多肽合成技术

合集下载

多肽有机合成和无机合成

多肽有机合成和无机合成

多肽有机合成和无机合成1.引言1.1 概述概述多肽是由氨基酸残基通过肽键连接而成的生物大分子。

多肽具有广泛的生物活性和应用价值,因此对于多肽的合成研究一直是化学领域的重要研究方向之一。

多肽的合成方法多种多样,可以分为有机合成和无机合成两种主要类型。

有机合成方法是通过有机合成化学的手段将氨基酸残基逐个加入到多肽链中。

这种方法需要有机合成化学家们设计并合成一系列的保护基、缩合试剂以及催化剂等。

有机合成方法的优点在于可以合成具有复杂结构和特定功能的多肽,但由于合成步骤多、操作繁琐,合成周期较长,因此在合成过程中往往需要进行大量的优化和调试。

无机合成方法是通过无机化学的手段合成多肽链。

这种方法利用了无机合成反应的高效性和选择性。

无机合成方法的优点在于高效快速,适用于合成较短的多肽链。

然而,由于无机合成反应的特点,无机合成方法往往无法合成含有较长的多肽链或者特殊结构的多肽。

本文将重点介绍多肽的有机合成方法和无机合成方法。

对于有机合成方法,将讨论其定义、原理以及常用的合成方法,并介绍其中的优缺点。

而对于无机合成方法,将阐述其定义、原理以及适用的合成方法,并探讨其在多肽合成中的应用前景。

通过对有机合成和无机合成的对比分析,可以更加全面地了解两种方法在多肽合成中的优缺点。

同时,展望未来,对多肽合成技术的发展方向进行展望,探索更加高效、简便的合成方法,以满足对于多肽的广泛应用需求,并促进多肽领域的进一步发展。

接下来将详细介绍多肽的有机合成方法和无机合成方法,深入探讨其原理和具体的合成方式。

同时,通过案例分析和实验结果的展示,更加直观地展示多肽合成方法的优势与不足,并对其未来的发展进行展望。

1.2文章结构1.2 文章结构本文将对多肽有机合成和多肽无机合成进行详细介绍和比较分析。

首先,引言部分将给出多肽有机合成和多肽无机合成的概述,包括定义和原理的解释,并说明本文的目的。

接着,正文部分将分成两个小节,分别介绍多肽有机合成和多肽无机合成的相关内容。

多肽药物设计与合成技术研究综述

多肽药物设计与合成技术研究综述

多肽药物设计与合成技术研究综述多肽药物是一类由2-50个氨基酸残基组成的生物分子。

由于其特殊的结构和生物活性,多肽药物设计与合成技术一直是药物研究领域的热点。

本文将综述多肽药物设计与合成技术的最新进展,并按照不同的研究方向进行分类讨论。

一、多肽药物设计方法多肽药物设计的第一步是确定目标疾病,并选择适合的药物靶点。

在这个基础上,可以采用多种方法来设计多肽药物。

例如,通过对靶点的结构进行分析和模拟,可以设计出具有高度结构选择性的多肽药物。

此外,还可以利用计算机辅助设计的方法,对已知结构和活性的多肽进行系统的结构优化和修饰,以提高其药物性能。

二、多肽药物合成技术多肽药物合成技术是多肽药物研究中至关重要的一步。

传统的多肽合成方法包括固相合成和液相合成。

固相合成是一种从C端向N端逐渐延伸的合成方法,可以实现高效的合成和大规模生产。

而液相合成则是采用溶液相反应的方式,通常用于合成较短的多肽。

近年来,随着化学合成技术的不断发展,多肽药物的合成技术也在不断改进。

例如,采用手性小分子催化剂可以实现手性多肽的选择性合成。

此外,还可以利用氯氣硼氢化钠(NaBH3CNCl)或氰硼酸钠(NaBCN)等还原剂,实现选择性反应和高产率的多肽合成。

三、多肽药物的修饰技术多肽药物的修饰技术是提高药物性能的重要手段。

通过多肽的修饰,可以改变其生物利用度、稳定性和靶向性等性质。

例如,可以对多肽进行PEGylation修饰,将聚乙二醇(PEG)基团引入多肽分子中,从而提高其溶解度、稳定性和血液半衰期。

另一种常用的多肽修饰技术是引入非天然氨基酸。

非天然氨基酸具有独特的物理化学性质和功能,可以改变多肽的结构和活性。

通过引入非天然氨基酸,可以提高多肽的稳定性、生物利用度和靶向性,同时还可以拓宽多肽药物的结构和应用范围。

四、多肽药物在药物研究中的应用多肽药物在药物研究中具有广泛的应用。

例如,多肽药物在肿瘤治疗中被广泛应用。

研究人员通过设计和合成具有抗肿瘤活性的多肽,可以实现对肿瘤细胞的选择性杀伤。

多肽药物的设计和合成技术

多肽药物的设计和合成技术

多肽药物的设计和合成技术多肽药物是一种生物大分子药物,由两个以上的氨基酸残基通过肽键连接而成。

与小分子化合物药物相比,多肽药物具有优异的靶向性、生物活性强、效果稳定、自身对抗力弱等优点,因此被广泛用于治疗癌症、免疫系统疾病、心血管疾病和代谢疾病等方面。

多肽药物的设计和合成技术是一项重要的研究领域。

它们的设计要求具有高度的精确性和优异的生物稳定性,同时合成技术也要求具有节约成本、环保、高效率等特点。

一、多肽药物的设计原则多肽药物的设计需要从多个方面考虑。

首先,药物的生物活性是核心,要求具有高效、选择性和“目标锁定”的特点。

因此,在设计过程中需要考虑到药物与靶标的空间构型、靶标的结构解析、分子的电子结构以及药物和靶标之间相互作用力等因素。

其次,多肽药物在生物体内容易被酶降解,因此需要具有良好的生物稳定性。

这涉及到药物的序列、分子量和酸碱度等多个方面的因素。

例如,多肽药物的环化结构可以提高其生物稳定性和生物利用度。

最后,设计要考虑多肽的化学合成难度和成本。

这也直接影响到其后续工业化生产的可行性。

在设计时,需要考虑各种化学方法的适用性和合成效率,通过合理的化学修饰和分子连接方式提高药物的纯度和活性。

二、多肽药物的合成方法多肽药物的合成方法很多,其中常用的有固相法、液相法和段取法等。

1. 固相法合成方法固相法是一种非常常用的合成多肽药物的方法。

固相合成是一种采用高分子材料作为载体,构建反应体系,在体系中进行化学反应,逐渐合成目标产物的方法。

固相法主要包括两类:一类是非连续的方法,包括加氨基酸法和取代剂法;另一类则是连续方法,包括连续流加法、半连续方法和链接-延伸法。

其中,取代剂法的基本步骤是将氨基酸通过其侧链的羟基、巯基等活性官能团与高分子载体(例如STYERI、Bom动催化剂等)上的取代剂反应,实现氨基酸的修饰与附着;然后进行保护组的揭露反应(例如用重氮胍生成巯基保护组),在不同的反应条件下打眼组,链接公共结构后扩展链长,最后进行除保护组和剪切下产物的流程。

多肽生物合成实验报告

多肽生物合成实验报告

一、实验目的1. 掌握多肽生物合成的原理和方法;2. 学习多肽固相合成技术;3. 通过实验,了解多肽的生物活性。

二、实验原理多肽是由氨基酸通过肽键连接而成的高分子化合物。

在生物体内,多肽的生物合成主要通过以下步骤进行:1. 氨基酸活化:将氨基酸与活化剂(如N-保护基团)反应,生成活化氨基酸;2. 固相合成:将活化氨基酸依次连接到固相载体上,形成多肽链;3. 多肽释放:将多肽链从固相载体上释放出来;4. 氨基酸脱保护:去除多肽链上的保护基团,得到具有生物活性的多肽。

本实验采用固相多肽合成技术,通过逐步引入不同的氨基酸,构建目标多肽链。

三、实验材料与仪器1. 实验材料:- 氨基酸:L-苯丙氨酸、L-组氨酸、L-亮氨酸等;- 固相载体:聚苯乙烯树脂;- 活化剂:N-保护基团;- 消除剂:二甲基甲酰胺;- 释放剂:三氟乙酸;- 试剂:氢氧化钠、盐酸等;- 仪器:多肽合成仪、磁力搅拌器、紫外分光光度计等。

2. 实验步骤:(1)准备固相载体:将聚苯乙烯树脂浸泡在水中,然后用稀盐酸洗涤,去除杂质。

最后,用蒸馏水冲洗干净,晾干备用。

(2)活化氨基酸:将氨基酸与N-保护基团反应,生成活化氨基酸。

将活化氨基酸溶解在二甲基甲酰胺中,备用。

(3)多肽合成:将固相载体放入多肽合成仪中,依次加入活化氨基酸,通过多肽合成仪进行反应。

每步反应后,用消除了N-保护基团的溶剂清洗载体,去除未反应的氨基酸。

(4)多肽释放:将合成好的多肽链从固相载体上释放出来。

将载体浸泡在释放剂中,使其溶解,得到多肽溶液。

(5)氨基酸脱保护:将多肽溶液用氢氧化钠溶液处理,去除N-保护基团,得到具有生物活性的多肽。

(6)生物活性检测:采用体外生物活性检测方法,如ACE抑制活性检测、-葡萄糖苷酶抑制活性检测等,对合成的多肽进行活性评估。

四、实验结果与分析1. 合成多肽的分子量:通过质谱分析,合成的多肽分子量为1882.29 g/mol,与理论计算值相符。

多肽合成仪工作原理

多肽合成仪工作原理

多肽合成仪工作原理
多肽合成仪工作原理主要分为以下几个步骤:
1. 固相合成:多肽合成仪的工作原理基于固相合成技术,其中固相可以是树脂或固体载体。

多肽合成仪中,固相通过连接剂固定在反应器中。

2. 保护基去除:多肽合成的第一步是去除固相保护基。

保护基是为了防止非特定的反应发生。

通过加入适当的溶剂和试剂,可以在保护基去除的过程中去除保护基,暴露出多肽链的氨基。

3. 活化:在保护基去除后,多肽链的氨基需要进行活化。

活化通常是通过加入适当的试剂,如活化剂(如N,N'-二甲基甲
酰胺二乙基)和耦合剂(如二硫代代乙酸)等来实现。

4. 耦合:活化后的氨基能够与下一个氨基进行反应,形成肽键。

耦合的过程需要提供适当的试剂和配体,以促进反应的进行。

5. 反复循环:上述步骤可以循环进行,直到多肽链的完整序列形成。

每次循环都会添加一个新的氨基酸,并保护已添加的氨基酸。

6. 脱保护:整个多肽链形成后,需要脱除保护基,以暴露出多肽的自由末端。

脱保护可以通过加入适当的试剂,如强碱或酸来实现。

7. 纯化和分析:合成的多肽需要进行纯化和分析。

纯化可以使
用色谱技术,如高效液相色谱或逆相高效液相色谱。

分析则通常使用质谱、核磁共振等技术。

总的来说,多肽合成仪通过固相合成技术,依次活化和耦合氨基酸,反复循环,在保护基去除后脱保护,最终合成出完整的多肽链。

这种合成方法具有高效、连续、自动化等特点,可以用于合成各种需要的多肽。

多肽固相合成法

多肽固相合成法

多肽固相合成法多肽固相合成法文档# 多肽固相合成法## 引言多肽固相合成法是一种重要且广泛应用的生物化学合成技术,被广泛用于合成蛋白质、多肽及其他生物分子。

其独特之处在于通过将起始物质(resin)与氨基酸逐步连接,从而构建具有特定序列和结构的多肽链。

本文将深入探讨多肽固相合成法的原理、步骤及应用。

## 1. 原理多肽固相合成法基于聚合物树脂作为固相支持基质,通过将氨基酸单元逐步连接在上面,完成多肽链的合成。

其基本原理可分为以下几个关键步骤:### 1.1 固相支持物的选择多肽固相合成法的第一步是选择适当的固相支持物。

通常采用的是聚合物树脂,如乙二醇二甲基丙烯酸酯(Wang树脂)或氯甲基苯基聚苯醚(Merrifield树脂)。

这些树脂具有良好的化学稳定性和机械强度,能够承受多次反应的洗涤和溶解过程。

### 1.2 保护基策略由于氨基酸中的官能团较多,为防止在合成过程中出现不必要的反应,需要采用保护基策略。

典型的保护基包括Boc(t-butoxycarbonyl)和Fmoc(9-fluorenylmethoxycarbonyl)。

这些保护基在反应前易于引入,并在反应后容易去除,保护了氨基酸的反应性。

### 1.3 活性化和偶联在多肽固相合成法中,氨基酸需要被活化成能够进行反应的形式。

常见的活化试剂包括DIC(N,N'-二异丙基碳二亚胺)、HBTU(2-(1H-苯并三唑-1-基)-1,1,3,3-四甲基脲)等。

活化后的氨基酸与固相支持物上的活性位点发生偶联反应,逐步构建多肽链。

### 1.4 脱保护和洗涤每一步反应后,需要进行脱保护步骤,去除氨基酸上的保护基,使其恢复反应活性。

同时,对固相支持物进行洗涤,去除未反应的物质,保持反应体系的纯净。

## 2. 步骤多肽固相合成法的步骤相对繁琐但严密。

以下为基本步骤的概述:### 2.1 预处理在多肽固相合成法开始之前,需要对固相支持物进行预处理。

这包括树脂的活化、保护基的引入和活性试剂的准备。

多肽药生产合成

多肽药生产合成

多肽药生产合成
多肽药物的生产合成涉及多个步骤,从确定氨基酸序列到最终产品的纯化。

以下是多肽药物生产合成的一般过程:
1. 序列设计:根据药物的治疗目标,科学家首先设计多肽的氨基酸序列。

这一步需要考虑多肽的生物活性、稳定性和溶解性。

2. 固相合成法(SPPS):目前多肽药物的生产主要采用固相合成法。

在此方法中,每个氨基酸的羧基被连接到一个不溶性的树脂上,然后逐个添加其他氨基酸,形成肽链。

每一步都伴随着侧链的保护和脱保护反应,以防止不必要的副反应。

3. 洗涤和脱保护:在每次添加一个氨基酸之后,必须彻底清洗树脂以除去未反应的试剂和副产品。

在整条肽链组装完成后,进行脱保护反应,释放出合成的多肽。

4. 裂解和纯化:多肽从树脂上裂解下来后,通常需要进一步的纯化步骤,如高效液相色谱(HPLC)或毛细管电泳等技术,以确保产品的纯度和一致性。

5. 分析和表征:使用质谱、核磁共振(NMR)和氨基酸分析等技术对多肽的结构和组成进行详细分析和表征。

6. 冻干和包装:纯化后的多肽通常通过冻干的方式保存,以延长其稳定性。

然后按照适宜的剂量单位进行包装,准备作为药物产品销售。

7. 质量控制:在整个生产过程中,必须严格执行质量控制措施,以确保所有批次的多肽药物都符合规定的安全性、纯度和效力标准。

多肽药物的生产合成是一个精细和复杂的过程,要求高度专业的设备和技术。

由于多肽分子本身的多样性和复杂性,合成过程中可能遇到多种挑战,如序列复杂性、合成效率、多肽稳定性和成本控制等。

随着技术的进步,多肽药物的生产方法也在不断优化,以提高产量、降低成本并简化生产流程。

发酵法合成多肽的原理

发酵法合成多肽的原理

发酵法合成多肽的原理
多肽是由多个氨基酸残基连接而成的生物大分子,具有广泛的生物学功能和应
用潜力。

发酵法合成多肽是利用微生物发酵过程中产生的酶和代谢产物来驱动多肽的合成。

发酵法合成多肽的原理可以分为以下几个步骤:
1. 选择适宜的微生物:首先需要选择可以产生所需多肽的适宜微生物来进行发酵。

常用的微生物包括大肠杆菌、酿酒酵母等。

选择微生物的关键因素包括其生长速度、酶的表达能力和代谢产物的效率。

2. 培养微生物:将选择的微生物培养在适宜的培养基中。

培养基的成分和条件
需要根据微生物的需求进行调整,以提供其生长所需的营养物质和适宜的环境条件。

3. 表达目标多肽:通过基因工程技术,将编码所需多肽的基因导入到选择的微
生物中。

微生物将利用其内源的酶系统来转录和翻译目标多肽的基因,从而实现对目标多肽的合成。

4. 提取和纯化目标多肽:经过一定时间的发酵培养后,微生物中会产生大量的
目标多肽。

为了获得高纯度的多肽产物,需要对发酵液进行提取和纯化。

常用的方法包括离心、过滤、层析等。

通过这些步骤,可以从发酵液中分离出纯净的多肽产物。

5. 鉴定和分析多肽:对纯化的多肽产物进行鉴定和分析是确保合成多肽的品质
和纯度的重要步骤。

常用的方法包括质谱分析、氨基酸组成分析等。

总的来说,发酵法合成多肽利用微生物的代谢过程和酶系统来合成多肽,具有
高效、可控性强和成本较低的优点。

这种合成方法在药物制剂、生物技术和生物材料等领域有着广泛的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理多肽合成技术多肽化学已经走过了一百多年的光辉历程,1902年,EmilFischer首先开始关注多肽合成,由于当时在多肽合成方面的知识太少,进展也相当缓慢当时合成采用了苯甲酰,乙酰保护,脱去相当困难,而且容易导致肽链断裂。

直到1932年,MaxBergmann等人开始使用苄氧羰基(Z)来保护α-氨基,该保护基可以在催化氢化或氢溴酸的条件下定量脱除,多肽合成才开始有了一定的发展。

到了20世纪50年代,随着越来越多的生物活性多肽的发现,大大推动了有机化学家们对多肽合成方法以及保护基的研究,因此这一阶段的研究成果也非常丰富,人们合成了大量的生物活性多肽,包括催产素(oxytocin),胰岛素等,同时在多肽合成方法以及氨基酸保护基上面也取得了不少成绩,这为后来的固相合成方法的出现也提供了实验和理论基础。

也就是这个阶段,FredSanger 发明了氨基酸序列测定方法,并为此获得了1958年的Nobel化学奖。

还是他后来发明了DNA序列检测方法,并于1980年再次获得了Nobel化学奖,成为到目前为止唯一获得两次Nobel化学奖的科学家。

1963年,Merrifield 提出了固相多肽合成方法(SPPS),这个在多肽化学上具有里程碑意义的合成方法,一出来,就由于其合成方便,迅速,现在已经成为多肽合成的首选方法,随后的发展也证明了该方法不仅仅是一种合成方法,而且也带来了有机合成上的一次革命,并成为了一支独立的学科,固相有机合成(SPOS)。

当然,Merrifield也因此荣获了1984年的Nobel化学奖。

也正是Merrifield,他经过了反复的筛选,最终屏弃了苄氧羰基(Z)在固相上的使用,首先将叔丁氧羰基(BOC)用于保护α-氨基并在固相多肽合成上使用,其可以在酸性条件下定量的脱除,反应也非常迅速,在30min就可以反应完全。

由于叔丁氧羰基(BOC)方法中,氨基酸侧链的保护基团大多基于苄基(Bzl),因此也称为BOC-Bzl策略。

同时,Merrifield在20世纪60年代末发明了第一台全自动多肽合成仪,并首次合成生物蛋白酶,核糖核酸酶(124个氨基酸)。

随后的多肽化学研究主要集中在固相合成树脂,多肽缩合试剂,氨基酸保护基的研究。

1972,LouCarpino首先将9-芴甲氧羰基(FMOC)用于保护α-氨基,其在碱性条件下可以迅速脱除,10min就可以反应完全,而且由于其反应条件温和,迅速得到广泛使用,到了20世纪80年代取代了叔丁氧羰基(BOC),成为了固相多肽合成中的首选合成方法。

该方法中氨基酸的侧链大多基于叔丁基(But),因此,也称为FMOC-But策略。

同时,在多肽合成树脂,缩合试剂以及氨基酸保护,包括合成环肽的氨基酸正交保护上也取得了丰硕的成果。

进入21世纪,随着蛋白质组学的研究深入,对于多肽化学的要求不仅仅是合成方法,而更多的集中在多肽标记与修饰方法,以及蛋白结构与功能模拟多肽的合成以及长肽或蛋白合成。

多肽化学合成的基本介绍多肽化学合成方法,包括液相和固相两种方法。

液相合成方法现在主要采用BOC和Z两种保护方法,现在主要应用在短肽合成,如阿斯巴甜,力肽,催产素等,其相对与固相合成,具有保护基选择多,成本低廉,合成规模容易放大的许多优点。

与固相合成比较,液相合成主要缺点是,合成范围小,一般都集中在10个氨基酸以内的多肽合成,还有合成中需要对中间体进行提纯,时间长,工作量大。

固相合成方法现在主要采用FMOC和BOC两种方法,它具有合成方便,迅速,容易实现自动化,而且可以比较容易的合成到30个氨基酸左右多肽。

1.1.氨基酸保护基20种常见氨基酸,根据侧链可以分为几类:脂肪族氨基酸(Ala,Gly,Val,Leu,Ile,),芳香族氨基酸(Phe,Tyr,Trp,His),酰胺或羧基侧链氨基酸(Asp,Glu,Asn,Gln),碱性侧链氨基酸(Lys,Arg),含硫氨基酸(Cys,Met),含醇氨基酸(Ser,Thr),亚氨型基酸(Pro)。

多肽化学合成中氨基酸的保护非常关键,直接决定了合成能够成功的关键。

因为常见的20中氨基酸中有很多都是带有活性侧链的,需要进行保护,一般要求,这些保护基在合成过程中稳定,无副反应,合成结束后可以完全定量的脱除。

合成中需要进行保护的氨基酸包括:Cys,Asp,Glu,His,Lys,Asn,Gln,Arg,Ser,Thr,Trp,Tyr。

需要进行保护的基团:羟基,羧基,巯基,氨基,酰胺基,胍基,吲哚,咪唑等。

其中Trp也可以不保护,因为吲哚性质比较稳定。

当然在特殊的情况下,有些氨基酸也可以不保护,象,Asn,Gln,Thr,Tyr。

表1常见3种氨基脱除条件TFA HBr/TFA H2/Pd-C Piperidine/DMFBoc y y n nZ n y y nFmoc n y n y图1常见3种氨基保护基结构氨基酸侧链保护基团非常多,同一个侧链有多种不同的保护基,可以在不同的条件下选择性的脱除,这点在环肽以及多肽修饰上具有很重要的意义。

而且侧链保护基和选择的合成方法有密切的关系,液相和固相不一样,固相中BOC和FMOC策略也不一样,从某种意义上看,多肽化学就是氨基酸保护基的灵活运用与搭配。

关于侧链保护基的使用,请参考王德心的《固相有机合成——原理及应用指南》第四章,我们这里主要介绍Cys,Lys,Asp 的几种保护基及其脱除方法。

Cys最常见的保护基有三种,Trt,Acm,Mob,这三个保护基可以完成多对二硫键多肽的合成。

Lys最常见的保护基有:Boc,Fmoc,Trt,Dde,Allyl,这对于固相合成环肽提供了很多正交的保护策略。

Asp最常见的保护基有:Otbu,OBzl,OMe,OAll,OFm,同样也提供了多种正交的保护策略。

表2巯基常见保护基结构脱除条件简称Trt TFA,HCl/HOAc,I2/MeOHAcm I2/MeOH,Hg2+Mob HF,TFMSA,Hg2+表3氨基常见保护基结构脱除条件简称Trt TFA,HOAc,HCOOHBoc HCl/HOAc,TFA/DCMFmoc Pip/DMF,NaOH/MeOHDde H2NNH2/DMFAllyl Pd(Ph3P)4,吗啉/THF表3羧基常见保护基结构脱除条件简称Otbu TFA,HOAc,HCOOHOBzl H2/Pd,HF,TFMSAOMe NaOH/MeOHOAll Pd(Ph3P)4,吗啉/THFOFm Pip/DMF,DBU/DMF1.2.多肽缩合试剂目前多肽合成中,主要采用羧基活化方法来完成接肽反应,最早使用的是将氨基酸活化为酰氯,叠氮,对称酸酐以及混合酸酐的方法,但是由于这些条件下,存在氨基酸消旋,以及反应试剂危险以及制备比较复杂,逐渐被后来的缩合试剂取代,按照其结构可以分为两种:缩合试剂主要有:碳二亚胺型,鎓盐型(Uronium)。

主要包括:DCC,DIC,EDC.HCl等。

采用DCC进行反应,由于反应中生成的DCU,在DMF中溶解度很小,产生白色沉淀,所以一般不用在固相合成中,但是由于其价格便宜,在液相合成中,可以通过过滤除去,应用仍然相当广泛。

EDC.HCl因为其水溶解性的特点,在多肽与蛋白的连接中使用比较多,而且也相当成功。

但是该类型的缩合试剂的一个最大的缺点,就是如果单独使用,会有比较多的副反应,但是研究表明如果在活化过程中添加HOBt,HOAt等试剂,可以将其副反应控制在很低的范围。

其反应机理如下:图2DIC活化反应机理鎓盐型缩合试剂反应活性高,速度快,现在使用非常广泛,主要包括:HBTU,TBTU,HATU,PyBOP等。

该试剂使用过程中需要添加有机碱,如,二异丙基乙胺(DIEA),N-甲基吗啉(NMM),该试剂加入后,才能活化氨基酸。

其反应机理如下:图3TBTU活化反应机理1.3.多肽合成方法比较液相多肽合成现在仍然广泛的使用,在合成短肽和多肽片段上具有合成规模大,合成成本低的显着优点,而且由于是在均相中进行反应,可以选择的反应条件更加丰富,象一些催化氢化,碱性水解等条件,都可以使用,这在固相中,使用却由于反应效率低,以及副反应等原因,无法应用。

液相多肽合成中主要采用BOC和Z两种反应策略。

图4液相合成Glu-Trp图5FMOC固相合成Glu-Trp固相多肽合成现在使用的主要有两种策略:BOC和FMOC两种。

BOC方法合成过程中,需要反复使用TFA脱BOC,而且在最后从树脂上切割下来需要使用HF,由于HF必须使用专门的仪器进行操作,而且切割过程中容易产生副反应,因此现在使用受到实验条件限制,使用也逐渐减少。

FMOC方法反应条件温和,在一般的实验条件下就可以进行合成,因此,也得到了非常广泛的应用。

固相合成中树脂,一般都是聚苯乙烯-二乙烯苯材料,大小在75-150μm,交联度在1-2%之间,现在使用的大多是1%,因为这种交联度下,树脂在DMF,DCM中具有很好的溶胀性能,立体上是一个空间网状结构,反应物分子可以在树脂内部自由移动。

树脂中最关键的部分是连接手臂,它一端连接在树脂上,一端作为反应位点。

目前广泛使用的树脂有:PAM,MBHA,Wang,2-Cl-Trt,Rink-Amide-MBHA等。

其中PAM,MBHA是用在BOC策略中,因为其对酸非常稳定,需要在HF,TFMSA等强酸条件下才能够切割下来。

图6固相合成常用树脂固相多肽合成中,主要是通过检测树脂上游离氨基来判断连接效率,检测方法称为Kaiser方法,其检测结果,如果有游离氨基的时候,显示兰色,或红褐色(pro,ser,His)。

Kaiser试剂包括:A,6%茚三酮的乙醇溶液B,80%苯酚的乙醇溶液C,2%0.001MKCN的吡啶溶液配制中的吡啶需要经过茚三酮处理后,重蒸后再使用。

检测过程,取少量树脂,加入A,B,C各2-3滴,100℃下加热1-2min,如果溶液有兰色,或树脂出现兰色,红褐色,表明还有游离氨基,否则说明连接完全。

还有其它检测游离氨基的方法:三硝基苯磺酸法,苦味酸法,溴芬兰法等。

图7茚三酮检测原理固相合成完成之后,必须选择合适的切割试剂将多肽从树脂上切割下来,然后经过冰乙醚沉淀,离心收集沉淀,经过HPLC分离纯化,冷冻干燥得到最后产品。

由于选择的树脂不同,氨基酸序列不同,在切割时候,选择的切割方法也不完全相同,一般都是选择酸性条件下切割的条件,对于PAM,MBHA树脂,一般采用HF切割,切割过程中需要添加对甲苯酚,对巯基苯酚,苯甲醚等试剂。

而对于Wang,Rink-Amide,Trt树脂,一般采用TFA切割,切割过程中加入,乙二硫醇,苯甲硫醚,水,三异丙基硅烷,苯酚等。

这些添加试剂主要作为碳正离子俘获试剂使用,目的是俘获切割反应过程中生成的碳正离子,减少这些碳正离子对部分氨基酸侧链的进攻导致的副反应,比较容易产生副反应的氨基酸有:Trp,Tyr。

相关文档
最新文档