理论力学 第13章

合集下载

理论力学习题册答案

理论力学习题册答案

理论力学习题册答案班级姓名学号第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体,还适用于变形体。

()2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。

()3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。

()4、凡是受两个力作用的刚体都是二力构件。

()5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。

()二.选择题1、在下述公理、法则、原理中,只适于刚体的有()①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。

未画重力的物体不计自重,所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

(a)球A(b)杆AB- 1 -(c)杆AB、CD、整体(d)杆AB、CD、整体(e)杆AC、CB、整体(f)杆AC、CD、整体四.画出下列图中指定物体受力图。

未画重力的物体不计自重,所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

(a)球A、球B、整体(b)杆BC、杆AC、整体- 2 -班级姓名学号第一章静力学公理与受力分析(2)一.画出下列图中指定物体受力图。

未画重力的物体不计自重,所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

(a)杆AB、BC、整体(c)杆AB、CD、整体CAFAxDBFAyFBWEW(b)杆ABOriginal Figure、BC、轮E、整体FBD of the entire frame(d)杆BC带铰、杆AC、整体- 3 -(e)杆CE、AH、整体(g)杆AB带轮及较A、整体(f)杆AD、杆DB、整体(h)杆AB、AC、AD、整体- 4 -班级姓名学号第二章平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F= - F’,所以力偶的合力等于零。

()2、用解析法求平面汇交力系的合力时,若选用不同的直角坐标系,则所求得的合力不同。

()3、力偶矩就是力偶。

第十三章动量矩定理_理论力学

第十三章动量矩定理_理论力学

式中
分别为作用于质点上的内力和外力。求 n 个方程的矢量和有
式中

于 点的主矩。交换左端求和及求导的次序,有
为作用于系统上的外力系对
令 (13-3)
为质系中各质点的动量对 点之矩的矢量和,或质系动量对于 点的主矩,称为质系对 点的动量矩。由此得
(13-4) 式(13-4)为质系动量矩定理,即:质系对固定点 的动量矩对于时间的一阶导数等于外力 系对同一点的主矩。
设 Q 为体积流量, 为密度, 和 分别为水流进口处和出口处的绝对速度, 和 分别为涡轮外圆和内圆的半径, 为 与涡轮外圆切线的夹角, 为 与涡轮内圆切线的
夹角,则
由动量矩定理 得
为叶片作用于水流上的力矩。若水涡轮共有 个叶片,则水流作用于涡轮的转动力矩为
方向与图示方向相反。 §13-2 刚体绕定轴转动微分方程
解:取两叶片间的水流为研究对象(图 13-4 中的兰色部分)。作用于质系上的的外力有 重力和叶片的约束力,重力平行于 z 轴,对转动轴之矩为零。所以外力主矩为叶片对水流
的约束力对 z 轴之矩 。
计算 时间间隔内动量矩的增量 。设 t 瞬时占据 ABCD 的水流,经过 时间间隔
后,运动至占据
,设流动是稳定的,则

式中

(13-8)

(13-9)
此式称为刚体绕定轴转动的微分方程。
为刚体绕定轴转动的角加速度,所以上式
可写为
(13-10)
1.由于约束力对 z 轴的力矩为零,所以方程中只需考虑主动力的矩。 2.比较刚体绕定轴转动微分方程与刚体平动微分方程,即

形式相似,求解问题的方法和步骤也相似。 转动惯量与质量都是刚体惯性的度量,转动惯量在刚体转动时起作用,质量在刚体平动

《理论力学》第十三章--虚位移试题及答案

《理论力学》第十三章--虚位移试题及答案

理论力学14章作业题解思考题14-1 确定自由度。

解 (a) k=2 ; (b) k=2; (c) 只滚不滑 k=2,又滚又滑 k=314-1 一台秤构造如图。

已知:BC//OD ,且BC=OD ,BC=AB/10。

设秤锤重P 1=10N ,试求秤台上的重物P 2。

解:(1)分析虚位移 秤杆AC 作转动,有10=C A r r d d /。

秤台作平动,有E C r r d d =,故有E C A r r r d d d 1010==。

(2)建立虚位移原理方程1002121=+-=+-E E A r P P r P r P d d d )(故有:01021=+-P P ,N P 1002=。

Cr d Er14-5 OA=l ,OC=R满足的条件。

解: (用虚位移原理求解)(1) 运动分析(虚位移关系分析)A 处虚位移关系用合成运动的理论分析。

A 为动点,OC 为动系。

r e A r r r r r r d d d +=f d d cos A e r r =另外:R r l r C e /d d = (2) 虚功方程fd f f d d d d cos /)cos /(cos /R l F F r R l F F R r l F r F r F r F C C C A C 21212121000==-=-=-14-9 已知:AC=BC=EC=GC=DE=DG=l ,荷载F 2。

求平衡时的F 1。

解 用解析法,1个自由度,选q 为广义坐标。

建立坐标,如图。

(1) 计算虚位移qdqd q qdq d q sin ,cos cos ,sin l y l y l x l x A A D D 2233-====(2) 计算力的投影 2211F F F F x y -=-= , (3) 建立虚位移原理方程qqdq q q d d sin cos )cos sin (230320212121F F l F l F x F y F D x A y ==×-×=+Oxy14-12 F=4kN, AO=OE=5m. 求D 解:(1) 接触D 处水平约束,代之约束力。

13.2转动惯量(重庆大学土木理论力学课件)解析

13.2转动惯量(重庆大学土木理论力学课件)解析

3、性质
转动惯量的性质与刚体的质量以及质量相对于转动
轴的分布状况有关。
4、单位:kg·m2;kg·cm2
若单位制不同,则Jz的单位不同, 为了避免不同的单位制引起错误, 也为了便于记忆,将 Jz /m,就变 成只与长度有关的量(而各单位制
z
zi
xi x
mi
yi y
中长度都是基本量)因此就可统一 表示。
J z' mi[xi2 ( yi d )2 ]
mi (xi2 yi2) ( mi )d 2 2d mi yi
mi m , mi yi myC 0
J z' J zC md 2
刚体对通过质心轴的转动惯量具有最小值。
推论: J z J zC md 2
m
对于均质物体,其密度r为常量,如以V表示物体 的体积,则有,
Jz

r 2dV
V
m V
r 2dV
V
7、常见情形
①均质等截面细直杆对于通过中点且与杆垂直的y轴的转动惯 量。
Jz

m V
r2dV m
V
Al
r2 Adr
V
m 0.5l r2dr 1 ml2
l 0.5l
由式(13-5)可知,在所有相互平行的轴中,物 体对于通过其质心的轴的转动惯量为最小。
例如,均质等截面细 直杆对于通过杆端且 与杆垂直的z′轴的 转动惯量为:
J z

J zC

md 2

1 12
ml 2

m( l )2 2

1 3
ml 2
z 0.577l
3、其他方法

理论力学-第13章 动力学普遍方程和第二类拉格朗日方程

理论力学-第13章 动力学普遍方程和第二类拉格朗日方程
需要指出的是,上述各式适用于任何理想、双侧约束系统, 不论约束是否完整、是否定常,也不论作用力是否有势。
*第13章 动力学普遍方程和第二类拉格朗日方程
第二类拉格朗日方程
返回
第二类拉格朗日方程
在动力学普遍方程中,由于系统存在约束,一般情形下,各 质点的虚位移并不完全独立,应用时须建立各虚位移与广义坐标 之间的关系。
第二类拉格朗日方程
N
(Qk Qk*) δ qk 0
k 1
其中Qk为对应于广义所标qk的广义力(generalized forces); Qk*为广义惯性力(generalized inertia forces)
Qk
n i 1
Fi
ri qk
Qk*
n i 1
miai
ri qk
由于在完整约束下,δq1, δq2,…, δqN 相互独立,
Qk*
n i 1
miri
ri qk
d dt
n
(
i 1
miri
ri qk
)
n i 1
miri
d dt
( ri qk
)
d dt
n i1
mi
ri
ri qk
n i1
mi
ri
ri qk
d dt
qk
n
(
i 1
1 2
miri2 )
qk
n
(
i 1
1 2
miri2 )
d dt
(
T qk
理论力学
第3篇 工程动力学基础
第3篇 工程动力学基础
*第13章 动力学普遍方程 和第二类拉格朗日方程
*第13章 动力学普遍方程和第二类拉格朗日方程

理论力学第13章动能定理

理论力学第13章动能定理
详细描述
在理论力学中,动能被定义为物体运动时的能量,其大小与物体的质量和速度有关。根据牛顿第二定律,物体的动量改变量等于作用在物体上的外力的冲量。因此,如果一个力在一段时间内作用在一个物体上,那么这个力就会使物体的动量发生改变,从而产生动能的变化。
动能的定义
外力的功
外力的功等于力的大小与物体在力的方向上发生的位移的乘积。
总结词
外力的功是指力对物体运动所产生的效应,其大小等于力的大小与物体在力的方向上发生的位移的乘积。这是物理学中功的定义,也是计算外力对物体所做功的基本方法。
详细描述
VS
系统动能的增量等于合外力对系统所做的功。
详细描述
系统动能的增量是指在一个过程中,系统动能的增加量。这个增量可以通过计算合外力对系统所做的功来得到。如果合外力对系统做正功,则系统动能增加;如果合外力对系统做负功,则系统动能减少。因此,系统动能的增量与合外力对系统所做的功有直接的关系。
总结词
系统动能的增量
03
CHAPTER
动能定理的应用
适用于单个质点在力的作用下运动的情况,计算质点的动能变化。
单个质点的动能定理指出,质点在力的作用下运动时,外力对质点所做的功等于质点动能的增量。这个定理是理论力学中研究质点运动的基本定理之一,可以用来解决各种实际问题。
总结词
详细描述
单个质点的动能定理
动能定理是能量守恒定律在动力学中的具体表现,是解决动力学问题的有力工具。
动能定理适用于一切宏观低速的物体,对于微观、高速适用于狭义相对论。
动能定理适用于直线运动,对于曲线运动需要积分形式进行处理。
动能定理的适用范围
02
CHAPTER
动能定理的基本内容
总结词

理论力学练习册及答案

理论力学练习册及答案
8-7.四杆机构中,曲柄OA以匀角速度ω0=25 rad/s绕O轴转动,OA=50 cm,AB=100 cm,O1B= cm。求∠OAB=900时,B点的加速度,摇臂O1B的角速度和角加速度。
8-8.图示机构中,设当OA与水平线成450角的瞬时,曲柄OA有反时针方向的匀角速度ω=25 rad/s,连杆AB水平,扇形板BD铅垂。求扇形板绕定轴D转动的角加速度ε。
解:将力系向A点简化,并过A点建立如图所示坐标系。
由矢量式可得力系简化的最终结果为力螺旋,
作用点为:
3-2.已知A(1,0,1),B(0,1,2)(长度单位为米),F= kN。求力F对x、y、z轴的矩?
解:
3-3.如图所示,长方体边长为a、b、c,力F沿BD,试计算力F对AC轴之矩MAC(F)
解:力F对C点的矩为:
4-3.置于铅垂面内的均质正方形簿板重P= 100kN,与地面间的摩擦系数f= 0.5,欲使簿板静止不动,求作用在点A的力F的最大值?
4-4.折梯放在水平地面上,其两脚与地面的摩擦系数分别为fA= 0.2,fB= 0.6,折梯一边AC的中点D上有一重为P= 500N的重物,折梯重量不计,问折梯能否平衡?如果折梯平衡。试求出两脚与地面间的摩擦力。
第六章 刚体基本运动
6-1.在如图所示中,已知ω、。在图上标示出A、B两的速度、加速度。
6-2.在如图所示的平面机构中,半径为r的半圆盘在A和B处与杆铰接,已知 , ,曲柄O1A以匀角速度ω转动。求图示瞬时圆盘上M点的速度和加速度。
6-3.在如图所示的平面机构中,齿轮1紧固在杆AC上, ,齿轮1与半径为r2的齿轮2啮合,齿轮2可绕O2轴转动,。设 , ,试确定 时,轮2的角速度和角加速度。
解:动点取曲柄OA上A点,

理论力学(机械工业出版社)第十三章达朗伯原理习题解答

理论力学(机械工业出版社)第十三章达朗伯原理习题解答

习 题13-1 如图13-16所示,一飞机以匀加速度a 沿与水平线成仰角b 的方向作直线运动。

已知装在飞机上的单摆的悬线与铅垂线所成的偏角为f ,摆锤的质量为m 。

试求此时飞机的加速度a 和悬线中的张力F T 。

图13-16ma F =I 0cos sin 0I T =-=∑βϕF F F xϕβsin cos IT F F =0sin cos 0I T =--=∑mg F F F y βϕ0sin cos sin cos I I =--mg F F βϕϕβ0sin )cos(I=-+mg F ϕβϕ mgma=+ϕβϕsin )cos()cos(sin βϕϕ+=g amg maF F )cos(cos sin cos sin cos I T βϕβϕβϕβ+===13-2 球磨机的简图如图13-17所示,滚筒作匀速转动,内装钢球及被粉碎的原料,当钢球随滚筒转到某一角度f 时,将脱离筒壁作抛射运动,由于钢球的撞击,从而破碎与研磨原料。

已知钢球脱离筒壁的最佳位置'4054︒=ϕ,滚筒半径R =0.6m 。

试求使钢球在'4054︒=ϕ处脱离滚筒的滚筒转速。

图13-172n I ωmR ma F == 0cos 0I N n =-+=∑F mg F F ϕ)cos (cos cos 22I N ϕωϕωϕg R m mg mR mg F F -=-=-=令0N =F0cos 2=-ϕωg RR g ϕωcos =min r/35.296.00454cos 8.9π30cos π30π30='︒⨯===R g n ϕω13-3 一质量为m 的物块A 放在匀速转动的水平转台上,如图13-18所示。

已知物块的重心距转轴的距离为r ,物块与台面之间的静摩擦因数为s μ。

试求物块不致因转台旋转而滑出时水平转台的最大转速。

图13-182n I ωmr ma F == 00N =-=∑mg F F ymg F =N00I =-=∑F F F x0N s 2=-F mr μω 0s 2=-mg mr μωrgs μω=rgn s max π30π30μω==13-4 离心调速器的主轴以匀角速度w 转动,如图13-19所示。

山东大学《理论力学》教案第13章 动能定理

山东大学《理论力学》教案第13章  动能定理

第13章 动能定理一、目的要求1.对功和功率的概念有清晰的理解,能熟练地计算重力、弹性力和力矩的功。

2.能熟练地计算平动刚体、定轴转动刚体和平面运动刚体的动能,重力和弹性力的势能。

3.熟知何种约束反力的功为零,何种内力的功之和为零。

4.能熟练地应用动能定理和机械能守恒定律解动力学问题。

5.能熟练地应用动力学基本定理解动力学的综合问题。

二、基本内容1.基本概念力的功;质点和质点系的动能;动能定理;功率、功率方程、机械效率;势力场、势能、机械能守恒定律;动力学基本定理的综合应用。

2.主要公式微分形式 ∑==ni Fi W dT 1δ积分形式 ∑=-Fi W T T 12具有理想约束的质点系,其动能的改变(增量或对时间的一阶导数),等于作用于质点系的主动力的元功之和;在理想的约束条件下,质点系在某一段运动过程中起点和终点的动能改变量,等于作用于质点系的主动力在这段过程中所作的功的和。

三、重点和难点1.重点:(1)力的功和物体动能的计算。

(2)动能定理和机械能守恒定律的应用。

(3)动力学基本定理的综合问题。

2.难点:综合应用动力学基本定理求解动力学问题,运动学补充条件(方程)的提出。

四、教学建议1.教学提示(1)讲清力的功的一般形式,反复练习重力的功、弹性力的功和力矩的功的计算,搞清圆轮纯滚时摩擦力为什么不作功。

(2)在复习物理课程有关内容的基础上,熟练计算刚体系统的动能,强调动能表达式中的速度(角速度)一定用绝对速度(绝对角速度);反复练习取整体为研究对象,用动能定理求运动的问题;强调用动能定理的积分形式可求解任何运动问题;强调用动能定理解题是以整体为研究对象。

(3)讲清动量、动量矩定理与动能定理的异同点。

通过练习,明确各定理适合求解的问题及解题特点。

(4)本章重点是动力学基本定理的综合应用,要多举各种类型的例子,把握“先求运动后求力”的解题思路,使学生熟练掌握。

强调求运动,可用动能定理,求力可用动量定理(质心运动定理)或达朗伯原理。

理论力学第三版课后答案郝桐生

理论力学第三版课后答案郝桐生

理论力学第三版课后答案郝桐生【篇一:理论力学a72】txt>课程编号: 070000140英文名称: theoretical mechanics适用专业:力学、机械类专业等学分数: 4.5 学时数: 72学时执笔者:王钦亭审核人:批准人:编写日期: 2013年6月一、课程性质与目的理论力学是工科高等院校机械、土建等专业本科生的一门重要的技术基础课。

它是各门力学课的基础,并在工程技术领域有着广泛的应用。

本课程的任务是使学生掌握物体机械运动的一般规律和研究方法,为学习有关的后续课程打好力学基础;使学生初步学会应用理论力学的理论和方法,分析、解决一些简单的工程实际问题;培养学生的逻辑思维能力和基本工程素质,同时培养学生的创新精神和辩证唯物主义世界观。

二、课程教学的主要内容及学时分配本课程主要讲述物体机械运动的一般规律,包括静力学、运动学和动力学三个主要部分。

本课程的难点是某些较为复杂的动力学系统问题。

重点是力学分析方法的训练和基本工程素质的培养。

静力学(24学时)第一章静力学公理及物体的受力分析(4学时)知识要点:静力学公理及推论;常见约束及约束反力的表示方法,物体受力分析与受力图的画法。

目标要求:理解5个静力学公理及2个推论,并注意它们各自的应用条件;掌握常见约束的性质和约束反力,能够对简单物体进行受力分析,掌握受力图的画法。

采用课堂教学,4学时。

第二章平面汇交力系与平面力偶系(4学时)目标要求:掌握求解平面汇交力系(包括力系合成和平衡问题的求解)的几何法;能熟练计算力的投影、力对点之矩;能够正确地理解合力矩定理和平面力偶等效定理;能够熟练应用平面汇交力系的解析法或平面力偶系的平衡方程求解简单的工程实际问题。

采用课堂教学,4学时。

第三章平面任意力系(8学时)知识要点:用解析方法研究平面任意力系的合成与平衡;讨论平面任意力系的合成结果与平衡条件;应用平面任意力系的平衡方程求解简单的工程实际问题。

理论力学试题库-计算题第13章

理论力学试题库-计算题第13章

理论力学试题库题型:A填空题,B选择题,C简答题,D判断题,E计算题,F综合题,G作图题。

编号E04001中,E表示计算题,04表示内容的章节号即题目内容属于第04章,001表示章节题号的序号,即此题是第04章计算题的001号题。

计算题:13:E13001. (10分)如图E13001所示长方形均质平板,质量为27kg,由两个销A 和B悬挂。

如果突然撤去销B,求在突然去销B的瞬时平板的角速度和销A的约束力。

图E13001E13002. (10分)如图E13002所示,由相互铰接的水平臂连成的传送带将圆柱零件从一个高度传送至另一个高度。

设零件与臂之间的摩擦系数fs=0.2。

求(1)降落加速度a多大时零件不致于在水平臂滑动;(2)在此加速度a下,比值h/d 等于多少时零件在滑动之前先倾倒。

图E13002E13003.(10分)图示由相互铰接的水平臂连成的传送带,将圆柱形零件从一高度传送到另一个高度。

设零件与臂之间的摩擦因数fs=0.2。

求:(1)降落加速度a为多大时,零件不致在水平臂上滑动;(2)在此加速度a下,比值h/d等于多少时,零件在滑动之前先倾倒。

图E13003E13004.(10分)图示汽车总质量为m,以加速度a作水平直线运动。

汽车质心G离地面的高度为h,汽车的前后轴到通过质心垂线的距离分别等于c和b。

求其前后轮的正压力;又,汽车应如何行驶能使前后轮的压力相等?图E13004E13005.(10分)图示均质矩形块质量,置于平台车上,车质量,此车沿光滑的水平面运动,不计定滑轮质量。

车和矩形块在一起由质量为的物体牵引,使之作加速运动。

设物块与车之间的摩擦力足够阻止相互滑动,求能够使车加速运动的质量的最大值,以及此时车的加速度大小。

图E13005E13006.(10分)调速器由两个质量为的均质圆盘构成,圆盘偏心地铰接于距转轴为a 的A,B两点。

调速器以等角速度绕铅垂轴转动,圆盘中心到悬挂点的距离为l。

《理论力学》第13章教案

《理论力学》第13章教案

四川理工学院理论力学教课设计讲课教师课程名称课程种类课程教课梁智权开课系讲课系理论力学专业及班级必修课(√)选修课()机电工程系开课学期0708 学年第 1 学期机械设计及自动化专业20XX 级 01班机械设计及自动化专业20XX 级 02班机械设计及自动化专业20XX 级 10班机械设计及自动化专业20XX 级 11 班查核方式考试(√)考察()总学时数学时分派教材名称参照书目章节名称讲课类型教课目标及要求72学分数 4.5理论课 70学时;实践课 2 学时作者第一版社及第一版时间理论力学哈尔滨工业大学高等教育第一版社理论力学教研室20XX 年第 6 版书名作者第一版社及第一版时间理论力学范钦珊,刘燕,王琪清华大学第一版社20XX 年第 1 版理论力学洪嘉振,杨长俊高等教育第一版社20XX 年第 2 版理论力学,上册,中册清华大学高等教育第一版社理论力学教研组1994 年第 4 版第 13章动能定理13-1力的功 / 13-2质点和质点系的动能13-3动能定理 / 13-4功率·功率方程·机械效率13-5权力场·势能·机械能守恒定律13-6广泛定理的综合应用举例理论课(√);实验课()教课时数6(1)能够娴熟计算重力的功、弹性力的功、定轴转动刚体上作使劲的功、平面运动刚体上力系的功。

(2)掌握计算质点的动能和质点系的动能(平移刚体的动能、定轴转动刚体的动能、平面运动刚体的动能)的方法。

(3)掌握质点的动能定理和质点系的动能定理,能够应用动能定理解题,熟习应用动能定理解题的步骤。

(4)掌握功率的观点,能够应用功率方程计算机械效率。

(5)能够计算重力场中的势能、弹性力场中的势能、万有引力场中的势能。

(6)掌握机械能守恒定律及应用机械能守恒定律解题的步骤。

(7)能够联合运用质点和质点系的广泛定理(动量定理、动量矩定理和动能定理)求解比较复杂的问题。

教课内容概要能量变换与功之间的关系是自然界中各样形式运动的广泛规律,在机械运动中则表现为动能定理。

理论力学哈工大第八版答案

理论力学哈工大第八版答案

哈尔滨工业大学理论力学教研室理论力学(I)第8版习题答案《理论力学(1 第8版)/“十二五”普通高等教育本科国家级规划教材》第1版至第7版受到广大教师和学生的欢迎。

第8版仍保持前7版理论严谨、逻辑清晰、由浅入深、宜于教学的风格体系,对部分内容进行了修改和修正,适当增加了综合性例题,并增删了一定数量的习题。

本书内容包括静力学(含静力学公理和物体的受力分析、平面力系、空间力系、摩擦),运动学(含点的运动学、刚体的简单运动、点的合成运动、刚体的平面运动),动力学(含质点动力学的基本方程、动量定理、动量矩定理、动能定理、达朗贝尔原理、虚位移原理)。

本书可作为高等学校工科机械、土建、水利、航空、航天等专业理论力学课程的教材,也可作为高职高理论力学(I)第8版哈尔滨工业大学理论力学教研室习题答案专、成人高校相应专业的自学和函授教材,亦可供有关工程技术人员参考。

本书配套的有《理论力学学习辅导》、《理论力学(I)第8版哈尔滨工业大学理论力学教研室习题答案理论力学思考题集》、《理论力学解题指导及习题集》(第3版)、《理论力学电子教案》、《理论力学网络课程》、《理论力学习题解答》、《理论力学网上作业与查询系统》等。

理论力学(I)第8版哈尔滨工业大学理论力学教研室课后答案前辅文静力学关注网页底部或者侧栏二维码回复理论力学(I)第8版答案免费获取答案引言第一章静力学公理哈尔滨工业大学理论力学教研室理论力学(I)第8版课后答案理论力学思考题集》、《理论力学解题指导及习题集》(第3版)、《理论力学电子教案》、《理论力学网络课程》、《理论力学习题解答》、《理论力学网上作业与查询系统》等。

理论力学(I)第8版哈尔滨工业大学理论力学教研室课后答案前辅文静力学引言第一章静力学公理和物体的受力分析第二章平面力系第三章空间力系第四章摩擦理论力学(I)第8版哈尔滨工业大学理论力学教研室习题答案§4-4 滚动摩阻的概念运动学引言第五章点的运动学*§5-5 点的速度和加速度在球坐标中的投影思考题习题第六章刚体的简单运动§6-1 刚体的平行移动§6-2 刚体绕定轴的转动§6-3 转动刚体内各点的速度和加速度§6-4 轮系的传动比§6-5 以矢量表示角速度和角加速度·以矢积表示点的速度和加速度思考题习题第七章点的合成运动第八章刚体的平面运动动力学引言第九章质点动力学的基本方程第十章动量定理第十一章动量矩定理第十二章动能定理第十三章达朗贝尔原理第十四章虚位移原理参考文献习题答案索引Synopsis哈尔滨工业大学理论力学教研室理论力学(I)第8版课后答案第十四章虚位移原理。

华北电力大学课件理论力学第13章机械振动基础

华北电力大学课件理论力学第13章机械振动基础

所作的振动。
的振动。行驶在公路上的汽车的振动。
自激振动
系统包含有补充能量的能源。演奏提琴
系统受到由其自身运动诱发出 来的激励作用而产生和维持的 振动。
所发出的乐声, 是琴弦作自激振动所致。 车床切削加工时在某种切削用量下所发 生的激烈的高频振动, 架空电缆在风作 用下所发生的与风向垂直的上下振动以
及飞机机翼的颤振等。
3 W (R r)2 W (R r) 0
系统动能
T
1 2
I A 2
1 (1 W r 2 W r 2 )( R r )2
2g 2g 0
3(R r)
2 2g g
r
2g
3 W (R r)2 2 4g
n 3(R r)
2024/2/16
理论力学
23
弹簧串并联
1.并联弹簧
参数振动
激励因素以系统本身的参数随 时间变化的形式出现的振动。
秋千在初始小摆角下被越荡越高,受到 的激励以摆长随时间变化的形式出现, 摆长的变化由人体的下蹲及站直造成。
2024/2/16
理论力学
3
13.1.2. 简谐振动
1. 表示 x(t) Asin(t )
2. 三要素 A 振幅
圆频率( 2 f ) 初相角
x2 b sin(t ) 为特解
b
n2
h
2
,
x2
n2
h
2
s
in(t
)
全解为:
x
As
in(
n
t
)
2 n
h
2
sin(t
)
三、稳态强迫振动的主要特性: 稳态强迫振动
1、在简谐激振力下,单自由度系统强迫振动亦为简谐振动。

理论力学(第2版)习题答案

理论力学(第2版)习题答案

各章习题(计算题)部分答案第1章 略 第2章2-1 R 3284kN F .=,R cos()2063,.=︒F i ,R cos()1163,.=︒F j 2-2 3162kN T .=,30β=︒ 2-3 482.α=︒,R 496kN x F .= 2-4 11866N 50N x y F .F ==,2230N 40N x y F F ==-, 330N 60N x y F F ==, 44566N 566N x y F .F .==, 2-5 R 0F =2-6(a) 707kN 354kN 354kN Ax Ay B F .F .F .===,,(b) 05kN 5kN Ax Ay B F F F ===,,(c) 933kN 433kN 612kN Ax Ay B F .F .F .===,,(垂直于支撑面,指向简支梁) 2-7 min 15kN F =,N 25kN F =2-8 0866kN 05kN 1kN Ax Ay BD F .F .T ===,, 2-9 N N 1732kN 3464kN 15m A C F .F .AC .===,, 2-10 03436kN AB AC F F .==,2-11 BC F =,Ax F =,Ay F G = 2-12 N 65EF G F =+2-13 N N C D F F =2-14 231N 1155N 231N 845N AB AE BC BD F F .F F .====,,,2-15 (a) 33PF P F B Ay =-=,(b) P F F B A 32== (A F ,B F 方向相反,组成一力偶) (c) 0==B A F F2-16 1F,AB F,OA F =,7kN BC F =- 2-17 1905N 1905N 1905N 1905N Ax Ay Cx Cy F F F F =-===-,,, 2-18 3571N 3571N 3571N 3571N Ax Ay Cx Cy F F F F ==-=-=,,,·312··312·2-19 24kN m M =⋅,1155kN A B F F .== 第3章3-1 2400N Ax F =,1200N Ay F =,8485N BC F .= 3-2 R 0F'=,260N m O M =⋅ 3-3 (a) R F'qa =,221qa M O = (b) R12F'ql =,21ql q M O = 3-4(a) Ax F =,40kN Ay F =,120kN m A M =⋅,N C F = (b) 0=AxF ,25kN Ay F .=-,15kN By F =,D 25kN y F .=3-5 当60α=︒时,min 4AB PrF L= 3-6 0=Ax F ,qa F Ay2=,2qa M A =3-7 (a)2400N Ax F =,1000N Ay F =-,2400N Dx F =-,2000N Dy F = (b)2400N Ax F =-,1000N Ay F =-,2400N Dx F =,2000N Dy F =3-8 Ax F =,Ay F =,Bx F =,By F =3-9 rPLF Ax 2-=,P F Ay =,r PL F Bx 2=,P F By =,r PL F D 2=,P F C 2=3-10 R 32E F qa =-,qa F BD 22= 3-11 23kN Ax Cx F F .=-=-,1kN Ay Cy F F == 3-12 3PF AC -=,0=EF F ,32P F BD -= 3-13 2F F BC=,2F F DE = 第4章4-1 T 20kN F =,104kN OA F .=-,139kN OB F .=- 4-2 254kN m x M .=⋅,146kN m y M .=⋅,0=z M 4-3 0)(=P z M4-4 θαsin sin )(Pa M AB =P 4-5 3C A B WT T T ===4-6 1kN T =,0=Ax F ,750N Ay F =-,500N Az F =-,433N Bx F =,500N BZ F = 4-7 F F F -==61,F F =3,0542===F F F·313··313·4-8 321M a cM a b M +=,a M F Ay 3=,a M F Az 2=,0=Dx F ,a M F Dy 3-=,aM F Dz 2-= 4-9 4kN Ax F =,146kN Az F .=-,79kN Bx F .=,29kN Bz F .=-4-10 5kN Ox F =-,4kN Oy F =-,8kN Oz F =,32kN m Ox M =⋅,30kN m Oy M =-⋅,20kN m Oz M =⋅4-11 (a ) 10412kN N F .=,20213kN N F .=,30375kN N F .= 4-12 )(22221221r r r r x C --=,0=C y4-13 (a ) 589mm C x .=-,0=C y (b ) 797mm C x .=,349mm C y .= 4-14 )(22221221r r r r x C --=,0=C y4-15 0Ax F =,121(P )2Ay F P =-+,21P 2Az P F =+,0Cx F =,0Cy F =,22Cz P F =第5章5-1 min F =,s arctan f α= 5-2 )()m m sin +cos -P F αϕθϕ=,m θϕ=5-3 (1) A 先滑动,(2) A 、B 一起滑动 5-4 能保持平衡,S 201N F = 5-5 223.0=f5-6 3πarcsin 43πff α=+5-7 1s sin cos P F f αα=-,2s sin cos PF f αα=+,故21F F >5-8 min 845kN Q .= 5-9 435N P .=5-10 θ≤9926.︒5-11 120cm x >5-12 s 2(sin cos )Q R f L αα⋅+≤P ≤s 2(sin cos )Q Rf L αα⋅-5-13 min 1475N P .=5-14 4961N m .⋅≤C M ≤7039N m .⋅ 5-15 11cm b <5-16s s sin cos cos sin f Q f αααα-+≤P ≤s s sin cos cos sin f Q f αααα+- 5-17 arc ϕ=·314··314·5-18 500N P = 5-19 s f ≥15.0 5-20 75mm b .< 第6章6-1 (cos sin )x v lk kt kt =-,(cos sin )y v lk kt kt =-+; )sin (cos 2kt kt lk a x +-=,)sin (cos 2kt kt lk a y --= 6-2 (1) 0=s ;v R ω=;0a τ=,2n a R ω=(2) R s 23=;12v R ω=;2a ωτ=,2n 14a R ω= (3) R s =;0v =;2a R ωτ=-,n 0a =6-3 直角坐标法:t R x ω2cos =,t R y ω2sin =;2sin2x v R t ωω=-,2cos2y v R t ωω=; t R a x ωω2cos 42-=,t R a y ωω2sin 42-=自然坐标法:t R s ω2=;2v R ω=;0a τ=,2n 4a R ω= 6-4 ()sin M x l b t ω=+,()cos M y l b t ω=-;22221()()M M x y l b l b +=+-6.52222()1()x a y b l l-+=+6-6 22)sin (cos h t r l t r x B +-+=ωω,h y B -=6-7v =322xb u a -= 6-8 )cos sin arctan(00tr h tr ωωθ-=6-9 当0s t =时,157cm s M v ./=;0M a τ=,n2617cm s M a ./=当2s t =时,0M v =;2123cm s M a ./τ=-,n0M a =6-10 C x =C y =2C avv l=6-11 t e R t e y ωω222cos sin -+=;[cos v e t ωω=6-12 02cos4m x .t =;0566m s v ./=-;22263m s a ./=-6-13 0arctan rad v tbϕ=;02220rad s bv /b v t ω=+6-14 225t =ϕ;120m s v /=;236000m s n a /= 6-15 8rad s /ω=;2384rad s ./ε=-6-16 转轴O 的位置位于正方形的中心;1rad s /ω=,21rad s /ε=6-17 12C v r ω=;n 214C a r ω=,12C a r ετ=·315··315·6-18 12m s M v ./=;n 272m s M a ./=,206m s M a ./τ= 6-19 0377m s C v ./=6-20 2225000rad s /dεπ=;25922m s a ./= 6-21 32rad .ϕ=6-22 12mm h =6-23 02=ω,222r lb ωε-=6-24 02m s AB v ./=,2005m s AB a ./=;02m s C v ./=,n 20267m s C a ./=,2005m s C a ./τ=6-25 2012ωr a =,方向沿1AO ;2024ωr a =,指向轮心第7章7-1 x'vt =,cos()a kt y'ϕ=+,轨迹方程为cos()ky'a x'vϕ=+ 7-2 2cos M v R ωϕ=,方向水平向左 7-3 (a )2309rad s ./ω=; (b )2182rad s ./ω=7-4 (1)34OC v b ω=,34C lv v b=;(2)234K v a b = 7-5 当0ϕ︒=时,0v =;当30ϕ=︒时,100cm s v /=,向右;当90ϕ︒=时,200cm s v /=,向右7-6 126m s BC v ./=;2274m s BC a ./= 7-7 10cm s CD v /=;2346cm s CD a ./= 7-8 a a =7-9 3v ω=,方向向上7-10 1.732rad /s ω=,28.66rad /s ε=- 7-11 0.173m /s v =,20.05m /s a = 7-12 0.173m /s M v =,20.35m/s M a =7-13 πcos 15sin BC nr v αβ=7-14 23CD r v ω=;29310ωr a C D =7-15 a 3465mm s v ./=;21400mm s CD a /=第8章8-1 122v v r ω-=,122O v v v +=8-2 156cm s C v ./=,17cm s D v /=·316··316·8-3 877cm s C v ./=8-4 375rad s OB ./ω=,I 6rad s /ω=8-5 600mm s A v /=,200mm s B v /=,s C v /=;4rad s 3ABC /ω=,05rad s BD ./ω= 8-6 2rad s AB /ω=,2578rad s AB ./ε=-;667rad s BC ./ω=-,21926rad s BC ./ε=8-7 2()C A Rv a R r r=-,2Bx C a a τ=,2(2)()C By R r v a R r r -=- 8-8 2022ωr a B =,20211ωε=B O 8-9 032C v r ω=,20123ωr a C =8-10 01.15v l ω=8-11 16186rad s O C ./ω=,127817rad s O C ./ε=-8-12 s CD v /=,22m s 3CD a /= 8-13 n 2400cm s B a /=,21705cm s B a ./τ=-,21705cm s C a ./=-8-14 34e OC v v OB b ω==,OC ε=;12E v v =,E a = 8-15 21960mm s B a /=,298rad s AB ./ε=8-160C v ω,方向向左;rR B O 01ωω=,逆时针转向8-17 22()C Rv a R r =-,B a =8-18 n 202B a a ω=,2002)B a a ετ=-8-19 330ωω=B ;209)349(10ω+-=B a 8-20 2m s B v /=,2828m s C v ./=,28m s B a /=,21131m s C a ./= 第9章9-1 rgf=max ω 9-2 min 67r min n /=9-3 1v =9-4 0cos cos sin v x b kt kt k α=+,0sin sin vy kt kα=9-5 0cos x v t α=,201sin 2y v t gt α=+·317··317·9-6 0(1e )kt v s k-=- 9-7 202s t .=,707m s .= 9-8 172N F .=9-9 )(22g a amL F AC +=ω,)(22g a a mL F BC -=ω9-10 max 584kN F .=,min 536kN F .=9-11 g f f a ααααsin cos cos sin -+=,N cos sin W F f αα=- 9-12 )cos 1(200t m F t x ωωυ-+=第10章10-1 (a ) 12p mL ω=,方向水平向右;(b ) p mR ω=,方向水平向右;(c ) p me ω=,方向垂直于OC 的连线;(d ) C p mv =,方向水平向右10-2 30N x F =10-3 11221022a gP P P P F -++= 10-4 11r 12m v v v m m =++10-5 0(sin cos )v t g f'αα=-10-6 12(54)2l p m m ω=+,方向与曲柄垂直且向上 10-7 t m m l m x m m kx ωωsin 1211+=++10-8 2R s =10-9 (1) 3123123(22)cos ,2()C P L P P P L tx P P P ω+++=++ (2) 12123(2)sin ;2()C P P L t y P P P ω+=++2321max 222ωL gP P P F Ox ++=10-10 椭圆 2224l y x =+10-11 (1) 2sin G Wx l t P W Gω+=++ (2) 2m a x 2x G W F l g ω+=10-12 向右移377cm . 10-13 33(sin )cos ox R F m g m a r θθ=+,1233()(sin )sin oy RF m g m g a m g m a rθθ=+-++ 10-14 21212)(m m gm m f b m a ++-=·318··318·10-15 17cm A s =,向左移动;9cm B s =,向右移动 10-16 2max12(2)2ox r F F G G gω=++10-17 24(cos sin )3Ox mR F ωϕεϕπ=-+,24(sin cos )3Oy mR F mg ωϕεϕπ=+- 第11章11-1 (a ) ω2031ml L =,(b ) ω2021mR L =,(a ) ω2023mR L =11-2 208m s a ./=,2862kN T F .=,4626kN Oy F .=11-3 (1) ωωω22231ml mR Ml L O ---=,(2) ωω2231ml Ml L O --=11-4 θω22sin )312(l M m L O +=11-5 480r min n /=11-6 022ωωmr J ma J z z ++=11-7 0N 0Pr F fgt ω= 11-8 211212122()()R M R M'm m R R ε-=+11-9 )()(2212J i J gPR R PR Mi a ++-=11-10 t P P gkl)3(3cos210+=δϕ11-11 gR RW g J R W M a 2101sin +-=α,1T 1sin W F W a g α=+ 11-12 g J r m r m r m r m O++-=2222111122ε11-13 g R m r R m r R m a )()()(2222121ρ++++=,)()()(22221212ρρ+++-=R m r R m g m m Rr F11-14 v =T 13F mg =11-15 θsin 74g a =,θsin 71mg F -= 11-16 g a C 355.0=11-17 3)(2121m m gm m f F a ++-=·319··319·11-18 gr M R m r m R fm r m a 2222121ρ++-=,T 11A F m g m a =-,2T 2B m RF fm g a r=+11-19 2N 22sin 12D QL F a Lα=+,αcos g a Cx =,22212sin 12L a g a a Cy +=α 11-20 N 3633N B F .=11-21 P F F x O x O 516.021==,P F y O 434.11=,P F y O 164.12=第12章12-1 )cos 1(0ϕ+=mgr W AB ,)sin (cos 0θϕ-=mgr W AC 12-2 129904J F W .=,10500J f W =- 12-3 12206J W .=-,23206J W .=,031=W 12-4 (a) 2216T ml ω=,(b) 2234T mR ω=,(c) 2214T mR ω=,(d) 234C T mv =,12-5 10J W =重,503J W .=重12-6 θω222sin 61ml T = 12-7 21s s hf += 12-8 2122)cos (sin 2m m f gr m M r++-=ααϕϕω12-9 v=12-10 A v =12-11 A v =12-12 v =11/sin M R W a g W Wα-=+12-13 C v =45C a g =12-14 98N F .= 12-15 θωsin 3632121l g m m m m ++=,θεcos 23632121lgm m m m ++=12-16 C v =321321843)43(m m m gm m m F +++=12-17 (1) 2211)3()sin (2Rm m gR m M +-=αε, (2) R m m gR m M m F Ox )3(2)2sin cos 6(2121++=αα; ααsin )3()sin 3(21212⋅+++=Rm m gR m M m g m F Oy·320··320·12-18 v =m khmg a 34-=,41s 36F kh mg =+ 第13章13-1 αsin 32g a =13-2 g a 32=,T 3WF =13-3 Q P Pg a 322+=,QP PQF 32+=13-4 g P T a 3cos 2α=,N sin F P T α=-,s 1cos 3F T α= 13-5 22233cos sin 3()sin 2b a g b a ϕϕωϕ-=-13-6 445N ADF .=,54N BE F =13-7 2222(sin )cos sin J mr mr M ϕϕϕϕϕ++= 13-8 2222143)2(43ωr m gr m m M -+=,2143ωr m F Ox -=,4)2()(22121ωr m m g m m F Oy +-+= 13-9 0β=︒时,2329N Ax F =-,1382N Bx F =,1962N Ay By F F .==180β=︒时,12238N Ax F .=,592N Bx F =-,1962N Ay By F F .==13-10 2023ωmr F Ax -=,mgr F Ay =,20221ωmr F Bx =,mgr F By =13-11 g a a C x C 1712==,mg F 175= 13-12 l g 791=ε,lg 732-=ε,0=Ox F ,mg F Oy 72=第14章14-1 ctg 2P /Q /ϕ= 14-2 (3ctg 2)Ax F /P θ=14-3 A F P /=14-4 ctg Q P θ= 14-5 450N Q P /==14-6 12F F l =/2(cos )a ϕ14-7 05kN 21kN m Ax Ay A F F m ===⋅,,14-8 1866kN P .=14-9 2()F lx a k b=+14-10 2(kN)Ax F =, 3.804(kN)Ay F =,24(kN m)A M =-⋅,18.588(kN)B F =。

理论力学(金尚年-马永利编著)课后习题答案详解

理论力学(金尚年-马永利编著)课后习题答案详解

高等教育出版社,金尚年,马永利编著理论力学课后习题答案第一章1.2写出约束在铅直平面内的光滑摆线上运动的质点的微分方程,并证明该质点在平衡位置附近作振动时,振动周期与振幅无关.解:设s为质点沿摆线运动时的路程,取=0时,s=0XYF Nmg sinφmgmg cosφφS== 4 a (1)设为质点所在摆线位置处切线方向与x 轴的夹角,取逆时针为正,即切线斜率=受力分析得:则,此即为质点的运动微分方程。

该质点在平衡位置附近作振动时,振动周期与振幅无关,为.1.3证明:设一质量为m 的小球做任一角度0θ的单摆运动运动微分方程为θθθF r r m =+)2( θθsin mg mr = ①给①式两边同时乘以d θ θθθθd g d r sin = 对上式两边关于θ积分得 c g r +=θθcos 212 ② 利用初始条件0θθ=时0=θ 故0cos θg c -= ③ 由②③可解得 0cos cos 2-θθθ-•=lg 上式可化为dt d lg=⨯-•θθθ0cos cos 2-两边同时积分可得θθθθθθθθd g l d g l t ⎰⎰---=--=020222002sin 12sin 10012cos cos 12进一步化简可得θθθθd g l t ⎰-=0002222sin sin 121 由于上面算的过程只占整个周期的1/4故⎰-==0222sin 2sin 124T θθθθd g l t由ϕθθsin 2sin /2sin 0=两边分别对θϕ微分可得ϕϕθθθd d cos 2sin 2cos 0=ϕθθ202sin 2sin 12cos-=故ϕϕθϕθθd d 202sin 2sin 1cos 2sin2-= 由于00θθ≤≤故对应的20πϕ≤≤故ϕϕθϕθϕθθθθπθd g l d g l T ⎰⎰-=-=202022cos 2sinsin 2sin 1/cos 2sin42sin2sin 2故⎰-=2022sin 14πϕϕK d g l T 其中2sin022θ=K 通过进一步计算可得glπ2T =])2642)12(531()4231()21(1[224222 +⨯⨯⨯⨯-⨯⨯⨯⨯++⨯⨯++n K n n K K1.5zp点yx解:如图,在半径是R的时候,由万有引力公式,对表面的一点的万有引力为, ①M为地球的质量;可知,地球表面的重力加速度 g , x为取地心到无限远的广义坐标,,②联立①,②可得:,M为地球的质量;③当半径增加 ,R2=R+ ,此时总质量不变,仍为M,此时表面的重力加速度可求:④e өe tөy由④得:⑤则,半径变化后的g 的变化为⑥对⑥式进行通分、整理后得:⑦对⑦式整理,略去二阶量,同时远小于R ,得⑧则当半径改变 时,表面的重力加速度的变化为:。

13-理论力学-第三部分动力学第十三章达朗贝尔原理

13-理论力学-第三部分动力学第十三章达朗贝尔原理

由于小车具有惯性,力图保持原来的运动状态,对于施力物体
(人手)产生的反抗力(反作用力),称为小车的惯性力。 F' F ma
动力学/达朗伯原理
二、质点的达朗贝尔原理
非自由质点M,质量m,受主动
FI
力 为
F
a
,约束反力 FN ,获得的加速度
。 由牛顿第二定律:
FN
F
FN
ma
F FN ma 0
▼任意点
Mi 切向加速度
a i
法向加速度
ain

Mi 虚加上的惯性力
FIi
mi
ai

FIin
miain
α
所有的点组成一个平面内的惯性力系
α
ain aiτ
FIiτ
FIin
动力学/达朗伯原理

Mi 虚加上的惯性力
FIi
mi
ai

FIin
miain
▼O为转轴 z与质量对称平面的交点,向O点简化:
理论力学
第三部分 动 力 学
第十三章
达 朗 贝尔原 理
2021年7月22日
动力学/达朗伯原理
第十三章
达朗贝尔原理
达朗贝尔原理是十八世纪为解决机器动力学问题 提出的,实质就是在动力学方程中引入惯性力,将动 力学问题从形式上转化为静力学中的力的平衡问题, 应用静力学的平衡理论求解。
本章介绍动力学的这一重要原理——达朗伯尔原 理 (也称动静法)。
FA
mg 4
cos0
FAτ
(与图示反向)
FAn
FIR
动力学/达朗伯原理
●用动量矩定理+质心运动定理再求解此题:

理论力学 概念及判断

理论力学 概念及判断

理论力学复习题(基本概念)一、分析力学1. 约束:2.完整系统:3.广义坐标:4.虚位移:5.理想约束:6.达朗伯原理:7.虚位移原理:8.哈密顿原理:9.完整约束:10.非完整约束:11.自由度:12拘束: 13.达朗伯惯性力:14.虚功:15.有势力 1. 利用虚位移原理解题的基本步骤? 2. 利用拉格朗日方程解题的基本步骤?3. 利用虚位移原理解题的基本方法有哪两种? 4. 分析力学的研究对象、任务与方法? 5. 计算广义力的两种方法?6. 有势力作用下的拉格朗日第二类方程? 7. 拉格朗日第二类方程的首次积分有哪二类? 哈密顿正则方程的首次积分有哪二类1、 力系向一点简化,其主矢为0=R,则(C )。

A 、力系一定是平衡力系。

B 、力系一定不是平衡力系。

C 、当其主矩也为零时,力系是平衡力系。

D 、是一力螺旋。

2、 平面力偶系独立的平衡方程有(A )个。

A 、一。

B 、二。

C 、三。

D 、四。

3、 当刚体作平面运动时,其独立的动力学标量方程有(C )个。

A 、一。

B 、二。

C 、三。

D 、四。

4、 动力学普遍定理是(A )定理、(A )定理和()定理。

A 、动量、动量矩、动能。

B 、动量、质心运动、动能。

C 、质心运动、动量矩、动能。

D 、动量、质心运动、动量矩。

5、 质点系的动量在x 方向守恒,则外力(A )。

A 、在x 方向投影之和为零。

B 、在y 方向投影之和为零。

C 、在z 方向投影之和为零。

D 、不能判断。

6、 作用在刚体上的所有外力都通过其质心,则刚体(C )。

A 、动量守恒。

B 、动量不守恒。

C 、动量矩守恒。

D 、动量矩不守恒。

7、 质点系的内力(D )A 、不改变质点系动能。

B 、不改变每个质点的动能。

C 、不改变质点的相对运动D 、不改变质点系质心运动。

8、 保守力的功与(B )A 、路径有关。

B 、路径无关。

C 、时间有关。

D 、速度有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

rr
mrC aC
r
惯性力系向质心简化:M IC 0
只简化为一个力:FIR maC
平移刚体的惯性力系可以简化为通过质心的 合力,其大小等于刚体的质量与加速度的乘积, 合力的方向与加速度方向相反。
2.刚体定轴转动
z
切向惯性力:FIit miait miri
法向惯性力:FIin
mi
an i
1.96N
应用静力学写平衡 方程的方法求解动力
v
FTl sin 2 2.1m/s
m
学问题,这种方法称 为动静法。
§ 13-2 质点系的达朗贝尔原理
Fi FNi FIi 0
i 1,2, ,n
—— 质点系的达朗贝尔原理
质点系中每个质点上作用的主动力,约束力和 惯性力在形式上组成平衡力系.
例13-1
已知: m 0.1kg ,l 0.3m, 60 求: v, FT.
解: 法向惯性力的大小:
FI
man
v2 m
l sin
根据质点的达朗贝尔原理:
mg
FT
FI
0
在自然轴上投影:
F b 0, FT cos mg 0
F n 0, FT sin FI 0
FT
mg
cosቤተ መጻሕፍቲ ባይዱ
第十三章 达朗贝尔原理
§ 13-1 惯性力·质点的达朗贝尔原理
由牛顿第二定律,有
令:FFImaFmN aFmaF惯N 0性力
FI m
有:F
FN
FI
0
FN
—— 质点的达朗贝尔原理
F
ma
作用在质点的主动力、约束力和虚加的惯性 力在形式上组成平衡力系.
注意:质点并非处于平衡状态,达朗贝尔原理只 是将动力学问题转化为静力学问题求解
这个力偶的矩等于刚体对转轴的转动惯量与 角加速度的乘积,转向与角加速度相反。
思考: 对于具有质量对称平面的刚体:
1.刚体匀速转动,转轴不通过质心。
FIR maC
作用点在转轴上。
2.转轴通过质心,但 。0
M IO JO
3.刚体作匀速转动,且转轴通过质心。
FIR 0 , MIO 0
3.刚体作平面运动(平行于质量对称面)
D
解: 刚好离开地面时,地面约束力为零.
研究 AB 杆,杆为平移,加惯性力:
FIC m2a
按达朗贝尔原理列平衡方程:
M A 0 m2aR sin 30 m2gR cos30 0
解得:a 3g
研究整体,加惯性力和惯性力矩:
FIA
m1a,
MIA
1 2
m1R2
a R
D
按达朗贝尔原理列平衡方程:
记 Fi(e) 为作用于第i个质点上质点系外部物体的作用力.
Fi
(i)为作用于第i个质点上质点系内部的力.
F (e) i
F (i) i
FIi
0
i 1,2, , n
对于质点系,由静力学可知,空间任意力系 平衡的充分必要条件为:
F (e) i
0Fi(i)
FIi 0
MO
F (e) i
求:支座A,B受到的附加约束力.
解: 重物平移,加惯性力:FI ma
转子定轴转动,加惯性力矩:M IO J
由质点系的达朗贝尔原理,列平衡方程:
J
a R
MB 0 mgl2 FIl2 Pl3 MIO FA l1 l2 0
Fy 0 FA FB mg P FI 0
静约束力 附加动约束力
向质心简化 随同质心平移运动
FIR
maC
绕质心转动
M IC JC
有质量对称平面的刚体,平行于此平面运动 时,刚体的惯性力系简化为在此平面内的一个力 和一个力偶。
这个力通过质心,其大小等于刚体质量与质 心加速度的乘积,方向与质心加速度方向相反;
这个力偶的矩等于刚体对过质心且垂直于质 量对称面的轴的转动惯量与角加速度的乘积,转 向与角加速度相反。
M0O
F (i) i
M O FIi 0
F (e) i
FIi 0
M O
F (e) i
M O FIi 0
作用在质点系上的所有外力与虚加在每个 质点上的惯性力在形式上组成平衡力系
例13-2 已知:如图所示,定滑轮的半径为r ,质量为m 均匀分布
在轮缘上,绕水平轴O转动.垮过滑轮的无重绳的两端
挂有质量为m1 和m2 的重物(m1>m2),绳与轮间不打 滑,轴承摩擦忽略不计。 求:重物的加速度.
解: 对两重物加惯性力,大小分别为:
FI1 m1a, FI2 m2a
记滑轮边缘上任一点的质量为 mi ,加速度
有切向、法向之分,惯性力大小分别为:
FIit mir mia
列平衡方程:
,
FIin
r
FIR
r Fi
e
mi ar i
marC
M IO
MO
F (e)
i
d LO dt
主矢 主矢的大小和方向与简化中心的位置无关
FIR
maC
主矩 主矩的大小和方向与简化中心的位置一 般有关
1.刚体平移
惯性力系向点O 简化:
r
M IO
rri
r FIi
rri (miarC ) ( mirri ) arC
FA
mgl2 Pl3 l1 l2
l1
a l2
ml2
J R
FB
mgl1
Pl1 l2
l1 l2
l3
l1
a l2
ml1
J R
附加动约束力决定于惯性力系
§ 13-4 绕定轴转动刚体的轴承动约束力
如果绕定轴转动的机械在转动起来后轴承受 力与不转时轴承受力一样,则一般来说这些机械 不会产生破坏,也不会产生振动与噪声。
MD 0 FR FIA R MIA FIC R sin 30o m2gR cos30o 0
aCn
aCt
注意
在画虚加的惯性力系的主矢和主矩时,必须按照 和质心加速度的方向相反以及与角加速度转向相反 (考虑负号)的原则画出。在方程中只需按其数值 的大小带入,不能再带负号!
解题步骤及要点
1.选取研究对象:原则与静力学相同。 2.受力分析:画出全部主动力和外约束力。 3.运动分析:主要是刚体质心加速度,刚体角加速度, 标出方向或转向。 4.虚加惯性力:在受力图上画上惯性力和惯性力偶。 5.列动静法方程:选取适当的矩心和投影轴。 6.建立补充方程:运动学补充方程(运动量之间的关 系)。 7.求解未知量。
因 t, 得: Fx m2e2 sint
Fy m1 m2 g m2e 2 cost
M m2gesin t m2e 2h sin t
例13已知5:如图所示,电动绞车安装在梁上,梁的两端搁在 支座上, 绞车与梁共重为P.绞盘半径为R,与电机转子 固结在一起,转动惯量为J ,质心位于O 处.绞车以加速 度a提升质量为m的重物,其它尺寸如图.
解: 对转子,匀速转动,角加
速度为零,无需加惯性力 矩,只需加惯性力:
FI me2
根据质点系的达朗贝尔原理,此 电动机上的外力与惯性力形成一个平 衡力系,列平衡方程:
Fx 0, Fx FI sin 0
Fy 0, Fy (m1 m2)g FI cos 0
M A 0, M m2gesin FI hsin 0
则惯性力系简化的主矩为:
M IO M Iz J z
工程中绕定轴转动的刚体常常有质量对称平面。
结论
当刚体有质量对称平面且绕垂直于此对称面 的轴作定轴转动时,惯性力系向转轴与对称平面 交点简化时,得位于此平面内的一个力和一个力 偶。
这个力等于刚体质量与质心加速度的乘积, 方向与质心加速度方向相反,作用线通过转轴;
由静约束力与动约束力的概念,对绕定轴转 动的刚体,如果能消除轴承附加动约束力,使轴 承只收到静约束力作用,就可以做到这一点。
为此,先把任意一个绕定轴转动刚体的轴承 全约束力求出来,然后再推出消除附加动约束力 的条件。
O点为简化中心 根据动静法,平衡方程如下:
Fx 0 FAx FBx FRx FIx 0 Fy 0 FAy FB y FR y FI y 0
FBx
1 AB
M y FRxOA
M Iy FIxOA
FBy
1 AB
M x FRyOA M Ix FIyOA
FBz FRz

FIR
,
M
引起的轴承约束力称为附加动约束力
IO
附加动约束力为零的条件为: FIx FIy 0, M Ix M Iy 0
即: FIx maCx 0 FIy maCy 0
2
s1
158
m s2
惯性力大小为:
FI man 3160N
由质点系的动静法,列平
衡方程可得:
FNA
FNB
1 2
mg FI
1 20 9.8 3160N 1680N
2
• 作业 • 13-11 13-18
例13已6知:均质圆盘 m1, 纯R,滚动.均质杆 l 2R, m2. 求:F 多大,能使杆B 端刚好离开地面? 纯滚动的 条件?
Fz 0 FBz FRz 0 M x 0 FB yOB FAyOA M x MIx 0 M y 0 FAxOA FBxOB M y MI y 0 Mz 0
解得轴承全约束力为:
FAx
1 AB
M y FRxOB
M Iy FIxOB
FAy
1 AB
M x FRyOB M Ix FIyOB
miri 2
FItiO
ri
zi
惯性力系对x轴的矩为:
x
yi xi
相关文档
最新文档