线性代数习题1

合集下载

线性代数习题及答案(复旦版)1

线性代数习题及答案(复旦版)1

线性代数习题及答案习题一1. 求下列各排列的逆序数.(1) 9; (2) 1;(3) n (n 1)…321; (4) 13…(2n 1)(2n )(2n 2)…2. 【解】(1) τ(9)=11; (2) τ(1)=36;(3) τ(n (n 1)…3·2·1)= 0+1+2 +…+(n 1)=(1)2n n -; (4) τ(13…(2n 1)(2n )(2n 2)…2)=0+1+…+(n 1)+(n 1)+(n 2)+…+1+0=n (n 1). 2. 略.见教材习题参考答案. 3. 略.见教材习题参考答案.4. 本行列式4512312123122x x x D x xx=的展开式中包含3x 和4x 的项.解: 设 123412341234()41234(1)i i i i i i i i i i i i D a a a a τ=-∑ ,其中1234,,,i i i i 分别为不同列中对应元素的行下标,则4D 展开式中含3x 项有(2134)(4231)333(1)12(1)32(3)5x x x x x x x x x ττ-⋅⋅⋅⋅+-⋅⋅⋅⋅=-+-=-4D 展开式中含4x 项有(1234)4(1)2210x x x x x τ-⋅⋅⋅⋅=.5. 用定义计算下列各行列式.(1)0200001030000004; (2)1230002030450001.【解】(1) D =(1)τ(2314)4!=24; (2) D =12.6. 计算下列各行列式.(1)214131211232562-----; (2) abac ae bd cd de bfcf ef-------; (3)10011001101a b c d ---; (4) 1234234134124123. 【解】(1) 125062312101232562r r D+---=--;(2) 1114111111D abcdef abcdef --==------;21011111(3)(1)11101100111;b c D a a b cd c c d d d dabcd ab ad cd --⎡--⎤=+-=+++--⎢⎥⎣⎦=++++ 321221133142144121023410234102341034101130113(4)160.10412022200441012301110004r r c c r r c c r r r r c c r r D -+-+-++---====-------7. 证明下列各式.(1) 22222()111a ab b a a b b a b +=-;(2) 2222222222222222(1)(2)(3)(1)(2)(3)0(1)(2)(3)(1)(2)(3)a a a a b b b b c c c c d d d d ++++++=++++++; (3) 232232232111()111a a a a b b ab bc ca b b c c c c =++(4) 20000()000n n a b a b D ad bc c d cd==-ONN O;(5)121111111111111nn i i i i na a a a a ==++⎛⎫=+ ⎪⎝⎭+∑∏L L M M M . 【证明】(1)1323223()()()2()2001()()()()()2()21c c c c a b a b b a b b a b a b ba b a b b a b a b ba b a b a b a b --+--=--+--+==-=-=--左端右端.(2) 32213142412222-2-2232221446921262144692126021446921262144692126c c c c c c c c c c a a a a a a b b b b b b cc c c cc d d d d d d ---++++++++====++++++++左端右端.(3) 首先考虑4阶范德蒙行列式:2323232311()()()()()()()(*)11xx x a a a f x x a x b x c a b a c b c b b b c c c ==------从上面的4阶范德蒙行列式知,多项式f (x )的x 的系数为2221()()()()(),11a a ab bc ac a b a c b c ab bc ac b b cc ++---=++但对(*)式右端行列式按第一行展开知x 的系数为两者应相等,故231123231(1),11a a b b c c +- (4) 对D 2n 按第一行展开,得22(1)2(1)2(1)0000000(),n n n n a b aba b a b D abc dc dc d c d d c ad D bc D ad bc D ---=-=⋅-⋅=-ONONN O NO据此递推下去,可得222(1)2(2)112()()()()()()n n n n n nD ad bc D ad bc D ad bc D ad bc ad bc ad bc ----=-=-==-=--=-L 2().n n D ad bc ∴=-(5) 对行列式的阶数n 用数学归纳法.当n =2时,可直接验算结论成立,假定对这样的n 1阶行列式结论成立,进而证明阶数为n 时结论也成立.按D n 的最后一列,把D n 拆成两个n 阶行列式相加:112211211111011111110111111101111111.n n nn n n a a a a D a a a a a a D ---++++=++=+L L LL L L L L L L L L L LL LLL但由归纳假设11121111,n n n i iD a a a a ---=⎛⎫+= ⎪⎝⎭∑L 从而有11211211121111111111.n n n n n i i n n nn n i i i i i i D a a a a a a a a a a a a a a a ---=-===⎛⎫+=+ ⎪⎝⎭⎛⎫⎛⎫++== ⎪ ⎪⎝⎭⎝⎭∑∑∑∏L L L8. 计算下列n 阶行列式.(1) 111111n x x D x=LL M M ML(2) 122222222232222n D n=L L L LL L L L L; (3)000000000000n x y x y D x y y x=L L LL L L L L L L . (4)n ij D a =其中(,1,2,,)ij a i j i j n =-=L ; (5)2100012100012000002100012n D =LL LM M MM M L L. 【解】(1) 各行都加到第一行,再从第一行提出x +(n 1),得11111[(1)],11n x D x n x=+-L L M M M L 将第一行乘(1)后分别加到其余各行,得1111110[(1)](1)(1).01n n x D x n x n x x --=+-=+---LL M M M L(2) 213111222210000101001002010002n r r n r r r r D n ---=-MLL L L M M M M M L按第二行展开222201002(2)!.00200002n n =---L LL M M M M L(3) 行列式按第一列展开后,得1(1)(1)(1)10000000000000(1)0000000000(1)(1).n n n n n n n n x y y x y x y D x y x y x y y xxyx x y y x y +-+-+=+-=⋅+⋅-⋅=+-L L L L M M M M M M L L M M MM M LL(4)由题意,知1112121222120121101221031230n nn n n nnn a a a n a a a D n a a a n n n --==----L L L LL M M MM M MM LL122111111111111111111111n n ------------LL LM M MM M L L后一行减去前一行自第三行起后一行减去前一行012211221111112000020000200000000022n n n n --------=-L L L LL LM M M M M M MM M L LL按第一列展开1122000201(1)(1)(1)(1)2002n n n n n n -----=---LL M M M L按第列展开. (5) 210002000001000121001210012100012000120001200000210002100021000120001200012n D ==+LL L L L L LLLM M MM M M M M M M M M M M M L L L LLL122n n D D --=-.即有 112211n n n n D D D D D D ----=-==-=L 由 ()()()112211n n n n D D D D D D n ----+-++-=-L 得 11,121n n D D n D n n -=-=-+=+. 9. 计算n 阶行列式.121212111n nn na a a a a a D a a a ++=+LL M M M L【解】各列都加到第一列,再从第一列提出11nii a=+∑,得232323123111111,11n n nn i n i na a a a a a D a a a a a a a =+⎛⎫=++ ⎪⎝⎭+∑L LLM MM M L将第一行乘(1)后加到其余各行,得23111010011.00100001n nnn i i i i a a a D a a ==⎛⎫=+=+ ⎪⎝⎭∑∑L L LM M M M L10. 计算n 阶行列式(其中0,1,2,,i a i n ≠=L ).1111123222211223322221122331111123n n n n n n n n n n nn n n n n n nn n n n na a a a ab a b a b a b D a b a b a b a b b b b b ----------------=L L MM M M L L. 【解】行列式的各列提取因子1(1,2,,)n j a j n -=L ,然后应用范德蒙行列式.3121232222312112123111131212311211111()().n n n n n n n n n n n n n j i n n j i n ij b b b b a a a a b b b b D a a a a a a a b b b b a a a a b b a a a a a ------≤<≤⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫-= ⎪⎝⎭∏L LL L L L L L LL 11. 已知4阶行列式41234334415671122D =;试求4142A A +与4344A A +,其中4j A 为行列式4D 的第4行第j 个元素的代数余子式. 【解】41424142234134(1)(1)3912.344344567167A A +++=-+-=+=同理43441569.A A +=-+=- 12. 用克莱姆法则解方程组.(1) 12312341234234 5,2 1, 2 2, 23 3.x x x x x x x x x x x x x x ++=⎧⎪+-+=⎪⎨+-+=⎪⎪++=⎩ (2) 121232343454556 1,56 0,56 0, 560, 5 1.x x x x x x x x x x x x x +=⎧⎪++=⎪⎪++=⎨⎪++=⎪+=⎪⎩【解】方程组的系数行列式为1110111013113121110131180;121052*********23140123123D -------=====≠-----1234511015101111211118;36;2211121131230323115011152111211136;18.122112120133123D D D D --====---====--故原方程组有惟一解,为312412341,2,2, 1.D D D Dx x x x D D D D========- 12345123452)665,1507,1145,703,395,212.15072293779212,,,,.66513335133665D D D D D D x x x x x ===-==-=∴==-==-=13. λ和μ为何值时,齐次方程组1231231230,0,20x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩ 有非零解【解】要使该齐次方程组有非零解只需其系数行列式110,11121λμμ= 即(1)0.μλ-=故0μ=或1λ=时,方程组有非零解. 14. 问:齐次线性方程组12341234123412340,20,30,0x x x ax x x x x x x x x x x ax bx +++=⎧⎪+++=⎪⎨+-+=⎪⎪+++=⎩ 有非零解时,a ,b 必须满足什么条件【解】该齐次线性方程组有非零解,a ,b 需满足11112110,113111aa b=-即(a +1)2=4b .15. 求三次多项式230123()f x a a x a x a x =+++,使得(1)0,(1)4,(2)3,(3)16.f f f f -====【解】根据题意,得0123012301230123(1)0;(1)4;(2)2483;(3)392716.f a a a a f a a a a f a a a a f a a a a -=-+-==+++==+++==+++=这是关于四个未知数0123,,,a a a a 的一个线性方程组,由于012348,336,0,240,96.D D D D D ====-=故得01237,0,5,2a a a a ===-= 于是所求的多项式为23()752f x x x =-+16. 求出使一平面上三个点112233(,),(,),(,)x y x y x y 位于同一直线上的充分必要条件. 【解】设平面上的直线方程为ax +by +c =0 (a ,b 不同时为0)按题设有1122330,0,0,ax by c ax by c ax by c ++=⎧⎪++=⎨⎪++=⎩ 则以a ,b ,c 为未知数的三元齐次线性方程组有非零解的充分必要条件为1122331101x y x y x y = 上式即为三点112233(,),(,),(,)x y x y x y 位于同一直线上的充分必要条件.习题 二1. 计算下列矩阵的乘积.(1)[]11321023⎡⎤⎢⎥-⎢⎥-⎢⎥⎢⎥⎣⎦=; (2)500103120213⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (3) []32123410⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (4)()111213112321222323132333a a a x x x x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (5) 111213212223313233100011001a a a a a a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (6) 1210131010101210021002300030003⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦. 【解】(1) 32103210;64209630-⎡⎤⎢⎥--⎢⎥⎢⎥-⎢⎥-⎣⎦(2)531⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦; (3) (10);(4) 3322211122233312211213311323322311()()()ij iji j a x a x a x a a x x a a x x a a x x a x x==++++++++=∑∑(5)111212132122222331323233a a a a a a a a a a a a +⎡⎤⎢⎥+⎢⎥⎢⎥+⎣⎦; (6) 1252012400430009⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦.2. 设111111111⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A ,121131214⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦B , 求(1)2-AB A ;(2) -AB BA ;(3) 22()()-=-A+B A B A B 吗【解】(1) 2422;400024⎡⎤⎢⎥-=⎢⎥⎢⎥⎣⎦AB A (2) 440;531311⎡⎤⎢⎥-=--⎢⎥⎢⎥--⎣⎦AB BA (3) 由于AB ≠BA ,故(A +B )(AB )≠A 2B 2.3. 举例说明下列命题是错误的.(1) 若2=A O , 则=A O ; (2) 若2=A A , 则=A O 或=A E ; (3) 若AX =AY ,≠A O , 则X =Y . 【解】(1) 以三阶矩阵为例,取2001,000000⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦0A A ,但A ≠0(2) 令110000001-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,则A 2=A ,但A ≠0且A ≠E (3) 令11021,=,0111210110⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=≠=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A Y X 0 则AX =AY ,但X ≠Y .4. 设101A λ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦, 求A 2,A 3,…,A k .【解】2312131,,,.010101kk λλλ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A A A L 5. 100100λλλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A =, 求23A ,A 并证明:121(1)2000kk k k kk k k k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =.【解】2322233223213302,03.0000λλλλλλλλλλλ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A =A =今归纳假设121(1)2000kk k k kk k k k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =那么11211111(1)1020100000(1)(1)2,0(1)00k k k k k k k k k kk k kk k k k k k k k k λλλλλλλλλλλλλλλ+---+-++=-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦+⎡⎤+⎢⎥⎢⎥=+⎢⎥⎢⎥⎣⎦A A A= 所以,对于一切自然数k ,都有121(1)2.000kk k k kk k k k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =6. 已知AP =PB ,其中100100000210001211⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦B =,P =求A 及5A .【解】因为|P |= 1≠0,故由AP =PB ,得1100200,611-⎡⎤⎢⎥==⎢⎥⎢⎥--⎣⎦A PBP而51551()()100100100100210000210200.211001411611--==⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦⎣⎦A PBP PB P A7. 设a bc d ba d c c d ab dcba ⎡⎤⎢⎥--⎢⎥⎢⎥--⎢⎥--⎣⎦A =,求|A |. 解:由已知条件,A 的伴随矩阵为22222222()()a b cd b a d c a b c d a b c d c d a b dcba *⎡⎤⎢⎥--⎢⎥-+++=-+++⎢⎥--⎢⎥--⎣⎦A =A 又因为*A A =A E ,所以有22222()a b c d -+++A =A E ,且0<A ,即 42222222224()()a b c d a b c d -++++++A =A A =A E 于是有22222()a b c d =-+++A . 8. 已知线性变换112112212321331233232,3,232,2,45;3,x y y y z z x y y y y z z x y y y y z z =+=-+⎧⎧⎪⎪=-++=+⎨⎨⎪⎪=++=-+⎩⎩ 利用矩阵乘法求从123,,z z z 到123,,x x x 的线性变换. 【解】已知112233112233210,232415310,201013421124910116x y x y x y y z y z y z ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦-⎡⎤⎢⎥==-⎢⎥⎢⎥--⎣⎦X AY Y Bz X AY ABz z, 从而由123,,z z z 到123,,x x x 的线性变换为11232123312342,1249,1016.x z z z x z z z x z z z =-++⎧⎪=-+⎨⎪=--+⎩ 9. 设A ,B 为n 阶方阵,且A 为对称阵,证明:'B AB 也是对称阵.【证明】因为n 阶方阵A 为对称阵,即A ′=A ,所以 (B ′AB )′=B ′A ′B =B ′AB , 故'B AB 也为对称阵.10. 设A ,B 为n 阶对称方阵,证明:AB 为对称阵的充分必要条件是AB =BA . 【证明】已知A ′=A ,B ′=B ,若AB 是对称阵,即(AB )′=AB .则 AB =(AB )′=B ′A ′=BA , 反之,因AB =BA ,则(AB )′=B ′A ′=BA =AB ,所以,AB 为对称阵.11. A 为n 阶对称矩阵,B 为n 阶反对称矩阵,证明: (1) B 2是对称矩阵.(2) ABBA 是对称矩阵,AB +BA 是反对称矩阵. 【证明】因A ′=A ,B ′= B ,故(B 2)′=B ′·B ′= B ·(B )=B 2;(ABBA )′=(AB )′(BA )′=B ′A ′A ′B ′= BAA ·(B )=ABBA ;(AB +BA )′=(AB )′+(BA )′=B ′A ′+A ′B ′= BA +A ·(B )= (AB +BA ).所以B 2是对称矩阵,ABBA 是对称矩阵,AB+BA 是反对称矩阵. 12. 求与A =1101⎡⎤⎢⎥⎣⎦可交换的全体二阶矩阵. 【解】设与A 可交换的方阵为a b c d ⎡⎤⎢⎥⎣⎦,则由1101⎡⎤⎢⎥⎣⎦a b c d ⎡⎤⎢⎥⎣⎦=a b c d ⎡⎤⎢⎥⎣⎦1101⎡⎤⎢⎥⎣⎦, 得a cb d a a bcd c c d +++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦.由对应元素相等得c =0,d =a ,即与A 可交换的方阵为一切形如0a b a ⎡⎤⎢⎥⎣⎦的方阵,其中a,b 为任意数.13. 求与A =100012012⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦可交换的全体三阶矩阵. 【解】由于A =E +000002013⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦, 而且由111111222222333333000000,002002013013a b c a b c a b c a b c a b c a b c ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦可得11122233333323232302300023222.023333c b c cb c a b c c b c a a b b c c -⎡⎤⎡⎤⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦由此又可得1113232332322333230,230,20,30,2,3,232,233,c b c a a a c b c b b b c c b c c c =-==-===--=-=-所以2311233230,2,3.a a b c c b c b b ======-即与A 可交换的一切方阵为12332300203a b b b b b ⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦其中123,,a b b 为任意数. 14. 求下列矩阵的逆矩阵.(1) 1225⎡⎤⎢⎥⎣⎦; (2) 123012001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (3)121342541-⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦; (4) 1000120021301214⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (5) 5200210000830052⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (6) ()1212,,,0nn a a a a a a ⎡⎤⎢⎥⎢⎥≠⎢⎥⎢⎥⎣⎦L O ,未写出的元素都是0(以下均同,不另注). 【解】(1) 5221-⎡⎤⎢⎥-⎣⎦; (2)121012001-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦;(3) 12601741632142-⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦; (4) 100011002211102631511824124⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦; (5) 1200250000230058-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦; (6) 12111n a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦O. 15. 利用逆矩阵,解线性方程组12323121,221,2.x x x x x x x ++=⎧⎪+=⎨⎪-=⎩ 【解】因123111102211102x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,而1110022110≠- 故112311101111122.02211130122110221112x x x -⎡⎤⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦16. 证明下列命题:(1) 若A ,B 是同阶可逆矩阵,则(AB )*=B *A *. (2) 若A 可逆,则A *可逆且(A *)1=(A 1)*. (3) 若AA ′=E ,则(A *)′=(A *)1. 【证明】(1) 因对任意方阵c ,均有c *c =cc *=|c |E ,而A ,B 均可逆且同阶,故可得|A |·|B |·B *A *=|AB |E (B *A *)=(AB ) *AB (B *A *)=(AB ) *A (BB *)A * =(AB ) *A |B |EA *=|A |·|B |(AB ) *.∵ |A |≠0,|B |≠0, ∴ (AB ) *=B *A *.(2) 由于AA *=|A |E ,故A *=|A |A 1,从而(A 1) *=|A 1|(A 1)1=|A |1A . 于是A * (A 1) *=|A |A 1·|A |1A =E ,所以(A 1) *=(A *)1. (3) 因AA ′=E ,故A 可逆且A 1=A ′. 由(2)(A *)1=(A 1) *,得(A *)1=(A ′) *=(A *)′.17. 已知线性变换11232123312322,35,323,x y y y x y y y x y y y =++⎧⎪=++⎨⎪=++⎩ 求从变量123,,x x x 到变量123,,y y y 的线性变换. 【解】已知112233221,315323x y x y x y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦X AY且|A |=1≠0,故A 可逆,因而1749,637324---⎡⎤⎢⎥==-⎢⎥⎢⎥-⎣⎦Y A X X所以从变量123,,x x x 到变量123,,y y y 的线性变换为112321233123749,637,324,y x x x y x x x y x x x =--+⎧⎪=+-⎨⎪=+-⎩ 18. 解下列矩阵方程.(1) 12461321-⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦X =; (2)211211************--⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦X ;(3) 142031121101⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦X =; (4) 010100043100001201001010120-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦X .【解】(1) 令A =1213⎡⎤⎢⎥⎣⎦;B =4621-⎡⎤⎢⎥⎣⎦.由于13211--⎡⎤=⎢⎥-⎣⎦A 故原方程的惟一解为13246820.112127----⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦X A B同理(2) X =100010001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (3) X =11104⎡⎤⎢⎥⎢⎥⎣⎦; (4) X =210.034102-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦19. 若kA =O (k 为正整数),证明:121()k ---L E A =E +A+A ++A .【证明】作乘法212121()()k k k k k ----=-----=-=E A E +A+A ++A E +A+A ++A A A A A E A E,L L L 从而EA 可逆,且121()k ---L E A =E +A+A ++A20.设方阵A 满足A 2-A -2E =O ,证明A 及A +2E 都可逆,并求A 1及(A +2E )1. 【证】因为A 2A 2E =0, 故212().2-=⇒-=A A E A E A E由此可知,A 可逆,且11().2-=-A A E同样地2220,64(3)(2)41(3)(2)4--=--=--+=---+=A A E A A E E,A E A E E,A E A E E. 由此知,A +2E 可逆,且1211(2)(3)().44-+=--=-A E A E A E21. 设423110123⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦A =,2AB =A+B ,求B . 【解】由AB =A +2B 得(A 2E )B =A .而22310,1102121==-≠---A E即A 2E 可逆,故11223423(2)110110121123143423386.1531102961641232129--⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==----⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦B A E A 22. 设1-P AP =Λ. 其中1411--⎡⎤⎢⎥⎣⎦P =,1002-⎡⎤⎢⎥⎣⎦=Λ, 求10A . 【解】因1-P 可逆,且1141,113-⎡⎤=⎢⎥--⎣⎦P 故由1Λ-A =P P 得10110101101012121010()()141410331102113314141033110211331365136412421.34134031242--==⎡⎤⎢⎥---⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥--⎢⎥⎣⎦⎡⎤⎢⎥--⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥--⎢⎥⎣⎦⎡⎤-+-+⎡⎤==⎢⎥⎢⎥----⎣⎦⎣⎦A P P P P ΛΛ 23. 设m 次多项式01()m m f x a a x a x =+++L ,记01()mm f a a a =+++L A E A A ,()f A 称为方阵A 的m 次多项式.(1)12λλ⎡⎤⎢⎥⎣⎦A =, 证明12kk k λλ⎡⎤⎢⎥⎣⎦A =,12()()()f f f λλ⎡⎤=⎢⎥⎣⎦A ; (2) 设1-A =P BP , 证明1k k -B =PA P ,1()()f f -=B P A P . 【证明】(1)232311232200,00λλλλ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦A A 即k =2和k =3时,结论成立. 今假设120,0kkk λλ⎡⎤=⎢⎥⎣⎦A 那么111111222000,000kk k k k k λλλλλλ+++⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦AA A = 所以,对一切自然数k ,都有120,0kkk λλ⎡⎤=⎢⎥⎣⎦A 而011101220111012212()1100().()mm mm m m m m m f a a a a a a a a a a a a f f λλλλλλλλλλ=⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤+=⎢⎥+⎣⎦⎡⎤=⎢⎥⎣⎦L L L L A E +A++A ++++++ (2) 由(1)与A =P 1BP ,得B =PAP 1.且B k =( PAP 1)k = PA k P 1,又0111011011()()().mm m m mm f a a a a a a a a a f ----=+++=+++=++=B E B B E PAP PA P P E A+A P P A P L L L24. a b c d ⎡⎤⎢⎥⎣⎦A =,证明矩阵满足方程2()0x a d x ad bc -++-=.【证明】将A 代入式子2()x a d x ad bc -++-得222222()()10()()010000.00a d ad bc a b a b a d ad bc c d c d ad bca bc ab bd a ad ab bd ad bc ac cd cb d ac cd ad d -++-⎡⎤⎡⎤⎡⎤=-++-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦-⎡⎤⎡⎤++++⎡⎤=-+⎢⎥⎢⎥⎢⎥-++++⎣⎦⎣⎦⎣⎦⎡⎤==⎢⎥⎣⎦A A E0 故A 满足方程2()0x a d x ad bc -++-=. 25. 设n 阶方阵A 的伴随矩阵为*A ,证明:(1) 若|A |=0,则|*A |=0;(2) 1n *-=A A .【证明】(1) 若|A |=0,则必有|A *|=0,因若| A *|≠0,则有A *( A *)1=E ,由此又得A =AE =AA *( A *)1=|A |( A *)1=0,这与| A *|≠0是矛盾的,故当|A | =0,则必有| A *|=0. (2) 由A A *=|A |E ,两边取行列式,得|A || A *|=|A |n , 若|A |≠0,则| A *|=|A |n 1 若|A |=0,由(1)知也有| A *|=|A |n 1.26. 设52003200210045000073004100520062⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A =,B . 求(1) AB ; (2)BA ; (3) 1-A ;(4)|A |k (k 为正整数). 【解】(1)2320001090000461300329⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦AB =; (2) 19800301300003314005222⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦BA =;(3) 11200250000230057--⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦A =; (4)(1)k k =-A . 27. 用矩阵分块的方法,证明下列矩阵可逆,并求其逆矩阵.(1)1200025000003000001000001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (2)00310021********-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦; (3)20102020130010*******0001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦.【解】(1) 对A 做如下分块 12⎡⎤=⎢⎥⎣⎦A A A 00其中1230012;,01025001⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦A A12,A A 的逆矩阵分别为1112100523;,01021001--⎡⎤⎢⎥-⎡⎤⎢⎥==⎢⎥-⎢⎥⎣⎦⎢⎥⎣⎦A A 所以A 可逆,且1111252000210001.000030001000001----⎡⎤⎢⎥-⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦A A A同理(2)11112121310088110044.110055230055----⎡⎤-⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦A A A A A (3)1110012211300222.001000001001-⎡⎤--⎢⎥⎢⎥⎢⎥--⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A习题 三1. 略.见教材习题参考答案.2. 略.见教材习题参考答案.3. 略.见教材习题参考答案.4. 略.见教材习题参考答案.5.112223334441,,,=+=+=+=+βααβααβααβαα,证明向量组1234,,,ββββ线性相关.【证明】因为1234123412341312342()2()0+++=+++⇒+++=+⇒-+-=ββββααααββββββββββ 所以向量组1234,,,ββββ线性相关.6. 设向量组12,,,r L ααα线性无关,证明向量组12,,,r L βββ也线性无关,这里12.i i +++L β=ααα【证明】 设向量组12,,,r L βββ线性相关,则存在不全为零的数12,,,,r k k k L 使得1122.r r k k k +++=L 0βββ把12i i +++L β=ααα代入上式,得121232()()r r r r k k k k k k k +++++++++=0L L L ααα.又已知12,,,r L ααα线性无关,故1220,0, 0.r rr k k k k k k +++=⎧⎪++=⎪⎨⎪⎪=⎩L L L L L 该方程组只有惟一零解120r k k k ====L ,这与题设矛盾,故向量组12,,,r L βββ线性无关.7. 略.见教材习题参考答案.8. 12(,,,),1,2,,i i i in i n ααα==L L α.证明:如果0ij a ≠,那么12,,,n L ααα线性无关. 【证明】已知0ij a =≠A ,故R (A )=n ,而A 是由n 个n 维向量12(,,,),i i i in ααα=L α1,2,,i n =L 组成的,所以12,,,n L ααα线性无关.9. 设12,,,,r t t t L 是互不相同的数,r ≤n .证明:1(1,,,),1,2,,n i i i t t i r -==L L α是线性无关的.【证明】任取nr 个数t r +1,…,t n 使t 1,…,t r ,t r +1,…,t n 互不相同,于是n 阶范德蒙行列式21111212111121110,11n n rr r n r r r n nnnt t t t t t t t tt t t ---+++-≠L M M M M LL M M M ML从而其n 个行向量线性无关,由此知其部分行向量12,,,r L ααα也线性无关.10. 设12,,,s L ααα的秩为r 且其中每个向量都可经12,,,r L ααα线性表出.证明:12,,,r L ααα为12,,,s L ααα的一个极大线性无关组.【证明】若 12,,,r L ααα(1)线性相关,且不妨设12,,,t L ααα (t <r ) (2)是(1)的一个极大无关组,则显然(2)是12,,,s L ααα的一个极大无关组,这与12,,,s L ααα的秩为r 矛盾,故12,,,r L ααα必线性无关且为12,,,s L ααα的一个极大无关组. 11. 求向量组1α=(1,1,1,k ),2α=(1,1,k ,1),3α=(1,2,1,1)的秩和一个极大无关组. 【解】把123,,ααα按列排成矩阵A ,并对其施行初等变换.1111111111111120010010101101001000111011001000k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥=→→→⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦A 当k =1时,123,,ααα的秩为132,,αα为其一极大无关组. 当k ≠1时,123,,ααα线性无关,秩为3,极大无关组为其本身.12. 确定向量3(2,,)a b =β,使向量组123(1,1,0),(1,1,1),==βββ与向量组1α=(0,1,1),2α=(1,2,1),3α=(1,0,1)的秩相同,且3β可由123,,ααα线性表出.【解】由于123123011120(,,);120011111000112112(,,),110101002a b b a ⎡⎤⎡⎤⎢⎥⎢⎥==→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦A B αααβββ而R (A )=2,要使R (A )=R (B )=2,需a 2=0,即a =2,又12330112120(,,,),12001121110002a a b b a ⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦c αααβ要使3β可由123,,ααα线性表出,需ba +2=0,故a =2,b =0时满足题设要求,即3β=(2,2,0).13. 设12,,,n L ααα为一组n 维向量.证明:12,,,n L ααα线性无关的充要条件是任一n 维向量都可经它们线性表出.【证明】充分性: 设任意n 维向量都可由12,,,n L ααα线性表示,则单位向量12,,,n L εεε,当然可由它线性表示,从而这两组向量等价,且有相同的秩,所以向量组12,,,n L ααα的秩为n ,因此线性无关.必要性:设12,,,n L ααα线性无关,任取一个n 维向量α,则12,,,n L ααα线性相关,所以α能由12,,,n L ααα线性表示.14. 若向量组(1,0,0),(1,1,0),(1,1,1)可由向量组α1,α2,α3线性表出,也可由向量组β1,β2,β3,β4线性表出,则向量组α1,α2,α3与向量组β1,β2,β3,β4等价.证明:由已知条件,1001103111R ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,且向量组(1,0,0),(1,1,0),(1,1,1)可由向量组α1,α2,α3线性表出,即两向量组等价,且123(,,)3R =ααα,又,向量组(1,0,0),(1,1,0),(1,1,1)可由向量组β1,β2,β3,β4线性表出,即两向量组等价,且1234(,,,)3R =ββββ,所以向量组α1,α2,α3与向量组β1,β2,β3,β4等价.15. 略.见教材习题参考答案.16. 设向量组12,,,m L ααα与12,,,s L βββ秩相同且12,,,m L ααα能经12,,,s L βββ线性表出.证明12,,,m L ααα与12,,,s L βββ等价.【解】设向量组12,,,m L ααα (1)与向量组12,,,s L βββ (2)的极大线性无关组分别为12,,,r L ααα (3)和12,,,r L βββ (4)由于(1)可由(2)线性表出,那么(1)也可由(4)线性表出,从而(3)可以由(4)线性表出,即1(1,2,,).ri ij jj a i r ===∑L αβ因(4)线性无关,故(3)线性无关的充分必要条件是|a ij |≠0,可由(*)解出(1,2,,)j j r =L β,即(4)可由(3)线性表出,从而它们等价,再由它们分别同(1),(2)等价,所以(1)和(2)等价.17. 设A 为m ×n 矩阵,B 为s ×n 矩阵.证明:max{(),()}()()R R R R R ⎡⎤≤≤+⎢⎥⎣⎦A AB A B B .【证明】因A ,B 的列数相同,故A ,B 的行向量有相同的维数,矩阵⎡⎤⎢⎥⎣⎦A B 可视为由矩阵A 扩充行向量而成,故A 中任一行向量均可由⎡⎤⎢⎥⎣⎦A B 中的行向量线性表示,故()R R ⎡⎤≤⎢⎥⎣⎦A A B同理()R R ⎡⎤≤⎢⎥⎣⎦A B B故有max{(),()}R R R ⎡⎤≤⎢⎥⎣⎦A AB B又设R (A )=r ,12,,,i i ir L ααα是A 的行向量组的极大线性无关组,R (B )=k , 12,,,j j jk L βββ是B 的行向量组的极大线性无关组.设α是⎡⎤⎢⎥⎣⎦A B 中的任一行向量,则若α属于A 的行向量组,则α可由12,,,i i ir L ααα表示,若α属于B 的行向量组,则它可由12,,,j j jk L βββ线性表示,故⎡⎤⎢⎥⎣⎦A B 中任一行向量均可由12,,,i i ir L ααα,12,,,j j jk L βββ线性表示,故()(),R r k R R ⎡⎤≤+=+⎢⎥⎣⎦A AB B 所以有max{(),()}()()R R R R R ⎡⎤≤≤+⎢⎥⎣⎦A AB A B B .18. 设A 为s ×n 矩阵且A 的行向量组线性无关,K 为r ×s 矩阵.证明:B =KA 行无关的充分必要条件是R (K )=r .【证明】设A =(A s ,P s ×(ns )),因为A 为行无关的s ×n 矩阵,故s 阶方阵A s 可逆. (⇒)当B =KA 行无关时,B 为r ×n 矩阵.r =R (B )=R (KA )≤R (K ),又K 为r ×s 矩阵R (K )≤r ,∴ R (K )=r . (⇐)当r =R (K )时,即K 行无关,由B =KA =K (A s ,P s ×(ns ))=(KA s ,KP s ×(n s)) 知R (B )=r ,即B 行无关.19. 略.见教材习题参考答案.20. 求下列矩阵的行向量组的一个极大线性无关组.(1)2531174375945313275945413425322048⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (2)11221021512031311041⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦.【解】(1) 矩阵的行向量组1234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦αααα的一个极大无关组为123,,ααα;(2) 矩阵的行向量组1234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦αααα的一个极大无关组为124,,ααα.21. 略.见教材习题参考答案.22. 集合V 1={(12,,,n x x x L )|12,,,n x x x L ∈R 且12n +++L x x x =0}是否构成向量空间为什么 【解】由(0,0,…,0)∈V 1知V 1非空,设121122(,,,),(,,,),n n V V k =∈=∈∈x x x y y y L L αβR )则112212(,,,)(,,,).n n n x y x y x y k kx kx kx +=+++=L L αβα因为112212121212()()()()()0,()0,n n n n n n x y x y x y x x x y y y kx kx kx k x x x ++++++=+++++++=+++=+++=L L L L L 所以11,V k V +∈∈αβα,故1V 是向量空间.23. 试证:由123(1,1,0),(1,0,1),(0,1,1)===ααα,生成的向量空间恰为R 3.【证明】把123,,ααα排成矩阵A =(123,,ααα),则11020101011==-≠A ,所以123,,ααα线性无关,故123,,ααα是R 3的一个基,因而123,,ααα生成的向量空间恰为R 3.24. 求由向量1234(1,2,1,0),(1,1,1,2),(3,4,3,4),(1,1,2,1)====αααα所生的向量空间的一组基及其维数. 【解】因为矩阵12345(,,,,)113141131411314214150121301213,113260001200012024140241400000=⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--------⎢⎥⎢⎥⎢⎥=→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A ααααα∴124,,ααα是一组基,其维数是3维的.25. 设1212(1,1,0,0),(1,0,1,1),(2,1,3,3),(0,1,1,1)===-=--ααββ,证明:1212(,)(,)L L =ααββ.【解】因为矩阵1212(,,,)1120112010110131,0131000001310000=⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=→⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦A ααββ 由此知向量组12,αα与向量组12,ββ的秩都是2,并且向量组12,ββ可由向量组12,αα线性表出.由习题15知这两向量组等价,从而12,αα也可由12,ββ线性表出.所以1212(,)(,)L L =ααββ.26. 在R 3中求一个向量γ,使它在下面两个基123123(1)(1,0,1),(1,0,0)(0,1,1)(2)(0,1,1),(1,1,0)(1,0,1)==-==-=-=αααβββ下有相同的坐标.【解】设γ在两组基下的坐标均为(123,,x x x ),即111232123233112233(,,)(,,),110011001110101101x x x x x x x x x x x x ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦γαααβββ即1231210,111000x x x --⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦求该齐次线性方程组得通解123,2,3x k x k x k ===- (k 为任意实数)故112233(,2,3).x x x k k k =++=-γεεε27. 验证123(1,1,0),(2,1,3),(3,1,2)=-==ααα为R 3的一个基,并把1(5,0,7),=β2(9,8,13)=---β用这个基线性表示.【解】设12312(,,),(,),==A B αααββ又设11112123132121222323,x x x x x x =++=++βαααβααα,即11121212321223132(,)(,,),x x x x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ββααα 记作 B =AX .则2321231235912359()111080345170327130327131235910023032713010330022400112r r r r r r -+↔--⎡⎤⎡⎤⎢⎥⎢⎥=−−−→−−−→---⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦-⎡⎤⎡⎤⎢⎥⎢⎥−−−−−→--⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦M A B 作初等行变换因有↔A E ,故123,,ααα为R 3的一个基,且1212323(,)(,,),3312⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦ββααα即1123212323,332=+-=--βαααβααα.习题四1. 用消元法解下列方程组.(1) 12341241234123442362242322312338;x x x x ,x x x ,x x x x ,x x x x +-+=⎧⎪++=⎪⎨++-=⎪⎪++-=⎩ (2)1231231232222524246;x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩ 【解】(1)412213223123(1)14236142362204211021()322313223112338123381423603215012920256214236012920321502562r r r r r r r r r r -⋅---⋅↔--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=−−→−−−→⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦-⎡⎤⎢⎥---⎢⎥−−−−→⎢⎥---⎢⎥--⎣⎦-⎡⎤⎢⎥-⎢⎥⎢⎥---⎢⎥--⎣⎦A b M 32434243324142360129200426100112614236142360129201292,0011260011260042610007425r r r r r r r +↔++-⎡⎤⎢⎥-⎢⎥−−−→−−−→⎢⎥-⎢⎥⎣⎦--⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥−−−→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦得12342343444236 292 126 7425x x x x x x x x x x +-+=⎧⎪-+=⎪⎨+=⎪⎪=⎩ 所以1234187,74211,74144,7425.74x x x x ⎧=-⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩解②①×2得 x 22x 3=0③① 得2x 3=4 由⑥得 x 3=2,由⑤得 x 2=2x 3=4,由④得 x 1=22x 3 2x 2 = 10, 得 (x 1,x 2,x 3)T =(10,4,2)T . 2. 求下列齐次线性方程组的基础解系.(1) 123123123 320 5 03580;x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩ (2)1234123412341234 5 0 2303 8 0 3970;x x x x ,x x x x ,x x x x ,x x x x -+-=⎧⎪+-+=⎪⎨-++=⎪⎪+-+=⎩ (3) 1234512341234 22702345 03568 0;x x x x x ,x x x x ,x x x x ++++=⎧⎪+++=⎨⎪+++=⎩ (4)123451234512345 222 0 2 320247 0.x x x x x ,x x x x x ,x x x x x +-+-=⎧⎪+-+-=⎨⎪+-++=⎩ 【解】(1)。

线性代数习题1(附答案)

线性代数习题1(附答案)

线性代数复习题1(广工卷)一.填空题(每小题4分,共20分) 1.设五阶矩阵 123230,2A A A A A ⎡⎤=⎢⎥⎣⎦是3阶方阵,122,1A A ==,则 A = .2.设 123,,a a a 线性无关,若 112223331,,b a ta b a ta b a ta =+=+=+ 线性无关,则 t 应满足条件 .3.向量组112α⎛⎫⎪= ⎪⎪⎝⎭,⎪⎪⎪⎭⎫ ⎝⎛-=113β,⎪⎪⎪⎭⎫ ⎝⎛-=201γ线性 关4.如果矩阵 14000400x x x x A x xx ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭是不可逆的, 则 x = . 5.设 n 阶(3n ≥)矩阵 1111a a a a a a A aa a a aa⎛⎫ ⎪⎪⎪= ⎪ ⎪ ⎪⎝⎭的秩为 1n -, 则 a 必为 二.单项选择题(每小题4分,共20分)1. 设 ,A B 为同阶可逆矩阵, 则 ( ) (A) .A B B A = (B) 存在可逆矩阵 ,P 使 1.P AP B -= (C) 存在可逆矩阵,C 使 .TC AC B = (D)存在可逆矩阵P 和,Q 使 .PAQ B = 2.设A,B 都是n 阶非零矩阵,且 0A B =,则A 与B 的秩是 ( ). (A) 必有一个等于零. (B) 都小于n.(C) 都等于n. (D) 一个小于n, 一个等于n.3. 设n 元齐次线性方程组 0A x =中 ()R A r =, 则0A x = 有非零解的充要条件是 ( )(A) r n =. (B) r n ≥. (C) .r n < (D) .r n >4. 若 向量组,,a b c 线性无关,,,a b d 线性相关, 则 ( )(A) a 必可由 ,,b c d 线性表示. (B) b 必不可由 ,,a c d 线性表示. (C) d 必可由 ,,a b c 线性表示. (D) d 必不可由 ,,a b c 线性表示.5. 设⎪⎪⎭⎫ ⎝⎛=1011A ,则12A 等于 ( ) (A ) ⎪⎪⎭⎫ ⎝⎛1101111 (B ) ⎪⎪⎭⎫ ⎝⎛10121 (C ) ⎪⎪⎭⎫ ⎝⎛11121(D ) ⎪⎪⎭⎫⎝⎛1201212三.(14分) 设 3521110513132413D --=----D 的(,)i j 元的余子式和代数余子式依次记作,,ij ij M A 求11121314112131.A A A A M M M M ++++++及 四. (10分) 已知 21311122,20,13225A B --⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦求 X AX B =使.五.(10分) 判定下列向量组的线性相关性, 求出它的一个极大线性无关组, 并将其余向量用极大线性无关组线性表示.()()()()()123451,1,2,4,0,3,1,2,3,0,7,141,2,2,0,2,1,5,10a a a a a =-===-=六.(10分) 用基础解系表示下面方程组的全部解:12341234123422124522x x x x x x x x x x x x a+-+=⎧⎪+++=⎨⎪++-=⎩七(16分) 已知A 是n 阶方阵,且满足 220(A A E E +-=是n 阶单位阵). (1) 证明 A E + 和 3A E - 可逆,并求逆矩阵; (2) 证明 2A E +不可逆线性代数复习题1(广工卷)一.填空题(每小题4分, 共24分) 1.144。

线性代数习题1

线性代数习题1

一、单项选择题1. 若向量组m ααα,,,21 线性相关,则向量组内【 】可由向量组其余向量线性表示.A .至少有一个向量B .没有一个向量C .至多有一个向量D .任何一个向量2. 若A 为6阶矩阵,齐次线性方程组0=Ax 的基础解系中解向量的个数为2,则矩阵A的秩为 A .5 B. 4 C. 3 D. 2 3.行列式111221222a a a a =, 111221224b b b b =, 则11121221222222a a b a a b +=+A. 10B. 6C. 8D. 124设b a ,为实数,且010100=---a b ba,则A. 0,0==b aB. 0,1==b aC. 1,0==b aD. 1,1==b a 5.设A 为2阶非零矩阵,21,αα为齐次线性方程组0=Ax 的两个不同解,k 为任意常数,则方程组0=Ax 的通解为 A. 1k α B. 2k α C. 12()k αα+ D. 12()k αα- 6、已知三阶矩阵A 的特征值为 1, 2 , -1 , 则矩阵1A -的特征值为 A .1,2,1- B . 1,2,1--C . 11,,12- D . 11,,12--7. 设A 是上三角矩阵,那么A 可逆的充分必要条件是A 的主对角线元素为A . 全都非负B . 不全为零C .全不为零D .没有限制8.设向量组,)0,0,1(1T =α,)0,1,0(2T=α则下列向量中可由,1α2α线性表出的是A. T)2,1,0(- B. T)0,2,1(- C. T)2,0,1(- D. T)1,2,1(-9.设A 为可逆矩阵,则与A 有相同特征值的矩阵为A.*A B. 2A C. 1-A D. T A10.设b a ,为实数,且010100=---ab ba,则A. 0,0==b aB. 0,1==b aC. 1,0==b aD. 1,1==b a11.矩阵111213212223313233a a a A a a a aa a ⎛⎫⎪= ⎪ ⎪⎝⎭,111213112122232131323331a a a a B a a a a a a a a ⎛⎫+⎪=+ ⎪ ⎪+⎝⎭,101010001C ⎛⎫⎪= ⎪ ⎪⎝⎭则必有A .ACB = B .A BC = C .B AC = D .B CA =12.设A 为n 阶方阵,*A 为矩阵A 的伴随矩阵,则=*||AAA .1B .||AC .2||A D .nA ||13.设A 、B 为n 阶方阵. 则下列各式一定成立的是A .A B B A +=+ B .()T T T AB A B =C . 222()2A B A AB B +=++ D .AB BA =14.设A 是上三角矩阵,那么A 可逆的充分必要条件是A 的主对角线元素为A . 全都非负B . 不全为零C .全不为零D .没有限制 15 设A 、B 、C 均为n 阶方阵,则下列结论中不正确的是A .若E ABC =,则A 、B 、C 都可逆B .若AC AB =且A 可逆,则C B = C .若AC AB =且A 可逆,则CA BA =D .若O AB =且O A ≠,则O B=16.设A 、B 为n 阶方阵. 则下列各式一定成立的是 A .A B B A +=+ B .()T T T AB A B =C .222()2A B A AB B +=++ D .AB BA =17.n 阶方阵A 的行列式不等于零0A 是矩阵A 可逆的A. 充分条件B. 必要条件C. 充要条件D. 无关条件18.设向量组,)0,0,1(1T =α,)0,1,0(2T=α则下列向量中可由,1α2α线性表出的是 A. T )2,1,0(- B. T )0,2,1(- C. T )2,0,1(- D. T)1,2,1(- 19.设矩阵A 的秩为r ,则下列说法中错误的是 A .A 中所有的1r +阶子式(若有)都等于零; B .A 中所有的1r -阶子式都等于零; C .A 中存在着不等于零的r 阶子式; D .A 中可能有等于零的r 阶子式。

线性代数习题集第一章

线性代数习题集第一章

线性代数习题集第⼀章第⼀章:⾏列式I.单项选择题 1.排列1,3,,(2n 1),2,4,,(2n)-的逆序数为()(1) n 1- (2) (n 1)n - (3) (n 1)n + (4) (n 1)/2n - 2.排列1,3,,(21),(2),(22),,2n n n --的逆序数为()(1) n (2) (n 1)n - (3) (n 1)n + (4) (n 1)/2n - 3.四阶⾏列式中含有因⼦1123a a 的项是()(1) 11233442a a a a (2) 11233344a a a a (3)11233342a a a a (4) 11233442a a a a -4.⾏列式abac aebdcd de bfcfef---的值是() (1) 2abcdef (2) 4abcdef (3) 6abcdef (4) 8abcdef 5. 设A 为n 阶⽅阵,λ为数,则A λ等于() (1) A λ (2) A λ (3) n A λ (4) 2A λ6.设ab cD de f g hi=,则元素h 的代数余⼦式为() (1)a c gi(2) a cdf -(3) a c g i - (4)a c df7.设⾏列式000000a bcD d e f g h i j=,则D 的值等于() (1) abdg - (2) abdg (3) abdg ceh fi j -+- (4) abdg ceh fi j ++- 8.设A 为n 阶矩阵,则()(1) A A -= (2) A A -=- (3) (1)n A A -=- (4) 1A A --=9.设A 为n 阶矩阵,且A 的⾏列式0A a =≠,⽽A *是A 的伴随矩阵,则A *等于()(1) a (2) 1/a (3) n a (4) 1n a -10.若12312,,,,αααββ都是四维列向量,且1231m αααβ=,1223n ααβα=四阶⾏列式,则32112()αααββ+四阶⾏列式等于() (1) n m - (2) m n - (3) m n + (4) ()m n -+11.设44? 矩阵[]234,,,A αγγγ= ,[]234,,,B βγγγ=,其中234,,,,αβγγγ均为4维列向量,且已知⾏列式1,1A B ==,则⾏列式A B +等于() (1)5 (2)10 (3)30 (4)4012.设设A 为m 阶⽅阵,设B 为n 阶⽅阵,且,A a B b ==,00AC B =,则C 等于()(1) ab (2) ab - (3) (1)nm - (4) (1)nm ab -13.设⾏列式D aba b b a b a a b ab+=++,则D 的值为()(1) 332()a b -+ (2) 332()a b + (3) 332()a b - (4) 33()a b -+ 14.元素是0和1的三阶⾏列式D 之值只能是() (1) 3 (2) 3- (3) 4 (4) 0,1,2±± II.填空题1.n 阶⾏列式的完全展开式,应由________项组成,每项位于⾏列式中________的n 个元素的乘机,⽽且项1212n j j nj a a a 的符号为_____.2. n 阶⾏列式1111nn nna a A a a =,则按第i ⾏的展开式为__________;按第j ⾏展开式为__________.3.当A 可逆是1A -=____________.4.设A 是⼀个n 阶⽅阵,k 是⼀个有理数,则kA =________,5.在⾏列式2121113211x x x x j j x-的展开式中,3x 的系数为________,4x 的系数为_________.6.三⾓⾏列式110nn nna a a =_________ 7.⾏列式2111131111411115A ==__________ 8.⾏列式11101210011000000111002A --==--__________ III.判断题1.交换⾏列式中任意两⾏的位置,⾏列式的值不变。

线性代数课后习题1-4作业答案(高等教育出版社)

线性代数课后习题1-4作业答案(高等教育出版社)

= 1 2 −2 ====== 0 0 − 2 =0.
10
3
14
c1
+
1 2
c3
17
17
14
2 1 41
(2)
3 1
−1 2
2 3
1 2
;
5 0 62

2 3 1
1 −1 2
4 2 3
1 1 2
c4 − c2 =====
2 3 1
1 −1 2
4 2 3
0 2 0
r4 − r2 =====
2 3 1
2 2
52⎟⎠⎞⎜⎝⎛00
12 ⎟⎠⎞ = ⎜⎝⎛ 00
96⎟⎠⎞ ,

A2

B2
=
⎜⎝⎛
3 4
181⎟⎠⎞ − ⎜⎝⎛13
40⎟⎠⎞ = ⎜⎝⎛ 12
78⎟⎠⎞ ,
故(A+B)(A−B)≠A2−B2.
5. 举反列说明下列命题是错误的:
(1)若 A2=0, 则 A=0;
解 取 A=⎜⎝⎛00 01⎟⎠⎞ , 则 A2=0, 但 A≠0. (2)若 A2=A, 则 A=0 或 A=E;
4. 计算下列各行列式:
4 124
(1)1 10Fra bibliotek2 5
0 2
2 0
;
0 117

4 1 10 0
1 2 5 1
2 0 2 1
4 2 0 7
=cc=42=−−=7c=c33=10140
−1 2 3 0
2 0 2 1
−10 2
−14 0
4 =1
10
−1 2 3
−10 2 ×(−1)4+3

线性代数课后答案_习题一

线性代数课后答案_习题一

习题一1.计算下列排列的逆序数 1)9级排列 134782695; 2)n 级排列 (1)21n n - 。

解:(1)(134782695)04004200010τ=++++++++= ; (2)[(1)21]n n τ-= (1)(1)(2)102n n n n --+-+++= 。

2.选择i 和k ,使得:1)1274i 56k 9成奇排列; 2)1i 25k 4897为偶排列。

解:(1)令3,8i k ==,则排列的逆序数为:(127435689)5τ=,排列为奇排列。

从而3,8i k ==。

(2)令3,6i k ==,则排列的逆序数为:(132564897)5τ=,排列为奇排列。

与题意不符,从而6,3i k ==。

3.由定义计算行列式11122122313241424344455152535455000000000a a a aa aa a a a aa aaaa。

解:行列式=123451234512345()12345(1)j j j j j j j j j j j j j j j a a a a a τ-∑,因为123,,j j j 至少有一个大于3,所以123123j j j a a a 中至少有一数为0,从而12345123450j j j j j a a a a a =(任意12345,,,,j j j j j ),于是123451234512345()12345(1)j j j j j j j j j j j j j j j a a a a a τ-=∑。

4.计算行列式:1)402131224---; 2)111111*********1----; 3)41241202105200117;4)1464161327912841512525--;5)2222222222222222(1)(2)(3)(1)(2)(3)(1)(2)(3)(1)(2)(3)aa a ab b b bc c c c dd d d ++++++++++++。

[理学]线性代数习题1-8

[理学]线性代数习题1-8

习题一 向量及其线性运算一、填空题:1. 下列等式何时成立: 1)βαβα-=+,当2,πβα=;2)βαβα+=+,当0,=βα;3)βαβα-=+,当βαπβα≥=且,,;4)ββαα=,),(为非零向量βα,当0=β,。

2.βαβα->+,当为非零向量,且βαπβα2,0<≤。

3.指出下列向量组是线性相关还是线性无关: 1)},{αθ是 线性相关 ;2)βα,不平行,},{βα是 线性无关 ; 3)γβα,,共面,},,{γβα是 线性相关 ; 4),γβα,,不共面,},,{γβα是 线性无关 。

二、用几何作图证明:1)αβαβα2)()(=-++ 2))(21)21()21(βααββα-=+-+ 证明:三、设P OB OA ,,βα==为线段AB 上任一点,证明:存在数λ,使得λβαλ+-=)1(OP 。

证明: AP AP OA OP ,+=与BA 平行,∴可设BA AP λ-=所以,λβαλλλλλ+-=+-=--=-=)1()1()(OB OA OB OA OA BA OA OP 。

四、已知向量313221,,e e e e e e +=+=+=γβα,问向量αγγββα---,,是否共面?如果共面,写出它们的线性表示式。

解:因为 ,)()()(θαγγββα=-+-+- (1)所以向量αγγββα---,,共面。

线性表示式为(1)式。

习题二 空间直角坐标系一、填空题:1.在空间直角坐标系中,点)5,3,2(-M 关于xoy 平面的对称点的坐标是)5,3,2(--;关于yoz 平面的对称点是)5,3,2(--;关于xoz 平面的对称点是)5,3,2(;关于原点的对称点是)53,2(--。

2.在空间直角坐标系中,点轴关于x M )4,3,1(-的对称点的坐标是)4,3,1(---;关于y 轴的对称点是)4,3,1(-;关于z 轴的对称点是)4,3,1(-。

3.在空间直角坐标系中,点)6,5,2(--M 在xoy 平面上的投影点坐标是)0,5,2(--;在yoz 平面上的投影点是)6,5,0(-;在xoz 平面上的投影点是)6,0,2(-;在x 轴上的投影点是)0,0,2(-;在y 轴上的投影点是)0,5,0(-;在z 轴上的投影点是)6,0,0(。

线性代数第一章习题及解答

线性代数第一章习题及解答
T
n(n−1) 2
D. a11 . . . a1n ··· ··· ··· D an1 . . . ann
因为 D = D , 而 D =
T
对 DT 作上述行交换得, 于是
D2 = (−1)
n(n−1) 2
D = (−1)
T
n(n−1) 2
5
对 D2 依次进行相邻列交换, 然后转置得
D2 = (−1)
4
a+b 1 Dk = 0 ··· 0 0
ab a+b 1 ··· 0 0 1
0 ab a+b ··· 0 0 a+b 0 ··· 0 0 a+b 1 0 ··· 0 0
··· ··· ··· ··· ··· ··· ab a+b 1 ··· 0 0 ab a+b 1 ··· 0 0
0 0 0 ··· a+b 1 0 ab a+b ··· 0 0 0 ab a+b ··· 0 0
··· ··· ··· ···
(a − n)n (a − n)n−1 . . . a−n
1 1 ··· 1 解:将 Dn 一次进相邻行交换, 然后进行相邻列交换得 1 1 ··· 1 a−n a−n+1 ··· a 2 2 (a − n + 1) · · · a2 (xj = a − j, j = 0, 1, . . . , n) Dn = ( a − n ) . . . . . . . . ··· . (a − n)n (a − n + 1)n ∏ = (xj − xi ) 0≤i<j ≤n ∏ = (i − j )
a a . . . x ··· a 0 . . . x−a (rj − r1 , j = 1, 2, . . . , n)

线性代数习题集课堂讲解习题(1)

线性代数习题集课堂讲解习题(1)

第一章 行列式一. 填空题 1. 在函数xx x xxx f 21112)(---=中, x 3的系数是______. 解. x 3的系数只要考察234222x x xx x x+-=--. 所以x 3前的系数为2.2. 设a , b 为实数, 则当a = ______, 且b = ______时, 010100=---a bba. 解. 0)(11010022=+-=--=---b a ab ba a bb a . 所以a = b = 0.3. 在n 阶行列式D = |a ij |中, 当i < j 时a ij = 0 (i , j =1, 2, …, n ), 则D = ______.解.112122112212000nn n n nna a a a a a a a a =二.选择题 1.1221--k k ≠0的充分必要条件是( C )。

(A )1-≠k ; (B) 3≠k ; (C) 1-≠k 且3≠k ; (D) 1-≠k 或3≠k 。

解:(k-1)2-4≠02.01110212=-k k的充分条件是( B )。

(A )2=k ; (B )2-=k ; (C )0=k ; (D )3-=k 。

解:k 2*1-2*2*1+1*(-2-k )=03.如果0333231232221131211≠==M a a a a a a a a a D ,2322213332311312111222222222a a a a a a a a a D =,那么=1D ( D )。

(A )2M ; (B) -2M ; (C) 8M ; (D) -8M 。

解:行列式性质2,34.下列)2(>n n 阶行列式中,值必为零的有( D )。

(A )行列式主对角线上的元素全为零;(B)行列式次对角线上的元素全为零; (C)行列式零元素的个数多于n 个; (D)行列式中各行元素之和为零。

解:行列式性质6 5. 如果122211211=a a a a ,则下列(B )是方程组⎩⎨⎧=+-=+-022221211212111b x a x a b x a x a 的解 (A )2221211a b a b x =,2211112b a b a x =; (B )2221211a b a b x -=,2211112b a b a x =;(C )2221211a b a b x ----=,2211112b a b a x --=; (D) 2221211a b a b x -----=,2211112b a b a x -----=。

线性代数1-5章习题1

线性代数1-5章习题1

线性代数习题集第一章行列式一、判断题1.行列式如果有两列元素对应成比例,则行列式等于零. ( )2. 213210 124121 012342=-.( )3. 13434121.42042=-( )4.123213123213123213.a a ab b bb b b a a ac c c c c c=( )5.123123123123123123.a a a a a ab b b b b bc c c c c c---------=---( )6. n阶行列式n D中元素ij a的代数余子式ij A为1n-阶行列式. ( )7. 312143 245328 836256=.( )8.111213212223313233a a aa a aa a a122r r+111213211122122313313233222+++a a aa a a a a aa a a( )9.如果齐次线性方程组有非零解,则它的系数行列式必等于零. ( )10. 如果方程个数与未知数个数相等,且系数行列式不为零,则方程组一定有解. ( )二、选择题1.若12532453r sa a a a a是5阶行列式中带正号的一项,则,r s的值为().A.1,1r s ==B.1,4r s ==C.4,1r s ==D.4,4r s ==2.下列排列是偶排列的是( )A. 4312B. 51432C. 45312D. 6543213.若行列式210120312x --=-, 则x =( ).A.–2B. 2C. -1D. 14.行列式0000000000a bc d e f的值等于( ). A. abcdef B. abdf - C. abdf D. cdf5.设abc ≠0,则三阶行列式00000d c b a的值是( ).A .aB .-bC .0D .abc 6.设行列式2211b a b a =1,2211c a c a =2,则222111c b a c b a ++=( ).A .-3B .-1C .1D .37.设非齐次线性方程组123123123238223105ax x x ax x x x x bx ++=⎧⎪++=⎨⎪++=⎩有唯一解,则,a b 必须满足( )..0,0A a b ≠≠ 2.,03B a b ≠≠ 23.,32C a b ≠≠ 3.0,2D a b ≠≠ 8. 215152521112223030223-=---是按( )展开的.A .第2列B .第2行C .第1列D .第1行9.设111211212ni i inn n nna a a D a a a a a a =则下式中( )是正确的. 1122.0i i i i in in A a A a A a A +++= 1122.0i j i j ni nj B a A a A a A +++=1122.i i i i in ni C a A a A a A D +++= 1122.i j i j ni nj D D a A a A a A =+++10. 349571214的23a 的代数余子式23A 的值为( ).A. 3B. -3C. 5D. -5 三、填空题1. 排列36715284的逆序数是________.2. 四阶行列式中的一项14322341a a a a 应取的符号是_______. 3.若,0211=k 则k=___________. 4.行列式1694432111中32a 元素的代数余子式A 32=____________.5.598413111=__________. 6.行列式0001001010000100=______.7.行列式0004003002001000=__________. 8.非零元素只有1n -行的n 阶行列式的值等于__________.9. 1231231238,a a a b b b c c c =则123123123222c c c b b b a a a ---=__________. 10.n 阶行列式nD 中元素ij a 的代数余子式ij A 与余子式ij M 之间的关系是ij A =__________,n D 按第j 列展开的公式是n D =__________.四、计算题1.写出五阶行列式中含1325a a 并带有正号的所有项.2.计算四阶行列式1002210002100021的值.3.求4阶行列式1111112113114111的值.4.计算行列式D =1111123414916182764的值.5. 计算行列式122224242λλλ--+---+6.计算n 阶行列式011110111101111.7. 计算n 阶行列式 00 n a D a⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅, 其中对角线上元素都是a , 未写出的元素都是0;8. 计算n 阶行列式 n x a a a xaD a ax⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅五、证明题1.33()ax byay bz az bx x y z ay bzaz bx ax by a b yz x az bx ax byay bzzxy++++++=++++2.2222222222222222(1)(2)(3)(1)(2)(3)0(1)(2)(3)(1)(2)(3)a a a a b b b b cc c cd d d d ++++++=++++++六.用克拉默法则解方程1. 12341234123412345242235232110x x x x x x x x x x x x x x x x +++=⎧⎪+-+=-⎪⎨---=-⎪⎪+++=⎩; 2.121232343454556156056056051x x x x x x x x x x x x x +=⎧⎪++=⎪⎪++=⎨⎪++=⎪⎪+=⎩.七. 问λ取何值时, 齐次线性方程组123123123(1)2402(3)0(1)0x x x x x x x x x λλλ--+=⎧⎪+-+=⎨⎪++-=⎩有非零解?第二章 矩 阵一、判断题1.若A 是23⨯矩阵,B 是32⨯矩阵,则AB 是22⨯矩阵. ( )2.若,AB O =且,A O ≠则.=B O ( )3. 12103425X ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭的解110122534X -⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭. ( ) 4.若A 是n 阶对称矩阵,则2A 也是n 阶对称矩阵. ( ) 5. n 阶矩阵A 为零矩阵的充分必要条件是0.A = ( )6. 若,A B 为同阶可逆矩阵,则11()kA kA --=. ( )7. 42042069126232110110⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭. ( )8. n 阶矩阵A 为逆矩阵的充分必要条件是0.A ≠ ( )9.设,A B 为同阶方阵,则 A B A B +=+. ( )10.设 ,A B 为n 阶可逆矩阵,则 111A O A O O B OB ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭.( ) 二、选择题1. 若,A B 为n 阶矩阵,则下式中( )是正确的.22.()()A A B A B A B -+=- .(),=.-=≠B A B C O A O B C 且,必有222.(+)+2+B A B A AB B = .D AB A B =2.若,s n n l A B ⨯⨯,则下列运算有意义的是( )..T T A B A .B BA .+C A B .+T D A B3.若,m n s t A B ⨯⨯,做乘积AB 则必须满足( )..=A m t .=B m s .=C n s .=D n t4.矩阵1111A --⎛⎫=⎪⎝⎭的伴随矩阵*=A ( )A .⎪⎪⎭⎫ ⎝⎛--1111B .⎪⎪⎭⎫ ⎝⎛--1111C .⎪⎪⎭⎫ ⎝⎛--1111D .⎪⎪⎭⎫ ⎝⎛--11115.设2阶矩阵a b A c d ⎛⎫= ⎪⎝⎭,则*=A ( ) A .⎪⎪⎭⎫ ⎝⎛--a c b d B .⎪⎪⎭⎫ ⎝⎛--a b c d C .⎪⎪⎭⎫ ⎝⎛--a cb dD .⎪⎪⎭⎫⎝⎛--a b c d 6. 矩阵⎪⎪⎭⎫⎝⎛-0133的逆矩阵是( )A .⎪⎪⎭⎫ ⎝⎛-3310B .⎪⎪⎭⎫ ⎝⎛-3130C .⎪⎪⎭⎫⎝⎛-13110 D .⎪⎪⎪⎭⎫ ⎝⎛-01311 7. 设2阶方阵A 可逆,且A -1=⎪⎭⎫ ⎝⎛--2173,则A=( ).A .⎪⎭⎫ ⎝⎛--3172 B .⎪⎭⎫ ⎝⎛3172 C .⎪⎭⎫ ⎝⎛--3172 D .⎪⎭⎫ ⎝⎛21738. n 阶矩阵A 行列式为,A 则kA 的行列式为( ).A. kA B. n k A C. k A D. -k A9. 设,A B 为n 阶矩阵满足=,AB A 且A 可逆,则有( )..==A A B E .=B A E .=B B E .,D A B 互为逆矩阵10.设A 是任意阶矩阵,则( )是对称阵..(+)T T A A A .+T B A A .T C AA .T T D A AA三、填空题1.设矩阵120210001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,100021013B ⎛⎫⎪= ⎪ ⎪⎝⎭,则2+=A B _____________2.设A=⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤411023,B=,010201⎢⎣⎡⎥⎦⎤则AB =___________. 3.设矩阵A=⎪⎪⎭⎫ ⎝⎛21,B=⎪⎪⎭⎫ ⎝⎛31,则A TB =____________. 4.⎪⎪⎪⎭⎫⎝⎛321(1,2,3)=__________. 5.n1111⎪⎪⎭⎫ ⎝⎛=__________. 6.⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-0410******** =______________________. 7.设2阶矩阵A =⎪⎪⎭⎫⎝⎛3202,则A *A =_____________.8.设矩阵A=⎪⎭⎫⎝⎛4321,则行列式|A 2|=__________. 9.设A=⎪⎪⎭⎫ ⎝⎛d c b a ,且det(A)=ad-bc≠0,则A -1=__________ .10. 设 ,A B 为n 阶可逆矩阵,则 1O A B O -⎛⎫= ⎪⎝⎭_______________.四、计算题1.已知110123011,124,111021A B ⎡⎤⎡⎤⎢⎥⎢⎥=----⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦求()TA B +.2.计算下列乘积1).431712325701⎛⎫⎛⎫ ⎪⎪- ⎪⎪ ⎪⎪⎝⎭⎝⎭;2).3(123)21⎛⎫⎪⎪ ⎪⎝⎭;3).)21(312-⎪⎪⎭⎫⎝⎛;4).13121400121134131402⎛⎫⎪-⎛⎫ ⎪⎪ ⎪--⎝⎭⎪-⎝⎭;5).111213112312222321323333()a a a xx x x a a a xa a a x⎛⎫⎛⎫⎪⎪⎪⎪⎪⎪⎝⎭⎝⎭.3.求矩阵方程.1)25461321X-⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;2)211113210432111X-⎛⎫-⎛⎫⎪=⎪⎪⎝⎭⎪-⎝⎭;3)142031121101X⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭;4)010100143100001201001010120X-⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-⎪ ⎪ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.4.设矩阵21=53A⎛⎫⎪⎝⎭,13=20B⎛⎫⎪⎝⎭,求矩阵方程=XA B的解X.5.设321=111101A ⎡⎤⎢⎥⎢⎥⎢⎥⎦⎣,求-1A .6.设101=210,325A ⎛⎫ ⎪⎪ ⎪--⎝⎭求-1A7.设101=210325A ⎛⎫ ⎪ ⎪ ⎪--⎝⎭,求-1A .8.设⎪⎪⎪⎪⎪⎭⎫⎝⎛=2500380000120025A ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=2600140000540023B . 求:AB BA 和9. 设A 为3阶矩阵, , 求-1(2)-5A A *.10.设(1,2,1),28,A diag A BA BA E *=-=- 求.B11.设34432022O A O ⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭, 求8A |及4A .五、证明题1. 设,A B 为n 阶矩阵,且A 为对称矩阵,证明TB AB 也是对称矩阵.2.设,A B 为n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB BA =.3.设为n 阶矩阵A 满足235,A A E O --=试证A E +可逆,且()14A E A E -+=-.4. 设A 为n 阶矩阵,且2,A A =且A E ≠,证明A 是不可逆矩阵.第三章 矩阵的初等变换与线性方程组一、选择题1.设n 元齐次线性方程组0AX =的系数矩阵的秩为r ,则0AX =有非零解的充分必要条件是( )(A) r n = (B) r n <(C) r n ≥ (D) r n >2.设A 是m n ⨯矩阵,则线性方程组AX b =有无穷解的充要条件是( )(A) ()r A m < (B) ()r A n < (C) ()()r Ab r A m =< (D) ()()r Ab r A n =<3.设A 是m n ⨯矩阵,非齐次线性方程组AX b =的导出组为0AX =,若m n <,则( )(A) AX b =必有无穷多解 (B) AX b =必有唯一解 (C) 0AX =必有非零解 (D) 0AX =必有唯一解4.已知12,ββ是非齐次线性方程组AX b =的两个不同的解,12,αα是导出组0AX =的基础解系,12,k k 为任意常数,则AX b =的通解是( ) (A) 1211212()2k k ββααα-+++(B) 1211212()2k k ββααα++-+(C) 1211212()2k k ββαββ-+++ (D) 1211212()2k k ββαββ++-+5.设A 为m n ⨯矩阵,则下列结论正确的是( )(A) 若0AX =仅有零解 ,则AX b =有唯一解 (B) 若0AX =有非零解 ,则AX b =有无穷多解 (C) 若AX b =有无穷多解 ,则0AX =仅有零解(D) 若AX b =有无穷多解 ,则0AX =有非零解6.线性方程组123123123123047101x x x x x x x x x ++=⎧⎪++=⎨⎪++=⎩ ( )(A) 无解 (B) 有唯一解 (C) 有无穷多解 (D) 其导出组只有零解 二、判断题1.若,αβ是线性方程组Ax b =的两个解向量, 则αβ-是方程组0Ax =的解。

线性代数(含全部课后题详细答案)1第一章一元多项式习题及解答.docx

线性代数(含全部课后题详细答案)1第一章一元多项式习题及解答.docx

A 组1.判别Q (厉)二{0 +勿亦|0,处0}是否为数域?解是.2.设/(x) = x3 4-x2 4-x+l, g(兀)=兀2+3兀+ 2,求 /(兀)+ g(x),/(x)-g(x), f(x)g(x). 解/(x) + g (x) = x3 4- 2x2 + 4x + 3 ,/(兀)-g(x)"-2x-l,f(x)g(x) = x5 +4x4 +6兀'+6兀$ +5x + 2 .3.设/(%) = (5x-4),993(4x2 -2x-l),994 (8x3 -1 lx+2)'995,求 /(%)的展开式中各项系数的和.解由于/(兀)的各项系数的和等于/⑴,所以/(I) = (5-4严3(4-2- 1尸94(8-11 + 2)1995 =-1.4.求g(兀)除以/(兀)的商q(x)与余式心).(1)f (x) —— 3%2— x — 1, g(兀)=3F - 2兀+1 ;(2)/(x) = x4 -2x4-5, g(x) = x2 -x + 2 .解(1)用多项式除法得到x 73x~ — 2x +13_93X + 3—x —x-i3 37 ° 14 7-- 无_+ —x --3 9 926 2-- X ---9 9所以'恥)十岭心)W(2)用多项式除法得到x4— 2x + 5兀4 —”丫" + 2 兀2— 2x~ — 2 兀+5 jy?—兀~ + 2 兀-x2-4x4-5-兀? + X - 2—5x + 7所以,q(x) = x2 +x-l, r(x) = -5x + 7 .5.设是两个不相等的常数,证明多项式/(兀)除以(x-a)(x-b)所得余式为af(b)_bg)a-b a-h证明依题意可设/(x) = (x - a)(x - b)q(x) + cx+d,则”(a) = ca + d,[f(b) = cb + d.解得F=(/a) --,\d = (af(b)-bf(a))/(a-b).故所得余式为a-b a-b6.问m,p,q适合什么条件时,/(兀)能被g(x)整除?(1) /(x) = x3 + px + q , g(x) = x2 + nvc-1;(2) f(x) = x4 + px2 +q , g(兀)=x2 + mx+l.解(1)由整除的定义知,要求余式r(x) = 0 .所以先做多项式除法,3x2 + mx -1x-in“+ “X + q3 2x + mx^ - x-mx1 +(〃 + l)x + g2 2一 mx_ — m^x + m°(# +1 + 加〜)兀 + (g —m)要求厂(x) = (/? + l +加2)兀+ (§ —加)=0 ,所以(“ + 1 +加2) = 0, q-m = 0.即p = -l-m2, q - m时, 可以整除.(2)方法同上.先做多项式除法,所得余式为厂(兀)=加(2 — ”一nr )兀+ (1 + @ —卩一加〜),所以 m (2-p-/772) = 0, 1 + ^ - p - m 2= 0 ,即 m = 0, p = q + \ 或“二 2— 加[q = l 时,可以整除.7. 求/(兀)与gCr )的最大公因式:(1) f (x) — x 4 + — 3%2 — 4x — 1, g (x)=兀彳 + — x — 1 ; (2) f(x) = x 4— 4x 3+ 1, g(x) = x 3— 3x 2+1 ;(3) /(x) = x 4 -10x 2 +1, g(x) = x 4 -4A /2X 3 +6X 2 +4A /2X +1 .解(1)用辗转相除法得到用等式写出來,就是所以(/(x),g(x)) = x + l ・(2)同样地,<8 4 / 3 3= -X + — — -X-—(3 344-2x 2-3x-l1 1 --- X 4——2 -- 4 X 3+ X 2- X - 1 x 4 + x 3- 3x 2- 4x- 11 2 3 , -2x 2 — 3兀—12 21 2 3 1 -- X ----- X ---—2兀~ — 2兀2 4 433-- X ----X -144一丄 184—X H - 3 3 0心宀丄兀2 24 3 2牙+牙-X - Xf(x) = xg(x)^(-2x 2-3x-l),g(x) =所以(/⑴,g (兀)) = 1.⑶ 同样用辗转相除法,可得(/(x),g(x)) = F —2血兀一1.8.求 w(x),仄兀)使 w(x) f\x) + v(x)g(ji) = (/(x), g(%)):(1) f (x) = %4 4- 2x^ — %2 — 4x — 2, (x) = %4 + x — x~ — 2x — 2 : (2) /(x) = 4x 4-2x 3-16x 2+5x4-9, g(x) = 2兀3-x 2-5x+4:(3) /(x) = x A-x 3-4x 2 +4x + l, g (兀)=x 2 -x-l.解(1)利用辗转相除法,可以得到/(x) = g (A :) + (x 3-2x)'g (兀)=(x+l)(x 3 - 2x) + (x 2 -2),x — 2兀=x(^x~ — 2).因而,(/(x),g(x)) = x 2-2,并且(/(兀),g (兀))=/ 一 2 = g (兀)_ (兀+1)(疋 _ 2兀) =g (兀)一(X +1) (f(x) -g (兀))=(一兀 一 1)/(兀)+ (兀+2)g(x),所以 u(x) = -x-\, v(x) = x + 21 10 -- X H --- 3 9x 3 - 3x 2x-13 1 2 2X H —X X 3 3 10 2 2~~'- ---- X H 兀+ 13 -- 3 10 ° 10 20 X --- 兀 3 9 916~~1T —X ------ 9 927 441 --------- X ---------------16 256-3x 2+—x1649一一539 兀+ --- 27 256(2)利用辗转相除法,可以得到/(x) = 2xg(x)-(6x 2 +3兀-9),(\ 1Ag(x) = —(6x_ + 3兀一9) ——% + — — (% — 1), —(6x - + 3x — 9) = —(x —1)(6% + 9).因而,(/⑴,g(Q) = x-1,并且(1 1 …厶— —X + _ f (x) + _兀_—x~\ I 3 3丿 (3 3丿] 1 2 7 2fi/f 以 W (X )= X H —, V (X )= — --- X — \ •3 3 3 3(3) 利用辗转相除法,可以得到fM = X —3)g(x) + (x — 2),g(x) = (x+l)(x-2) + l ・因而( f(x), g(x)) = 1 ,并且(/(兀),g(x)) = 1 = g(x) - (x+1)(兀一 2)=g (兀)-(兀+1)(/(兀)-(x 2 一3)gCr))—(—兀―1) f (x) + (兀'+ 兀2 — 3兀—2)g(x),所以u (兀)= -x-l, v(x) = x 3 +x 2 -3x-2.9.设/(x) = %3+ (14-t)x 2+ 2x + 2w, g(x)二F+zx + u 的最大公因式是一个二次多项式,求/,凤的值.解利用辗转相除法,可以得到/(%) = g(x) + (l + /)兀2 +(2-/)兀 + « ,(/(x), g(x)) = x-l = -(6x 2+ 3x-9)+ | _g(x)I d J J(I ] \= (/(x)-2xg(x)) --x+- -g(x)\ 3丿 <2 o 2 d ,、 U 3 广—---- 兀+ (1 + r t-2(l +r)2(尸 + r—w)(i+r) + (t— 2)~u[(l + t)2 — (r —2)]由题意,/(x)与g(Q的最大公因式是一个二次多项式,所以(广 + / —w)(l + /) + (f— 2)~(T H?皿(l + r)2-(r-2)] A ;=0,(l + O2解得u = o^t = -4.10.设(x —I)[(A/+ B F+I),求A和B.由题意要求知解用(兀一1)2 去除f\x) = Ar4 + Bx2 +1 ,得余式”(x) = (4A + 2B)兀+1 -3人一B,斤(兀)=0,即4A + 2B = 0,1-3A-B = O,解得A = l,B = -2.11.证明:如果(/(x),g(x)) = l, (/(x),/z(x)) = l,那么(/(x), g(x)/z(x)) = l. 证明由条件可知,存在络(兀)和片⑴ 使得旳(兀)/(兀)+岭⑴g(x) = l,存在如(兀)和卩2(兀)使得u2(x)f(x) + v2(x)h(x) = 1.用/?(兀)乘以第一式得坷(x)f(x)h(x) + V, (x)g(x)h(x) = h(x),代入第二式得u2(x)f(x) + v2 (x) [u t (x)f(x)h(x) 4-Vj (x)g(x)/z(x)] = 1, 即[w2(兀)+ u\ (x)v2(x)h(x)]f(x) + [v, (x)v2(x)]g(x)h(x) = 1,所以(/(x),g(x)/z(x)) = l.12.证明:如果/(x)与g(x)不全为零,且/心)/(兀)+ 咻)g(兀)=(/(%), g(Q),证明由于w(x)/(x) + v(x)g(x) = (/(x),g(x)), /(X )与 g(x)不全为零,所以(/(x),g(x))HO.两 边同时除以(/(Hg(Q)HO,有所以(弘(兀),咻)) = 1 .13.证明:如果〃(兀)|/(兀),〃(兀)|g(x),且〃(兀)为/(兀)与g(x)的一个组合,那么〃(兀)是/G)与 g(x)的一个最大公因式.证明由题意知d(x)是/(X )与g(x)的公因式.再由条件设d(x) = w(x)/(x) + v(x)^(x) •又设h(x) 为/(x)与g(x)的任一公因式,即/z(x)|/(x), h(x)\g(x),则由上式有h(x)\d(x).故而”(兀)是/(兀)与 g(x)的一个最大公因式.14.证明:(.fO)/2(X ), gO)/2(X )) = (.f(X ), g(x))〃(x),其中力(兀)的首项系数为 1.证明显然(/(x), g(x))/?(x)是f{x)h{x)与g(x)h(x)的一个公因式.下面來证明它是最大公因式. 设 /心),v(x)满足 w(x)/(x) + v(x)g(x) = (/(x), g(X>),贝iJu(x)f(x)h(x) + v(x)g(x)h(x) = (/(x),g(x))/z(x).由上题结果知,(/(兀),g(X ))/7(X )是/(X )/?(X )与g(JC”7(X )的一个最大公因式,又首项系数为1,所以(/(x)A(x), ^(%)/?(%)) = (/(x), ^(x))/i(x)・/⑴ g (兀)、(/(兀),g (兀))’(f(x),g(x))丿证明设〃(兀)=(/(兀),g(x)),则存在多项式M (x), v(x),使d(x) = u(x)f(x) + v(x)g(x)・因为/(X )与g (尢)不全为零,所以d(x)HO.上式两边同时除以〃(兀),有故 /(兀) _____________ g (x)l (/(x),g(x))‘(/(x),g(x))‘u(x) /(X ) (/(%), g(x)) + v(x) g(x) (y (x ),^(x ))15.设多项式/(x)与gS)不全为零,证明1 = u(x)/(兀)(/(兀),g(x))+咻)g(x) (/(兀),g(x))=1成立.16. 分别在复数域、实数域和有理数域上分解兀4+ 1为不可约因式之积.在有理数域上兀°+1是不可约多项式.否则,若+ +1可约,有以下两种可能.(1) 兀4+1有一次因式,从而它有有理根,但/(±1)工0,所以卍+1无有理根.(2) x 4+ 1 无一次因式,设x 4+1 = (x 2+处 +方)(F +cx + d),其中 a,b y c,cl 为整数.于是a + c = O, b+ 〃 + ac = O, cut + be = 0 , bd = \,又分两种情况:① b = d = \,又 a = —c,从而由 b + 〃 + ac = O,得 a 2=2,矛盾; ② b = d = — \,则 a 2= —2 ,矛盾.综合以上情况,即证.17. 求下列多项式的有理根: (1) /(x) = x 3-6x 2+15兀一 14 ;(2) ^(X ) = 4X 4-7X 2-5X -1;(3) /z(x) = x 5+ %4— 6x^ — 14x~ — 1 lx — 3 ・解(1)由于/(x)是首项系数为1的整系数多项式,所以有理根必为整数根,且为-14的因数.-14的 因数有:±1, ±2, ±7, ±14,计算得到:/(D = -4, /(-1) = -36, /(2) = 0, /(-2) = -72,/(7) = 140, /(-7) = -756, /(14) = 1764, /(一 14) = —4144,故x = 2是/(兀)的有理根.再由多项式除法可知,x = 2是于(兀)的单根.⑵ 类似(1)的讨论可知,g(x)的可能的有理根为:故x = --是巩兀)的有理根.再由多项式除法可知,兀二-丄是/(劝的2重根.2 2⑶ 类似地,加兀)的可能的有理根为:±1,±3,计算得到解在实数域上的分解式为X4+ 1 = (X 2 + 1)2-2X 2 =(X 2+V2X + 1)(X 2-V2X +1).在复数域上的分解式为x + ----------1 2 2%4+ 1 = f亠迈亠近、X ---------- 12 2/±1, ±1 ±?计算得到g(l) = -9,g(-1) = 1, g(]、r 、171=-5, g —=0, g — 一 —‘ g —〔2< 264 ,4丿11A(l) = -28, /?(-l) = 0,(3) = 0,加一3) = -96.故x = -l, x = 3是//(兀)的有理根.再由多项式除法可知,x = -\是/z(x)的4重根,兀=3是//(兀)的单根.18.若实系数方程x34- px + q = 0有一根a + bi (a,b为实数,/?工0),则方程x3 + px-q = 0有实根2—证明设原方程有三个根不失一般性,令=a + bi,从而有a2 =a-bi,由根与系数的关系可知0 = $ + 冬 + 他=(° + 勿)+ (a - bi) + ,所以冬二-2d,即(-2a)‘ + /?(-2a) + g = 0,故(2a)' + p(2a)-q = 0.这说明x3 + /zr-g = 0有实根2a .19.证明:如果(%-i)|/(r),那么证明因为u-i)|/(z),所以/(r)= /(i)= 0.因此,令y(x)=(x-i)g(x),则有E =(*-i)g(;),即(伙-1)|/(疋).20.下列多项式在有理数域上是否可约?(1)土 (%) = F+1;(2)/;(X)= X4-8?+12X2+2;(3)人(x) = x" +『+1 ;(4)厶(无)=* + "; + 1,门为奇素数;(5)厶(兀)=兀°+4尬+ 1, A为整数.解(1) ./;(兀)的可能的有理根为:±1,而/(±1) = 2,所以它在有理数域上不可约.(2)由Eisenstein判别法,取素数p = 2,则2不能整除1,而2|(-8), 2|12, 2|2,但是2?不能整除2,所以该多项式在有理数域上不可约.(3)令x=y + l,代入厶(x) = P+x'+l有^(y) = ^(y + l) = / + 6/+15/+21/+18y24-9y4-3.取素数0 = 3,由Eisenstein判别法知,g(y)在有理数域上不可约,所以/(兀)在有理数域上不可约.(4)令兀= y_l,代入f4(x) = x p 4-px + 1,得g(y)=厶(y j) = -+ cy~2——C;-2y2 + (Cf* + p)y-p,取素数p,由Eisenstein判别法知,g(y)在有理数域上不可约,所以£(兀)在有理数域上不可约.(5)令x=y + l,代入农(兀)=兀4+4Ax+l,得g(.y)=厶(y +1) = y" + 4y‘ + 6y2 + (4k + 4)y + 4R + 2 ,収素数p = 2,由Eisenstein判别法知,g(y)在有理数域上不可约,所以点(兀)在有理数域上不可约.1•设/(X),g(X),加兀)是实数域上的多项式,(1)若/2U) = xg2(x) + x/z2(x),则/(x) = g(x) = h{x) = 0 .(2)在复数域上,上述命题是否成立?证明(1)当g(兀)=/2(兀)=0时,有严⑴=0,所以/(%) = 0 ,命题成立.如果g(x), /z(x)不全为零,不妨设g(x)H0・当h(x) = 0时,a(xg2(x) + x/i2U)) = l + 2a^(x)为奇数;当加兀)工0时,因为g(x),瓜兀)都是实系数多项式,所以Xg2(x)与兀胪(兀)都是首项系数为正实数的奇次多项式,于是也有d(xg2(x) + x/『(x))为奇数.而这时均有/2(x)^0 ,且df\x) = 2df(x)为偶数,矛盾.因此有g(兀)=力(兀) = 0,从而有f(x) = 0 .(2)在复数域上,上述命题不成立.例如,设f(x) = 0 , g(x) = x\ h(x) = ix,1,其中斤为自然数, 有/2 (x) = xg2 (x)xh2 (x),但g(x) / 0 ,力(兀)工0.2.设/(x), g(x)9 h(x)e P[x],满足(x2 4-l)h(x)4-(x-l)/(x) + (x+2)g(x) = 0,(x2 + l)/?(x) + (x+ l)/(x) + (x - 2)^(%) = 0.证明(X2+1)|(/U), g(X))・证明两式相加得到2(x2 + l)h(x) + 2x(/(x) + g(兀))=0.由(x2+l,兀)=1可知(x2 + l)|(/(x) + g(x)).两式相减得到-2f(x) + 4g(x) = 0, f(x) = 2g(x).故(x2 + l)|/(x), (x2+l)|g(x), BP(X2+1)|(/(X),g(x)).3・设gi(x)g2(x)\f{(x)f2(x),证明(1)若/(x)|g](x),/(X)H0,则g2(x)\f2(x);(2)若g2(x)|/;(x)/;(x),是否有g2(x)\f2(x)?解(1)因为gi(兀)g2(兀)庞(兀)£(兀),/O)|gi(X),故存在多项式h(x), h}(x)使得fl(x)f 2(x) = g](x)g 2(x)h(x\ g](兀)=Z (x)h }(x).于是/;(兀)£(兀)=/(兀)人(兀)g2(x)力(兀)•由于 土(兀)工0,故有 f 2(x) = h l (x)g 2(x)h(x),即g 2(x)\f 2(x).(2)否•例如取 g {(x) = x-2 , ^2(X ) = X 2-1 , (x) = (x-l)(x-2), (x) = (x + l)(x4-2).虽 然 gSx)g 2(x)\f^x)f 2(x)且 g 2(x)\f {(x)f 2(x),但 g 2(x)不能整除 f 2(x).4.当R 为何值时,/(x) = X 2 +伙+ 6)x + 4k + 2和g(x) = F+(£ + 2)x + 2R 的最大公因式是一次 的?并求出此吋的最大公因式.解 显然 g(x) = (x + £)(x+2).当(/(x),g(Q) = x + 2时'/(一2) = 4 — 2伙+ 6) + 4£ + 2 = 0‘ 则k = 3.当(于(兀),g(Q )=兀 + £ 时’/(一灯=k 2 - k(k + 6) + 4Z: + 2 = 0 ‘ 则 k = l.这时(/(x), g(x))=兀+1. 5.证明:对于任意正整数斤,都有(/(x),g(Q)"=(/"(x),g"(x))・证明 由题意可知/(%)与&(兀)不全为零.令(/(x), g(x)) = d(x),Z 、” g(x) 、d(x)丿/心)/"(兀)+ 咚)g"(兀)=d\x).又由 d(x)\f(x), d(x)|g(x),有 d n (x) f l \x), d"(x) g"(x),因此 d"(x)是厂(x)与 g"(x)的首项系数为1的最大公因式,从而有(广(x),g"(x))= 〃"(兀)=(/(x),g(x))" •6.设 / (x) = af(x) + bg(x), g[ (x) = c/(x) + dg(x),且 ad - be H 0 ,证明(/(x),g(x)) = (/](x), g](X ))・证明设(/(x), g(x)) = d(x),则 d(x)\f(x\d(x)\g(x).由于 “所以对任意正整如,有爲J 寫〕"卜 于是有u{x) +咻) 则〃(兀)工0,从而fi (兀)=妙(x) + bg(x) , g] (x) = (x) + dg (x),故d (x)| (x), d (x)|g t (x).又设h(x)\ (x), /z(x)|(x),由上式及ad-bc^O ,可得从而/?(x)|/(x), h(x)\g(x),于是h(x)\d(x),即〃(兀)也是/;(兀)和g|(x)的最大公因式,即(/(x), g(x)) = (/;(x),&(兀))・7.设 /(x) = t/(x)/(x), g(Q 二 dCr)g](x),且/O)与 gd)不全为零,证明〃(兀)是/O)与 gCO的一个最大公因式的充分必要条件是(/(劝,g|(x)) = 1.证明必要性.若〃(x)是/(兀)与g (兀)的一个最大公因式,则存在多项式w(x),v(x)使W (x)/(x) +v(x)g(x) = d(x),于是u(x)d(x)f t (x) + v(x)d(x)g l (x) = d(x).由/(力与g (兀)不全为零知如工0,因此有u(x)f l (x) + v(x)g l (x) = l f 即(土(兀),g©))i •充分性.若(f l (x),g l (x)) = l ,则存在多项式u(x),v(x),使 u(x)f l (x)+ v(x)g l (x) = l. 两边同吋乘〃(兀)有u(x)f(x) + v(x)g(x) = d(x)・由d(x)是/(x)与g(x)的一个公因式知,d(x)是f(x)与g(x)的一个最大公因式.8.设于(兀)和g(x)是两个多项式,证明(f(x), g(x)) = l 当且仅当(f(x)-l-g(x), f(x)g(x)) = l. 证明 必要性.设(f(x)9g(x)) = l,若f(x) + g(x)与/⑴g(x)不互素,则有不可约公因式p(x), 使p(x)lf(x)g(x)f所以 p(x)| /(X )或 0(x)|g(x).不妨设 p(x)\ /(x),由 P (x)|(/(x) + g (兀))可知 p(x)|g(x),因此 P (兀)是 /(兀)和g“)的公因式,与/(%), g (x)互素矛盾,故 蚀+g (兀)与蚀g (兀)互素.充分性.设(/(兀)+ gO) J(x)g (兀)) = 1,则存在w(x), v(x)使(/(兀)+ g (兀))心)+ /(x)g(x)v(x) = 1 , f(x)u(x) + g (兀)(臥兀)+d ad-be zw- h ad 一gi (兀), g(x) -c ad -be a ad -be g](x),/(x)v(x)) = 1, 上式说明(/(兀),g(兀)) = 1.9.如果(x2 +x + l)|/j(x3) + x/^(x3),那么(x-l)|/;(x), 0 — 1)|/;(兀)・T;®所以,^3=£23 = 1.证明X2+X + l的两个根为£\= 士护和£2=因为U2+x+l)|(/;(^3) + x/;(^3)),所以(兀一£|)(x - £2)|/;(X')+/(F),故有y 窗)+ £/(郃)=0,[爪哥)+ £2£(哥)=0,即解得/(l) = /;(l) = o,从而(兀—1)|久(兀),(x-1)|/;(%).10.若f(x)\f(x H),则/(x)的根只能是零或单位根.证明因为f(x)\f(x n),故存在多项式g(x),使/(x n) = /(x)^(x).设。

线性代数第一版课后习题1答案

线性代数第一版课后习题1答案

习题1. P 231.利用对角线法则计算三阶行列式。

(1)381141102--- (2)b a c a c b cb a (3)222111c b a c ba(4)yxy x x y x y y x y x+++解:(1)38114112---=2×(﹣4)×3+0×(﹣1)×(﹣1)×1×1×8 -1×(﹣4)×(﹣1)-0×1×3-2×(﹣1)×8=﹣24+1﹢8-4-0+16=﹣4(2)ba c a c bcba =a cb +b ac +c b a -c ×c ×c -b ×b ×b -a ×a ×a =3a b c -a 3+b 3+c 3(3)222111c b a c b a=b c 2 +c a 2 +a b 2 -b a 2 -b c 2 -a c 2 =b(c 2-a 2) +a c(a -c) +b 2(a -c)=b(c -a)(c +a) +a c(a -c) +b 2(a -c)=(a -c) [b 2+a c ﹣b(c -a)] =(a -c) [b(b -a) +c(a -b)] =(a -c)(a -b)(c -b) =(a -b)(b -a)(c -a)(4)yxyx x y x y y x y x+++=x (x +y) y +y x (x +y) +(x +y) y x-(x +y) (x +y) (x +y) -x 3 -y 3=(x +y) [3x y (x +y)2 -(x 2 -x y +y 2)]=(x +y) [3x y -x 2 -2x y -y 2 -x 2 +x y -y 2]=(x +y) (2x y -2x 2 -2y 2)=(x +y) (x 2-x y +y 2)=﹣2(x 3 +y 3)2.计算各行列式第三行元素的代数余子式,并求出各行列式。

线性代数习题1(附答案)

线性代数习题1(附答案)

线性代数复习题1(广工卷)一.填空题(每小题4分,共20分) 1.设五阶矩阵 123230,2A A A A A ⎡⎤=⎢⎥⎣⎦是3阶方阵,122,1A A ==,则 A = .2.设 123,,a a a 线性无关,若 112223331,,b a ta b a ta b a ta =+=+=+ 线性无关,则 t 应满足条件 .3.向量组112α⎛⎫⎪= ⎪⎪⎝⎭,⎪⎪⎪⎭⎫ ⎝⎛-=113β,⎪⎪⎪⎭⎫ ⎝⎛-=201γ线性 关4.如果矩阵 14000400x x x x A x xx ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭是不可逆的, 则 x = . 5.设 n 阶(3n ≥)矩阵 1111a a a a a a A aa a a aa⎛⎫ ⎪⎪⎪= ⎪ ⎪ ⎪⎝⎭的秩为 1n -, 则 a 必为 二.单项选择题(每小题4分,共20分)1. 设 ,A B 为同阶可逆矩阵, 则 ( ) (A) .A B B A = (B) 存在可逆矩阵 ,P 使 1.P AP B -= (C) 存在可逆矩阵,C 使 .TC AC B = (D)存在可逆矩阵P 和,Q 使 .PAQ B = 2.设A,B 都是n 阶非零矩阵,且 0A B =,则A 与B 的秩是 ( ). (A) 必有一个等于零. (B) 都小于n.(C) 都等于n. (D) 一个小于n, 一个等于n.3. 设n 元齐次线性方程组 0A x =中 ()R A r =, 则0A x = 有非零解的充要条件是 ( )(A) r n =. (B) r n ≥. (C) .r n < (D) .r n >4. 若 向量组,,a b c 线性无关,,,a b d 线性相关, 则 ( )(A) a 必可由 ,,b c d 线性表示. (B) b 必不可由 ,,a c d 线性表示. (C) d 必可由 ,,a b c 线性表示. (D) d 必不可由 ,,a b c 线性表示.5. 设⎪⎪⎭⎫ ⎝⎛=1011A ,则12A 等于 ( ) (A ) ⎪⎪⎭⎫ ⎝⎛1101111 (B ) ⎪⎪⎭⎫ ⎝⎛10121 (C ) ⎪⎪⎭⎫ ⎝⎛11121(D ) ⎪⎪⎭⎫⎝⎛1201212三.(14分) 设 3521110513132413D --=----D 的(,)i j 元的余子式和代数余子式依次记作,,ij ij M A 求11121314112131.A A A A M M M M ++++++及 四. (10分) 已知 21311122,20,13225A B --⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦求 X AX B =使.五.(10分) 判定下列向量组的线性相关性, 求出它的一个极大线性无关组, 并将其余向量用极大线性无关组线性表示.()()()()()123451,1,2,4,0,3,1,2,3,0,7,141,2,2,0,2,1,5,10a a a a a =-===-=六.(10分) 用基础解系表示下面方程组的全部解:12341234123422124522x x x x x x x x x x x x a+-+=⎧⎪+++=⎨⎪++-=⎩七(16分) 已知A 是n 阶方阵,且满足 220(A A E E +-=是n 阶单位阵). (1) 证明 A E + 和 3A E - 可逆,并求逆矩阵; (2) 证明 2A E +不可逆线性代数复习题1(广工卷)一.填空题(每小题4分, 共24分) 1.144。

线性代数第一章习题及答案

线性代数第一章习题及答案

第一章 行列式1.利用对角线法则计算下列三阶行列式:(1)381141102---; (2)b a c a c b cb a (3)222111c b a c b a; (4)yxy x x y x yy x y x+++.解 (1)=---381141102811)1()1(03)4(2⨯⨯+-⨯-⨯+⨯-⨯)1()4(18)1(2310-⨯-⨯-⨯-⨯-⨯⨯-=416824-++- =4-(2)=ba ca cbc b a ccc aaa bbb cba bac acb ---++ 3333c b a abc ---= (3)=222111c b a c b a222222cb ba ac ab ca bc ---++ ))()((a c c b b a ---= (4)yxyx x y x y yx y x+++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+--33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ;(6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0(2)逆序数为4:4 1,4 3,4 2,3 2(3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3(5)逆序数为2)1(-n n :3 2 1个 5 2,54 2个 7 2,7 4,7 6 3个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n)1(-n 个(6)逆序数为)1(-n n3 2 1个 5 2,54 2个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n)1(-n 个4 2 1个 6 2,6 4 2个 ……………… … )2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个3.写出四阶行列式中含有因子2311a a 的项. 解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢71100251020214214; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-2605232112131412; (3)⎥⎥⎥⎦⎥⎢⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a100110011001 解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-⨯--- =143102211014--321132c c c c ++141717201099-=0(2)2605232112131412-24c c -260532122130412-24r r -0412032122130412-14r r -0000032122130412-=0(3)ef cfbfde cd bdaeac ab ---=ecb ec b ec badf ---=111111111---adfbce =abcdef 4(4)d cb a 10110011001---21ar r +d cb a ab 10011011010---+=12)1)(1(+--d c a ab 101101--+ 23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明:(1)1112222b b a a b ab a +=3)(b a -;(2)bz ay by ax bxaz by ax bxaz bzay bxaz bz ay by ax +++++++++=yxzx z yz y xb a )(33+; (3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a dcbad c b a))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +----- n n n n a x a x a x ++++=--111 .证明(1)0122222221312a b a b aa b a ab a c c c c ------=左边 ab a b ab a ab 22)1(22213-----=+ 21))((ab a a b a b +--=右边=-=3)(b a (2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax zx bxaz y z bz ay x a 分别再分bzay y xby ax x zbxaz z y b +++ zyx y x zx z y b y x zx z y z y x a 33+分别再分右边=-+=233)1(yxz x z y zy x b yxzx z yz y x a (3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c964496449644964422222++++++++d d dd c c c cb b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a949494949464222224232423dd c cb b a ac c c c c c c c ----第二项第一项06416416416412222=+d dd c c c b b b a a a(4) 444444422222220001a d a c ab a ad ac ab aa d a c ab a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b ad ac ab a d ac a b ++++++---=⨯---))()((a d a c a b)()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b)()()()(112222b d a b bd d b c a b bc c ++++++++ =))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x x a xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依 副对角线翻转,依次得n nnn a a a a D 11111=, 11112n nn n a a a a D = ,11113a a a a D n nnn =, 证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnn n n n nnnn a a a a a a a a a a D 2211111111111)1(--==∴=--=--nnn n nn n n a a a a a a a a 331122111121)1()1( nnn nn n a a a a111121)1()1()1(---=-- D D n n n n 2)1()1()2(21)1()1(--+-+++-=-=同理可证nnnn n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-=D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)aaD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xa a ax a aa x D n =;(3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n n n n n ------=---+; 提示:利用范德蒙德行列式的结果.(4) nnnnn d c d c b a b a D000011112=;(5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121,021≠n a a a 其中.解(1) aa aa a D n 00010000000000001000=按最后一行展开)1()1(100000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n n a aa(再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a a x xa a x x a a a a x D n ------=0000000 再将各列都加到第一列上,得ax a x a x a a a an x D n ----+=0000000000)1( )(])1([1a x a n x n --+=-(3)从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得nn nn n n n n n n a a a n a a a n a a a D )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-∙-∙-=---=1121)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nnnnn d c d c b a b a D 0011112=n n n n n nd d c d c b a b a a 00000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222---n n n n n n D c b D d a 都按最后一行展开 由此得递推公式:222)(--=n n n n n n D c b d a D 即 ∏=-=ni i i i i n D c b d a D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=432140123310122210113210)det(--------==n n n n n n n n a D ij n,3221r r r r --0432111111111111111111111--------------n n n n ,,141312c c c c c c +++1524232102221002210002100001---------------n n n n n=212)1()1(----n n n(6)n n a a a D +++=11111111121,,433221c c c c c c ---nn n n a a a a a a a a a a +-------10000100010000100010001000011433221展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------0000000000000000000000022433221n n n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------0000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑+==n i in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x 解 (1)11213513241211111----=D 8120735032101111------=14508130032101111---=14214205410032101111-=---=112105132412211151------=D 11210513290501115----=112123313090509151------=233130905112109151------=1202300461000112109151-----=14238100112109151----=142-=112035122412111512-----=D 811507312032701151-------=31390011230023101151-=28428401910023101151-=----=42611135232422115113-=----=D14202132132********4=-----=D1,3,2,144332211-========∴DD x D D x D D x DD x(2)510006510006510065100065=D 展开按最后一行61000510065100655-'D D D ''-'=65D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 5100165100065100650000611=D 展开按第一列6510065100650006+'D46+'=D 460319+''''-'''=D 1507=5101065100065000601000152=D 展开按第二列5100651006500061-6510065*********-365510651065⨯-=1145108065-=--=5110065000060100051001653=D 展开按第三列51006500061000516500061*********+6100510656510650061+=703114619=⨯+= 5100060100005100651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-=110005100065100651100655=D 展开按最后一列D '+1000510********12122111=+=665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D ,齐次线性方程组有非零解,则03=D 即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解? 解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-= 3)1(2)1(23-+-+-=λλλ 齐次线性方程组有非零解,则0=D 得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.。

考研线性代数习题及答案(一)

考研线性代数习题及答案(一)

考研线性代数基础习题及答案(一)1.计算下列二阶行列式:.计算下列二阶行列式: (1)3125--; (2)log 11log a b b a )1b ,a 0,¹>且(b a ;(3)x x y x yx+-; (4)21111t t t +-+. 解:1)= (-3)×5-(-1)×2=-132)=log log 10b aa b ×-= 3)=22()()x x y x y y -+-= 4)=(t +1)(t 2-t +1)-1=t 32.计算下列三阶行列式:.计算下列三阶行列式: (1)111101112---; (2)12111516312---; (3)0230ba cbc a-; (4)111c b ca b a---. 解:1) =1×0×(-2)+1×1×(-1)+(-1)×1×1-(-1)×0×(-1)-1×1×1-(-2)×1×1=-1 2) =1×15×(-2)+2×16×3+(-1)×(-1)×1-(-1)×15×3-16×1×1-(-2)×2×(-1)=92 3) =2()30000b c ac a b c abc ´´+-´´+---= 4) =22222211abc abc b a c a b c +-+++=+++3.求下列各排列的逆序数,并说明它们的奇偶性:.求下列各排列的逆序数,并说明它们的奇偶性: (1)264315; (2)542163. 解:1)6G = 偶排列偶排列 2)9G = 奇排列奇排列4.确定i 和j 的值,使得9级排列级排列 (1)1 2 7 4 i 5 6 j 9成偶排列;成偶排列;(2)3 9 7 2 i 1 5 j 4成奇排列. 解:1)当8,3i j ==时成偶排列时成偶排列 2)当8,6i j ==时成奇排列时成奇排列5.利用行列式定义计算下列行列式.利用行列式定义计算下列行列式(1)010010100101001D =; (2)12340000000000a a D a a =. 解:1)(2143)21124334(1)1D a a a a G =-= 2)(2143)142332411234(1)D a a a a a a a a G=-=6.利用行列式性质计算下列行列式:.利用行列式性质计算下列行列式:(1)313023429722203-; (2)3211040220110102;(3)1234234134124123; (4)213131071242115-----. (5)xy x y y x y x x yxy+++; (6)222a b c a b c b c a b cac a b++++++. 解:1) =312103430455223121--=-=--- 2) =10100002602100302=--3) =100010001113110010101601222124411111104-==-------- 4) =10001001138100085521005725401151143==------5) =00x x x y x x y yx y x x y x xx y y x y +++++=0000xyx y y x x y x y y x y x yx y x-++--- 332()x yxyx y x y xy x x y y =+=-+-+-6) =222a b c a bc b c a b c a c a b++++++ =22a b ca b c a b c c b c ab ca c ab ++------++++ 111()22a b c cb c ab cac a b--=++++++=111()022022a b c b c a b c a c c a b --++++++++ 111()0()022a b c a b c a b a cc a b--=++++-++++ =32()a b c ++7.计算下列行列式:.计算下列行列式:(1)1123103230n n nD --=--;(2)111222121212n n n n a a a n a a a nD a a a n++++++=+++(n ≥2);(3)11221110001100011000010011n n n n a a a a D a a a +-----=---;(4)0121111111000101210001n i n na a a D a i n a a +-=¹=(其中0,,,,,).解:1) 10001200!1n D n n-==-2) 1°当n =2时,12n D a a =-2°当n >2时,11111222222122120212n nn n n n a a a n a a na a a n a a n D a a a na a n++++++++=+=++++3) 110000110000110010001000011n D+--==-4) 01211201111110000000010000nn n i i n na a a D a a a a a a a +=-æö==-ç÷èøå8.解方程:.解方程:(1)2212134526032113212x x ---=--+-- (2)11001()01001x y z x x y z y z=其中、、均为实数. 解:1)22(9)(1)0x x --=3x =±或1x =± 2)22211x y z ---=0x y z ===9.用克拉默法则解下列线性方程组:.用克拉默法则解下列线性方程组: (1)123123133243421132411x x x x x x x x x --=ìï+-=íï-+=î(2)1234123423412342513232222420x x x x x x x x x x x x x x x -++=ìï++-=ïí++=-ïï-++=î解:1)1234112412141142311234111124311432113,,1211211211342342342324324324x xx --------====------------2) 12251115112111113121311231032223220222214201422042D D D -----===----34251125111121113243220322211214D D ----==---- 312412341,0,,1DDDDx x x x DDDD\=======-10.k 取何值时,下面的方程组仅有零解?取何值时,下面的方程组仅有零解?(1)320720230x y z kx y z x y z +-=ìï+-=íï-+=î(2)0020kx y z x ky z x y z ++=ìï+-=íï-+=î解:1) ) 当当32163725630,,5213kk k --=-¹¹-即时仅有零解仅有零解2) ) 当当1111(1)(4)0,14,211kk k k k k -=+-¹¹¹-即且时仅有零解仅有零解(B )1.填空题.填空题 (1)设1234134()124123x f x x x=,则方程f (x )=0的根为____________; (2)1111111111111111xx y y +-+-=________________;(3)设行列式3040222207005322--,则第四行各元素余子式之和的值为__________;(4)n 阶行列式阶行列式00010000001n a a D a a==__________ (5)设n 阶行列式阶行列式13521120010301n n D n-=则D n 的第一行各元素的代数余子式之和11121n A A A +++= ______________. 解:1) ()(2)(3)(4)0f x x x x =---= 2,3,4x x x \===2) =22x y 3) -284) 2nn a a--5) 21!(1)nk nk =-å2.选择题.选择题(1)下列行列式中,不等于零的是()下列行列式中,不等于零的是( ). A .1231110.50.50.5---B. 1231110.5 1.5 2.5 C. 1531210.54 2.5D. 111412125---- (2)已知2122231112132122233111321233133132331121122213232223322a a a a a a a a a m a a a a a a a a a a a a a a a =---+++,则=( ). A .6m B .-6m C .12m D .-12m(3)多项式10223()71043173x x x f x x-=--中的常数项是(中的常数项是( ). A .3 B .-3 C .15 D .-15 (4)设行列式1234123412341234()a a a a x a a a x a f x a a xa a a xa a a --=--,则方程()f x =0的根为(的根为(). A .1234,a a a a ++ B .12340,a a a a +++ C .1234,a a a a --D .12340,a a a a ----(5)n 阶行列式D n 为零的充分条件是(为零的充分条件是( ). A .主对角线上的元素全为零.主对角线上的元素全为零B .有(1)2n n -个元素都等于零个元素都等于零 C .至少有一个(n -1)阶子式为零)阶子式为零D .所有(n -1)阶子式均为零)阶子式均为零 解:D 、A 、A 、B 、D 3.证明:32222()22a b c a a b b c a b a b c ccc a b----=+---. 证明证明: : : 左左=111()2222a b c bb c a bc cc a b++---- 33111()00()0a b c b c aa b c c a b=++---=++---4.证明:1111111112222222222a bb cc aa b c a b b c c a a b c a b b c c a a b c ++++++=+++. 解:11111111112222222222ab c c a b b c c a ab c c a b b c c a a b c c a b b c c a ++++=+++++++++左 =1112222ab cab c a b c5.计算下列n 阶行列式:阶行列式:(1)0000100002001000000nD n n=-; (2)123121221321321221n n n n n D n n nn n ---=---- ; (3)210001210000021012n D ---=--;(4)12323413452121n n D n n =-. 解:解: 1) (1)(2)((1),(2)1,)2(1)!(1)!n n n n nnD n n --G --=-=-2) 11111111110222111120022211111nn n n n Dn n n ------------=--=---12(1)2(1)n nn --=-+3) 100000210001200100012n D n ---=--=+-- 4) 1231341(1)145221111n n n n D n +=- =1230111(1)01112111n n n n n-+-(1)12(1)(1)2n n n n n +-+=-×6.用数学归纳法证明.用数学归纳法证明2112122222122122121111n n n n n n na a a a a a a a a a D a a a a a a a a ++==++++12cos sin(1)sin n q qq+=2cos sin 3sin q q q==sin(1)sin k qq=sin(2)sin k qq=又又111x x x =解:211112122212111()1n n i j j i n n nn n a a a a a a D a a a a a --£££-==-Õ123,0n D D D x D ===== 11231,0n D x x x x D \======10.若齐次线性方程且.若齐次线性方程且1234123412341234020300x x x ax x x x x x x x x x x ax bx +++=ìï+++=ïí+-+=ïï+++=î有非零解,则a 、b 应满足什么条件?应满足什么条件?解:当11112110113111a a b =-即2(1)4a b +=时,方程组有非零解方程组有非零解..。

线性代数练习题及答案解析(一)

线性代数练习题及答案解析(一)

线性代数练习题及答案解析(一)一、行列式1、排列25341的逆序数为 7 ;2、排列643125的逆序数是 9 ;3、方程211123049x x =的根为 2,3 ;(范德蒙行列式) 4、行列式D=162021304---中,元素-3的代数余子式是( A )(A )10 (B )2 (C )-10 (D )-2 考点:代数余子式定义5、(1)三阶行列式det()ij D a =中含有因子1322a a 的项为 132231-a a a ,含有因子1223a a 的项为 122331a a a . 考点:行列式展开式的定义规则(2)四阶行列式det()ij D a =中含有因子1123a a 的项为 12233144a a a a 或12233441-a a a a .6、设n 阶行列式60D =,且D 中的每列的元素之和为6,则D 中的第三行的代数余子式之和为 10 .考点:行列式的性质6,行列式按行(列)展开7、(1)设n 阶行列式det()ij D a =,j i A 是D 中元素j i a 的代数余子式,则下列各式中正确的是( C ). 考点:行列式按自己的行(列)展开等于行列式,如行(列)与代数余子式的行(列)不一致则等于零。

A 、10nijij i aA ==∑;B 、10nijij j aA ==∑; C 、1nijij j aA D ==∑; D 、121ni i i aA D==∑(2)若4阶行列式D 中第2行的元素212223242,1,3,0,a a a a ====余子式212M =,2223241,3,0M M M ===则D= -12 .注意:代数余子式与余子式的区别。

行列式的展开只与代数余子式有关。

(3)若3阶行列式D 中第1行的元素1112133,2,5,a a a ===代数余子式114A =,12131,2,A A =-=则D= 20 .8、行列式112233440000000a b a b b a b a =( B )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题一一.单项选择题1.三阶矩阵A 的特征值为1,2,3,则下列矩阵中非奇异矩阵是( ). A.2+A E ; B. 2-E A ; C.-E A ; D.3-A E . 答案:A解 因为若λ为三阶矩阵A 的特征值,则0λλ-=-=A E E A ,也即当λ为矩阵A 的特征值时,矩阵,λλ--A E E A 为奇异矩阵. 由于2λ=-不是矩阵A 的特征值,所以20+≠A E ,即矩阵2+A E 非奇异. 故答案A 正确.2.与矩阵100010002⎛⎫⎪= ⎪ ⎪⎝⎭A 相似的矩阵是( ). A.110021001⎛⎫ ⎪ ⎪ ⎪⎝⎭; B.110010002⎛⎫ ⎪ ⎪ ⎪⎝⎭; C.101010002⎛⎫ ⎪⎪ ⎪⎝⎭; D.101021001⎛⎫⎪ ⎪ ⎪⎝⎭. 答案:C解 由于答案A ,B ,C ,D 均为上三角矩阵,其特征值均为1231,2λλλ===,它们是否与矩阵100010002⎛⎫⎪= ⎪ ⎪⎝⎭A 相似,取决于对应特征值121λλ==四个矩阵与单位矩阵的差的秩是否为1,即()1R -=B E .由于只有答案C 对应的()1R -=B E ,即对应121λλ==有两个线性无关的向量,所以答案C 正确.3.二次型),,(321x x x f 22112263x x x x =++的矩阵是( ). A.1113-⎛⎫⎪-⎝⎭; B.1243⎛⎫ ⎪⎝⎭; C. 1333⎛⎫ ⎪⎝⎭; D. 1513⎛⎫ ⎪⎝⎭答案:C解 因为),,(321x x x f 22112263x x x x =++112213(,)33x x x x ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, 所以二次型矩阵为1333⎛⎫=⎪⎝⎭A ,故答案C 正确. 4.对于二次型12(,,,)n f x x x =L T x Ax ,其中A 为n 阶实对称矩阵,下述各结论中正确的是( ).A.化f 为标准形的可逆线性变换是唯一的;B.化f 为规范形的可逆线性变换是唯一的;C.f 的标准形是唯一的;D.f 的规范形是唯一的. 答案:D解 因为二次型f 的规范形是唯一的,所以答案D 正确,而答案A,B,C 均不正确. 故答案D 正确.二、解答下列各题1.试证:由123(0,1,1),(1,0,1),(1,1,0)T T T ===ααα所生成的向量空间就是3R . 证 设123(,,)ααα=A ,因为011101110=A 20=-≠于是()3R =A ,故123,,ααα线性无关.由于123,,ααα均为三维且秩为 3. 所以123,,ααα为此三维空间的一组基,故由123,,ααα所生成的向量空间就是3R .2.利用施密特正交化方法,将向量组化T 1(011),α=,,T 2110,α=(,,)T3101α=(,,)为正交的单位向量组.解 令1β=T 1011α=(,,), 2β=2121111111(1,1,0)(0,,)(1,,)2222T T T T T αβαβββ-=-=-,3β=31323121122T T T T αβαβαββββββ--,=11111(1,0,1)(0,,)(,,)22366T T T---=(T)32,32,32-, 再将向量组123,,βββ单位化,即得到正交的单位向量组.T T T12363(),),)33γγγ==. 3.判别矩阵211020011⎛⎫⎪= ⎪ ⎪-⎝⎭A 是否对角化?若可对角化,试求可逆矩阵P ,使1P AP -为对角阵.解 矩阵A 的特征多项式为λ-=A E 211020012λλλ----=2(2)(1)λλ--- 由0 A E λ-=,得矩阵A 的特征值为1231,2λλλ===对于11λ=,解齐次线性方程组() -=A E x 0,可得方程组的一个基础解系1(1,0,1)T =-α. 对于232λλ==,解齐次线性方程组(2) -=A E x 0,可得方程组的一个基础解系2(1,0,0)T =α,3(0,1,1)T =-α.由于A 有三个线性无关的特征向量,故A 可对角化.令123110(,,)001101ααα-⎛⎫ ⎪==- ⎪ ⎪⎝⎭P 则1100020002-⎛⎫⎪= ⎪ ⎪⎝⎭P AP4.求一个正交变换将二次型322322214332x x x x x f +++=化为标准形.解 二次型的矩阵为200032023⎛⎫⎪= ⎪ ⎪⎝⎭A ,其特征多项式为20032032(2)23023λλλλλλλ---=-=---A E )1)(5)(2(λλλ---=令0 A E λ-=,得矩阵A 的特征值为1,5,2321===λλλ当21=λ时, 解方程组(2) -=A E x 0,由0000122012001021000⎛⎫⎛⎫ ⎪ ⎪-=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E . 得基础解系 1100⎛⎫⎪= ⎪ ⎪⎝⎭α.当52=λ时,解方程(5) -=A E x 0,由3001005022011022000-⎛⎫⎛⎫ ⎪ ⎪-=-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A E 得基础解系 2011α⎛⎫ ⎪= ⎪ ⎪⎝⎭.当13=λ时,解方程() -=A E x 0,由100100022011022000⎛⎫⎛⎫ ⎪ ⎪-=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E 得基础解系 3011α⎛⎫ ⎪=- ⎪ ⎪⎝⎭.将123,,ααα单位化,得1100β⎛⎫⎪= ⎪ ⎪⎝⎭,20β⎛⎫ = ⎝,30β⎛⎫ =- ⎝⎭于是正交变换为⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛321321************1y y y x x x . 且标准形为 23222152y y y f ++=. 5.判别二次型),,(321x x x f =322123222144465x x x x x x x --++是否为正定二次型.解 二次型),,(321x x x f 的矩阵为520262024-⎛⎫⎪=-- ⎪ ⎪-⎝⎭A .由于1150a =>,5226026-=>-,520262840024-=--=>-A即A 的一切顺序主子式都大于零,故此二次型为正定的.三、证明题如果A 为n 阶实对称矩阵,B 为n 阶正交矩阵,证明1-B AB 为n 阶实对称矩阵. 证 因为111()()()T T T T T T T ---==B AB B A B B A B 又A 为n 阶实对称矩阵,B 为n 阶正交矩阵,所以T =A A 及T =B B E ,即1()T -=B B于是 11()()T T T T T --==B AB B A B B AB 1-=B AB 所以1-B AB 为n 阶实对称矩阵.习题2一.单项选择题1.与矩阵100010002⎛⎫⎪= ⎪ ⎪⎝⎭A 相似的矩阵是( ). A.110021001⎛⎫ ⎪ ⎪ ⎪⎝⎭; B.110010002⎛⎫ ⎪ ⎪ ⎪⎝⎭; C.101010002⎛⎫ ⎪⎪ ⎪⎝⎭; D.101021001⎛⎫⎪ ⎪ ⎪⎝⎭. 答案:C解 由于答案A ,B ,C ,D 均为上三角矩阵,其特征值均为1231,2λλλ===,它们是否与矩阵100010002⎛⎫⎪= ⎪ ⎪⎝⎭A 相似,取决于对应特征值121λλ==四个矩阵与单位矩阵的差的秩是否为1,即()1R -=B E .由于只有答案C 对应的()1R -=B E ,即对应121λλ==有两个线性无关的向量,所以答案C 正确.2.设矩阵A 与B 相似,其中12312001x ⎛⎫⎪=- ⎪ ⎪⎝⎭A ,已知矩阵B 有特征值1,2,3,则=x ( ). A.4; B.3-; C.4-; D.3. 答案:A解 因为相似矩阵具有相同的特征值,所以矩阵A 的特征值为1,2,3. 由11123x ++=++,得4x =,故答案A 正确. 3.设,A B 均为n 阶矩阵,且A 与B 合同,则( ).A. A 与B 相似;B. =A B ;C. A 与B 有相同的特征值;D. ()()R R =A B 答案:D解 因为A 与B 合同,所以存在n 阶可逆矩阵C ,使得T=B C AC ,故()()R R =A B故答案D 正确.4.对于二次型12(,,,)n f x x x =L T x Ax ,其中A 为n 阶实对称矩阵,下述各结论中正确的是( ).A.化f 为标准形的可逆线性变换是唯一的;B.化f 为规范形的可逆线性变换是唯一的;C.f 的标准形是唯一的;D.f 的规范形是唯一的. 答案:D解 因为二次型f 的规范形是唯一的,所以答案D 正确,而答案A,B,C 均不正确. 故答案D 正确. 二、解答下列各题1.已知3R 的一组基为123(1,1,0),(1,0,1),(0,1,1)T T T ααα===,求向量(2,0,0)Tα=在此基下的坐标.解 设112233k k k αααα=++,则123,,k k k 是方程组 ⎪⎩⎪⎨⎧=+=+=+002323121k k k k k k 的解.解得1231,1,1k k k ===-,所以向量α在此基下的坐标为(1,1,1)T-.2.求矩阵211020011⎛⎫ ⎪= ⎪ ⎪-⎝⎭A 的特征值和特征向量解 矩阵A 的特征多项式为λ-=A E 211020012λλλ----=2(2)(1)λλ--- 令0 A E λ-=,得矩阵A 的特征值为1231,2λλλ===对于11λ=,解齐次线性方程组() -=A E x 0,可得方程组的一个基础解系1(1,0,1)T=-α,于是A 的属于11λ=的全部特征向量为11c α(1c 为不等于零的常数) 对于232λλ==,解齐次线性方程组(2) -=A E x 0,可得方程组的一个基础解系2(1,0,0)T =α,3(0,1,1)T =-α,于是A 的属于23,λλ的全部特征向量为2233c c +αα(23,c c 为不全等于零的常数).3.试求一个正交相似变换矩阵,将实对称矩阵001000100⎛⎫⎪= ⎪ ⎪⎝⎭A 化为对角矩阵.解 矩阵A 的特征多项式为λ-=A E 010(1)(1)1λλλλλλ--=--+- 由0 A E λ-=,得矩阵A 的特征值为1,1,0321-===λλλ对于10λ=,解方程组(0) -=A E x 0,得方程组的一个基础解系T 1(0,1,0)=α; 对于21λ=,解方程组() -=A E x 0,得方程组的一个基础解系T 2(1,0,1)α=; 对于13-=λ,解线性方程组() +=A E x 0,得方程组的一个基础解系T 3(1,0,1)α=-. 分别将123,,ααα单位化得T T T123(0,1,0),,(βββ===,令1230(,,)1000βββ⎛== ⎪ ⎪ ⎪ ⎪⎝⎭Q , 则 1000010001-⎛⎫ ⎪= ⎪ ⎪-⎝⎭Q AQ .4.用配方法将二次型22123131323(,,)222f x x x x x x x x x =+++化成标准形, 并写出所用变换的矩阵:解 对二次型配方,得222212313132313323(,,)222()2f x x x x x x x x x x x x x x =+++=+++22213223()()x x x x x =+-++令 11322323y x x y x y x x =+⎧⎪=⎨⎪=+⎩, 即112322323x y y y x y x y y=+-⎧⎪=⎨⎪=-+⎩,写成矩阵形式为112233111010011x y x y x y -⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭,变换矩阵为111010011C -⎛⎫⎪= ⎪ ⎪-⎝⎭在此变换下二次型化为规范形 222123f y y y =-+. 5.当t 为何值时,二次型),,(321x x x f =3231212322214225x x x x x tx x x x +-+++为正定二次型.解 二次型),,(321x x x f 的矩阵为 1112125t t-⎛⎫⎪= ⎪ ⎪-⎝⎭A . 此二次型正定的充要条件为 0111>=a , 11t t =21t ->0, 254t t =--A >0, 由此解得 054<<-t . 三、证明题若矩阵A 与B 相似,试证明(1)A 与B 有相同的特征多项式和特征值; (2)A 与B 的行列式相等,即A B =.证 (1)由相似定义可知,存在可逆矩阵P ,使得1-=P AP B ,于是1111()B E P AP P P P A E P P A E P A E λλλλλ-----=-=-=-=-即A 与B 的特征多项式相同,因而有相同的特征值.(2)由1B P AP -=,有11B P AP P A P A --===,即A 与B 的行列式相等.习题3一.单项选择题1.设,A B 为n 阶矩阵,且A 与B 相似,则( ). A.λλ-=-A E B E ; B.A 与B 有相同的特征值和特征向量; C.A 与B 都相似于一个对角矩阵; D.对于任意常数t ,t -A E 与t -B E 相似. 答案:D解 因为由A 与B 相似不能推得=A B ,所以答案A 错误;相似矩阵具有相同的特征多项式,从而有相同的特征值,但不一定有相同的特征向量,所以答案B 错误;由A 与B 相似不能推出A 与B 都相似于一个对角矩阵,所以答案C 错误;由A 与B 相似,则存在可逆矩阵P ,使1-=P AP B ,所以11()t t t ---=-=-P A E P P AP E B E所以,对于任意常数t ,t -A E 与t -B E 相似. 故答案D 正确.2.设A 为n 阶实对称矩阵,则( ). A.A 的n 个特征向量两两正交;B.A 的n 个特征向量组成单位正交向量组;C.A 的k 重特征值0λ,有0()R n k λ-=-A E ;D.A 的k 重特征值0λ,有0()R k λ-=A E .答案:C解 由实对称矩阵特征值的性质可知,对于实对称矩阵A 的k 重特征值0λ,有0()R n k λ-=-A E . 故答案C 正确.3.设矩阵2001002005-⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭A ,则与A 合同的矩阵是( ).A.100010001⎛⎫⎪⎪ ⎪-⎝⎭; B. 300020005⎛⎫⎪- ⎪ ⎪-⎝⎭; C. 100010001-⎛⎫⎪- ⎪ ⎪⎝⎭; D. 200020001⎛⎫⎪ ⎪ ⎪⎝⎭答案:A解 两矩阵合同时,其正惯性指数相同,且负惯性指数也相同,只有答案A 满足题意. 故答案A 正确.4.对于二次型12(,,,)n f x x x =L T x Ax ,其中A 为n 阶实对称矩阵,下述各结论中正确的是( ).A.化f 为标准形的可逆线性变换是唯一的;B.化f 为规范形的可逆线性变换是唯一的;C.f 的标准形是唯一的;D.f 的规范形是唯一的. 答案:D解 因为二次型f 的规范形是唯一的,所以答案D 正确,而答案A,B,C 均不正确. 故答案D 正确. 二、解答下列各题1.已知3R 的两个基为123(1,1,1),(1,0,1),(1,0,1)T T T ααα==-=123(1,2,1),(2,3,4),(3,4,3)T T T βββ===求由基123,,ααα到基123,,βββ的过渡矩阵P .解 取矩阵123(,,)ααα=A ,123(,,)βββ=B ,对()A B M 作初等行变换()=A B M 111123100234100234010010111143001101⎛⎫⎛⎫ ⎪ ⎪→- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭故过渡矩阵234010101⎛⎫ ⎪=- ⎪ ⎪--⎝⎭P .2.设矩阵20131405x ⎛⎫ ⎪= ⎪ ⎪⎝⎭A 可相似对角化, 求x .解 矩阵A 的特征多项式为2201||31(1)(6)45x λλλλλλ--=-=----A E , 由0 A E λ-=,得矩阵A 的特征值为1231,6λλλ===因为A 可相似对角化,所以对于121λλ==, 齐次线性方程组() -=A E x 0有两个线性无关的解, 因此()1R -=A E . 由101101()30003404000x x ⎛⎫⎛⎫⎪⎪-=→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E 知当3x =时()1R -=A E , 即3x =为所求.3.试求一个正交相似变换矩阵,将实对称矩阵111111111⎛⎫ ⎪= ⎪ ⎪⎝⎭A 化为对角矩阵.解 矩阵A 的特征多项式为λ-=A E 2111111(3)111λλλλλ--=--- 由0 A E λ-=,得矩阵A 的特征值为3,0321===λλλ对于120λλ==,解齐次线性方程组(0) -=A E x 0,得方程组的一个基础解系T 1(1,1,0)=-α ,T 2(1,0,1)α=-对于33=λ,解齐次线性方程组(3) -=A E x 0,得方程组的一个基础解系T 3(1,1,1)α=将向量组12,αα正交单位化得T T12,,ββ== 将向量3α单位化得T3β=,令 123(,,)βββ=Q 0⎛ = ⎝则 1-Q AQ 000000003⎛⎫⎪= ⎪ ⎪⎝⎭. 4.用配方法化二次型2221231231213(,,)3524=+++-f x x x x x x x x x x 为标准形, 并写出所用变换的矩阵.解 先将含有1x 的项配方.2221231231213(,,)3524=+++-f x x x x x x x x x x=21x +1232(2)x x x -+223(2)x x --223(2)x x -+223x +235x=2123(2)x x x +-+222x +324x x +23x再对后三项中含有2x 的项配方,则有123(,,)f x x x =222123233(2)2()x x x x x x +-++- 令 1123223332y x x x y x x y x=+-⎧⎪=+⎨⎪=⎩, 即所作变换为 1123223333x y y y x y y x y =-+⎧⎪=-⎨⎪=⎩,写成矩阵形式为112233113011001x y x y x y -⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,变换矩阵为113011001-⎛⎫⎪=- ⎪ ⎪⎝⎭C在此变换下二次型化为标准形为 2221232f y y y =+- 5.当t 为何值时,二次型),,(321x x x f =322123222122x tx x x x x x ++++为正定二次型.解 二次型),,(321x x x f 的矩阵为210112012t t ⎛⎫⎪⎪ ⎪= ⎪ ⎪ ⎪⎝⎭A . 此二次型正定的充要条件为 1120a =>, 1112>0, 2102t =->A ;由此解得 22<<-t .三、证明题(1)设,A B 都是n 阶方阵,且0≠A ,证明AB 与BA 相似. (2)如果矩阵A 与B 相似,且A 与B 都可逆,证明1A -与1B -相似. 证 (1)因为0≠A ,则A 可逆.由于11()()()--==A AB A A A BA BA所以AB 与BA 相似.(2)因为矩阵A 与B 相似,所以存在一个可逆矩阵P ,使得1P AP B -= 所以 111()P AP B ---=,即111P A P B ---=,所以1A -与1B -相似.。

相关文档
最新文档