ax^2+bx+c的图像开口向上,则a的取值范围是()A. a > 0B. a < 0C. a = 0D. a ≠ 0答案:A2. 二次函数y=-3x^2+6x-2的对称轴是()A. x = -1B. x = 1C. x = 2D. x = 0答案:B3. 二次函数y=x^2-4x+c的顶点坐标是()A. (2, c-4)B. (2, c+4)C. (-2, c-4)D. (-2, c+4)答案:A4. 若二次函数y=x^2-6x+c的图像与x轴有两个交点,则c的取值范围是()A. c > 9B. c < 9C. c = 9D. c ≠ 9答案:B5. 二次函数y=2x^2-4x+3的最小值是()A. 1B. 2C. 3D. 4答案:C6. 二次函数y=-2x^2+4x+1的图像与y轴的交点坐标是()A. (0, -1)B. (0, 1)C. (0, 3)D. (0, 5)答案:B7. 若二次函数y=ax^2+bx+c的图像与x轴没有交点,则a和b的取值关系是()A. a > 0, b^2 > 4acB. a < 0, b^2 > 4acC. a > 0, b^2 < 4acD. a < 0, b^2 < 4ac8. 二次函数y=x^2-2x+1的图像的顶点坐标是()A. (1, 0)B. (1, 1)C. (0, 1)D. (2, 1)答案:B9. 二次函数y=x^2-6x+5的图像开口方向是()A. 向上B. 向下C. 向左D. 向右答案:A10. 若二次函数y=2x^2-4x+1的图像与x轴有一个交点,则该交点的坐标是()A. (1, 0)B. (2, 0)C. (-1, 0)D. (0, 0)答案:A二、填空题(每题3分,共15分)1. 二次函数y=x^2-2x+1的对称轴方程是______。

二次函数考试题目及答案

二次函数考试题目及答案

二次函数考试题目及答案1. 已知二次函数y=ax^2+bx+c的图象开口向上,且经过点(1,0)和(3,0),求二次函数的解析式。

答案:由于二次函数的图象开口向上,所以a>0。

又因为函数图象经过点(1,0)和(3,0),可以设二次函数的解析式为y=a(x-1)(x-3)。

将点(2,-4)代入,得到-4=a(2-1)(2-3),解得a=4。

因此,二次函数的解析式为y=4(x-1)(x-3)。

2. 抛物线y=ax^2+bx+c与x轴交于点A(-1,0)和点B(3,0),且抛物线的顶点在直线y=-2x上,求抛物线的解析式。

答案:设抛物线的解析式为y=a(x+1)(x-3)。

由于顶点在直线y=-2x上,设顶点坐标为(m,n),则有n=-2m。

根据抛物线的对称性,顶点的横坐标m=(3-1)/2=1,所以n=-2。

将顶点坐标(1,-2)代入抛物线解析式,得到-2=a(1+1)(1-3),解得a=1。

因此,抛物线的解析式为y=(x+1)(x-3)。

3. 已知二次函数y=ax^2+bx+c的图象经过点(0,2)和(2,0),且对称轴为直线x=1,求二次函数的解析式。

答案:由于二次函数的对称轴为直线x=1,可以设二次函数的解析式为y=a(x-1)^2+k。

将点(0,2)代入,得到2=a(0-1)^2+k,即2=a+k。

又因为函数图象经过点(2,0),代入得到0=a(2-1)^2+k,即0=a+k。

解得a=-2,k=2。

因此,二次函数的解析式为y=-2(x-1)^2+2。

4. 抛物线y=ax^2+bx+c与x轴的交点为A(-2,0)和B(4,0),且抛物线经过点(1,3),求抛物线的解析式。

答案:设抛物线的解析式为y=a(x+2)(x-4)。

将点(1,3)代入,得到3=a(1+2)(1-4),解得a=-1/3。

因此,抛物线的解析式为y=-1/3(x+2)(x-4)。

5. 二次函数y=ax^2+bx+c的图象开口向下,且经过点(-1,0)和(3,0),求二次函数的解析式。

第2章 二次函数专题训练3 二次函数的最值及自变量的取值范围(含答案)

第2章 二次函数专题训练3 二次函数的最值及自变量的取值范围(含答案)

专题训练三 二次函数的最值及自变量的取值范围由自变量的取值范围求函数值的取值范围1.二次函数y=-x2+bx+c的部分图象如图所示,若y>3,则x的取值范围是( )A.-4<x<1B.-2<x<0C.x<-4或x>1D.x<-2或x>02.二次函数y=-x2+bx+c,若y≥2时,x的取值范围为n-3≤x≤n+1(n为常数),则当n-4≤x≤n时,y的取值范围为( )A.-3≤y≤5B.-3≤y≤6C.0≤y≤5D.0≤y<63.已知二次函数y=-x2+2x+3,当-1≤x≤2时,y的取值范围为 .4.已知二次函数y=-x2+bx+c,函数值y与自变量x之间的部分对应值如表:x…-4-101…y…-21-2-7…(1)写出二次函数图象的对称轴;(2)求二次函数的表达式;(3)当-4<x<-1时,写出函数值y的取值范围.由自变量取值范围下的函数最值求字母系数5.(2024西安临潼区二模)已知抛物线y=-(x -n )2-1(n 为常数),当1≤x ≤4时,其对应的函数值最大为-10,则n 的值为( )A.4B.-2或7C.1或7D.-2或46.如图,抛物线y=12x 2-x -32的顶点为D 点,与y 轴交于C 点,点M (m ,0)是x 轴上的一个动点,当MC+MD 的值最小时,m 的值是( )A.13B.12C.23D.377.(2024苏州期末)如图,Rt △ABC 中,∠ABC=90°,AB=6 cm,BC=8 cm,点P 从点A 出发沿边AB 向点B 以1 cm/s 的速度移动,点Q 从B 出发沿边BC 向点C 以2 cm/s 的速度移动,P ,Q 两点同时出发,当一点到达终点时另一点也停止运动,设运动时间为t (s).(1)若P ,Q 两点的距离为42 cm 时,求t 的值;(2)当t 为何值时,△BPQ 的面积最大?并求出最大面积.8.(2024廊坊大城县期中)已知抛物线y=x 2+ax+a+1经过点A (-2,3).(1)求a的值;(2)已知点P(m,y P),Q(m-4,y Q)均在该抛物线上.①若m=0,请比较y P与y Q的大小关系;②当-3≤x≤m时,函数y的最大值是6,最小值是2,求m的取值范围.9.(2024葫芦岛绥中县月考)如图,已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴相交于点C.(1)求此抛物线的表达式;(2)若点P是直线BC下方的抛物线上一动点(不与点B、C重合),过点P作y轴的平行线交直线BC 于点D,设点P的横坐标为m.①用含有m的代数式表示线段PD的长;②连接PB,PC,求△PBC的面积最大时点P的坐标.【详解答案】1.B 解析:由题图可得:抛物线对称轴为直线x =-1,当x =0时,y =3,根据抛物线的对称性可得:当x =-2时,y =3,∴若y>3,则x 的取值范围是-2<x<0,故选B .2.B 解析:由题意知,当y ≥2时,x 的取值范围为n-3≤x ≤n +1,且抛物线开口向下,∴对称轴是直线x =n -3+n +12=n-1=-b-2.∴b =2(n-1).∴抛物线为y =-x 2+2(n-1)x +c.又当x =n +1时,y =-(n +1)2+2(n-1)·(n +1)+c =2,∴c =-n 2+2n +5.∴二次函数为y =-x 2+2(n-1)x-n 2+2n +5.∵抛物线开口向下,∴抛物线上的点离对称轴越近函数值越大.∵n-1-(n-4)=3>n-(n-1)=1,n-4<n-1<n ,又n-4≤x ≤n ,∴当x =n-1时,y 取最大值为y =-(n-1)2+2(n-1)2-n 2+2n +5=6;当x =n-4时,y 取最小值为y =-(n-4)2+2(n-4)(n-1)-n 2+2n +5=-3.∴当n-4≤x ≤n 时,-3≤y ≤6.故选B .3.0≤y ≤4 解析:∵二次函数y =-x 2+2x +3=-(x-1)2+4,∴该函数图象开口向下,对称轴为直线x =1.∵-1≤x ≤2,∴当x =-1时,y 取得最小值0;当x =1时,y 取得最大值4;∴当-1≤x ≤2时,y 的取值范围为0≤y ≤4.4.解:(1)∵x =-4和x =0时的函数值相等,都是-2,∴此函数图象的对称轴为直线x =-4+02=-2.(2)将(-1,1),(0,-2)代入y =-x 2+bx +c ,得-1-b +c =1.c =-2.解得b =-4,c =-2,∴二次函数的表达式为y =-x 2-4x-2.(3)∵y =-x 2-4x-2=-(x +2)2+2,∴当x =-2时,y 取得最大值2.由表可知当x =-4时y =-2,当x =-1时y =1,∴当-4<x<-1时,-2<y ≤2.5.B 解析:①当n ≥4时,当x =4,y =-10时,代入抛物线y =-(x-n )2-1(n 为常数),得-10=-(4-n )2-1,整理,得n 2-8n +7=0,解得n =7或1(舍去),②当n ≤1时,当x =1,y =-10时,代入抛物线y =-(x-n )2-1(n 为常数),得-10=-(1-n )2-1,整理,得n 2-2n-8=0,解得n =-2或4(舍去).故n 的值为7或-2.故选B .6.D 解析:当x =0时,y =12x 2-x-32=-32,则点C 的坐标为0∴C 点关于x 轴的对称点C'的坐标为0∵y =12x 2-x-32=12(x-1)2-2,∴点D 的坐标为(1,-2).连接C'D 交x 轴于M ,如图,∵MC +MD =MC'+MD =C'D ,∴此时MC +MD 的值最小.设直线C'D 的表达式为y =kx +32,把D (1,-2)代入,得-2=k +32,解得k =-72,∴直线C'D 的表达式为y =-72x +32,当y =0时,-72x +32=0,解得x =37,∴此时M 0,即m =37.故选D .7.解:(1)由题意知,BP =(6-t )cm,BQ =2t cm .在Rt △BPQ 中,PQ 2=PB 2+BQ 2=(6-t )2+(2t )2.又∵P ,Q 两点的距离为42 cm,∴(6-t )2+(2t )2=(42)2,解得t 1=2,t 2=25.又∵0≤t ≤4,∴上述两解都符合题意,故t 的值为2或25.(2)由(1)知,BP =(6-t )cm,BQ =2t cm,∴S △BPQ =12BP ·BQ =12·2t (6-t )=t (6-t )=-t 2+6t =-(t 2-6t +9)+9=-(t-3)2+9.又∵0≤t ≤4,且-1<0,∴当t =3时,S △BPQ 有最大值为9 cm 2.8.解:(1)将点A (-2,3)代入y =x 2+ax +a +1中,得3=4-2a +a +1,解得a =2.(2)①∵a =2,∴抛物线为y =x 2+2x +3,当m =0时,点P (m ,y P ),Q (m-4,y Q )为P (0,y P ),Q (-4,y Q ),∴y P =0+0+3=3,y Q =16-8+3=11,∴y P 与y Q 的大小关系为y P <y Q ;②y =x 2+2x +3=(x +1)2+2.当x 2+2x +3=6时,x 1=-3,x 2=1.如图,根据图象和题意可得m 的取值范围是-1≤m ≤1.9.解:(1)∵抛物线y =ax 2+bx +3(a ≠0)经过点A (1,0)和点B (3,0),∴将A ,B 点坐标代入,得a +b +3=0,9a +3b +3=0,解得a =1,b =-4,∴抛物线表达式为y =x 2-4x +3.(2)①由y =x 2-4x +3可知,抛物线对称轴为直线x =2,点C (0,3),设直线BC 的表达式为y =kx +c.将点B (3,0),C (0,3)代入直线BC 表达式y =kx +c ,则3k +c =0,c =3,解得k =-1.c =3.∴直线BC 的表达式为y BC =-x +3.设P (m ,m 2-4m +3),如图,过点P 作y 轴的平行线交直线BC 于点D ,∴点D 的坐标为(m ,-m +3),∴PD =(-m +3)-(m 2-4m +3)=-m 2+3m ;②S △PBC =S △CPD +S △BPD =12OB ·PD =-32m 2+92m=+278,∴当m =32时,S 有最大值.当m =32时,m 2-4m +3=-34.∴点P∴△PBC 的面积最大时点P。

二次函数测试题及答案

二次函数测试题及答案

二次函数测试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是二次函数的一般形式?A. y = 2x + 1B. y = x^2 + 3x + 2C. y = 3x^3 - 5D. y = 4/x答案:B2. 二次函数y = ax^2 + bx + c的顶点坐标为(h, k),那么h的值为:A. -b/2aB. -b/aC. b/2aD. b/a答案:C3. 二次函数y = 2x^2 - 4x + 3的对称轴方程是:A. x = 1B. x = -1C. x = 2D. x = -2答案:A4. 如果二次函数y = ax^2 + bx + c的图象开口向上,那么a的值:A. 大于0B. 小于0C. 等于0D. 可以是任意实数答案:A5. 二次函数y = -x^2 + 4x - 3的顶点坐标是:A. (1, 2)B. (2, 1)C. (3, 0)D. (3, 4)答案:C6. 二次函数y = 3x^2 - 6x + 5的图象与x轴的交点个数是:A. 0个B. 1个C. 2个D. 3个答案:C7. 二次函数y = x^2 - 4x + 4的最小值是:A. 0B. 4C. -4D. 1答案:A8. 二次函数y = 2x^2 - 4x + 3的图象开口方向是:A. 向上B. 向下C. 向左D. 向右答案:A9. 二次函数y = -x^2 + 2x + 3的图象与y轴的交点坐标是:A. (0, 3)B. (0, -3)C. (0, 5)D. (0, -5)答案:A10. 二次函数y = 5x^2 - 10x + 8的图象与x轴的交点坐标是:A. (2, 0)B. (-2, 0)C. (1, 0)D. (-1, 0)答案:A二、填空题(每题4分,共20分)1. 二次函数y = ax^2 + bx + c的图象开口向上,且经过点(2, 0),则a的值至少为______。

答案:02. 二次函数y = 2x^2 - 4x + 3的顶点坐标是(______, ______)。

第22章《二次函数》章末检测题(含答案)

第22章《二次函数》章末检测题(含答案)

第二十二章《二次函数》章末检测题一.选择题(共10小题)1.对于二次函数y=a(x+k)2+k(a≠0)而言,无论k取何实数,其图象的顶点都在()A.x轴上B.直线y=x上C.y轴上D.直线y=﹣x上2.若抛物线y=x2先向左平移2个单位长度,再向下平移3个单位长度,则所得到的新抛物线的解析式时()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3 3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,且关于x的一元二次方程ax2+bx+c ﹣m=0没有实数根,有下列结论:①abc<0;②m<﹣2;③b2﹣4ac<0;④b2﹣4ac﹣8a=0.其中正确的有()A.1 个B.2个C.3个D.4个4.如图是抛物线y=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),有下列结论:①2a+b=0,②abc>0;③方程ax2+bx+c=3有两个相等的实数根,④当y<0时,﹣2<x<4,其中正确的是()A.②③B.①③C.①③④D.①②③④5.如图,是二次函数y=ax2+bx+c的图象,①abc>0;②a+b+c<0;③4a﹣2b+c<0;④4ac ﹣b2<0,其中正确结论的序号是()A.①②③B.①③C.②④D.③④6.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=;③当x=0时,y2﹣y1=6;④AB+AC=10;⑤y1最小﹣y2最小=﹣4,其中正确结论的是()A.①②③④B.②③④C.①②③④⑤D.①②④⑤7.已知二次函数y=kx2﹣6x﹣9的图象与x轴有两个不同的交点,则k的取值范围为()A.k>﹣1 B.k>﹣1且k≠0C.k≥﹣1 D.k≥﹣1且k≠0 8.在同一坐标系中,二次函数y=ax2+bx+c(b>0)与一次函数y=ax+c的大致图象可能是()A.B.C.D.9.已知关于x的方程x2﹣(a+b)x+ab﹣1=0,(a>b),x1、x2是此方程的两个实数根,且x1<x2.现给出四个结论:①x1≠x2;②x1x2<ab;③x12+x22<a2+b2;④x1<x2<b<a其中正确结论个数是()A.1 B.2 C.3 D.410.如图,抛物线与x轴交于A(﹣3,0),B(1,0),与y轴交于点C(0,3),连结AC,现有一宽度为1,长度足够的矩形沿x轴方向平移,交直线AC于点D和E,△ODE周长的最小值为()A.2+B.6 C.2D.2+3二.填空题(共6小题)11.已知函数y=x2﹣4x+m的图象与x轴只有一个交点,则m的值为.12.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),该抛物线的部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当x<0时,y随x增大而减小;⑤点P(m,n)是抛物线上任意一点,则m(am+b)≤a+b,其中正确的结论是.(把你认为正确的结论的序号填写在横线上)13.已知抛物线y=x2+kx+4﹣k交x轴于整点A、B,与y轴交于点C,则△ABC的面积为.14.如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC的三个顶点A、B、C,则ac的值是.15.在距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:s=v0t﹣gt2(其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面m.16.如图,在平面直角坐标系中,抛物线y=x与直线y=交于A、B,直线AB交于y轴于点C,点P为线段OB上一个动点(不与点O、B重合),当△OPC为等腰三角形时,点P的坐标:.三.解答题(共6小题)17.已知二次函数y=﹣x2+2x.(1)在给定的平面直角坐标系中,画出这个函数的图象;(2)根据图象,写出当y<0时,x的取值范围;(3)若将此图象沿x轴向左平移3个单位,再沿y轴向下平移1个单位,请直接写出平移后图象所对应的函数关系式.18.已知在平面直角坐标系中,抛物线y=﹣+bx+c与x轴相交于点A,B,与y轴相交于点C,直线y=x+4经过A,C两点,(1)求抛物线的表达式;(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ∥AO,PQ=2AO,求P,Q的坐标;(3)动点M在直线y=x+4上,且△ABC与△COM相似,求点M的坐标.19.进入冬季,我市空气质量下降,多次出现雾霾天气.商场根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务.(1)试确定周销售量y(包)与售价x(元/包)之间的函数关系式;(2)试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;(3)当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?20.如图,△OAB是边长为2+的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB折叠,使点A落在边OB上,记为A′,折痕为EF.(1)当A′E∥x轴时,求点A′和E的坐标;(2)当A′E∥x轴,且抛物线y=﹣x2+bx+c经过点A′和E时,求抛物线与x轴的交点的坐标;(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.21.已知二次函数y=ax2+bx+c,当x=3时,y有最小值﹣4,且图象经过点(﹣1,12).(1)求此二次函数的解析式;(2)该抛物线交x轴于点A,B(点A在点B的左侧),交y轴于点C,在抛物线对称轴上有一动点P,求P A+PC的最小值,并求当P A+PC取最小值时点P的坐标.22.如图,矩形OABC在平面直角坐标系中,点A在x轴正半轴,点C在y轴正半轴,OA=4,OC=3,抛物线经过O,A两点且顶点在BC边上,与直线AC交于点D.(1)求抛物线的解析式;(2)求点D的坐标;(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题)1.D.2.B.3.B.4.B.5.D.6.D.7.B.8.A.9.B.10.A.二.填空题11.412.①②⑤.13.24.14.﹣2.15.716.P1(,),P2(,),P3(,).三.解答题17.解:(1)函数图象如图所示;(2)当y<0时,x的取值范围:x<0或x>2;(3)∵图象沿x轴向左平移3个单位,再沿y轴向下平移1个单位,∴平移后的二次函数图象的顶点坐标为(﹣2,0),∴平移后图象所对应的函数关系式为:y=(x+2)2.(或y=﹣x2﹣4x﹣4)18.解:(1)当x=0时,y=4,即C(0,4),当y=0时,x+4=0,解得x=﹣4,即A(﹣4,0),将A、C点坐标代入函数解析式,得,解得,抛物线的表达式为y=﹣﹣x+4;(2)PQ=2AO=8,又PQ∥AO,即P、Q关于对称轴x=﹣1对称,PQ=8,﹣1﹣4=﹣5,当x=﹣5时,y=﹣×(﹣5)2﹣(﹣5)+4=﹣,即P(﹣5,﹣);﹣1+4=3,即Q(3,﹣);P点坐标(﹣5,﹣),Q点坐标(3,﹣);(3)∠MCO=∠CAB=45°,①当△MCO∽△CAB时,=,即=,CM=.如图1,过M作MH⊥y轴于H,MH=CH=CM=,当x=﹣时,y=﹣+4=,∴M(﹣,);当△OCM∽△CAB时,=,即=,解得CM=3,如图2,过M作MH⊥y轴于H,MH=CH=CM=3,当x=﹣3时,y=﹣3+4=1,∴M(﹣3,1),综上所述:M点的坐标为(﹣,),(﹣3,1).19.解:(1)由题意可得,y=200﹣(x﹣30)×5=﹣5x+350即周销售量y(包)与售价x(元/包)之间的函数关系式是:y=﹣5x+350;(2)由题意可得,w=(x﹣20)×(﹣5x+350)=﹣5x2+450x﹣7000(30≤x≤40),即商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式是:w=﹣5x2+450x﹣7000(30≤x≤40);(3)∵w=﹣5x2+450x﹣7000的二次项系数﹣5<0,顶点的横坐标为:x=,30≤x≤40∴当x<45时,w随x的增大而增大,∴x=40时,w取得最大值,w=﹣5×402+450×40﹣7000=3000,即当售价x(元/包)定为40元时,商场每周销售这种防尘口罩所获得的利润w(元)最大,最大利润是3000元.20.解:(1)由已知可得∠A′OE=60°,A′E=AE,由A′E∥x轴,得△OA′E是直角三角形,设A′的坐标为(0,b),AE=A′E=b,OE=2b,b+2b=2+,所以b=1,A′、E的坐标分别是(0,1)与(,1).(2)因为A′、E在抛物线上,所以,所以,函数关系式为y=﹣x2+x+1,由﹣x2+x+1=0,得x1=﹣,x2=2,与x轴的两个交点坐标分别是(,0)与(,0).(3)不可能使△A′EF成为直角三角形.∵∠F A′E=∠F AE=60°,若△A′EF成为直角三角形,只能是∠A′EF=90°或∠A′FE=90°若∠A′EF=90°,利用对称性,则∠AEF=90°,A、E、A三点共线,O与A重合,与已知矛盾;同理若∠A′FE=90°也不可能,所以不能使△A′EF成为直角三角形.21.解:(1)∵当x=3时,y有最小值﹣4,∴设二次函数解析式为y=a(x﹣3)2﹣4.∵二次函数图象经过点(﹣1,12),∴12=16a﹣4,∴a=1,∴二次函数的解析式为y=(x﹣3)2﹣4=x2﹣6x+5.(2)当y=0时,有x2﹣6x+5=0,解得:x1=1,x2=5,∴点A的坐标为(1,0),点B的坐标为(5,0);当x=0时,y=x2﹣6x+5=5,∴点C的坐标为(0,5).连接BC交抛物线对称轴于点P,此时P A+PC取最小值,最小值为BC,如图所示.设直线BC的解析式为y=mx+n(m≠0),将B(5,0)、C(0,5)代入y=mx+n,得:,解得:,∴直线BC的解析式为y=﹣x+5.∵B(5,0)、C(0,5),∴BC=5.∵当x=3时,y=﹣x+5=2,∴当点P的坐标为(3,2)时,P A+PC取最小值,最小值为5.22.解:(1)设抛物线顶点为E,根据题意OA=4,OC=3,得:E(2,3),设抛物线解析式为y=a(x﹣2)2+3,将A(4,0)坐标代入得:0=4a+3,即a=﹣,则抛物线解析式为y=﹣(x﹣2)2+3=﹣x2+3x;(2)设直线AC解析式为y=kx+b(k≠0),将A(4,0)与C(0,3)代入得:,解得:,故直线AC解析式为y=﹣x+3,与抛物线解析式联立得:,解得:或,则点D坐标为(1,);(3)存在,分两种情况考虑:①当点M在x轴上方时,如答图1所示:四边形ADMN为平行四边形,DM∥AN,DM=AN,由对称性得到M(3,),即DM=2,故AN=2,∴N1(2,0),N2(6,0);②当点M在x轴下方时,如答图2所示:过点D作DQ⊥x轴于点Q,过点M作MP⊥x轴于点P,可得△ADQ≌△NMP,∴MP=DQ=,NP=AQ=3,将y M=﹣代入抛物线解析式得:﹣=﹣x2+3x,解得:x M=2﹣或x M=2+,∴x N=x M﹣3=﹣﹣1或﹣1,∴N3(﹣﹣1,0),N4(﹣1,0).综上所述,满足条件的点N有四个:N1(2,0),N2(6,0),N3(﹣﹣1,0),N4(﹣1,0).。

人教版数学九年级上册 第22章 《二次函数》章末复习题(含答案)

人教版数学九年级上册 第22章 《二次函数》章末复习题(含答案)

第22章《二次函数》章末复习题限时:120分钟满分:120分一.选择题(每题3分,共36分)1.抛物线y=x2﹣6x+5的顶点坐标为()A.(3,﹣4)B.(3,4)C.(﹣3,﹣4)D.(﹣3,4)2.若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(2,y2),C(,y3),则y1,y 2,y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y23.对抛物线:y=﹣x2+2x﹣3而言,下列结论正确的是()A.与x轴有两个交点B.开口向上C.与y轴的交点坐标是(0,3)D.顶点坐标是(1,﹣2)4.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5(t﹣1)2+6,则小球距离地面的最大高度是()A.1米B.5米C.6米D.7米5.已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠3 6.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.a>0B.当x>1时,y随x的增大而增大C.c<0D.3是方程ax2+bx+c=0的一个根7.在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是()A.y=﹣(x+1)2+2 B.y=﹣(x﹣1)2+4 C.y=﹣(x﹣1)2+2 D.y=﹣(x+1)2+48.若x1,x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的两个根,则实数x1,x2,a,b的大小关系为()A.x1<x2<a<b B.x1<a<x2<b C.x1<a<b<x2D.a<x1<b<x29.已知二次函数y=ax2的图象开口向上,则直线y=ax﹣1经过的象限是()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限10.下列图象中,能反映函数y随x增大而减小的是()A.B.C.D.11.已知拋物线y=﹣x2+2,当1≤x≤5时,y的最大值是()A.2 B.C.D.12.小明从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条信息:①c<0,②abc>0,③a﹣b+c>0,④2a﹣3b=0,⑤4a+2b+c>0,你认为其中正确信息的个数有()A.2个B.3个C.4个D.5个二.填空题(每题4分,共,20分)13.已知关于x的一元二次方程x2+bx﹣c=0无实数解,则抛物线y=﹣x2﹣bx+c经过象限.14.若点(1,5),(5,5)是抛物线y=ax2+bx+c上的两个点,则此抛物线的对称轴是.15.请你写出一个二次函数,其图象满足条件:①开口向下;②与y轴的交点坐标为(0,3).此二次函数的解析式可以是.16.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣t2,在飞机着陆滑行中,最后2s滑行的距离是m.17.如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限.设m=a+b+c,则m的取值范围是.三.解答题(共64分)18.在平面直角坐标系xOy中,抛物线y=ax2﹣4ax与x轴交于A,B两点(A在B的左侧).(1)求点A,B的坐标;(2)已知点C(2,1),P(1,﹣a),点Q在直线PC上,且Q点的横坐标为4.①求Q点的纵坐标(用含a的式子表示);②若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.19.为倡导节能环保,降低能源消耗,提倡环保型新能源开发,造福社会.某公司研发生产一种新型智能环保节能灯,成本为每件40元.市场调查发现,该智能环保节能灯每件售价y(元)与每天的销售量为x(件)的关系如图,为推广新产品,公司要求每天的销售量不少于1000件,每件利润不低于5元.(1)求每件销售单价y(元)与每天的销售量为x(件)的函数关系式并直接写出自变量x的取值范围;(2)设该公司日销售利润为P元,求每天的最大销售利润是多少元?(3)在试销售过程中,受国家政策扶持,毎销售一件该智能环保节能灯国家给予公司补贴m(m≤40)元.在获得国家每件m元补贴后,公司的日销售利润随日销售量的增大而增大,则m的取值范围是(直接写出结果).20.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+2(a≠0)与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)如图①,若点D是抛物线上一个动点,设点D的横坐标为m(0<m<3),连接CD、BD、BC、AC,当△BCD的面积等于△AOC面积的2倍时,求m的值;(3)若点N为抛物线对称轴上一点,请在图②中探究抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.21.如图,抛物线经过A(﹣1,0),B(5,0),C(0,﹣)三点(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,则点P的坐标为;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.22.若二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如表:x…﹣2 ﹣1 0 1 2 …y…0 ﹣2 ﹣2 0 4 …(1)求该二次函数的表达式;(2)当y≥4时,求自变量x的取值范围.23.如图,直线y=与x轴,y轴分别交于点A,C,经过点A,C的抛物线y=ax2+bx ﹣3与x轴的另一个交点为点B(2,0),点D是抛物线上一点,过点D作DE⊥x轴于点E,连接AD,DC.设点D的横坐标为m.(1)求抛物线的解析式;(2)当点D在第三象限,设△DAC的面积为S,求S与m的函数关系式,并求出S的最大值及此时点D的坐标;(3)连接BC,若∠EAD=∠OBC,请直接写出此时点D的坐标.参考答案一.选择1.解:∵y=x2﹣6x+5,=x2﹣6x+9﹣9+5,=(x﹣3)2﹣4,∴抛物线y=x2﹣6x+5的顶点坐标为(3,﹣4).故选:A.2.解:根据题意,得y 1=1+6+c=7+c,即y1=7+c;y 2=4﹣12+c=﹣8+c,即y2=﹣8+c;y3=9+2+6﹣18﹣6+c=﹣7+c,即y3=﹣7+c;∵7>﹣7>﹣8,∴7+c>﹣7+c>﹣8+c,即y1>y3>y2.故选:B.3.解:A、∵△=22﹣4×(﹣1)×(﹣3)=﹣8<0,抛物线与x轴无交点,本选项错误;B、∵二次项系数﹣1<0,抛物线开口向下,本选项错误;C、当x=0时,y=﹣3,抛物线与y轴交点坐标为(0,﹣3),本选项错误;D、∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴抛物线顶点坐标为(1,﹣2),本选项正确.故选:D.4.解:∵高度h和飞行时间t满足函数关系式:h=﹣5(t﹣1)2+6,∴当t=1时,小球距离地面高度最大,∴h=﹣5×(1﹣1)2+6=6米,故选:C.5.解:①当k﹣3≠0时,(k﹣3)x2+2x+1=0,△=b2﹣4ac=22﹣4(k﹣3)×1=﹣4k+16≥0,k≤4;②当k﹣3=0时,y=2x+1,与x轴有交点.故选:B .6.解:∵抛物线开口向下,∴a <0,故A 选项错误; ∵抛物线与y 轴的正半轴相交,∴c >0,故C 选项错误;∵对称轴x =1,∴当x >1时,y 随x 的增大而减小;故B 选项错误; ∵对称轴x =1,∴另一个根为1+2=3,故D 选项正确. 故选:D .7.解:由原抛物线解析式可变为:y =(x +1)2+2,∴顶点坐标为(﹣1,2),与y 轴交点的坐标为(0,3), 又由抛物线绕着它与y 轴的交点旋转180°,∴新的抛物线的顶点坐标与原抛物线的顶点坐标关于点(0,3)中心对称, ∴新的抛物线的顶点坐标为(1,4), ∴新的抛物线解析式为:y =﹣(x ﹣1)2+4. 故选:B .8.解:用作图法比较简单,首先作出y =(x ﹣a )(x ﹣b )图象,任意画一个(开口向上的,与x 轴有两个交点),再向下平移一个单位,就是y =(x ﹣a )(x ﹣b )﹣1,这时与x 轴的交点就是x 1,x 2,画在同一坐标系下,很容易发现: 答案是:x 1<a <b <x 2. 故选:C .9.解:∵二次函数y=ax2的图象开口向上,∴a>0;又∵直线y=ax﹣1与y轴交于负半轴上的﹣1,∴y=ax﹣1经过的象限是第一、三、四象限.故选:D.10.解:A、根据图象可知,函数在实数范围内是增函数,即函数y随x增大而增大;故本选项错误;B、根据图象可知,函数在对称轴的左边是减函数,函数y随x增大而减小;函数在对称轴的右边是增函数,即函数y随x增大而增大;故本选项错误;C、根据图象可知,函数在两个象限内是减函数,但是如果不说明哪个象限内是不能满足题意的;故本选项错误;D、根据图象可知,函数在实数范围内是减函数,即函数y随x增大而减小;故本选项正确.故选:D.11.解:∵拋物线y=﹣x2+2的二次项系数a=﹣<0,∴该抛物线图象的开口向下;而对称轴就是y轴,∴当1≤x≤5时,拋物线y=﹣x2+2是减函数,=﹣+2=.∴当1≤x≤5时,y最大值故选:C.12.解:①由二次函数y=ax2+bx+c的图象开口向上可知a>0,图象与y轴交点在负半轴,c<0,正确;②由图象可知x=﹣1时,y=a﹣b+c>0,正确;③对称轴x=﹣>0,a>0,b<0,abc>0,正确;④对称轴x=﹣=,﹣3b=2a,2a﹣3b=﹣6b,错误;⑤由图象可知x=2时,y=4a+2b+c>0,正确.所以①②③⑤四项正确.故选:C.二.填空题(共5小题)13.解:∵关于x的一元二次方程x2+bx﹣c=0无实数解,∴△=b2+4c<0,∵抛物线y=﹣x2﹣bx+c中,二次项系数﹣1<0,∴抛物线的开口向下,∵判别式=(﹣b)2﹣4×(﹣1)×c=b2+4c<0,∴抛物线与x轴无交点,∴抛物线在x轴的下方,∴抛物线y=﹣x2﹣bx+c经过第三、四象限;故答案为:三、四.14.解:∵点(1,5),(5,5)是抛物线y=ax2+bx+c上的两个点,且纵坐标相等.∴根据抛物线的对称性知道抛物线对称轴是直线x==3.故答案为:x=3.15.解:设二次函数的解析式为y=ax2+bx+c.∵抛物线开口向下,∴a<0.∵抛物线与y轴的交点坐标为(0,3),∴c=3.取a=﹣1,b=0时,二次函数的解析式为y=﹣x2+3.故答案为:y=﹣x2+3(答案不唯一).16.解:当y取得最大值时,飞机停下来,则y=60t﹣1.5t2=﹣1.5(t﹣20)2+600,此时t=20,飞机着陆后滑行600米才能停下来.因此t的取值范围是0≤t≤20;即当t=18时,y=594,所以600﹣594=6(米)故答案是:6.17.解:∵二次函数y=ax2+bx+c(a>0)的图象与坐标轴分别交于点(0,﹣3)、(﹣1,0),∴c =﹣3,a ﹣b +c =0, 即b =a ﹣3, ∵顶点在第四象限, ∴﹣>0,<0,又∵a >0, ∴b <0,∴b =a ﹣3<0,即a <3,b 2﹣4ac =(a +c )2﹣4ac =(a ﹣c )2>0∵a ﹣b +c =0, ∴a +b +c =2b <0, ∴a +b +c =2b =2a ﹣6, ∵0<a <3,∴a +b +c =2b =2a ﹣6>﹣6, ∴﹣6<a +b +c <0. ∴﹣6<m <0. 故答案为:﹣6<m <0. 三.解答题(共6小题)18.解:(1)令y =0,即0=ax 2﹣4ax , 解得x 1=0,x 2=4, ∴A (0,0),B (4,0).答:点A 、B 的坐标为:(0,0),(4,0); (2)①设直线PC 解析式为y =kx +b , 将点C (2,1),P (1,﹣a )代入解得:k =1+a ,b =﹣3a ﹣1,∴直线PC 解析式为y =(1+a )x ﹣3a ﹣1, 当x =4时,y =3a +3, 所以点Q 的纵坐标为3a +3.②∵当点Q 在B 上方或与点B 重合时,抛物线与线段PQ 恰有一个公共点,3a+3≥0,∴a≥﹣1∴当a<0时,抛物线开口向下,抛物线只能与点Q相交,∴﹣1≤a<0当a>0时,抛物线开口向上,只能与点P相交,当x=1时,y=﹣a,y=﹣3a,所以抛物线与点P不相交.综上:a的取值范围是:﹣1≤a<019.解:(1)设每件销售单价y(元)与每天的销售量为x(件)的函数关系式为y=kx+b,把(1500,55)与(2000,50)代入y=kx+b得,,解得:,∴每件销售单价y(元)与每天的销售量为x(件)的函数关系式为y=﹣x+70,当y≥45时,﹣x+70≥45,解得:x≤2500,∴自变量x的取值范围1000≤x≤2500;(2)根据题意得,P=(y﹣40)x=(﹣x+70﹣40)x=﹣x2+30x=﹣(x ﹣1500)2+22500,∵﹣<0,P有最大值,当x<1500时,P随x的增大而增大,∴当x=1500时,P的最大值为22500元,答:每天的最大销售利润是22500元;(3)由题意得,P=(﹣x+70﹣40+m)x=﹣x2+(30+m)x,∵对称轴为x=50(30+m),∵1000≤x≤2500,∴x的取值范围在对称轴的左侧时P随x的增大而增大,50(30+m)≥2500,解得:m≥20,∴m的取值范围是:20≤m≤40.故答案为:20≤m≤40.20.解:(1)把A(﹣1,0),B(3,0)代入y=ax2+bx+2中,得:,解得:,∴抛物线解析式为;(2)过点D作y轴平行线交BC于点E,把x=0代入中,得:y=2,∴C点坐标是(0,2),又B(3,0)∴直线BC的解析式为,∵∴∴=,由S△BCD =2S△AOC得:∴,整理得:m2﹣3m+2=0解得:m1=1,m2=2∵0<m<3∴m的值为1或2;(3)存在,理由:设:点M的坐标为:(m,n),n=﹣x2+x+2,点N(1,s),点B(3,0)、C(0,2),①当BC是平行四边形的边时,当点C向右平移3个单位,向下平移2个单位得到B,同样点M(N)向右平移3个单位,向下平移2个单位N(M),故:m+3=1,n﹣2=s或m﹣3=1,n+2=s,解得:m=﹣2或4,故点M坐标为:(﹣2,﹣)或(4,﹣);②当BC为对角线时,由中点公式得:m+1=3,n+3=2,解得:m=2,故点M(2,2);综上,M的坐标为:(2,2)或(﹣2,)或(4,).21.解:(Ⅰ)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(﹣1,0),B(5,0),C(0,﹣)三点在抛物线上,∴,解得:∴抛物线解析式为:y=x2﹣2x﹣;(2)连接BC,如图1所示,∵抛物线的解析式为:y=x2﹣2x﹣,∴其对称轴为直线x=﹣=﹣=2,连接BC,如图1所示,设直线BC的解析式为y=kx+b(k≠0),且过B(5,0),C(0,﹣)∴,解得,∴直线BC的解析式为y=x﹣,当x=2时,y=1﹣=﹣,∴P(2,﹣),故答案为:(2,﹣);(3)存在点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形.如图2所示,①当点N 在x 轴下方时, ∵抛物线的对称轴为直线x =2,C (0,﹣),∴N 1(4,﹣);②当点N 在x 轴上方时,如图,过点N 2作N 2D ⊥x 轴于点D ,在△AN 2D 与△M 2CO 中,∴△AN 2D ≌△M 2CO (ASA ), ∴N 2D =OC =,即N 2点的纵坐标为.∴x 2﹣2x ﹣=,解得x =2+或x =2﹣, ∴N 2(2+,),N 3(2﹣,).综上所述,符合条件的点N 的坐标为(4,﹣)或(2+,)或(2﹣,). 22.解:(1)根据表中可知:点(﹣1,﹣2)和点(0,﹣2)关于对称轴对称, 即对称轴是直线x =﹣,设二次函数的表达式是y =a (x +)2+k ,把点(﹣2,0)和点(0,﹣2)代入得:,解得:a=1,k=﹣,y=(x+)2﹣=x2+x﹣2,所以该二次函数的表达式是y=x2+x﹣2;(2)当y=4时,y=x2+x﹣2=4,解得:x=﹣3或2,所以当y≥4时,自变量x的取值范围是x≤﹣3或x≥2.23.解:(1)在y=﹣x﹣3中,当y=0时,x=﹣6,即点A的坐标为:(﹣6,0),将A(﹣6,0),B(2,0)代入y=ax2+bx﹣3得:,解得:,∴抛物线的解析式为:y=x2+x﹣3;(2)设点D的坐标为:(m,m2+m﹣3),设DE交AC于F,则点F的坐标为:(m,﹣m﹣3),∴DF=﹣m﹣3﹣(m2+m﹣3)=﹣m2﹣m,∴S△ADC =S△ADF+S△DFC=DF•AE+•DF•OE=DF•OA=×(﹣m2﹣m)×6 =﹣m2﹣m=﹣(m+3)2+,∵a=﹣<0,∴抛物线开口向下,存在最大值,∴当m=﹣3时,S△ADC又∵当m=﹣3时,m2+m﹣3=﹣,∴存在点D(﹣3,﹣),使得△ADC的面积最大,最大值为;(3)①当点D与点C关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD=∠ABC.②作点D(﹣4,﹣3)关于x轴的对称点D′(﹣4,3),直线AD′的解析式为y=x+9,由,解得或,此时直线AD′与抛物线交于D(8,21),满足条件,综上所述,满足条件的点D坐标为(﹣4,﹣3)或(8,21)。

第22章《二次函数》人教版九年级上册章末复习卷(含答案)

第22章《二次函数》人教版九年级上册章末复习卷(含答案)

人教版九年级上册第22章《二次函数》章末复习卷一、选择题1.函数的图象是抛物线,则的值( ) A .4 B .-4 C .2 D .-22.抛物线y =3x 2﹣6x +4的顶点坐标是( )A .(1,1)B .(﹣1,1)C .(﹣1,﹣2)D .(1,2)3.抛物线y =3x 2向右平移一个单位得到的抛物线是( )A .y =3x 2+1B .y =3x 2﹣1C .y =3(x+1)2D .y =3(x ﹣1)2 4.抛物线y =x 2﹣5x +6与x 轴的交点情况是( )A .有两个交点B .只有一个交点C .没有交点D .无法判断5.已知,a b 是非零实数,a b >,在同一平面直角坐标系中,二次函数21y ax bx =+与一次函数2y ax b =+的大致图象不可能是( )A .B .C .D . 6.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系p =at 2+bt +c (a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为( )A .4.25分钟B .4.00分钟C .3.75分钟D .3.50分钟7.已知二次函数y =ax 2+bx +c 的图象如图所示,下列结论:①ac <0,②b ﹣2a <0,③b 2﹣4ac <0,④a ﹣b +c <0,正确的是( ) www .czsx .com .cnA .①②B .①④C .②③D .②④8.对于下列结论:①二次函数y =6x 2,当x >0时,y 随x 的增大而增大;②关于x 的方程a (x +m )2+b =0的解是x 1=﹣2,x 2=1(a 、m 、b 均为常数,a ≠0),则方程a (x +m +2)2+b =0的解是x 1=﹣4,x 2=﹣1;③设二次函数y =x 2+bx +c ,当x ≤1时,总有y ≥0,当1≤x ≤3时,总有y ≤0,那么c 的取值范围是c ≥3.其中,正确结论的个数是( )A .0个B .1个C .2个D .3个二、填空题9.二次函数y =-2x 2+3的开口方向是_________.10.把二次函数245y x x =-+化为()2y a x h k =-+的形式,那么h k +=_____. 11.方程ax 2+bx +c =0(a ≠0)的两根为x =﹣3和x =1,那么抛物线y =ax 2+bx +c (a ≠0)的对称轴是直线________.12.函数()2y ax bx c a 0=++≠的图象如图所示,那么ac ______0.(填“>”,“=”,或“<”)13.已知()2312y x =++,当x _______时,函数值随x 的增大而减小.14.如果A (﹣1,y 1),B (﹣2,y 2)是二次函数y =x 2+m 图象上的两个点,那么y 1________y 2(填“<”或者“>”)15.如图,若点B 的坐标为(3,0),则点 A 的坐标为_____.16.二次函数y=-x2+2x+3的图象与x轴交于A、B两点,P为它的顶点,则S△P AB=________.17.一根长为40cm的铁丝,把它弯成一个矩形框,设矩形的长为xcm,矩形的面积为y(cm2),试写出y与x的函数关系式:________.(注意标注自变量x的取值范围)18.抛物线的部分图象如图所示,则当y>0时,x的取值范围是_____.三、解答题19.已知二次函数y=(x-m)2-1(m为常数).(1)求证:不论m为何值,该函数图象与x轴总有两个公共点;(2)请根据m的不同取值,探索该函数图象过哪些象限?(直接写出答案)(3)当1≤x≤3时,y的最小值为3,求m的值.20.已知二次函数y=﹣x2+4x.(1)写出二次函数y=﹣x2+4x图象的对称轴;(2)在给定的平面直角坐标系中,画出这个函数的图象(列表、描点、连线);(3)根据图象,写出当y<0时,x的取值范围.21.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?22.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△P AC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.23.如图,在平面直角坐标系中,抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,0)两点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合).(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如图1,过点P作PE⊥y轴于点E,连接AE.求△P AE面积S的最大值;(3)如图2,抛物线上是否存在一点Q,使得四边形OAPQ为平行四边形?若存在求出Q点坐标,若不存在请说明理由.24.如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB、BA(或它们的延长线)于点E、F,∠EDF=60°,当CE=AF时,如图1小芳同学得出的结论是DE=DF.(1)继续旋转三角形纸片,当CE≠AF时,如图2小芳的结论是否成立?若成立,加以证明;若不成立,请说明理由;(2)再次旋转三角形纸片,当点E、F分别在CB、BA的延长线上时,如图3请直接写出DE与DF的数量关系;(3)连EF,若△DEF的面积为y,CE=x,求y与x的关系式,并指出当x为何值时,y有最小值,最小值是多少?。

九年级数学二次函数测试题含答案(精选5套)

九年级数学二次函数测试题含答案(精选5套)

九年级数学 二次函数 单元试卷(一)时间90分钟 满分:100分一、选择题(本大题共10小题,每小题3分,共30分) 1.下列函数不属于二次函数的是( )A.y=(x -1)(x+2)B.y=21(x+1)2C. y=1-3x 2D. y=2(x+3)2-2x 22. 函数y=-x 2-4x+3图象顶点坐标是( )A.(2,-1)B.(-2,1)C.(-2,-1)D.(2, 1)3. 抛物线()12212++=x y 的顶点坐标是( )A .(2,1)B .(-2,1)C .(2,-1)D .(-2,-1)4. y=(x -1)2+2的对称轴是直线( )A .x=-1B .x=1C .y=-1D .y=1 5.已知二次函数)2(2-++=m m x mx y 的图象经过原点,则m 的值为 ( ) A . 0或2 B . 0 C . 2 D .无法确定6. 二次函数y =x 2的图象向右平移3个单位,得到新的图象的函数表达式是( )A. y =x 2+3B. y =x 2-3C. y =(x +3)2D. y =(x -3)27.函数y=2x 2-3x+4经过的象限是( )A.一、二、三象限B.一、二象限C.三、四象限D.一、二、四象限 8.下列说法错误的是( )A .二次函数y=3x 2中,当x>0时,y 随x 的增大而增大B .二次函数y=-6x 2中,当x=0时,y 有最大值0 C .a 越大图象开口越小,a 越小图象开口越大D .不论a 是正数还是负数,抛物线y=ax 2(a ≠0)的顶点一定是坐标原点9.如图,小芳在某次投篮中,球的运动路线是抛物线=-15x 2+3.5的一部分,若命中篮圈中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5mD .4.6m10.二次函数y=ax 2+bx +c 的图象如图所示,下列结论错误的是( ) A .a >0. B .b >0. C .c <0. D .abc >0.(第9题) (第10题)3.05m xyx y o二、填空题(本大题共4小题,每小题3分,共12分)11.一个正方形的面积为16cm 2,当把边长增加x cm 时,正方形面积为y cm 2,则y 关于x 的函数为 。

二次函数章末复习

二次函数章末复习

章末复习(二) 二次函数01 分点突破知识点1 二次函数的图象与性质1.(阳泉市平定县月考)抛物线y=-35(x +12)2-3的顶点坐标是(C)A .(12,-3)B .(12,3)C .(-12,-3)D .(-12,3)2.抛物线y =12x 2,y =x 2,y =-x 2的共同性质是:①都是开口向上;②都以(0,0)为顶点;③都以y 轴为对称轴;④都关于x 轴对称.其中正确的有(B)A .1个B .2个C .3个D .4个3.函数y =ax 2+c 与y =ax +c(a ≠0)在同一坐标系内的图象是图中的(B)4.(吕梁市文水县期中)已知二次函数y =ax 2+bx +c 的y 与x 的部分对应值如下表:x … -1 0 1 3 … y…-5131…则下列判断中正确的是(D)A .抛物线开口向上B .抛物线与y 轴交于负半轴C .当x =4时,y >0D .方程ax 2+bx +c =0的正根在3与4之间5.(黔南中考)二次函数y =ax 2+bx +c 的图象如图所示,以下结论:①abc >0;②4ac <b 2;③2a +b >0;④其顶点坐标为(12,-2);⑤当x <12时,y 随x 的增大而减小;⑥a +b +c >0.正确的有(B)A .3个B .4个C .5个D .6个 6.已知点P 在抛物线y =(x -2)2上,设点P 的坐标为(x ,y),当0≤x ≤3时,y 的取值范围是0≤y ≤4.7.如图,已知抛物线y =12x 2-4x +7与直线y =12x 交于A 、B 两点(点A 在点B 左侧).(1)求A 、B 两点的坐标;(2)求抛物线顶点C 的坐标,并求△ABC 的面积. 知识点2 二次函数图象的平移规律8.将函数y =x 2+x 的图象向右平移a(a >0)个单位长度,得到函数y =x 2-3x +2的图象,则a 的值为(B)A .1B .2C .3D .49.已知:如图,抛物线y =-x 2+bx +c 与x 轴交于点A(-1,0),B(3,0),与y 轴交于点C ,过点C 作CD ∥x 轴,交抛物线的对称轴于点D. (1)求该抛物线的解析式;(2)若将抛物线向下平移m 个单位长度,使其顶点落在D 点,求m 的值.知识点3求二次函数解析式10.一抛物线和抛物线y=-2x2的形状、开口方向完全相同,顶点坐标是(-1,3),则该抛物线的表达式为(B)A.y=-2(x-1)2+3B.y=-2(x+1)2+3C.y=-(2x+1)2+3D.y=-(2x-1)2+311.一个二次函数的图象的顶点坐标是(2,4),且过另一点(0,-4),则这个二次函数的解析式为(B)A.y=-2(x+2)2+4B.y=-2(x-2)2+4C.y=2(x+2)2-4D.y=2(x-2)2-412.已知抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(0,3),则该抛物线的解析式为y=-x 2-2x+3.知识点4二次函数与一元二次方程、不等式13.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(-2,6)和B(8,3),如图所示,则不等式ax2+bx+c>kx+m的取值范围是x<-2或x>8.14.(易错题)已知函数y=(k-3)x2+2x+1的图象与x轴有交点,则k的取值范围为k≤4.15.(山西农大附中月考)已知二次函数y=2x2-4x-6.(1)用配方法将y=2x2-4x-6化成y=a(x-h)2+k的形式;并写出对称轴和顶点坐标;(2)在平面直角坐标系中,画出这个二次函数的图象;(3)当x取何值时,y随x的增大而减少?(4)当x取何值时,y=0,y>0,y<0?知识点5二次函数的实际应用16.设计师以y=2x2-4x+8的图形为灵感设计杯子如图所示,若AB=4,DE=3,则杯子的高CE=(B)A.17 B.11 C.8 D.717.(沈阳中考)某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售量单价是35元/件,才能在半月内获得最大利润.18.(平定县月考)为了更好地推进精准扶贫,确保如期实现脱贫攻坚目标,某地方政府出台了系列优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种商品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=-20x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?02山西中考题型演练19.(徐州中考)若函数y=x2-2x+b的图象与坐标轴有三个交点,则b的取值范围是(A)A.b<1且b≠0 B.b>1 C.0<b<1 D.b<120.(天津中考)已知抛物线y=x2-4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M′落在x轴上,点B平移后的对应点B′落在y轴上,则平移后的抛物线解析式为(A)A.y=x2+2x+1 B.y=x2+2x-1C.y=x2-2x+1 D.y=x2-2x-121.(广安中考)如图所示,抛物线y=ax2+bx+c的顶点为B(-1,3),与x轴的交点A在点(-3,0)和(-2,0)之间,以下结论:①b2-4ac=0;②a+b+c>0;③2a -b=0;④c-a=3.其中正确的有(B)A.1个B.2个C.3个D.4个22.(宿迁中考)如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=2 cm,点P在边AC上,从点A向点C移动,点Q在边CB上,从点C 向点B移动.若点P,Q均以1 cm/s的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ的最小值是(C)A.20 cm B.18 cmC.2 5 cm D.3 2 cm23.(山西农业大学附中月考)公路上行驶的汽车急刹车时,刹车距离s(m)与时间t(s)的函数关系式为s=20t-5t2,当遇到紧急情况时,司机急刹车,但由于惯性的作用,汽车要滑行20米才能停下来.24.(武汉中考)已知关于x的二次函数y=ax2+(a2-1)x-a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是13<a<12或-3<a<-2.25.(青岛中考)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨13.下表是去年该酒店豪华间某两天的相关记录:淡季旺季未入住房间数100日总收入(元)24 00040 000(1)该酒店豪华间有多少间?旺季每间价格为多少元?(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?26.如图,已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A 点坐标为(-3,0),与y轴交于点C,点D(-2,-3)在抛物线上.(1)求抛物线的表达式;(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;(3)若抛物线上有一动点P,使△ABP的面积为6,求P点坐标.03数学文化、核心素养专练27.(山西模拟)小李同学在求一元二次方程-2x2+4x+1=0的近似根时,先在平面平面直角坐标系中使用软件绘制了二次函数y=-2x2+4x+1的图象(如图),接着观察图象与x轴的交点A和B的位置,然后得出该一元二次方程两个根的范围是-1<x1<0,2<x2<3,小李同学的这种方法主要运用的数学思想是(C)A.公理化思想B.类比思想C.数形结合思想D.模型思想28.请阅读下面的材料,并完成相应的任务.阿波罗尼奥斯(Apollonius of Perga,约公元前262~190年),古希腊数学家,与欧几里得,阿基米德齐名.他的著作《圆锥曲线论》是古代世界光辉的科学成果.材料《圆锥曲线论》里面对抛物线的定义:平面内一个动点到一个定点与一条定直线的距离之比等于1.或者说:平面内一动点到一定点与一条直线的距离相等的轨迹就是抛物线.(1)已知点P(x,y),A(0,1)直线l∶y=-1,连接AP,若点P到直线l的距离与PA 的长相等,请求出y与x的关系式;(2)若将(1)中A点坐标改为(1,0),直线l变为x=-1,试求出y与x的关系式,并在平面直角坐标系中利用描点法画出其图象,你能发现什么?。

九年级数学二次函数测试题含答案(精选5套)

九年级数学二次函数测试题含答案(精选5套)

九年级数学二次函数测试题含答案(精选5套)九年级数学二次函数测试题含答案(精选5套)第一套:1. 将函数 $y = 2x^2 - 3x - 2$ 化简为标准形式,并求出它的顶点坐标。

答案:将函数化简为标准形式得到 $y = 2(x-\frac{3}{4})^2 -\frac{33}{8}$,顶点坐标为 $(\frac{3}{4}, -\frac{33}{8})$。

2. 求函数 $y = -x^2 + 4x + 1$ 的零点。

答案:将函数化简为标准形式得到 $y = -(x-2)^2 + 5$,令 $y = 0$,解得 $x = 2 \pm \sqrt{5}$,即零点为 $x_1 = 2 + \sqrt{5}$ 和 $x_2 = 2 -\sqrt{5}$。

3. 给定函数 $y = x^2 - 6x + 5$,求其对称轴的方程式。

答案:对称轴的方程式为 $x = \frac{-b}{2a}$,代入 $a = 1$ 和 $b = -6$ 得到 $x = \frac{6}{2} = 3$。

4. 若函数 $y = ax^2 + bx - 9$ 与 $y = -x^2 + 7x$ 有相同的图像,求$a$ 和 $b$ 的值。

答案:由于两个函数有相同的图像,所以它们的系数相等。

比较两个函数的对应系数得到 $a = -1$ 和 $b = 7$。

5. 已知函数 $y = x^2 - 4x + 5$ 的图像上存在一点 $(h, k)$,使得 $x= h - 3$ 时,$y = 2k + 12$,求点 $(h, k)$ 的坐标。

答案:将 $x = h - 3$ 代入函数得到 $y = (h-3)^2 - 4(h-3) + 5$。

代入$y = 2k + 12$ 得到 $(h-3)^2 - 4(h-3) + 5 = 2k + 12$。

整理得到 $(h-3)^2 -4(h-3) - 2k - 7 = 0$。

由于该方程为二次方程,必然存在实数解。

九年级数学二次函数测试题含答案(精选5套)

九年级数学二次函数测试题含答案(精选5套)

九年级数学 二次函数 单元试卷(一)时间90分钟 满分:100分一、选择题(本大题共10小题,每小题3分,共30分) 1.下列函数不属于二次函数的是( )A.y=(x -1)(x+2)B.y=21(x+1)2C. y=1-3x 2D. y=2(x+3)2-2x 22. 函数y=-x 2-4x+3图象顶点坐标是( )A.(2,-1)B.(-2,1)C.(-2,-1)D.(2, 1)3. 抛物线()12212++=x y 的顶点坐标是( )A .(2,1)B .(-2,1)C .(2,-1)D .(-2,-1)4. y=(x -1)2+2的对称轴是直线( )A .x=-1B .x=1C .y=-1D .y=1 5.已知二次函数)2(2-++=m m x mx y 的图象经过原点,则m 的值为 ( ) A . 0或2 B . 0 C . 2 D .无法确定6. 二次函数y =x 2的图象向右平移3个单位,得到新的图象的函数表达式是( )A. y =x 2+3B. y =x 2-3C. y =(x +3)2D. y =(x -3)27.函数y=2x 2-3x+4经过的象限是( )A.一、二、三象限B.一、二象限C.三、四象限D.一、二、四象限 8.下列说法错误的是( )A .二次函数y=3x 2中,当x>0时,y 随x 的增大而增大B .二次函数y=-6x 2中,当x=0时,y 有最大值0 C .a 越大图象开口越小,a 越小图象开口越大D .不论a 是正数还是负数,抛物线y=ax 2(a ≠0)的顶点一定是坐标原点9.如图,小芳在某次投篮中,球的运动路线是抛物线y =-15x 2+3.5的一部分,若命中篮圈中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5mD .4.6m10.二次函数y=ax 2+bx +c 的图象如图所示,下列结论错误的是( ) A .a >0. B .b >0. C .c <0. D .abc >0.(第9题) (第10题)3.05m xyx y o二、填空题(本大题共4小题,每小题3分,共12分)11.一个正方形的面积为16cm 2,当把边长增加x cm 时,正方形面积为y cm 2,则y 关于x 的函数为 。

九年级数学二次函数全章测试题及答案

九年级数学二次函数全章测试题及答案

二次函数 全章测试一、填空题(每小题4分,共24分)1.抛物线y =-x 2+15有最______点,其坐标是______.2.若抛物线y =x 2-2x -2的顶点为A ,与y 轴的交点为B ,则过A ,B 两点的直线的解析式为____________.3.若抛物线y =ax 2+bx +c (a ≠0)的图象与抛物线y =x 2-4x +3的图象关于y 轴对称,则函数y =ax 2+bx +c 的解析式为______.4.若抛物线y =x 2+bx +c 与y 轴交于点A ,与x 轴正半轴交于B ,C 两点,且BC =2,S △ABC =3,则b =______.5.二次函数y =x 2-6x +c 的图象的顶点与原点的距离为5,则c =______.6.二次函数22212--=x x y 的图象在坐标平面内绕顶点旋转180°,再向左平移3个单位,向上平移5个单位后图象对应的二次函数解析式为____________.二、选择题(每小题4分,共28分)7.把二次函数253212++=x x y 的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象顶点是( )A .(-5,1)B .(1,-5)C .(-1,1)D .(-1,3)8.若点(2,5),(4,5)在抛物线y =ax 2+bx +c 上,则它的对称轴是( )A .a bx -= B .x =1 C .x =2 D .x =39.已知函数4212--=x x y ,当函数值y 随x 的增大而减小时,x 的取值范围是( )A .x <1B .x >1C .x >-2D .-2<x <410.二次函数y =a (x +k )2+k ,当k 取不同的实数值时,图象顶点所在的直线是( )A .y =xB .x 轴C .y =-xD .y 轴11.图中有相同对称轴的两条抛物线,下列关系不正确的是( )A .h =mB .k >nC .k =nD .h >0,k >012.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc>0;②a +b +c =2;21>a ③;④b <1.其中正确的结论是( )A .①②B .②③C .②④D .③④13.下列命题中,正确的是( )①若a +b +c =0,则b 2-4ac <0;②若b =2a +3c ,则一元二次方程ax 2+bx +c =0有两个不相等的实数根;③若b 2-4ac >0,则二次函数y =ax 2+bx +c 的图象与坐标轴的公共点的个数是2或3;④若b >a +c ,则一元二次方程ax 2+bx +c =0,有两个不相等的实数根.A .②④B .①③C .②③D .③④三、解答题(14-16每小题12分,17-18每小题16分共68分)14.把二次函数43212+-=x x y 配方成y =a (x -h )2+k 的形式,并求出它的图象的顶点坐标、对称轴方程,y <0时x 的取值范围,并画出图象.15.已知二次函数y =ax 2+bx +c (a ≠0)的图象经过一次函数323+-=x y 的图象与x 轴、y 轴的交点,并也经过(1,1)点.求这个二次函数解析式,并求x 为何值时,有最大(最小)值,这个值是什么?16.已知抛物线y =-x 2+bx +c 与x 轴的两个交点分别为A (m ,0),B (n ,0),且4=+n m ,⋅=31n m (1)求此抛物线的解析式;(2)设此抛物线与y 轴的交点为C ,过C 作一条平行x 轴的直线交抛物线于另一点P ,求△ACP 的面积.17.已知抛物线y =ax 2+bx +c 经过点A (-1,0),且经过直线y =x -3与x轴的交点B 及与y 轴的交点C .(1)求抛物线的解析式;(2)求抛物线的顶点坐标;(3)若点M 在第四象限内的抛物线上,且OM ⊥BC ,垂足为D ,求点M 的坐标.18.某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的售价和生产进行了调研,结果如下:一件商品的售价M (元)与时间t (月)的关系可用一条线段上的点来表示(如图甲),一件商品的成本Q (元)与时间t (月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图乙).根据图象提供的信息解答下面问题:(1)一件商品在3月份出售时的利润是多少元?(利润=售价-成本) (2)求出图(乙)中表示的一件商品的成本Q (元)与时间t (月)之间的函数关系式;(3)你能求出3月份至7月份一件商品的利润W (元)与时间t (月)之间的函数关系式吗?若该公司能在一个月内售出此种商品30000件,请你计算该公司在一个月内最少获利多少元?参考答案1.高,(0,15). 2.y =-x -2. 3.y =x 2+4x +3. 4.b =-4.5.c =5或13. 6.⋅+--=21212x x y7.C . 8.D . 9.A . 10.C . 11.C . 12.B . 13.C .14.221)3(21--=x y 顶点坐标)21,3(-,对称轴方程x =3,当y <0时,2<x<4,图略.15.,325212+-=x x y 当25=x 时,⋅-=81最小值y16.(1)由31,4==+n m n m 得m =1,n =3.∴y =-x 2+4x -3;(2)S △ACP =6.17.(1)直线y =x -3与坐标轴的交点坐标分别为B (3,0),C (0,-3),以A 、B 、C三点的坐标分别代入抛物线y =ax 2+bx +c 中,得⎪⎩⎪⎨⎧-==++=+-,3,039,0c c b a c b a 解 得⎪⎩⎪⎨⎧-=-==.3,2,1c b a ∴所求抛物线的解析式是y =x 2-2x -3. (2)y =x 2-2x -3=(x -1)2-4,∴抛物线的顶点坐标为(1,-4).(3)经过原点且与直线y =x -3垂直的直线OM 的方程为y =-x ,设M (x ,-x ),因为M 点在抛物线上,∴x 2-2x -3=-x .{因点M 在第四象限,取,2131+=x ).2131,2131(+-+∴M18.解:(1)一件商品在3月份出售时利润为:6-1=5(元).(2)由图象可知,一件商品的成本Q (元)是时间t (月)的二次函数,由图象可知,抛物线的顶点为(6,4),∴可设Q =a (t -6)2+4.又∵图象过点(3,1),∴1=a (3-6)2+4,解之⋅-=31a,84314)6(3122-+-=+--=∴t t t Q 由题知t =3,4,5,6,7.(3)由图象可知,M (元)是t (月)的一次函数,∴可设M =kt +b . ∵点(3,6),(6,8)在直线上, ⎩⎨⎧=+=+∴.86,63b k b k 解之⎪⎩⎪⎨⎧==.4,32b k .432+=∴t M)8431(4322-+--+=-=∴t t t Q M W 12310312+-=t t 311)5(312+-=t 其中t =3,4,5,6,7.∴当t =5时,311=最小值W 元∴该公司在一月份内最少获利11000030000311=⨯元.。

北师大版九年级数学下册第2章 二次函数 章末综合题复习(含答案)

北师大版九年级数学下册第2章 二次函数 章末综合题复习(含答案)

北师大版九年级数学下册第二章二次函数章末综合题复习1、已知抛物线的顶点为(-1,-3),与y轴的交点为(0,-5).(1)求抛物线的表达式;(2)将(1)中所求的抛物线向右平移2个单位长度、向上平移3个单位长度会得到怎样的抛物线?(3)若(2)中所求抛物线的顶点不动将抛物线的开口方向相反,求符合此条件的抛物线的表达式.2、如果将抛物线y=2x2+bx+c沿直角坐标平面先向左平移3个单位长度,再向下平移2个单位长度,得到了抛物线y=2x2-4x+3.(1)试确定b,c的值;(2)求出抛物线y=2x2+bx+c的对称轴和顶点坐标.3、成都市某公司自主设计了一款可控温杯,每个生产成本为16元,投放市场进行了试销.经过调查得到每月销售量y(万个)与销售单价x(元)之间关系是一次函数的关系,部分数据如下:(1)求y与x之间的函数关系式;(2)该公司既要获得一定利润,又要符合相关部门规定(一件产品的利润率不得高于50%),请你帮助分析,公司销售单价定为多少时可获利最大?并求出最大利润.4、如图所示,用一根长度为18米的原材料制作一个矩形窗户边框(即矩形ABFE和矩形DCFE),原材料刚好全部用完.设窗户边框AB长度为x米,窗户总面积为S平方米(注:窗户边框粗细忽略不计).(1)求S与x之间的函数关系式;(2)若窗户边框AB的长度不少于2米,且边框AB的长度小于BC的长度,求此时窗户总面积S的最大值和最小值.5、已知二次函数y=ax2的图象与直线y=x+2交于点(2,m).(1)判断y=ax2的图象的开口方向,并说出此抛物线的对称轴、顶点坐标以及当x>0时,y的值随x值的增大而变化的情况;(2)设直线y=x+2与抛物线y=ax2的交点分别为A,B,如图所示.试确定A,B两点的坐标;(3)连接OA,OB,求△AOB的面积.6、如图,已知二次函数y=-x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B.(1)求此二次函数的关系式和点B的坐标;(2)在x轴的正半轴上是否存在点P,使得△P AB是以AB为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.7、如图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,-4).(1)求出图象与x轴的交点A,B的坐标;(2)在二次函数的图象上是否存在点P,使S△P AB=54S△MAB?若存在,求出点P的坐标;若不存在,请说明理由.8、如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴的交点为A(0,3),与x轴的交点分别为B(2,0),C(6,0).直线AD∥x轴,在x轴上位于点B右侧有一动点E,过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P,Q.(1)抛物线的表达式为________;(2)当点E在线段BC上时,求△APC面积的最大值;(3)是否存在点P,使以A,P,Q为顶点的三角形与△AOB相似?若存在,求出此时点E的坐标;若不存在,请说明理由.9.已知直线l:y=kx+1与抛物线y=x2-4x.(1)求证:直线l与该抛物线总有两个交点;(2)如图,设直线l与该抛物线两个交点分别为A,B,O为原点,当k=-2时,求△OAB的面积.10、如图,抛物线y=-x2+2x+3与x轴交于点A,B,与y轴交于点C,在抛物线的对称轴上是否存在一点P,使得△P AC的周长最小?若存在,请求出点P的坐标及△P AC的周长;若不存在,请说明理由.11、如图,已知二次函数y=x2-4x+3的图象与x轴交于点A,B,与y轴交于点C,若点P为抛物线上的一点,点F为对称轴上的一点,且以点A,B,P,F为顶点的四边形为平行四边形,求点P的坐标.12、如图,顶点为M的抛物线y=-x2+2x+3与x轴交于A,B两点,与y轴交于点C,在y轴上是否存在一点P,使得△P AM为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.13、如图所示,抛物线y =ax 2+bx +4的顶点坐标为(3,254),与y 轴交于点A .过点A 作AB ∥x 轴,交抛物线于点B ,点C 是第四象限的抛物线上的一个动点,过点C 作y 轴的平行线,交直线AB 于点D .(1)求抛物线的函数表达式;(2)若点E 在y 轴的负半轴上,且AE =AD ,直线CE 交抛物线y =ax 2+bx +4于点F . ①求点F 的坐标;②过点D 作DG ⊥CE 于点G ,连接OD ,ED ,当∠ODE =∠CDG 时,求直线DG 的函数表达式.14、如图,抛物线y =ax 2+bx +3(a ≠0)与x 轴、y 轴分别交于A (-1,0),B (3,0),C 三点. (1)求抛物线的表达式;(2)x 轴上是否存在点P ,使PC +12PB 最小?若存在,请求出点P 的坐标及PC +12PB 的最小值;若不存在,请说明理由;(3)连接BC ,设E 为线段BC 的中点.若M 是抛物线上一动点,将点M 绕点E 旋转180°得到点N ,当以B ,C ,M ,N 为顶点的四边形是矩形时,直接写出点N 的坐标.15、如图,已知抛物线y =ax 2+bx +c 与直线y =12x +12相交于A (-1,0),B (4,m )两点,抛物线y =ax 2+bx +c交y 轴于点C (0,-32),交x 轴正半轴于点D ,抛物线的顶点为M .(1)求抛物线的表达式及点M的坐标;(2)设P为直线AB下方的抛物线上一动点,当△P AB的面积最大时,求此时△P AB的面积及点P的坐标;(3)Q为x轴上一动点,N是抛物线上一点,当△QMN∽△MAD(点Q与点M对应)时,求点Q的坐标.16、如图1,在平面直角坐标系中,已知抛物线y=ax2+bx-5,与x轴交于A(-1,0),B(5,0)两点,与y轴交于点C.(1)求抛物线的函数表达式;(2)若点D是y轴上的一点,且以B,C,D为顶点的三角形与△ABC相似,求点D的坐标;(3)如图2,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别相交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标及最大面积;(4)若点K为x轴上一点,连接CK,请你直接写出2CK+KB的最小值.参考答案1、已知抛物线的顶点为(-1,-3),与y轴的交点为(0,-5).(1)求抛物线的表达式;(2)将(1)中所求的抛物线向右平移2个单位长度、向上平移3个单位长度会得到怎样的抛物线?(3)若(2)中所求抛物线的顶点不动将抛物线的开口方向相反,求符合此条件的抛物线的表达式.解:(1)根据题意设抛物线的表达式为y=a(x+1)2-3,将(0,-5)代入,得a-3=-5.解得a=-2.∴抛物线的表达式为y=-2(x+1)2-3=-2x2-4x-5.(2)y=-2(x-1)2.(3)所求抛物线的表达式为y=2(x-1)2.2、如果将抛物线y=2x2+bx+c沿直角坐标平面先向左平移3个单位长度,再向下平移2个单位长度,得到了抛物线y=2x2-4x+3.(1)试确定b,c的值;(2)求出抛物线y=2x2+bx+c的对称轴和顶点坐标.解:(1)∵y=2x2-4x+3=2(x-1)2+1,∴现将其向上平移2个单位长度,向右平移3个单位长度可得原函数,即y=2(x-4)2+3.∴y=2x2-16x+35.∴b=-16,c=35.(2)由y=2(x-4)2+3,得顶点坐标为(4,3),对称轴为直线x=4.3、成都市某公司自主设计了一款可控温杯,每个生产成本为16元,投放市场进行了试销.经过调查得到每月销售量y (万个)与销售单价x (元)之间关系是一次函数的关系,部分数据如下:(1)求y 与x 之间的函数关系式;(2)该公司既要获得一定利润,又要符合相关部门规定(一件产品的利润率不得高于50%),请你帮助分析,公司销售单价定为多少时可获利最大?并求出最大利润.解:(1)设y 与x 之间的函数关系式为y =kx +b . 把(20,60),(30,40)代入,得⎩⎪⎨⎪⎧20k +b =60,30k +b =40,解得⎩⎪⎨⎪⎧k =-2,b =100. ∴y 与x 之间的函数关系式为y =-2x +100.(2)∵每个生产成本为16元,一件产品的利润率不得高于50%, ∴x ≤(1+50%)×16=24.设该公司每月获得的利润为w 万元,则 w =y (x -16) =(-2x +100)(x -16) =-2x 2+132x -1 600 =-2(x -33)2+578.∵图象开口向下,对称轴左侧w 随x 的增大而增大, ∴当x =24时,w 最大,最大值为416.答:公司销售单价定为24元时可获利最大,最大利润为每月416万元.4、如图所示,用一根长度为18米的原材料制作一个矩形窗户边框(即矩形ABFE 和矩形DCFE ),原材料刚好全部用完.设窗户边框AB 长度为x 米,窗户总面积为S 平方米(注:窗户边框粗细忽略不计).(1)求S 与x 之间的函数关系式;(2)若窗户边框AB 的长度不少于2米,且边框AB 的长度小于BC 的长度,求此时窗户总面积S 的最大值和最小值.解:(1)由题意可得,S =x ·18-3x 2=-32x 2+9x .(2)由题意可得,2≤x <18-3x2,解得2≤x <3.6,∵S =-32x 2+9x ,2≤x <3.6,∴当x =3时,S 取得最大值,此时S =272;当x =2时,S 取得最小值,此时S =12.答:窗户总面积S 的最大值是272平方米,最小值是12平方米.5、已知二次函数y =ax 2的图象与直线y =x +2交于点(2,m ).(1)判断y =ax 2的图象的开口方向,并说出此抛物线的对称轴、顶点坐标以及当x >0时,y 的值随x 值的增大而变化的情况;(2)设直线y =x +2与抛物线y =ax 2的交点分别为A ,B ,如图所示.试确定A ,B 两点的坐标; (3)连接OA ,OB ,求△AOB 的面积.解:(1)把点(2,m )代入y =x +2,解得m =4, ∴交点坐标为(2,4). 把点(2,4)代入y =ax 2,得 a =1.∴二次函数的表达式为y =x 2.∴抛物线的对称轴为y 轴,顶点坐标为(0,0), 当x >0时,y 随x 的增大而增大. (2)由题意,得x 2=x +2,解得x 1=2,x 2=-1,则y 1=4,y 2=1. ∴A (2,4),B (-1,1).(3)设直线y =x +2与y 轴的交点为D ,则点D 坐标为(0,2), ∴S △AOB =S △DOB +S △DOA =12×2×1+12×2×2 =3.6、如图,已知二次函数y =-x 2+bx +3的图象与x 轴的一个交点为A (4,0),与y 轴交于点B . (1)求此二次函数的关系式和点B 的坐标;(2)在x 轴的正半轴上是否存在点P ,使得△P AB 是以AB 为底边的等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.解:(1)把点A (4,0)代入二次函数,得 0=-16+4b +3, 解得b =134.∴二次函数的关系式为y =-x 2+134x +3.当x =0时,y =3, ∴点B 的坐标为(0,3).(2)作AB 的垂直平分线交x 轴于点P ,连接BP ,则BP =AP ,此时点P 即为所求. 设BP =AP =x ,则OP =4-x , 在Rt △OBP 中,BP 2=OB 2+OP 2, 即x 2=32+(4-x )2, 解得x =258.∴OP =4-258=78,即P (78,0).∴在x 轴的正半轴上存在点P ,使得△P AB 是以AB 为底边的等腰三角形,且点P 的坐标为(78,0).7、如图是二次函数y =(x +m )2+k 的图象,其顶点坐标为M (1,-4). (1)求出图象与x 轴的交点A ,B 的坐标;(2)在二次函数的图象上是否存在点P ,使S △P AB =54S △MAB ?若存在,求出点P 的坐标;若不存在,请说明理由.解:(1)∵抛物线y =(x +m )2+k 的顶点坐标为M (1,-4), ∴y =(x -1)2-4.令y =0,即(x -1)2-4=0. 解得x 1=3,x 2=-1. ∴A (-1,0),B (3,0).(2)∵△P AB 与△MAB 同底,且S △P AB =54S △MAB ,∴|y P |=54|y M |=54×4=5,即y P =±5.又∵点P 在二次函数y =(x -1)2-4的图象上, ∴y P ≥-4.∴y P =5.令(x -1)2-4=5,解得x 1=4,x 2=-2, ∴存在这样的点P ,其坐标为(4,5)或(-2,5).8、如图,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与y 轴的交点为A (0,3),与x 轴的交点分别为B (2,0),C (6,0).直线AD ∥x 轴,在x 轴上位于点B 右侧有一动点E ,过点E 作平行于y 轴的直线l 与抛物线、直线AD 的交点分别为P ,Q .(1)抛物线的表达式为y =14x 2-2x +3;(2)当点E 在线段BC 上时,求△APC 面积的最大值;(3)是否存在点P ,使以A ,P ,Q 为顶点的三角形与△AOB 相似?若存在,求出此时点E 的坐标;若不存在,请说明理由.解:(2)设直线AC 的表达式为y =kx +m ,∴⎩⎪⎨⎪⎧6k +m =0,m =3.解得⎩⎪⎨⎪⎧k =-12,m =3.∴直线AC 的表达式为y =-12x +3.设△APC 的面积为S ,直线l 与AC 的交点为F . 设P (t ,14t 2-2t +3)(2≤t ≤6),则F (t ,-12t +3).∴PF =-14t 2+32t .∴S =S △PF A +S △PFC =12PF ·t +12PF ·(6-t ) =12(-14t 2+32t )×6=-34(t -3)2+274. ∴当t =3时,S 最大=274,即△APC 面积的最大值为274.(3)存在点P ,使以A ,P ,Q 为顶点的三角形与△AOB 相似. 理由:连接AB ,则在△AOB 中,∠AOB =90°,AO =3,BO =2, 设E (n ,0)(n >2),则Q (n ,3),P (n ,14n 2-2n +3),当14n 2-2n +3=3时,此时,点P ,Q 重合, 即n =0(舍)或n =8,不能构成△APQ ,∴n ≠8. ①当2<n <8时,AQ =n ,PQ =-14n 2+2n ,若△AOB ∽△AQP ,则AO AQ =OBQP ,即3n =2-14n 2+2n . ∴n =0(舍)或n =163.∴E (163,0).若△AOB ∽△PQA ,则AO PQ =OBQA,即2n =3-14n 2+2n . ∴n =0(舍)或n =2(舍);②当n >8时,AQ =n ,PQ =14n 2-2n ,若△AOB ∽△AQP ,则AO AQ =OBQP ,即3n =214n 2-2n . ∴n =0(舍)或n =323.∴E (323,0).若△AOB ∽△PQA ,则AO PQ =OBQA ,即2n =314n 2-2n . ∴n =0(舍)或n =14.∴E (14,0).综上所述,存在点P ,使以A ,P ,Q 为顶点的三角形与△AOB 相似,此时点E 的坐标为(163,0),(323,0)或(14,0).9、已知直线l :y =kx +1与抛物线y =x 2-4x . (1)求证:直线l 与该抛物线总有两个交点;(2)如图,设直线l 与该抛物线两个交点分别为A ,B ,O 为原点,当k =-2时,求△OAB 的面积.解:(1)证明:联立⎩⎪⎨⎪⎧y =kx +1,y =x 2-4x ,化简,得x 2-(4+k )x -1=0, ∴Δ=(4+k )2+4>0.∴直线l 与该抛物线总有两个交点. (2)当k =-2时,y =-2x +1. 设直线AB 交x 轴于点C .令y =0,则-2x +1=0, ∴x =12.∴C (12,0).∴OC =12.过点A 作AF ⊥x 轴于点F ,过点B 作BE ⊥x 轴于点E ,联立⎩⎪⎨⎪⎧y =x 2-4x ,y =-2x +1,解得⎩⎨⎧x =1+2,y =-1-22或⎩⎨⎧x =1-2,y =22-1.∴A (1-2,22-1),B (1+2,-1-22). ∴AF =22-1,BE =1+2 2. ∴S △AOB =S △AOC +S △BOC =12OC ·AF +12OC ·BE =12OC ·(AF +BE ) =12×12×(22-1+1+22) = 2.10、如图,抛物线y =-x 2+2x +3与x 轴交于点A ,B ,与y 轴交于点C ,在抛物线的对称轴上是否存在一点P ,使得△P AC 的周长最小?若存在,请求出点P 的坐标及△P AC 的周长;若不存在,请说明理由.解:在y =-x 2+2x +3中,令y =0,则-x 2+2x +3=0.解得x 1=-1,x 2=3. ∴A (-1,0),B (3,0).在y =-x 2+2x +3中,令x =0,则y =3.∴C (0,3).连接BC 交抛物线的对称轴于点P ,连接AP ,则点P 即为所求.此时△P AC 的周长最小,等于AC +BC . ∵A (-1,0),B (3,0),C (0,3),∴AC =12+32=10,BC =32+32=3 2. ∴AC +CB =10+3 2.∴△P AC 的周长最小为10+3 2. 设直线BC 的表达式为y =kx +t .把点B (3,0),C (0,3)代入,得⎩⎪⎨⎪⎧3k +t =0,t =3.解得⎩⎪⎨⎪⎧k =-1,t =3. ∴直线BC 的表达式为y =-x +3. ∴y P =-1+3=2.∴存在点P (1,2)使△P AC 的周长最小,最小值为10+3 2.11、如图,已知二次函数y =x 2-4x +3的图象与x 轴交于点A ,B ,与y 轴交于点C ,若点P 为抛物线上的一点,点F 为对称轴上的一点,且以点A ,B ,P ,F 为顶点的四边形为平行四边形,求点P 的坐标.解:在y =x 2-4x +3中,令y =0,则x 2-4x +3=0,解得x 1=1,x 2=3. ∴A (1,0),B (3,0).①当AB 为平行四边形一条边时,如图1, 则AB =PF =2.∵抛物线的对称轴为直线x =2, ∴点P 的坐标为(4,3);当点P 在对称轴左侧时,点P 的坐标为(0,3); ②当AB 是平行四边形的对角线时,如图2, AB 的中点坐标为(2,0).设点P 的横坐标为m ,则PF 的中点坐标为(m +22,0),∴m +22=2,解得m =2.∴点P 的坐标为(2,-1).综上所述,点P 的坐标为(4,3)或(0,3)或(2,-1).图1 图212、如图,顶点为M 的抛物线y =-x 2+2x +3与x 轴交于A ,B 两点,与y 轴交于点C ,在y 轴上是否存在一点P ,使得△P AM 为直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.解:在y =-x 2+2x +3中,令y =0,则-x 2+2x +3=0. 解得x 1=3,x 2=-1. ∴A (3,0),B (-1,0).∵y =-x 2+2x +3=-(x -1)2+4, ∴M (1,4).∴AM 2=(3-1)2+42=20. 设点P 坐标为(0,p ), 则AP 2=32+p 2=9+p 2, MP 2=12+(4-p )2=17-8p +p 2. ①若∠P AM =90°,则AM 2+AP 2=MP 2. ∴20+9+p 2=17-8p +p 2,解得p =-32.∴P (0,-32).②若∠APM =90°,则AP 2+MP 2=AM 2. ∴9+p 2+17-8p +p 2=20,解得p 1=1,p 2=3. ∴P (0,1)或(0,3).③若∠AMP =90°,则AM 2+MP 2=AP 2. ∴20+17-8p +p 2=9+p 2,解得p =72.∴P (0,72).综上所述,当点P 的坐标为(0,-32)或(0,1)或(0,3)或(0,72)时,△P AM 为直角三角形.13、如图所示,抛物线y =ax 2+bx +4的顶点坐标为(3,254),与y 轴交于点A .过点A 作AB ∥x 轴,交抛物线于点B ,点C 是第四象限的抛物线上的一个动点,过点C 作y 轴的平行线,交直线AB 于点D .(1)求抛物线的函数表达式;(2)若点E 在y 轴的负半轴上,且AE =AD ,直线CE 交抛物线y =ax 2+bx +4于点F . ①求点F 的坐标;②过点D 作DG ⊥CE 于点G ,连接OD ,ED ,当∠ODE =∠CDG 时,求直线DG 的函数表达式.解:(1)∵抛物线y =ax 2+bx +4的顶点坐标为(3,254),∴y =a (x -3)2+254=ax 2-6ax +9a +254.∴9a +254=4.∴a =-14.∴抛物线的表达式为y =-14x 2+32x +4.(2)①设C (m ,-14m 2+32m +4).∵AD =AE ,AD ∥x 轴,CD ∥y 轴,∴AD =AE =m . ∵OA =4,∴OE =m -4.∵点E 在y 轴的负半轴上,∴E (0,4-m ). 设直线CE 的表达式为y =kx +b . 则⎩⎪⎨⎪⎧b =4-m ,mk +b =-14m 2+32m +4. 解得⎩⎪⎨⎪⎧k =-14m +52,b =4-m.∴直线CE 的表达式为y =(-14m +52)x +4-m .联立两个函数表达式,得-14x 2+32x +4=(-14m +52)x +4-m .∴-14x 2+(14m -1)x +m =0,x 2+(4-m )x -4m =0,(x +4)(x -m )=0,解得x 1=-4,x 2=m .∴定点F (-4,-6).②如图,过点E 作EH ⊥CD 于点H ,交DG 于点Q ,连接OQ ,由①知OE =m -4. ∵∠DAE =∠ADH =∠EHD =90°,AD =AE ,∴四边形AEHD 是正方形. ∴∠EDH =45°,AD =AE =DH =EH . ∵∠ODE =∠CDG ,∴∠ODE +∠EDQ =∠EDQ +∠CDG =45°,即∠ODQ =45°. ∴∠ADO +∠CDG =45°.在OA 的延长线上取AP =QH ,连接PD , 又∵∠P AD =∠QHD =90°,AD =DH , ∴△P AD ≌△QHD (SAS ). ∴PD =DQ ,∠ADP =∠CDG . ∴∠ADP +∠ADO =45°=∠ODQ . 又∵OD =OD ,∴△PDO ≌△QDO (SAS ).∴OP =OQ .∵EH =DH ,∠EHC =∠DHQ ,∠GEH =∠CDG , ∴△EHC ≌△DHQ (ASA ).∴CH =QH =14m 2-32m -4-(m -4)=14m 2-52m =AP .∴OQ =OP =OA +AP =4+14m 2-52m .∵OE =m -4,EQ =EH -QH =m -(14m 2-52m )=-14m 2+72m ,在Rt △OEQ 中,由勾股定理,得OE 2+EQ 2=OQ 2, ∴(m -4)2+(-14m 2+72m )2=(4+14m 2-52m )2,m 3-10m 2-24m =0,解得m 1=0(舍),m 2=12,m 3=-2(舍). ∴D (12,4),Q (6,-8).设直线DG 的表达式为y =k ′x +b ′,则⎩⎪⎨⎪⎧12k′+b′=4,6k′+b′=-8,解得⎩⎪⎨⎪⎧k′=2,b′=-20. ∴直线DG 的函数表达式为y =2x -20.14、如图,抛物线y =ax 2+bx +3(a ≠0)与x 轴、y 轴分别交于A (-1,0),B (3,0),C 三点. (1)求抛物线的表达式;(2)x 轴上是否存在点P ,使PC +12PB 最小?若存在,请求出点P 的坐标及PC +12PB 的最小值;若不存在,请说明理由;(3)连接BC ,设E 为线段BC 的中点.若M 是抛物线上一动点,将点M 绕点E 旋转180°得到点N ,当以B ,C ,M ,N 为顶点的四边形是矩形时,直接写出点N 的坐标.解:(1)∵抛物线y =ax 2+bx +3(a ≠0)与x 轴交于点A (-1,0),B (3,0), ∴设抛物线的表达式为y =a (x +1)(x -3)=ax 2-2ax -3a . ∴-3a =3.∴a =-1.∴抛物线的表达式为y =-x 2+2x +3.(2)在x 轴下方作∠ABD =30°,交y 轴负半轴于点D ,则BD =2OD . ∵B (3,0),∴OB =3.根据勾股定理,得BD 2-OD 2=32, ∴4OD 2-OD 2=9. ∴OD =3,BD =2 3.∵抛物线的表达式为y =-x 2+2x +3, ∴C (0,3).∴OC =3.∴CD =3+ 3. 过点P 作PB ′⊥BD 于点B ′, 在Rt △PB ′B 中,PB ′=12PB ,∴PC +12PB =PC +PB ′.当点C ,P ,B 在同一条直线上时,PC +12PB 最小,最小值为CB ′,∵S △BCD =12CD ·OB =12BD ·CB ′,∴CB ′=CD·OB BD =(3+3)×323=3(3+1)2, 即PC +12PB 的最小值为3(3+1)2.∵OB =OC =3,∴∠OBC =∠OCB =45°. ∴∠DBC =45°+30°=75°.∴∠BCP =90°-75°=15°.∴∠OCP =30°. ∵OC =3,∴OP = 3.∴P (3,0).(3)如备用图,设M (m ,-m 2+2m +3), ∵以B ,C ,M ,N 为顶点的四边形是矩形, ∴∠BMC =90°.∵点A 在x 轴负半轴上,且∠BOC =90°, ∴点M 在x 轴上方的抛物线上.过点M 作ME ⊥x 轴于点E ,MF ⊥y 轴于点F , ∴∠MEO =∠MFO =90°=∠EOF . ∴四边形OEMF 是矩形. ∴∠EMF =90°.∴∠BME =∠CMF . 又∵∠BEM =∠CFM =90°, ∴△BEM ∽△CFM . ∴BE CF =MEMF, 即3-m -m 2+2m +3-3=-m 2+2m +3m .∴m =1±52或3(舍去).∴M (1+52,5+52)或(1-52,5-52).∵点N 是点M 关于点E (32,32)的对称点,∴点N 的坐标为(5-52,1-52)或(5+52,1+52).15、如图,已知抛物线y =ax 2+bx +c 与直线y =12x +12相交于A (-1,0),B (4,m )两点,抛物线y =ax 2+bx +c交y 轴于点C (0,-32),交x 轴正半轴于点D ,抛物线的顶点为M .(1)求抛物线的表达式及点M 的坐标;(2)设P 为直线AB 下方的抛物线上一动点,当△P AB 的面积最大时,求此时△P AB 的面积及点P 的坐标; (3)Q 为x 轴上一动点,N 是抛物线上一点,当△QMN ∽△MAD (点Q 与点M 对应)时,求点Q 的坐标.解:(1)把点B (4,m )代入y =12x +12中,得m =52,∴B (4,52).把点A (-1,0),B (4,52),C (0,-32)代入y =ax 2+bx +c 中,得⎩⎪⎨⎪⎧a -b +c =0,16a +4b +c =52,c =-32.解得⎩⎪⎨⎪⎧a =12,b =-1,c =-32.∴抛物线的表达式为y =12x 2-x -32. ∵y =12x 2-x -32=12(x -1)2-2, ∴点M 的坐标为(1,-2).(2)如图1所示,过点P 作y 轴的平行线交AB 于点H ,设点P 的坐标为(m ,12m 2-m -32), 则H (m ,12m +12), ∴PH =12m +12-(12m 2-m -32)=-12m 2+32m +2. ∵点P 为直线AB 下方的抛物线上一动点,∴-1<m <4.∴S △P AB =12×HP ·(x B -x A )=12×(-12m 2+32m +2)×5=-54(m -32)2+12516. ∵-54<0,∴当m =32时,S △P AB 最大,最大为12516, 此时点P (32,-158). (3)如图2所示,在y =12x 2-x -32中,令y =0,解得x 1=-1,x 2=3,∴D (3,0). ∵M (1,-2),A (-1,0),∴△AMD 为等腰直角三角形.∵△QMN ∽△MAD ,∴△QNM 为等腰直角三角形,且∠MQN =90°,MQ =NQ .设点N 的坐标为(n ,12n 2-n -32), 易证:△QEN ≌△MFQ ,∴FQ =EN =2,MF =EQ =12n 2-n -32. ∴12n 2-n -32+1=n +2.解得n =5或-1(舍). ∴点Q 的坐标为(7,0).根据对称性可知,点Q 的坐标为(-5,0)时也满足条件,∵△ADM 是等腰直角三角形,∴当点Q 是AD 的中点,N 与A 或D 重合时,△QMN ∽△MAD ,此时Q (1,0).综上所述,点Q 的坐标为(7,0)或(-5,0)或(1,0).16、如图1,在平面直角坐标系中,已知抛物线y =ax 2+bx -5,与x 轴交于A (-1,0),B (5,0)两点,与y 轴交于点C .(1)求抛物线的函数表达式;(2)若点D 是y 轴上的一点,且以B ,C ,D 为顶点的三角形与△ABC 相似,求点D 的坐标;(3)如图2,CE ∥x 轴与抛物线相交于点E ,点H 是直线CE 下方抛物线上的动点,过点H 且与y 轴平行的直线与BC ,CE 分别相交于点F ,G ,试探究当点H 运动到何处时,四边形CHEF 的面积最大,求点H 的坐标及最大面积;(4)若点K 为x 轴上一点,连接CK ,请你直接写出2CK +KB 的最小值.解:(1)∵点A (-1,0),B (5,0)在抛物线y =ax 2+bx -5上,∴⎩⎪⎨⎪⎧a -b -5=0,25a +5b -5=0,解得⎩⎪⎨⎪⎧a =1,b =-4. ∴抛物线的表达式为y =x 2-4x -5.(2)令x =0,则y =-5,∴C (0,-5).∴OC =OB =5.∴∠OBC =∠OCB =45°.∴AB =6,BC =52,AC =26.要使以B ,C ,D 为顶点的三角形与△ABC 相似,则有AB CD =BC BC 或AB BC =BC CD. ①当AB CD =BC BC时,CD =AB =6, ∴D (0,1).②当AB BC =BC CD 时,652=52CD, ∴CD =253.∴D (0,103). ∴点D 的坐标为(0,1)或(0,103). (3)设H (t ,t 2-4t -5),∵CE ∥x 轴,∴点E 的纵坐标为-5.∵点E 在抛物线上,∴x 2-4x -5=-5.∴x =0(舍)或x =4.∴E (4,-5).∴CE =4.∵B (5,0),C (0,-5),∴直线BC 的表达式为y =x -5.∴F (t ,t -5).∴HF =t -5-(t 2-4t -5)=-(t -52)2+254. ∵CE ∥x 轴,HF ∥y 轴,∴CE ⊥HF .∴S 四边形CHEF =12CE ·HF =-2(t -52)2+252. ∴当t =52时,四边形CHEF 的面积最大为252. 当t =52时,t 2-4t -5=254-10-5=-354, ∴H (52,-354). (4)如图3,作点C 关于x 轴的对称点E (0,5),将△BKC 绕点B 逆时针旋转60°,得到△BHF ,连接HK ,EF ,EK ,过点F 作FM ⊥x 轴于点M ,∵B (5,0),C (0,-5),∴BO =CO =5.∴BC =52,∠CBO =45°.∵点C ,点E 关于x 轴对称,∴EK =CK .∵将△BKC 绕点B 逆时针旋转60°得到△BHF ,∴BK =BH ,CK =HF ,BF =BC =52,∠KBH =60°=∠CBF .∴△KBH 是等边三角形.∴KB =KH .∴2CK +KB =HF +EK +KH .∴当E ,K ,H ,F 四点共线时,2CK +KB 的值最小,最小值为EF 的长.∵∠FBM =180°-45°-60°=75°,BF =52,∴BM =53-52,MF =53+52.∴EF=(53-52+5)2+(53+52+5)2=53+5,即2CK+KB的最小值为53+5.。

二次函数单元测试题及答案

二次函数单元测试题及答案

二次函数单元测试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项不是二次函数的一般形式?A. y = ax^2 + bx + cB. y = (x - h)^2 + kC. y = ax^2 + bx + c + dD. y = ax^2 + bx答案:C2. 若二次函数y = ax^2 + bx + c的图像开口向上,则a的值是:A. 正数B. 负数C. 零D. 任意实数答案:A3. 二次函数y = ax^2 + bx + c的顶点坐标是:A. (-b, c)B. (-b/2a, c)C. (-b/a, c)D. (-b/2a, 4ac - b^2 / 4a)答案:D4. 二次函数y = ax^2 + bx + c的对称轴是:A. x = -bB. x = -b/2aC. x = b/2aD. x = b/a答案:B5. 若二次函数y = ax^2 + bx + c与x轴有两个交点,则判别式Δ的值是:A. Δ > 0B. Δ < 0C. Δ = 0D. Δ ≤ 0答案:A二、填空题(每题2分,共10分)6. 二次函数y = 2x^2 - 4x + 3的顶点坐标是________。

答案:(1, 1)7. 若二次函数y = ax^2 + bx + c的图像与y轴交于(0, k),则k等于________。

答案:c8. 当a > 0时,二次函数y = ax^2 + bx + c的图像开口________。

答案:向上9. 二次函数y = -3x^2 + 6x + 5的对称轴方程是________。

答案:x = 110. 若二次函数y = ax^2 + bx + c与x轴相交于两点,则判别式Δ必须________。

答案:大于0三、解答题(每题5分,共20分)11. 已知二次函数y = ax^2 + bx + c的图像经过点(1, 2)和(-1, 0),求a和b的值。

解答:将点(1, 2)代入函数得:a + b + c = 2将点(-1, 0)代入函数得:a - b + c = 0两式相减得:2b = 2,即b = 1将b代入任一式得:a + c = 1由于题目条件不足,无法唯一确定a和c的值。

二次函数全章测试题含答案

二次函数全章测试题含答案

二次函数测试题 班别_________姓名__________学号_____ 一.填空题:(每题6分,共30分)1.将抛物线y =2x 2 向上平移3个单位,再向左平移2个单位,得到的抛物线的解析式是 __________________________2. 抛物线23(1)2y x =-+的顶点坐标是______________3. 抛物线y=-3x 2的对称轴是 ,顶点是 ,开口 , 顶点是最 点,与x 轴的交点为 。

(2,1)P -在抛物线2y ax =图像上,则a=__________;5. 抛物线y =4x 2-1与x 轴的交点坐标为_____________________.二.选择题:(每题6分,共30分)6.二次函数2365y x x =--+的图像的顶点坐标是 ( ) A .(-1,8) B .(1,8) C .(-1,2) D .(1,-4) 7. 二次函数223y x x =--的图象如上图所示.当y <0时,自变量x 的取值范围是( ).A .-1<x <3B .x <-1C . x >3D .x <-1或x >38.下列函数中是二次函数的是 ( ) A .y =x +12 B . y =3 (x -1)2 C .2y ax bx c =++ D .y =1x2 -x 9.二次函数322--=x x y 的图象与x 轴的交点个数为 ( ) A.0 B.1 C.2 D. 3 10. 已知抛物线c bx ax y ++=2的开口向下,顶点坐标为(2,-3) ,那么该抛物线有( )A. 最小值 -3B. 最大值-3 C . 最小值2 D. 最大值2 三.解答题:(每题15分,共60分) 11.二次函数图像的顶点坐标是(-2,3),并经过点(1,2),求这个二次函数的函数关系式。

12.如图,已知抛物线与x 交于A(-1,0)、E(3,0)两点,与y 轴交于点B(0,3)。

(1) 求抛物线的解析式;(2) 求抛物线顶点D 的坐标,及对称轴。

初三数学二次函数测试题及答案

初三数学二次函数测试题及答案

初三数学二次函数测试题及答案初三数学二次函数测试附详细答案一、选择题:(共24分)1.(3分)与抛物线y=﹣x²+3x﹣5的形状大小开口方向相同,只有位置不同的抛物线是(D)。

2.(3分)二次函数y=x²+bx+c的图象上有两点(3,﹣8)和(﹣5,﹣8),则此抛物线的对称轴是(B)。

3.(3分)抛物线y=x²﹣mx﹣m²+1的图象过原点,则m为(±1)。

4.(3分)把二次函数y=x²﹣2x﹣1的解析式配成顶点式为(A)。

5.(3分)直角坐标平面上将二次函数y=﹣2(x﹣1)²﹣2的图象向左平移1个单位,再向上平移1个单位,则其顶点为(B)。

6.(3分)(2008•长春)二次函数y=kx²﹣6x+3的图象与x轴有交点,则k的取值范围是(k<3且k≠0)。

7.(3分)二次函数y=ax²+bx+c的图象如图所示,则abc,b²﹣4ac,2a+b,a+b+c这四个式子中,值为正数的有(2个)。

8.(3分)(2008•长春)已知反比例函数y=k/x的图象如图所示,则二次函数y=2kx²﹣x+k²的图象大致为(B)。

二、填空题:(共50分)9.(10分)已知抛物线y=x²+4x+3,请回答以下问题:1)它的开口向右,对称轴是直线x=﹣2,顶点坐标为(﹣2,﹣1);(2)图象与x轴的交点为(﹣1,0)和(﹣3,0),与y轴的交点为(0,3).10.(6分)抛物线y=ax²+bx+c(a≠0)过第二、三、四象限,则a>0,b0.11.(4分)抛物线y=6(x+1)²﹣2可由抛物线y=6x²﹣2向左平移1个单位得到.12.(2分)顶点为(﹣2,﹣5)且过点(1,﹣14)的抛物线的解析式为y=2(x+2)²﹣5.13.对称轴为y轴且过点A(1,3)、点B(-2,-6)的抛物线的解析式为 y = (3/5)x^2 - (6/5)x14.抛物线 y = -2x^2 + 4x + 1 在x轴上截得的线段长度是1/215.抛物线 y = x^2 + (m-2)x + (m^2-4) 的顶点在原点,则 m = 216.已知抛物线 y = -x^2 - 2x + m 的顶点在x轴上方,则 m。

二次函数章末练习卷(Word版 含解析)

二次函数章末练习卷(Word版 含解析)

二次函数章末练习卷(Word版含解析)一、初三数学二次函数易错题压轴题(难)1.已知,抛物线y=-12x2 +bx+c交y轴于点C(0,2),经过点Q(2,2).直线y=x+4分别交x轴、y轴于点B、A.(1)直接填写抛物线的解析式________;(2)如图1,点P为抛物线上一动点(不与点C重合),PO交抛物线于M,PC交AB于N,连MN.求证:MN∥y轴;(3)如图,2,过点A的直线交抛物线于D、E,QD、QE分别交y轴于G、H.求证:CG •CH 为定值.【答案】(1)2122y x x=-++;(2)见详解;(3)见详解.【解析】【分析】(1)把点C、D代入y=-12x2 +bx+c求解即可;(2)分别设PM、PC的解析式,由于PM、PC与抛物线的交点分别为:M、N.,分别求出M、N的代数式即可求解;(3)先设G、H的坐标,列出QG、GH的解析式,得出与抛物线的交点D、E的横坐标,再列出直线AE的解析式,算出它与抛物线横坐标的交点方程.运用韦达定理即可求证.【详解】详解:(1)∵y=-12x2 +bx+c过点C(0,2),点Q(2,2),∴2122222b cc⎧-⨯++⎪⎨⎪=⎩=,解得:12b c =⎧⎨=⎩. ∴y=-12x 2+x+2; (2) 设直线PM 的解析式为:y=mx ,直线PC 的解析式为:y=kx+2 由22122y kx y x x =+⎧⎪⎨=-++⎪⎩得12x 2+(k-1)x=0, 解得:120,22x x k ==-,x p =22p x k =- 由21=22y mx y x x =⎧⎪⎨-++⎪⎩得12x 2+(m-1)x-2=0, ∴124b x x a⋅=-=- 即x p•x m =-4,∴x m =4p x -=21k -. 由24y kx y x =+⎧⎨=+⎩得x N =21k -=x M , ∴MN ∥y 轴.(3)设G (0,m ),H (0,n ).设直线QG 的解析式为y kx m =+,将点()2,2Q 代入y kx m =+得22k m =+22m k -∴= ∴直线QG 的解析式为22m y x m -=+ 同理可求直线QH 的解析式为22n y x n -=+; 由222122m y x m y x x -⎧=+⎪⎪⎨⎪=-++⎪⎩得221=222m x m x x -+-++ 解得:122,2x x m ==-2D x m ∴=-同理,2E x n =-设直线AE 的解析式为:y=kx+4, 由24122y kx y x x =+⎧⎪⎨=-++⎪⎩, 得12x 2-(k-1)x+2=0 124b x x a∴⋅=-= 即x D x E =4, 即(m-2)•(n-2)=4∴CG•CH=(2-m )•(2-n )=4.2.如图,抛物线()21y x a x a =-++与x 轴交于,A B 两点(点A 位于点B 的左侧),与y 轴的负半轴交于点C .()1求点B 的坐标.()2若ABC 的面积为6.①求这条抛物线相应的函数解析式.②在拋物线上是否存在一点,P 使得POB CBO ∠=∠?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)(1,0);(2)①223y x x =+-;②存在,点P 的坐标为113331322⎛+ ⎝⎭或5371533722⎛-+- ⎝⎭. 【解析】【分析】(1)直接令0y =,即可求出点B 的坐标;(2)①令x=0,求出点C 坐标为(0,a ),再由△ABC 的面积得到12(1−a)•(−a)=6即可求a 的值,即可得到解析式;②当点P 在x 轴上方时,直线OP 的函数表达式为y=3x ,则直线与抛物线的交点为P ;当点P 在x 轴下方时,直线OP 的函数表达式为y=-3x ,则直线与抛物线的交点为P ;分别求出点P 的坐标即可.【详解】解:()1当0y =时,()210,x a x a -++= 解得121,.x x a ==点A 位于点B 的左侧,与y 轴的负半轴交于点,C0,a ∴<∴点B 坐标为()1,0.()2①由()1可得,点A 的坐标为(),0a ,点C 的坐标为()0,,0,a a <1,AB a OC a ∴=-=-ABC 的面积为6,()()116,2a a ∴--⋅= 123,4a a ∴=-=.0,a < 3a ∴=-22 3.y x x =+-②点B 的坐标为()1,0,点C 的坐标为()0,3-,∴设直线BC 的解析式为3,y kx =-则03,k =-3k ∴=.,POB CBO ∠=∠∴当点P 在x 轴上方时,直线//OP 直线,BC∴直线OP 的函数解析式3,y x =为则23,23,y x y x x =⎧⎨=+-⎩11x y ⎧=⎪⎪∴⎨⎪=⎪⎩(舍去),22x y ⎧=⎪⎪⎨⎪=⎪⎩∴点的P坐标为⎝⎭; 当点P 在x 轴下方时,直线'OP 与直线OP 关于x 轴对称,则直线'OP 的函数解析式为3,y x =-则23,23,y x y x x =-⎧⎨=+-⎩11x y ⎧=⎪⎪∴⎨⎪=⎪⎩舍去),22x y ⎧=⎪⎪⎨⎪=⎪⎩∴点P'的坐标为⎝⎭综上可得,点P的坐标为⎝⎭或⎝⎭【点睛】本题考查二次函数的图象及性质,一次函数的性质,熟练掌握二次函数的图象及性质,结合数形结合的思想和分类讨论的思想解题是解本题的关键.3.已知抛物线2(0)y ax bx c a =++≠过点(0,2)A -.(1)若点(2,0)-也在该抛物线上,请用含a 的关系式表示b ;(2)若该抛物线上任意不同两点()11,M x y 、()22,N x y 都满足:当120x x <<时,()()12120x x y y --<;当120x x <<时,()()12120x x y y -->;若以原点O 为圆心,OA 为半径的圆与抛物线的另两个交点为B 、C (点B 在点C 左侧),且ABC ∆有一个内角为60,求抛物线的解析式;(3)在(2)的条件下,若点P 与点O 关于点A 对称,且O 、M 、N 三点共线,求证:PA 平分MPN ∠.【答案】(1)21b a =-;(2)22y x =-;(3)见解析.【解析】【分析】(1)把点()0,2-、()2,0-代入抛物线解析式,然后整理函数式即可得到答案.(2)根据二次函数的性质可得出抛物线的对称轴为y 轴、开口向上,进而可得出0b =,由抛物线的对称性可得出ABC ∆为等腰三角形,结合其有一个60︒的内角可得出ABC ∆为等边三角形,设线段BC 与y 轴交于点D ,根据等边三角形的性质可得出点C 的坐标,再利用待定系数法可求出a 值,此题得解;(3)由(1)的结论可得出点M 的坐标为1(x ,212)x -+、点N 的坐标为2(x ,222)x -+,由O 、M 、N 三点共线可得出212x x =-,进而可得出点N 及点'N 的坐标,由点A 、M 的坐标利用待定系数法可求出直线AM 的解析式,利用一次函数图象上点的坐标特征可得出点'N 在直线PM 上,进而即可证出PA 平分MPN ∠.【详解】解:(1)把点()0,2-、()2,0-分别代入,得2420c a b c =-⎧⎨-+=⎩. 所以21b a =-.(2),如图1,当120x x <<时,()()12120x x y y --<,120x x ∴-<,120y y ->,∴当0x <时,y 随x 的增大而减小;同理:当0x >时,y 随x 的增大而增大,∴抛物线的对称轴为y 轴,开口向上,0b ∴=.OA 为半径的圆与拋物线的另两个交点为B 、C ,ABC ∴∆为等腰三角形,又ABC ∆有一个内角为60︒,ABC ∴∆为等边三角形.设线段BC 与y 轴交于点D ,则BD CD =,且30OCD ∠=︒,又2OB OC OA ===,·303CD OC cos ∴=︒=,·301OD OC sin =︒=. 不妨设点C 在y 轴右侧,则点C 的坐标为31).点C 在抛物线上,且2c =-,0b =,321a ∴-=,1a ∴=,∴抛物线的解析式为22y x =-.(3)证明:由(1)可知,点M 的坐标为1(x ,212)x -,点N 的坐标为2(x ,222)x -.如图2,直线OM 的解析式为()110y k x k =≠.O 、M 、N 三点共线,10x ∴≠,20x ≠,且22121222x x x x --=, 121222x x x x ∴-=-, ()1212122x x x x x x -∴-=-,122x x ∴=-,即212x x =-, ∴点N 的坐标为12(x -,2142)x -. 设点N 关于y 轴的对称点为点'N ,则点'N 的坐标为12(x ,2142)x -. 点P 是点O 关于点A 的对称点,24OP OA ∴==,∴点P 的坐标为()0,4-.设直线PM 的解析式为24y k x =-,点M 的坐标为1(x ,212)x -,212124x k x ∴-=-,21212x k x +∴=, ∴直线PM 的解析式为21124x y x x +=-. ()222111221111224224·42x x x x x x x +-+-==-,∴点'N在直线PM上,PA∴平分MPN∠.【点睛】本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质、等边三角形的性质以及一次(二次)函数图象上点的坐标特征,解题的关键是:(1)利用二次函数图象上点的坐标特征求出a、b满足的关系式;(2)①利用等边三角形的性质找出点C的坐标;②利用一次函数图象上点的坐标特征找出点'N在直线PM上.4.如图,在平面直角坐标系x O y中,抛物线y = ax2+ bx + c经过A、B、C三点,已知点A (-3,0),B(0,3),C(1,0).(1)求此抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;(3)在直线x = -2上是否存在点M,使得∠MAC = 2∠MCA,若存在,求出M点坐标.若不存在,说明理由.【答案】(1)y=-x2-2x+3;(2)点(-32,154),△PDE的周长最大;(3)点M(-2,3)或(-2,3【解析】【分析】(1)将A、B、C三点代入,利用待定系数法求解析式;(2)根据坐标发现,△AOB是等腰直角三角形,故只需使得PD越大,则△PDE的周长越大.联立直线AB与抛物线的解析式可得交点P坐标;(3)作点A关于直线x=-2的对称点D,利用∠MAC = 2∠MCA可推导得MD=CD,进而求得ME的长度,从而得出M坐标【详解】解:(1)∵抛物线y=ax2+bx+c经过点A(-3,0),B(0,3),C(1,0),∴9303a b cca b c-+=⎧⎪=⎨⎪++=⎩,解得:123abc=-⎧⎪=-⎨⎪=⎩,所以,抛物线的解析式为y=-x2-2x+3;(2)∵A (-3,0),B (0,3),∴OA=OB=3,∴△AOB 是等腰直角三角形,∴∠BAO=45°,∵PF ⊥x 轴,∴∠AEF=90°-45°=45°,又∵PD ⊥AB ,∴△PDE 是等腰直角三角形,∴PD 越大,△PDE 的周长越大,易得直线AB 的解析式为y=x+3,设与AB 平行的直线解析式为y=x+m ,联立223y x m y x x =+⎧⎨=--+⎩,消掉y 得,x 2+3x+m-3=0, 当△=9-4(m-3)=0,即m=214时,直线与抛物线只有一个交点,PD 最长, 此时x=-32,y=154,∴点(-32,154),△PDE 的周长最大;(3)设直线x=-2与x 轴交于点E ,作点A 关于直线x=-2的对称点D ,则D (-1,0),连接MA ,MD ,MC .∴MA=MD ,∠MAC=∠MDA=2∠MCA ,∴∠CMD=∠DCM∴MD=CD=2 , ∴3∴点M (-23)或(-2,3【点睛】本题是动点和最值的考查,在解决动点问题时,寻找出不变量来分析是解题关键,最值问题,通常利用对称来简化分析5.定义:对于已知的两个函数,任取自变量x 的一个值,当0x ≥时,它们对应的函数值相等;当0x <时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数y x =,它的相关函数为(0)(0)x x y x x ≥⎧=⎨-<⎩. (1)已知点()5,10A -在一次函数5y ax =-的相关函数的图像上,求a 的值; (2)已知二次函数2142y x x =-+-. ①当点3,2B m ⎛⎫ ⎪⎝⎭在这个函数的相关函数的图像上时,求m 的值;②当33x -≤≤时,求函数2142y x x =-+-的相关函数的最大值和最小值. (3)在平面直角坐标系中,点M 、N 的坐标分别为1,12⎛⎫-⎪⎝⎭、9,12⎛⎫ ⎪⎝⎭,连结MN .直接写出线段MN 与二次函数24y x x n =-++的相关函数的图像有两个公共点时n 的取值范围.【答案】(1)1;(2)①22- ;②max 432y =,min 12y =-;(3)31n -<≤-,514n <≤【解析】【分析】 (1)先求出5y ax =-的相关函数,然后代入求解,即可得到答案;(2)先求出二次函数的相关函数,①分为m <0和m ≥0两种情况将点B 的坐标代入对应的关系式求解即可;②当-3≤x <0时,y=x 2-4x+12,然后可 此时的最大值和最小值,当0≤x≤3时,函数y=-x 2+4x-12,求得此时的最大值和最小值,从而可得到当-3≤x≤3时的最大值和最小值; (3)首先确定出二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值,然后结合函数图象可确定出n 的取值范围.【详解】解:(1)根据题意,一次函数5y ax =-的相关函数为5,(0)5,(0)ax x y ax x -≥⎧=⎨-+<⎩, ∴把点()5,10A -代入5y ax =-+,则(5)510a -⨯-+=,∴1a =;(2)根据题意,二次函数2142y x x =-+-的相关函数为2214,(0)214,(0)2x x x y x x x ⎧-+-≥⎪⎪=⎨⎪-+<⎪⎩, ①当m <0时,将B (m ,32)代入y=x 2-4x+12得m 2-4m+1322=, 解得:m=2当m≥0时,将B (m ,32)代入y=-x 2+4x-12得:-m 2+4m-12=32, 解得:或m=2.综上所述:m=25-或m=22+或m=22-.②当-3≤x <0时,y=x 2-4x+12,抛物线的对称轴为x=2,此时y 随x 的增大而减小, ∴当3x =-时,有最大值,即2143(3)4(3)22y =--⨯-+=, ∴此时y 的最大值为432. 当0≤x≤3时,函数y=-x 2+4x 12-,抛物线的对称轴为x=2, 当x=0有最小值,最小值为12-, 当x=2时,有最大值,最大值y=72. 综上所述,当-3≤x≤3时,函数y=-x 2+4x 12-的相关函数的最大值为432,最小值为12-; (3)如图1所示:线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有1个公共点.∴当x=2时,y=1,即-4+8+n=1,解得n=-3.如图2所示:线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有3个公共点.∵抛物线y=x 2-4x-n 与y 轴交点纵坐标为1,∴-n=1,解得:n=-1.∴当-3<n≤-1时,线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有2个公共点. 如图3所示:线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有3个公共点.∵抛物线y=-x 2+4x+n 经过点(0,1),∴n=1.如图4所示:线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有2个公共点.∵抛物线y=x 2-4x-n 经过点M (12-,1), ∴14+2-n=1,解得:n=54. ∴1<n≤54时,线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有2个公共点. 综上所述,n 的取值范围是-3<n≤-1或1<n≤54. 【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值是解题的关键.6.如图,已知抛物2(0)y ax bx c a =++≠经过点,A B ,与y 轴负半轴交于点C ,且OC OB =,其中B 点坐标为(3,0),对称轴l 为直线12x =. (1)求抛物线的解析式; (2) 在x 轴上方有一点P , 连接PA 后满足PAB CAB ∠=∠, 记PBC ∆的面积为S , 求当10.5S =时点P 的坐标(3)在(2)的条件下,当点P 恰好落在抛物线上时,将直线BC 上下平移,平移后的10.5S=时点P的坐标;直线y x t=+与抛物线交于,C B''两点(C'在B'的左侧),若以点,,C B P''为顶点的三角形是直角三角形,求出t的值.【答案】(1)211322y x x=--(2)(2,6)(3)19或32【解析】【分析】(1)确定点A的坐标,再进行待定系数法即可得出结论;(2)确定直线AP的解析式,用m表示点P的坐标,由面积关系求S和m的函数关系式即可求解;(3)先确定点P的坐标,当'''90B PC∠=,利用根与系数的关系确定'''B C的中点E的坐标,利用''2B C PE=建立方程求解,当''''90PC B∠=时,确定点G的坐标,进而求出直线''C G的解析式,得出点''C的坐标即可得出结论.【详解】(1)∵OC OB=,且B点坐标为(3,0),∴C点坐标为(0,3)-.设抛物线解析式为21()2y a x k=-+.将B、C两点坐标代入得254134a ka k⎧=+⎪⎪⎨⎪-=+⎪⎩,解得12258ak⎧=⎪⎪⎨⎪=-⎪⎩.∴抛物线解析式为22112511()-322822y x x x=-=--.(2)如图1,设AP与y轴交于点'C.∵PAB CAB∠=∠,OA OA=,90AOC AOC∠'=∠=︒,∴AOC∆≌AOC∆',∴3OC OC='=,∴(0,3)C'.∵对称轴l 为直线12x =, ∴(2,0)A -, ∴直线AP 解析式为332y x =+, ∵(3,0)B ,(0,-3)C , ∴直线BC 解析式为-3y x =,∴313(3)622PF x x x =+--=+, ∴13924PBC S OB PF x ∆=⨯⨯=+, ∵10.5S =,∴3910.54x +=, ∴2x =. 此时P 点的坐标为(2,6).(3)如图2,由211-322332y x x y x ⎧=-⎪⎪⎨⎪=+⎪⎩得6,12P (), 当90C PB ∠=''︒时,取''B C 的中点E ,连接PE .则2B C PE ''=,即224B C PE =''.设1122(,),(,)B x y C x y ''.由211-322y x x y x t⎧=-⎪⎨⎪=+⎩得23(26)0x x t --+=, ∴12123,(26)x x x x t +==-+,∴点33 (,)22E t+,222221212121212()()2()2()41666B C x x y y x x x x x x t⎡⎤=-+-=-+-=+⎣=⎦'',222233261(6)(1221222PE t t t=-+-=-+),∴226116664(21)2t t t+=-+,解得:19t=或6(舍去),当90PC B''''∠=︒时,延长C P''交BC于H,交x轴于G.则90,45BHG PGO∠=︒∠=︒,过点P作PG x⊥轴于点Q,则12GQ PQ==,∴(18,0)G,∴直线C G''的解析式为18y x=-+,由211-322-18y x xy x⎧=-⎪⎨⎪=+⎩得725xy=-⎧⎨=⎩或612xy=⎧⎨=⎩(舍去),∴(7,25)C'-',将(7,25)C'-'代入y x t=+中得32t=.综上所述,t的值为19或32.【点睛】本题主要考查了待定系数法、全等三角形的判定和性质、三角形面积的计算方法、根与系数的关系、直角三角形的性质,属于二次函数综合题.7.如图,抛物线2y x bx c=-++的图象与x轴交于A、B两点(点A在点B的左边),与y 轴交于点C ,点D 为抛物线的顶点.点A 坐标的为3,0,点C 的坐标为()0,3.(Ⅰ)求抛物线的解析式;(Ⅱ)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作i 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作//PQ AB 交抛物线于点Q ,过点Q 作QN x ⊥轴于点N .若点P 在点Q 左边,当矩形PMNQ 的周长最大时,求AEM △的面积;(Ⅲ)在(Ⅱ)的条件下,当矩形PMNQ 的周长最大时,连接DQ ,过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若=22FG DQ ,求点F 的坐标.【答案】(Ⅰ)223y x x =--+;(Ⅱ)12;(Ⅲ)()4,5F --或()1,0 【解析】【分析】(Ⅰ)将点A ,点C 坐标代入解析式可求解;(Ⅱ)设M (x ,0),P (x ,-x 2-2x+3),利用对称性可求点Q (-2-x ,-x 2-2x+3),可求MP=-x 2-2x+3,PQ=-2-x-x=-2-2x ,则可用x 表示矩形PMNQ 的周长,由二次函数的性质可求当矩形PMNQ 的周长最大时,点P 的坐标,即可求点E ,点M 的坐标,由三角形面积公式可求解;(Ⅲ)先求出点D 坐标,即可求2FG=4,设F (m ,-m 2-2m+3),则G (m ,m+3),用含有m 的式子表示FG 的长度即可求解.【详解】 解:(Ⅰ)依题意()()2330{3b c c --+⨯-+== 解得2{3b c =-= 所以223y x x =--+(Ⅱ)2223(1)4y x x x抛物线的对称轴是直线1x =-(,0)M x ,()2,23P x x x --+,其中31x -<<-∵P 、Q 关于直线1x =-对称设Q 的横坐标为a则()11a x --=--∴2a x =--∴()22,23Q x x x ----+∴223MP x x =--+,222PQ x x x =---=--∴周长()222222232822(2)10d x x x x x x =----+=--+=-++当2x =-时,d 取最大值,此时,(2,0)M -∴2(3)1AM =---=设直线AC 的解析式为y kx b =+ 则303k b b -+=⎧⎨=⎩,解得13k b =⎧⎨=⎩∴设直线AC 的解析式为3yx 将2x =-代入3yx ,得1y = ∴(2,1)E -,∴1EM = ∴11111222AEM S AM ME ∆=⋅=⨯⨯= (Ⅲ)由(Ⅱ)知,当矩形PMNQ 的周长最大时,2x =-此时点()0,3Q ,与点C 重合,∴3OQ =∵2223(1)4y x x x∴()1,4D -过D 作DK y ⊥轴于K ,则1DK =,4OK =∴431OK OK OQ =-=-=∴DKQ 是等腰直角三角形,2DQ =∴224FG DQ ==设()2,23F m m m --+,则(,3)G m m + ()223233FG m m m m m =+---+=+∴234m m +=,解得14m =-,21m =当4m =-时,2235m m --+=-当1m =时,2230m m --+=.∴()4,5F --或()1,0【点睛】本题是二次函数综合题,考查了二次函数的性质,矩形的性质,等腰直角三角形的性质等,利用参数表示线段的长度是本题的关键.8.定义:函数l 与l '的图象关于y 轴对称,点(),0P t 是x 轴上一点,将函数l '的图象位于直线x t =左侧的部分,以x 轴为对称轴翻折,得到新的函数w 的图象,我们称函数w 是函数l 的对称折函数,函数w 的图象记作1F ,函数l 的图象位于直线x t =上以及右侧的部分记作2F ,图象1F 和2F 合起来记作图象F .例如:如图,函数l 的解析式为1y x =+,当1t =时,它的对称折函数w 的解析式为()11y x x =-<.(1)函数l 的解析式为21y x =-,当2t =-时,它的对称折函数w 的解析式为_______; (2)函数l 的解析式为1²12y x x =--,当42x -≤≤且0t =时,求图象F 上点的纵坐标的最大值和最小值;(3)函数l 的解析式为()2230y ax ax a a =--≠.若1a =,直线1y t =-与图象F 有两个公共点,求t 的取值范围.【答案】(1)()212y x x =+<-;(2)F 的解析式为2211(0)211(0)2y x x x y x x x ⎧=--≥⎪⎪⎨⎪=--+<⎪⎩;图象F 上的点的纵坐标的最大值为32y =,最小值为3y =-;(3)当3t =-,1t <≤,5t <<时,直线1y t =-与图象F 有两个公共点. 【解析】【分析】(1)根据对折函数的定义直接写出函数解析式即可;(2)先根据题意确定F 的解析式,然后根据二次函数的性质确定函数的最大值和最小值即可;(3)先求出当a=1时图像F 的解析式,然后分14t -=-、点(),1t t -落在223()y x x x t =--≥上和点(),1t t -落在()223y x x x t =--+<上三种情况解答,最后根据图像即可解答.【详解】解:(1)()212y x x =+<-(2)F 的解析式为2211(0)211(0)2y x x x y x x x ⎧=--≥⎪⎪⎨⎪=--+<⎪⎩当4x =-时,3y =-,当1x =-时,32y =, 当1x =时,32y =-,当2x =时,1y =, ∴图象F 上的点的纵坐标的最大值为32y =,最小值为3y =-. (3)当1a =时,图象F 的解析式为2223()23()y x x x t y x x x t ⎧=--≥⎨=--+<⎩∴该函数的最大值和最小值分别为4和-4;a :当14t -=-时,3t =-,∴当3t =-时直线1y t =-与图象F 有两个公共点;b :当点(),1t t -落在223()y x x x t =--≥上时,2123t t t -=--,解得1t =2t = c :当点(),1t t -落在()223y x x x t =--+<上时,2123t t t -=--+,解得34t =-(舍),41t =14t -=,∴55t =1t <≤5t <<时,直线1y t =-与图象F 有两个公共点;综上所述:当3t =-,312t <≤5t <<时,直线1y t =-与图象F 有两个公共点.【点睛】 本题属于二次函数综合题,考查了“称折函数”的定义、二次函数的性质、解二元一次方程等知识,弄清题意、灵活运用所学知识是解答本题的关键.9.定义:在平面直角坐标系中,O 为坐标原点,设点P 的坐标为(x ,y ),当x <0时,点P 的变换点P′的坐标为(﹣x ,y );当x≥0时,点P 的变换点P′的坐标为(﹣y ,x ). (1)若点A (2,1)的变换点A′在反比例函数y=k x的图象上,则k= ; (2)若点B (2,4)和它的变换点B'在直线y=ax+b 上,则这条直线对应的函数关系式为 ,∠BOB′的大小是 度.(3)点P 在抛物线y=x 2﹣2x ﹣3的图象上,以线段PP′为对角线作正方形PMP'N ,设点P 的横坐标为m ,当正方形PMP′N 的对角线垂直于x 轴时,求m 的取值范围.(4)抛物线y=(x ﹣2)2+n 与x 轴交于点C ,D (点C 在点D 的左侧),顶点为E ,点P 在该抛物线上.若点P 的变换点P′在抛物线的对称轴上,且四边形ECP′D 是菱形,求n 的值.【答案】(1) -2;(2) y=13x+103,90;(3) m <0,或m=32;(4) n=﹣8,n=﹣2,n=﹣3.【解析】【分析】(1)先求出A 的变换点A ′,然后把A ′代入反比例函数即可得到结论;(2)确定点B ′的坐标,把问题转化为方程组解决;(3)分三种情形讨论:①当m <0时;②当m ≥0,PP '⊥x 轴时;③当m ≥0,MN ⊥x 轴时.(4)利用菱形的性质,得到点E 与点P '关于x 轴对称,从而得到点P '的坐标为(2,﹣n ).分两种情况讨论:①当点P 在y 轴左侧时,点P 的坐标为(﹣2,﹣n ),代入抛物线解析式,求解即可;②当点P 在y 轴右侧时,点P 的坐标为(﹣n ,﹣2).代入抛物线解析式,求解即可.【详解】(1)∵A (2,1)的变换点为A ′(-1,2),把A ′(-1,2)代入y =k x中,得到k =-2. 故答案为:-2.(2)点B (2,4)的变换点B ′(﹣4,2),把(2,4),(﹣4,2)代入y =ax +b 中. 得到:2442a b a b +=⎧⎨-+=⎩,解得:13103a b ⎧=⎪⎪⎨⎪=⎪⎩,∴11033y x =+. ∵OB 2=2224+=20,OB ′2=2224+=20,BB ′2=22(42)(24)--+-=40,∴OB 2+OB ′2=BB ′2,∴∠BOB ′=90°.故答案为:y =13x +103,90. (3)①当m <0时,点P 与点P '关于y 轴对称,此时MN 垂直于x 轴,所以m <0. ②当m ≥0,PP '⊥x 轴时,则点P '的坐标为(m ,m ),点P 的坐标为(m ,﹣m ). 将点P (m ,﹣m )代入y =x 2﹣2x ﹣3,得:﹣m =m 2﹣2m ﹣3.解得:12m m ==(不合题意,舍去).所以m = ③当m ≥0,MN ⊥x 轴时,则PP '∥x 轴,点P 的坐标为(m ,m ).将点P (m ,m )代入y =x 2﹣2x ﹣3,得:m =m 2﹣2m ﹣3.解得:12m m ==所以32m +=. 综上所述:m 的取值范围是m <0,m=12+或m=32. (4)∵四边形ECP 'D 是菱形,∴点E 与点P '关于x 轴对称.∵点E 的坐标为(2,n ),∴点P '的坐标为(2,﹣n ).①当点P 在y 轴左侧时,点P 的坐标为(﹣2,﹣n ).代入y =(x ﹣2)2+n ,得:﹣n =(﹣2﹣2)2+n ,解得:n =﹣8.②当点P 在y 轴右侧时,点P 的坐标为(﹣n ,﹣2).代入y =(x ﹣2)2+n ,得:﹣2=(﹣n ﹣2)2+n .解得:n 1=﹣2,n 2=﹣3.综上所述:n 的值是n =﹣8,n =﹣2,n =﹣3.【点睛】本题是二次函数综合题、一次函数的应用、待定系数法、变换点的定义等知识,解题的关键是理解题意,学会用分类讨论的射线思考问题,学会用方程的思想思考问题,属于中考压轴题.10.如图,经过原点的抛物线2y ax x b =-+与直线2y =交于A ,C 两点,其对称轴是直线2x =,抛物线与x 轴的另一个交点为D ,线段AC 与y 轴交于点B .(1)求抛物线的解析式,并写出点D 的坐标;(2)若点E 为线段BC 上一点,且2EC EA -=,点(0,)P t 为线段OB 上不与端点重合的动点,连接PE ,过点E 作直线PE 的垂线交x 轴于点F ,连接PF ,探究在P 点运动过程中,线段PE ,PF 有何数量关系?并证明所探究的结论;(3)设抛物线顶点为M ,求当t 为何值时,DMF ∆为等腰三角形?【答案】(1)214y x x =-;点D 的坐标为(4,0);(2)5PF PE =,理由见解析;(3)51t +=98t = 【解析】【分析】(1)先求出a 、b 的值,然后求出解析式,再求出点D 的坐标即可;(2)由题意,先求出点E 的坐标,然后证明Rt Rt PBE FHE ∆∆∽,得到2EF PE =,结合勾股定理,即可得到答案;(3)根据题意,可分为三种情况进行分析:FM FD =或DF DM =或FM MD =,分别求出三种情况的值即可.【详解】解:(1)∵抛物线2y ax x b =-+经过原点, ∴0b =.又抛物线的对称轴是直线2x =,∴122a --=,解得:14a =. ∴抛物线的解析式为:214y x x =-. 令2104y x x =-=, 解得:10x =,24x =.∴点D 的坐标为(4,0).(2)线段PE 、PF 的数量关系为:5PF PE =.证明:由抛物线的对称性得线段AC 的中点为(2,2)G ,如图①,AE EG GC +=,∴EG GC AE =-,∴EG EG EG GC AE EC EA +=+-=-,∵2EC EA -=,∴1EG =,∴(1,2)E , 过点E 作EH x ⊥轴于H ,则2EH OB ==.∵PE EF ⊥,∴90PEF ∠=︒,∵BE EH ⊥,∴90BEH ∠=︒.∴PEB HEF ∠=∠.在Rt PBE ∆与Rt FHE ∆中,∵PEB HEF ∠=∠,90EHF EBP ∠=∠=︒,∴Rt Rt PBE FHE ∆∆∽,∴12PE BE EF HE ==, ∴2EF PE =. 在Rt PEF ∆中,由勾股定理得:222222(2)5PF PE EF PE PE PE =+=+=,∴5PF PE =.(3)由2211(2)144y x x x =-=--,∴顶点M 坐标为(2,1)-.若DMF ∆为等腰三角形,可能有三种情形:(I )若FM FD =.如图②所示:连接MG 交x 轴于点N ,则90MNF ∠=︒,∵(4,0)D ,∴2222125MD MN ND =+=+=设FM FD k ==,则2NF k =-.在Rt MNF ∆中,由勾股定理得:222NF MN MF +=,∴22(2)1k k -+=,解得:54k =, ∴54FM =,34NF =, ∴1MN =,即点M 的纵坐标为1-;令1y =-,则2114x x -=-, ∴2x =,即ON=2,∴OF=114, ∴11,04F ⎛⎫ ⎪⎝⎭. ∵(1,2)E ,∴1,2BE BP t ==-, ∴221(2)PE t =+-,∴251(2)PF t =+-在Rt △OPF 中,由勾股定理,得222OP OF PF +=,∴22211()55(2)4t t +=+-,∴98t =. (II )若DF DM =.如图③所示:此时5FD DM == ∴45OF =, ∴(45,0)F ,由(I )知,221(2)PE t =+-,251(2)PF t =+-在Rt △OPF 中,由勾股定理,得222OP OF PF +=,∴222(45)55(2)t t +-=+-∴51t +=. (III )若FM MD =.由抛物线对称性可知,此时点F 与原点O 重合.∵PE EF ⊥,点P 在直线AC 上方,与点P 在线段OB 上运动相矛盾,故此种情形不存在.【点睛】本题考查的是二次函数综合运用,涉及到相似三角形的判定和性质,一次函数的性质,等腰三角形的性质,全等三角形的判定和性质,以及勾股定理等知识,其中(3),要注意分类求解,避免遗漏.。

初中数学 《二次函数》章末检测题

初中数学 《二次函数》章末检测题

《二次函数》章末检测题一.相信你的选择(每小题3分,共30分)1. 已知二次函数y =(2-a )x ,在其图象对称轴的左侧,y 随x 的增大而减小,则a 的值为( )A. B.± C.-2.二次函数221y ax x a =++-的图象可能是( )3.已知抛物线21y x x =--与轴的一个交点为(0)m ,,则代数m 2-m+100的值为( )A .98B .109C .99D .1014.若抛物线22y x x c =-+与轴的交点为(03)-,,则下列说法不正确的是( ) A .抛物线开口向上B .抛物线的对称轴是C .当时,的最大值为D .抛物线与轴的交点为(10)(30)-,,,5.若A (-4,y 1),B (-3,y 2),C (1,y 3)为二次函数y=x 2+4x-5的图象上的三点,则y 1,y 2,y 3的大小关系是( ) A 、y 1<y 2<y 3 B 、y 2<y 1<y 3 C 、y 3<y 1<y 2 D 、y 1<y 3<y 26.已知二次函数2y ax bx c =++()的图象如图1所示,有下列4个结论:①0abc >;②b a c <+;③420a b c ++>;④240b ac ->; 其中正确的结论有( ) A .1个 B .2个 C .3个 D .4个7.已知抛物线y =ax 2+bx +c 的图象如图2所示,则关于x 的方程ax 2+bx +c -3=0的根的情况是( )A.有两个不相等的正实数根B.有两个异号实数根C.有两个相等的实数根D.没有实数根8.已知抛物线C :1032-+=x x y ,将抛物线C 平移得到抛物线C’,若两条抛物线C 、C’关于直线x =1对称,则下列平移方法中,正确的是( ) A .将抛物线C 向右平移25个单位 B .将抛物线C 向右平移3个单位 -1Ox =1yx图1xyO xyO xyO xyO ABCD图2图3C .将抛物线C 向右平移5个单位D .将抛物线C 向右平移6个单位9.如图3所示,从地面竖直向上抛出一个小球,小球的高度h (单位:m)与小球运动时间t (单位:s)之间的关系式为h =30t -5t 2,那么小球从抛出至回落到地面所需要的时间是( )A .6sB .4sC .3sD .2s 10.定义[,,a b c ]为函数2y ax bx c =++的特征数, 下面给出特征数为 [2m ,1 – m , –1– m ]的函数的一些结论: ① 当m = – 3时,函数图象的顶点坐标是(31,38); ② 当m > 0时,函数图象截x 轴所得的线段长度大于23; ③ 当m < 0时,函数在x >41时,y 随x 的增大而减小;④ 当m ≠ 0时,函数图象经过同一个点.其中正确的结论有( )A .①②③④B .①②④C .①③④ D .②④ 二.试试你的身手(每小题3分,共24分) 11.抛物线y =-12x 2-3x +12,当x =___时,有最大值是___. 12.如图4,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园 的面积y (单位:米2)与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围).13.在同一坐标平面内,下列4个函数①22(1)1y x =+-,②223y x =+,③221y x =--,④2112y x =-的图象不可能...由函数221y x =+的图象通过平移变换、轴对称变换得到的函数是 (填序号).14.不论自变量x 取什么实数,二次函数226y x x m =-+的值总是正值,你认为m 的取值范围是 ,此时关于x 的一元二次方程2260x x m -+=的根的情况是 (填“有实根”或“无实根”).15.有一个二次函数的图象,三位学生分别说出了它的一些特点: 甲:对称轴是直线x=4;乙:与x 轴两个交点的横坐标都是整数;丙:与y 轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式: 16.抛物线2y x bx c =-++的部分图象如图5所示,请写出与其关系式、图象相关的2个正确结论: , .(对称轴方程,图象与x 正半轴、y 轴交点坐标例外)图6ABCD 图2 菜园墙图4图517.兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);已知点(x ,y )都在一个二次函数的图像上(如图6所示),则6楼房子的价格为 元/平方米.18. 如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米. 三.挑战你的能力(共66分)19.(6分)已知二次函数的图象经过点(3,-8),对称轴是x=-2,此抛物线与x 轴的两个交点间的距离为6.求抛物线与x 轴的交点坐标及抛物线的解析式.20.(8分)如图8,已知二次函数c bx x y ++-=221的图象经过A (2,0)、B (0,-6)两点.(1)求这个二次函数的解析式(2)设该二次函数的对称轴与x 轴交于点C ,连结BA 、BC ,求△ABC 的面积.21. (8分)济南大学举行的一场排球赛中,队员黄娟站在边线发球,发球点与地面的距离为1.8米,发球的方向与边线垂直,球飞行的路线为抛物线,当球飞行距离为8米时,达到最高高度为米,已知球场的长18米,请计算球是否落到球场的对方边界线外?●yCxD图3图9 y x CAO B图8 图722. (8分)如图10,抛物线y =-x 2+5x +n 经过点A (1,0),与y 轴的交点为B .(1)求抛物线的解析式;(2)P 是y 轴正半轴上一点,且△P AB 是以AB 为腰的等腰三角形,试求点P 的坐标.23. (8分)已知二次函数22.y x mx m =-+-(1)求证:无论m 为何值,此二次函数的图象与x 轴总有两个交点;(2)当二次函数的图象经过点(3,6)时,试确定m 的值,并写出此时二次函数的关系式.24. (8分)如图11所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉。

二次函数测试题及答案

二次函数测试题及答案

二次函数测试题及答案一、选择题(每小题 3 分,共 30 分)1、二次函数 y = x²+ 2x 3 的图象的顶点坐标是()A (-1,-4)B (1,-4)C (-1,4)D (1,4)答案:A解析:对于二次函数 y = ax²+ bx + c 的顶点坐标公式为(b/2a, (4ac b²)/4a),在函数 y = x²+ 2x 3 中,a = 1,b = 2,c =-3,所以顶点横坐标为 b/2a =-2/(2×1) =-1,纵坐标为(4ac b²)/4a = 4×1×(-3) 2²/(4×1) =(-12 4)/4 =-16/4 =-4,所以顶点坐标为(-1,-4)。

2、抛物线 y =-2(x 1)²+ 3 的开口方向、对称轴和顶点坐标分别是()A 开口向下,对称轴为 x =-1,顶点坐标为(1,3)B 开口向下,对称轴为 x = 1,顶点坐标为(1,3)C 开口向上,对称轴为 x =-1,顶点坐标为(-1,3)D 开口向上,对称轴为 x = 1,顶点坐标为(-1,3)答案:B解析:在抛物线 y = a(x h)²+ k 中,当 a < 0 时,开口向下,对称轴为 x = h,顶点坐标为(h,k)。

在抛物线 y =-2(x 1)²+ 3 中,a =-2 < 0,所以开口向下,对称轴为 x = 1,顶点坐标为(1,3)。

3、把抛物线 y = x²向左平移 1 个单位,然后向上平移 3 个单位,则平移后抛物线的解析式为()A y =(x 1)²+ 3B y =(x + 1)²+ 3C y =(x 1)² 3D y =(x + 1)² 3答案:B解析:抛物线平移遵循“上加下减,左加右减”的原则。

抛物线 y =x²向左平移 1 个单位得到 y =(x + 1)²,然后向上平移 3 个单位得到y =(x + 1)²+ 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数章末测试题3(含答案)第二十六二次函数末测试(三)总分120分120分钟一.选择题(共8小题,每题3分)1.如图,抛物线y=ax2+bx+(a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a﹣b+,则P的取值范围是()A.﹣4<P<0B.﹣4<P<﹣2.﹣2<P<0D.﹣1<P<02.若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx的对称轴为()A.直线x=1B.直线x=﹣2.直线x=﹣1D.直线x=﹣4 3.二次函数y=x2﹣4x+5的最小值是()A.﹣1B.1.3D.54.已知二次函数y=ax2+bx+(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0B.3是方程ax2+bx+=0的一个根.a+b+=0D.当x<1时,y随x的增大而减小5.二次函数y=ax2+bx+(a≠0)的图象如图所示,下列结论正确的是()A.a<0B.b2﹣4a<0.当﹣1<x<3时,y>0D.﹣6.若正比例函数y=x(≠0),y随x的增大而减小,则它和二次函数y=x2+的图象大致是()A. B.. D.7.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1B.y=3(x﹣2)2+1.y=3(x+2)2﹣1D.y=3(x+2)2+18.如图是二次函数y=ax2+bx+图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①ab<0;②2a﹣b=0;③4a+2b+<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是()A.①②B.②③.①②④D.②③④二.填空题(共8小题,每题3分)9.在平面直角坐标系中,把抛物线y=﹣ x2+1向上平移3个单位,再向左平移1个单位,则所得抛物线的解析式是_________ .10.已知y=(a+1)x2+ax是二次函数,那么a的取值范围是_________ .11.把抛物线y=x2+4x+5改写成y=(x+h)2+k的形式为_________ ,其顶点坐标为_________12.二次函数y=ax2+bx+的图象如图所示,给出下列结论:①2a+b>0;②b>a>;③若﹣1<<n<1,则+n<﹣;④3|a|+||<2|b|.其中正确的结论是_________ (写出你认为正确的所有结论序号).13.如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为_________ .14.已知二次函数的y=ax2+bx+(a≠0)图象如图所示,有下列5个结论:①ab<0;②b<a+;③4a+2b+>0;④2<3b;⑤a+b<(a+b)(≠1的实数),其中正确结论的番号有_________ .三.解答题(共10小题)15(6分).已知是x的二次函数,求出它的解析式.16.(6分)如果函数y=(﹣3) +x+1是二次函数,求的值.17.(6分)已知二次函数y= .(1)用配方法求出该函数图象的顶点坐标和对称轴;(2)在平面直角坐标系中画出该函数的大致图象.18.(8分)已知(1)把它配方成y=a(x﹣h)2+k形式,写出它的开口方向、顶点的坐标;(2)作出函数图象;(填表描出五个关键点)(3)结合图象回答:当x取何值,y>0,y=0,y<0.19.(8分)已知二次函数y=x2+bx+中函数y与自变量x 之间的部分对应值如下表所示,点A(x1,y1)、B(x2,y2)在函数图象上,当0<x1<1,2<x2<3时,则y1 _________ y2(填“>”或“<”).x…0123…y…1﹣2﹣3﹣2…20.如图,抛物线y=x2+bx+与x轴交于A(﹣1,0)和B(3,0)两点,交y轴于点E.(1)求此抛物线的解析式.(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求△DEF的面积.20(8分).如图,二次函数y=ax2﹣4x+的图象经过坐标原点,与x轴交于点A(﹣4,0).(1)求二次函数的解析式;(2)在抛物线上存在点P,满足S△AP=8,请直接写出点P的坐标.21.(8分)在矩形ABD中,AB=2,AD=3,P是B上的任意一点(P与B、不重合),过点P作AP⊥PE,垂足为P,PE 交D于点E.(1)连接AE,当△APE与△ADE全等时,求BP的长;(2)若设BP为x,E为y,试确定y与x的函数关系式.当x取何值时,y的值最大?最大值是多少?(3)若PE∥BD,试求出此时BP的长.22.(8分)如图,在Rt△AB中,∠=90°,AB=10,A:B=4:3,点P从点A出发沿AB方向向点B运动,速度为1/s,同时点Q从点B出发沿B→→A方向向点A运动,速度为2/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求A、B的长;(2)设点P的运动时间为x(秒),△PBQ的面积为y (2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(3)当点Q在A上运动,使PQ⊥AB时,以点B、P、Q 为定点的三角形与△AB是否相似,请说明理由;(4)当x=5秒时,在直线PQ上是否存在一点,使△B 得周长最小?若存在,求出最小周长;若不存在,请说明理由.23.(10分)如图,抛物线y=x2+bx+过点A(﹣4,﹣3),与y轴交于点B,对称轴是x=﹣3,请解答下列问题:(1)求抛物线的解析式.(2)若和x轴平行的直线与抛物线交于,D两点,点在对称轴左侧,且D=8,求△BD的面积.注:抛物线y=ax2+bx+(a≠0)的对称轴是x=﹣.24.(10分)如图①,已知抛物线y=ax2+bx+经过点A (0,3),B(3,0),(4,3).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).第二十六二次函数末测试(三)参考答案与试题解析一.选择题(共8小题)1.如图,抛物线y=ax2+bx+(a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a﹣b+,则P的取值范围是()A.﹣4<P<0B.﹣4<P<﹣2.﹣2<P<0D.﹣1<P<0考点:二次函数图象与系数的关系.专题:压轴题.分析:求出a>0,b>0,把 x=1代入求出a=2﹣b,b=2﹣a,把x=﹣1代入得出y=a﹣b+=2a﹣4,求出2a﹣4的范围即可.解答:解:∵二次函数的图象开口向上,∴a>0,∵对称轴在y轴的左边,∴﹣<0,∴b>0,∵图象与y轴的交点坐标是(0,﹣2),过(1,0)点,代入得:a+b﹣2=0,∴a=2﹣b,b=2﹣a,∴y=ax2+(2﹣a)x﹣2,把x=﹣1代入得:y=a﹣(2﹣a)﹣2=2a﹣4,∵b>0,∴b=2﹣a>0,∴a<2,∵a>0,∴0<a<2,∴0<2a<4,∴﹣4<2a﹣4<0,即﹣4<P<0,故选A.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,).2.若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx的对称轴为()A.直线x=1B.直线x=﹣2.直线x=﹣1D.直线x=﹣4 考点:二次函数的性质;一次函数图象上点的坐标特征.分析:先将(﹣2,0)代入一次函数解析式y=ax+b,得到﹣2a+b=0,即b=2a,再根据抛物线y=ax2+bx的对称轴为直线x=﹣即可求解.解答:解:∵一次函数y= ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),∴﹣2a+b=0,即b=2a,∴抛物线y=ax2+bx的对称轴为直线x=﹣ =﹣1.故选.点评:本题考查了一次函数图象上点的坐标特征及二次函数的性质,难度适中.用到的知识点:点在函数的图象上,则点的坐标满足函数的解析式;二次函数y=ax2+bx+的对称轴为直线x=﹣.3.二次函数y=x2﹣4x+5的最小值是()A.﹣1B.1.3D.5考点:二次函数的最值.分析:先利用配方法将二次函数的一般式y=x2﹣4x+5变形为顶点式,再根据二次函数的性质即可求出其最小值.解答:解:配方得:y=x2﹣4x+5=x2﹣4x+22+1=(x﹣2)2+1,当x=2时,二次函数y=x2﹣4x+5取得最小值为1.故选B.点评:本题考查了二次函数最值的求法,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.4.已知二次函数y=ax2+bx+(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0B.3是方程ax2+bx+=0的一个根.a+b+=0D.当x<1时,y随x的增大而减小考点:二次函数图象与系数的关系;二次函数的性质.专题:压轴题.分析:根据抛物线的开口方向可得a<0,根据抛物线对称轴可得方程ax2+bx+=0的根为x=﹣1,x=3;根据图象可得x=1时,y>0;根据抛物线可直接得到x<1时,y随x的增大而增大.解答:解:A、因为抛物线开口向下,因此a<0,故此选项错误;B、根据对称轴为x=1,一个交点坐标为(﹣1,0)可得另一个与x轴的交点坐标为(3,0)因此3是方程ax2+bx+=0的一个根,故此选项正确;、把x=1代入二次函数y=ax2+bx+( a≠0)中得:y=a+b+,由图象可得,y>0,故此选项错误;D、当x<1时,y随x的增大而增大,故此选项错误;故选:B.点评:此题主要考查了二次函数图象与系数的关系,关键是从抛物线中的得到正确信息.①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;IaI还可以决定开口大小,IaI越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a 与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项决定抛物线与y轴交点.抛物线与y轴交于(0,).④抛物线与x轴交点个数.△=b2﹣4a>0时,抛物线与x轴有2个交点;△=b2﹣4a=0时,抛物线与x轴有1个交点;△=b2﹣4a<0时,抛物线与x轴没有交点.5.二次函数y=ax2+bx+(a≠0)的图象如图所示,下列结论正确的是()A.a<0B.b2﹣4a<0.当﹣1<x<3时,y>0D.﹣考点:二次函数图象与系数的关系.专题:压轴题;存在型.分析:根据二次函数的图象与系数的关系对各选项进行逐一分析即可.解答:解:A、∵抛物线的开口向上,∴a>0,故本选项错误;B、∵抛物线与x轴有两个不同的交点,∴△=b2﹣4a>0,故本选项错误;、由函数图象可知,当﹣1<x<3时,y<0,故本选项错误;D、∵抛物线与x轴的两个交点分别是(﹣1,0),(3,0),∴对称轴x=﹣ = =1,故本选项正确.故选D.点评:本题考查的是二次函数的图象与系数的关系,能利用数形结合求解是解答此题的关键.6.若正比例函数y=x(≠0),y随x的增大而减小,则它和二次函数y=x2+的图象大致是()A. B.. D.考点:二次函数的图象;正比例函数的图象.专题:压轴题.分析:根据正比例函数图象的性质确定<0,则二次函数y=x2+的图象开口方向向下,且与y轴交于负半轴.解答:解:∵正比例函数y=x(≠0),y随x的增大而减小,∴该正比例函数图象经过第二、四象限,且<0.∴二次函数y=x2+的图象开口方向向下,且与y轴交于负半轴.综上所述,符合题意的只有A选项.故选A.点评:本题考查了二次函数图象、正比例函数图象.利用正比例函数的性质,推知<0是解题的突破口.7.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1B.y=3(x﹣2)2+1.y=3(x+2)2﹣1D.y=3(x+2)2+1考点:二次函数图象与几何变换.专题:压轴题.分析:先求出平移后的抛物线的顶点坐标,再利用顶点式写出抛物线解析式即可.解答:解:抛物线y=3x2向左平移2个单位,再向下平移1个单位后的抛物线顶点坐标为(﹣2,﹣1),所得抛物线为y=3(x+2)2﹣1.故选.点评:本题考查了二次函数图象与几何变换,求出平移后的抛物线的顶点坐标是解题的关键.8.如图是二次函数y=ax2+bx+图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①ab<0;②2a﹣b=0;③4a+2b+<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是()A.①②B.②③.①②④D.②③④考点:二次函数图象与系数的关系.专题:压轴题.分析:根据图象得出a>0,b=2a>0,<0,即可判断①②;把x=2代入抛物线的解析式即可判断③,求出点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),根据当x>﹣1时,y随x的增大而增大即可判断④.解答:解:∵二次函数的图象的开口向上,∴a>0,∵二次函数的图象y轴的交点在y轴的负半轴上,∴<0,∵二次函数图象的对称轴是直线x=﹣1,∴﹣ =﹣1,∴b=2a>0,∴ab<0,∴①正确;2a﹣b=2a﹣2a=0,∴②正确;∵二次函数y=ax2+bx+图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).∴与x轴的另一个交点的坐标是(1,0),∴把x=2代入y=ax2+bx+得:y=4a+2b+>0,∴③错误;∵二次函数y=ax2+bx+图象的对称轴为x=﹣1,∴点(﹣5,y1)关于对称轴的对称点的坐标是(3,y 1),根据当x>﹣1时,y随x的增大而增大,∵<3,∴y2<y1,∴④正确;故选.点评:本题考查了二次函数的图象与系数的关系的应用,题目比较典型,主要考查学生的理解能力和辨析能力.二.填空题(共8小题)9.在平面直角坐标系中,把抛物线y=﹣ x2+1向上平移3个单位,再向左平移1个单位,则所得抛物线的解析式是y=﹣(x+1)2+4 .考点:二次函数图象与几何变换.分析:先求出原抛物线的顶点坐标,再根据向左平移横坐标减,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后写出抛物线解析式即可.解答:解:∵抛物线y=﹣ x2+1的顶点坐标为(0,1),∴向上平移3个单位,再向左平移1个单位后的抛物线的顶点坐标为(﹣1,4),∴所得抛物线的解析式为y=﹣(x+1)2+4.故答案为y=﹣(x+1)2+4.点评:本题主要考查的了二次函数图象与几何变换,利用顶点坐标的平移确定函数图象的平移可以使求解更简便,平移规律“左加右减,上加下减”.10.已知y=(a+1)x2+ax是二次函数,那么a的取值范围是a≠﹣1 .考点:二次函数的定义.分析:根据二次函数的定义条件列出不等式求解即可.解答:解:根据二次函数的定义可得a+1≠0,即a≠﹣1.故a的取值范围是a≠﹣1.点评:本题考查二次函数的定义.11.把抛物线y=x2+4x+5改写成y=(x+h)2+k的形式为顶点式,其顶点坐标为(﹣h,k).考点:二次函数的三种形式.专题:数形结合.分析:从抛物线的一般式到顶点式,则顶点为相应为括号内常数项的相反数为横坐标,最后的常数项即为坐标的纵坐标.解答:解:由题意知顶点式体现顶点坐标,所以填:顶点式,由题意知:坐标为(﹣h,k)故答案为顶点式,(﹣h,k).点评:本题考查了二次函数的顶点式,从抛物线的一般式开始,则顶点式即为括号内横坐标的相反数,纵坐标即为函数的常数项.12.二次函数y=ax2+bx+的图象如图所示,给出下列结论:①2a+b>0;②b>a>;③若﹣1<<n<1,则+n<﹣;④3|a|+||<2|b|.其中正确的结论是①③④(写出你认为正确的所有结论序号).考点:二次函数图象与系数的关系.专题:压轴题.分析:分别根据二次函数开口方向以及对称轴位置和图象与y轴交点得出a,b,的符号,再利用特殊值法分析得出各选项.解答:解:∵抛物线开口向下,∴a<0,∴2a<0,对称轴x=﹣>1,﹣b<2a,∴2a+b>0,故选项①正确;∵﹣b<2a,∴b>﹣2a>0>a,令抛物线解析式为y=﹣ x2+bx﹣,此时a=,欲使抛物线与x轴交点的横坐标分别为和2,则 =﹣,解得:b= ,∴抛物线y=﹣ x2+ x﹣,符合“开口向下,与x轴的一个交点的横坐标在0 与1之间,对称轴在直线x=1右侧”的特点,而此时a=,(其实a >,a<,a=都有可能),故②选项错误;∵﹣1<<n<1,﹣2<+n<2,∴抛物线对称轴为:x=﹣>1,>2,+n ,故选项③正确;当x=1时,a+b+>0,2a+b>0,3a+2b+>0,∴3a+>﹣2b,∴﹣3a﹣<2b,∵a<0,b>0,<0,∴3|a|+||=﹣3a﹣<2b=2|b|,故④选项正确.故答案为:①③④.点评:此题主要考查了二次函数图象与系数的关系,利用特殊值法求出+n的取值范围是解题关键.13.如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为12 .考点:二次函数图象与几何变换.专题:压轴题.分析:根据平移的性质得出四边形APP′A′是平行四边形,进而得出AD,PP′的长,求出面积即可.解答:解:连接AP,A′P′,过点A作AD⊥PP′于点D,由题意可得出:AP∥A′P′,AP=A′P′,∴四边形APP′A′是平行四边形,∵抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3),平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),∴P= =2 ,∠AP=45°,∴PP′= 2 ×2=4 ,∴AD=D= ×3= ,∴抛物线上PA段扫过的区域(阴影部分)的面积为:4 × =12.故答案为:12.点评:此题主要考查了二次函数图象与几何变换以及平行四边形面积求法和勾股定理等知识,根据已知得出AD,PP′是解题关键.14.已知二次函数的y=ax2+bx+(a≠0)图象如图所示,有下列5个结论:①ab<0;②b<a+;③4a+2b+>0;④2<3b;⑤a+b<(a+b)(≠1的实数),其中正确结论的番号有①③④.考点:二次函数图象与系数的关系.专题:压轴题.分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①由图象可知:a<0,b>0,>0,ab<0,故此选项正确;②当x=﹣1时,y=a﹣b+<0,即b>a+,错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+>0,故此选项正确;④当x=3时函数值小于0,y=9a+3b+<0,且x=﹣ =1,即a=﹣,代入得9(﹣)+3b+<0,得2<3b,故此选项正确;⑤当x=1时,y的值最大.此时,y=a+b+,而当x=时,y=a2+b+,所以a+b+>a2+b+,故a+b>a2+b,即a+b>(a+b),故此选项错误.故①③④正确.故答案为:①③④.点评:此题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.三.解答题(共11小题)15.已知是x的二次函数,求出它的解析式.考点:二次函数的定义.分析:根据二次函数的定义列出不等式求解即可.解答:解:根据二次函数的定义可得:2﹣2﹣1=2,且2﹣≠0,解得,=3或=﹣1;当=3时,y=6x2+9;当=﹣1时,y=2x2﹣4x+1;综上所述,该二次函数的解析式为:y=6x2+9或y=2x2﹣4x+1.点评:本题考查二次函数的定义.一般地,形如y=ax2+bx+(a、b、是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、是常量,a是二次项系数,b是一次项系数,是常数项.y=ax2+bx+(a、b、是常数,a≠0)也叫做二次函数的一般形式.16.如果函数y=(﹣3) +x+1是二次函数,求的值.考点:二次函数的定义.专题:计算题.分析:根据二次函数的定义:一般地,形如y=ax2+bx+(a、b、是常数,a≠0)的函数,即可答题.解答:解:根据二次函数的定义:2﹣3+2=2,且﹣3≠0,解得:=0.点评:本题考查了二次函数的定义,属于基础题,比较简单,关键是对二次函数定义的掌握.17.已知二次函数y= .(1)用配方法求出该函数图象的顶点坐标和对称轴;(2)在平面直角坐标系中画出该函数的大致图象.考点:二次函数的图象;二次函数的三种形式.分析:(1)利用配方法求出二次函数的对称轴和顶点坐标即可;(2)把握抛物线与x轴,y轴的交点,顶点坐标,开口方向等画出图象即可.解答:解:(1)y==﹣(x2﹣6x)﹣=﹣(x2﹣6x+9﹣9)﹣=﹣(x﹣3)2+2,故顶点坐标为(3,2)和对称轴为直线x=3;(2)当y=0,则0=﹣(x﹣3 )2+2,解得:x=1或x=5,则图象与x轴的交点坐标为:(1,0),(5,0),当x=0,则y=﹣,则图象与y轴的交点坐标为:(0,﹣),如图所示:.点评:此题主要考查了配方法求二次函数的对称轴和顶点坐标,此题是二次函数的基本性质也是考查重点,同学们应熟练掌握.18.已知(1)把它配方成y=a(x﹣h)2+k形式,写出它的开口方向、顶点的坐标;(2)作出函数图象;(填表描出五个关键点)(3)结合图象回答:当x取何值,y>0,y=0,y<0.考点:二次函数的三种形式;二次函数的图象.分析:(1)根据配方法求出二次函数的对称轴、顶点坐标即可;(2)由坐标轴上点的坐标特点求出函数图象与坐标轴的交点以及(1)中抛物线的顶点坐标及与坐标轴的交点坐标描出各点,画出函数图象;(3)根据(2)中函数图象直接得出结论.解答:解:(1)∵y=﹣ x2+2x+6=﹣(x2﹣4x)+6=﹣(x ﹣2)2+8,∴对称轴是直线x=2,抛物线的顶点坐标为(2,8);(2)令x=0,则y=6;令y=0,则x2+2x﹣3=0,∴抛物线与坐标轴的交点是(0,6),(﹣2,0),(6,0);函数图象如图所示;(3)由函数图象可知,当﹣2<x<6时,y>0;当x=﹣2或6时,y=0,当﹣2>x或x>6时,y<0.点评:本题考查了二次函数的性质、二次函数的图象及二次函数与不等式,在解答此题时要注意利用数形结合求不等式的解集.19.已知二次函数y=x2+bx+中函数y与自变量x之间的部分对应值如下表所示,点A(x1,y1)、B(x2,y2)在函数图象上,当0<x1<1,2<x2<3时,则y1 >y2(填“>”或“<”).x…0123…y…1﹣2﹣3﹣2…考点:二次函数图象上点的坐标特征.分析:由二次函数图象的对称性知,图表可以体现出二次函数 y=ax2+bx+的对称轴和开口方向,然后由二次函数的单调性解答.解答:解:根据图表知,当x=1和x=3时,所对应的y值都是﹣2,∴抛物线的对称轴是直线x=2,又∵当x>2时,y随x的增大而增大;当x<2时,y 随x的增大而减小,∴该二次函数的图象的开口方向是向上;∵0<x1<1,2<x2<3,0<x1<1关于对称轴的对称点在3和4之间,当x>2时,y随x的增大而增大,∴y1>y2,故答案是:y1>y2.点评:本题主要考查了二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能根据二次函数的对称性判断两点的纵坐标的大小是解此题的关键.15.如图,抛物线y=x2+bx+与x轴交于A(﹣1,0)和B(3,0)两点,交y轴于点E.(1)求此抛物线的解析式.(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求△DEF的面积.考点:待定系数法求二次函数解析式;二次函数的性质.分析:(1)利用待定系数法求二次函数解析式即可;(2)首先求出直线与二次函数的交点坐标进而得出E,F点坐标,即可得出△DEF的面积.解答:解:(1)∵抛物线y=x2+bx+与x轴交于A(﹣1,0)和B(3,0)两点,∴,解得:,故抛物线解析式为:y=x2﹣2x﹣3;(2)根据题意得:,解得:,,∴D(4,5),对于直线y=x+1,当x=0时,y=1,∴F(0,1),对于y=x2﹣2x﹣3,当x=0时,y=﹣3,∴E(0,﹣3),∴EF=4,过点D作D⊥y轴于点.∴S△DEF= EF&#8226;D=8.点评:此题主要考查了待定系数法求二次函数解析式以及三角形面积求法等知识,利用数形结合得出D,E,F点坐标是解题关键.20.如图,二次函数y=ax2﹣4x+的图象经过坐标原点,与x轴交于点A(﹣4,0).(1)求二次函数的解析式;(2)在抛物线上存在点P,满足S△AP=8,请直接写出点P的坐标.考点:待定系数法求二次函数解析式;二次函数图象上点的坐标特征.分析:(1)把点A原点的坐标代入函数解析式,利用待定系数法求二次函数解析式解答;(2)根据三角形的面积公式求出点P到A的距离,然后分点P在x轴的上方与下方两种情况解答即可.解答:解:(1)由已知条件得,解得,所以,此二次函数的解析式为y=﹣x2﹣4x;(2)∵点A的坐标为(﹣4,0),∴A=4,设点P到x轴的距离为h,则S△AP= ×4h=8,解得h=4,①当点P在x轴上方时,﹣x2﹣4x=4,解得x=﹣2,所以,点P的坐标为(﹣2,4),②当点P在x轴下方时,﹣x2﹣4x=﹣ 4,解得x1=﹣2+2 ,x2=﹣2﹣2 ,所以,点P的坐标为(﹣2+2 ,﹣4)或(﹣2﹣2 ,﹣4),综上所述,点P的坐标是:(﹣2,4)、(﹣2+2 ,﹣4)、(﹣2﹣2 ,﹣4).点评:本题考查了待定系数法求二次函数解析式,二次函数图象上的点的坐标特征,(2)要注意分点P在x轴的上方与下方两种情况讨论求解.21.在矩形ABD中,AB=2,AD=3,P是B上的任意一点(P与B、不重合),过点P作AP⊥PE,垂足为P,PE交D于点E.(1)连接AE,当△APE与△ADE全等时,求BP的长;(2)若设BP为x,E为y,试确定y与x的函数关系式.当x取何值时,y的值最大?最大值是多少?(3)若PE∥BD,试求出此时BP的长.考点:相似三角形的判定与性质;一元二次方程的应用;二次函数的最值;全等三角形的判定与性质;勾股定理;矩形的性质.专题:代数几何综合题;压轴题.分析:(1)根据全等三角形的对应边相等知AP=AD=3;然后在Rt△ABP中利用勾股定理可以求得BP的长度;(2)根据相似三角形Rt△ABP∽Rt△PE的对应边成比例列出关于x、y的方程,通过二次函数的最值的求法求y 的最大值;(3)如图,连接BD.利用(2)中的函数关系式设BP=x,则E= ,然后根据相似三角形△PE∽△BD的对应边成比例列出关于x的一元二次方程,通过解该方程即可求得此时BP 的长度.解答:解:(1)∵△APE≌△ADE(已知),AD=3(已知),∴AP=AD=3(全等三角形的对应边相等);在Rt△ABP中,BP= = = (勾股定理);(2)∵AP⊥PE(已知),∴∠APB+∠PE=∠PE+∠PE=90°,∴∠APB=∠PE,又∵∠B=∠=90°,∴Rt△ABP∽Rt△PE,∴即(相似三角形的对应边成比例),∴ =∴当x= 时,y有最大值,最大值是;(3)如图,连接BD.设BP=x,∵PE∥BD,∴△PE∽△BD,∴(相似三角形的对应边成比例),即化简得,3x2﹣13x+12=0解得,x1= ,x2=3(不合题意,舍去),∴当BP= 时,PE∥BD.点评:本题综合考查了矩形的性质、勾股定理、二次函数的最值等知识点.本题中求二次函数的最值时,采用了配方法.22.如图,在Rt△AB中,∠=90°,AB=10,A:B=4:3,点P从点A出发沿AB方向向点B运动,速度为1/s,同时点Q从点B出发沿B→→A方向向点A运动,速度为2/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求A、B的长;(2)设点P的运动时间为x(秒),△PBQ的面积为y (2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(3)当点Q在 A上运动,使PQ⊥AB时,以点B、P、Q 为定点的三角形与△AB是否相似,请说明理由;(4)当x=5秒时,在直线PQ上是否存在一点,使△B 得周长最小?若存在,求出最小周长;若不存在,请说明理由.考点:相似三角形的判定与性质;二次函数的最值;勾股定理.专题:压轴题;动点型.分析:(1)由在Rt△AB中,∠=90°,AB=10,A:B=4:3,设A=4y,B=3y,由勾股定理即可求得A、B的长;(2)分别从当点Q在边B上运动时,过点Q作QH⊥AB 于H与当点Q在边A上运动时,过点Q作QH′⊥AB于H′去分析,首先过点Q作AB的垂线,利用相似三角形的性质即可求得△PBQ的底与高,则可求得y与x的函数关系式;(3)由PQ⊥AB,可得△APQ∽△AB,由相似三角形的对应边成比例,求得△PBQ各边的长,根据相似三角形的判定,即可得以点B、P、Q为定点的三角形与△AB不相似;(4)由x=5秒,求得AQ与AP的长,可得PQ是△AB的中位线,即可得PQ是A的垂直平分线,可得当与P重合时△B得周长最小,则可求得最小周长的值.解答:解:(1)设A=4y,B=3y,在Rt△AB中,A2+B2=AB2,即:(4y)2+(3y)2=102,解得:y=2,∴A=8,B=6;(2)①当点Q在边B上运动时,过点Q作QH⊥AB于H,∵AP=x,∴BP=(10﹣x),BQ=2x,∵△QHB∽△AB,∴,∴QH= x,y= BP&#8226;QH= (10﹣x)&#8226; x=﹣ x2+8x(0<x≤3),②当点Q在边A上运动时,过点Q作QH′⊥AB于H′,∵AP=x,∴BP=(10﹣x),AQ=(14﹣2x),∵△AQH′∽△AB,∴,即: = ,解得:QH′= (14﹣2x),∴y= PB&#8226;QH′= (10﹣x)&#8226; (14﹣2x)= x2﹣ x+42(3<x<7);∴y与x的函数关系式为:y= ;(3)∵AP=x,AQ=(14﹣2x),∵PQ⊥AB,∴△APQ∽△AB,∴ = ,即: = ,解得:x= ,PQ= ,∴PB=10﹣x= ,∴ = = ≠,∴当点Q在A上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△AB不相似;(4)存在.理由:∵AQ=14﹣2x=14﹣10=4,AP=x=5,∵A=8,AB=10,∴PQ是△AB的中位线,∴PQ∥B,∴PQ⊥A,∴PQ是A的垂直平分线,∴P=AP=5,∵AP=P,∴AP+BP=AB,∴A+B=AB,∴当点与P重合时,△B的周长最小,∴△B的周长为:B+B+=PB+B+P=5+6+5=16.∴△B的周长最小值为16.点评:本题考查了相似三角形的判定与性质,勾股定理,以及最短距离问题.此题综合性很强,难度较大,解题的关键是方程思想与数形结合思想的应用.23.如图,抛物线y=x2+bx+过点A(﹣4,﹣3),与y 轴交于点B,对称轴是x=﹣3,请解答下列问题:(1)求抛物线的解析式.(2 )若和x轴平行的直线与抛物线交于,D两点,点在对称轴左侧,且D=8,求△BD的面积.注:抛物线y=ax2+bx+(a≠0)的对称轴是x=﹣.考点:待定系数法求二次函数解析式;二次函数的性质.分析:(1)把点A(﹣4,﹣3)代入y=x2+bx+得16﹣4b+=﹣3,根据对称轴是x=﹣3,求出b=6,即可得出答案,(2)根据D∥x轴,得出点与点D关于x=﹣3对称,根据点在对称轴左侧,且D=8,求出点的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BD中D边上的高,即可求出△BD的面积.解答:解:(1)把点A(﹣4,﹣3)代入y=x2+bx+ 得:16﹣4b+=﹣3,﹣4b=﹣19,∵对称轴是x=﹣3,∴﹣ =﹣3,∴b=6,∴=5,∴抛物线的解析式是y=x2+6x+5;(2)∵D∥x轴,∴点与点D关于x=﹣3对称,∵点在对称轴左侧,且D=8,∴点的横坐标为﹣7,∴点的纵坐标为(﹣7)2+6×(﹣7)+5=12,∵点B的坐标为(0,5),∴△BD中D边上的高为12﹣5=7,∴△BD的面积= ×8×7=28.点评:此题考查了待定系数法求二次函数的解析式、二次函数的性质,用到的知识点是二次函数的图象和性质,此题难度适中,注意掌握数形结合思想与方程思想的应用.2.如图①,已知抛物线y=ax2+bx+经过点A(0,3),B(3,0),(4,3).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).考点:待定系数法求二次函数解析式;二次函数的性质;二次函数图象与几何变换.专题:压轴题.分析:(1)把点A、B、代入抛物线解析式y=ax2+bx+利用待定系数法求解即可;(2)把抛物线解析式整理成顶点式形式,然后写出顶点坐标与对称轴即可;(3)根据顶点坐标求出向上平移的距离,再根据阴影部分的面积等于平行四边形的面积,列式进行计算即可得解.解答:解:(1)∵抛物线y=ax2+bx+经过点A(0,3),B(3,0),(4,3),∴,解得,所以抛物线的函数表达式为y=x2﹣4x+3 ;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),对称轴为直线x=2;。

相关文档
最新文档