离子极化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离子极化对化合物性质的影响
离子极化对化合物性质的影响
曲江县曲仁一中许少生
离子极化理论是离子键理论的重要补充。离子极化理论认为:离子化合物中除了起主要作用的静电引力之外,诱导力起着很重要的作用。离子本身带电荷,阴、阳离子接近时,在相反电场的影响下,电子云变形,正、负电荷重心不再重合,产生诱导偶极,导致离子极化,致使物质在结构和性质上发生相应的变化。
一、离子的极化作用和变形性
离子极化作用的大小决定于离子的极化力和变形性。离子使异号离子极化而变形的作用称为该离子的“极化作用”;被异号离子极化而发生离子电子云变形的性能称为该离子的“变形性”。虽然异号离子之间都可以使对方极化,但因阳离子具有多余的正电荷,半径较小,在外壳上缺少电子,它对相邻的阴离子起诱导作用显著;而阴离子则因半径较大,在外壳上有较多的电子容易变形,容易被诱导产生诱导偶极。所以,对阳离子来说,极化作用应占主要地位,而对阴离子来说,变形性应占主要地位。
1.影响离子极化作用的主要因素
(1)离子壳层的电子构型相同,半径相近,电荷高的阳离子有较强的极化作用。例如:Al3+ > Mg2+ > Na+
(2)半径相近,电荷相等,对于不同电子构型的阳离子,其极化作用大小顺序如下:18电子和18+2电子
构型以及氦型离子。如:Ag+、Pb2+、Li+等>
9—17电子构型
的离子。如:Fe2+、
Ni2+、Cr3+等
>
离子壳层为8电子
构型的离子。如:
Na+、Ca2+、Mg2+等
(3)离子的构型相同,电荷相等,半径越小,离子的极化作用越大。
但由于阳离子半径相互差别不大,所以,阳离子的电荷数越大,极化力越大。为了衡量阳离子极化力,曾有许多人将正电荷数和半径综合起来找出统一的标度。例如,卡特雷奇(G·H·Cartledge)以离子势φ=Z/r为标度;徐光宪以静电势能Z2/r为标度…等等。这些都是经验公式,由于影响极化作用的因素较多,所以这些公式不能对所有离子都适用,还有许多例外。
2.影响离子变形性的主要因素
(1)离子的电子层构型相同,正电荷越高的阳离子变形性越小。例如:
O2- > F- > Ne > Na+ > Mg2+ > Al3+ > Si4+
(2)离子的电子层构型相同,半径越大,变形性越大。例如:
F- < Cl- < Br- < I-
(3)若半径相近,电荷相等,18电子层构型和不规则(9—17电子)构型的离子,其变形性大于8电子构型离子的变形性。例如:
Ag+ > K+;Hg2+ > Ca2+
(4)复杂阴离子的变形性通常不大,而且复杂阴离子中心原子氧化数越高,其变形性越小。例如:
ClO4- < F- < NO3- < H2O < OH- < CN- < Cl- < Br- < I-
SO42- < H2O < CO32- < O2- < S2-
从上面的影响因素看出,最容易变形的离子是体积大的阴离子(如I-、S2-等)和18电子
层或不规则电子层的少电荷的阳离子(如:Ag+、Hg2+等)。最不容易变形的离子是半径小,电荷高,8电子构型的阳离子(如:Be2+、Al3+、Si4+等)。
对于阴离子的变形性也可用离子势的倒数1/φ来表征,即= 。当然,这个公式也只对某些简单阴离子适合。
二、离子的附加极化
在上面的讨论中,偏重于阳离子对阴离子的极化作用。但是,当阳离子也容易变形时,阴离子对阳离子也会产生极化。两种离子相互极化,产生附加极化效应,加大了离子间引力,因而会影响离子间引力所决定的许多化合物性质。
1.18电子层或不规则电子层构型的阳离子容易变形,可产生附加极化作用。
2.同一族,从上到下,18电子层构型的离子附加极化作用递增。例如:在锌、镉、汞的碘化物中总极化作用依Zn2+ < Cd2+ < Hg2+顺序增大。
3.在18电子层构型阳离子的化合物中,阴离子变形性越大,附加极化作用越强。
三、离子极化对化合物性质的影响
离子极化理论对于由典型离子键向典型共价键过渡的一些过渡型化合物的性质可以作出比较好的解释。下面举例谈一下离子极化对化合物性质的影响。
1.影响离子晶格变形
在典型的离子化合物中,可以根据离子半径比规则确定离子晶格类型。但是,如果阴、阳离子之间有强烈的相互极化作用,晶格类型就会偏离离子半径比规则。在AB型化合物中,离子间相互极化的结果缩短了离子间的距离,往往也减小了晶体的配位数。晶型将依下列顺序发生改变:
CsCl型NaCl型ZnS型分子晶体
相互极化作用递增,晶型的配位数递减
例如:AgCl、AgBr和AgI,按离子半径比规则计算,它们的晶体都应该属于NaCl型晶格(配位数为6)。但是, AgI却由于离子间很强的附加极化作用,促使离子强烈靠近,结果AgI以ZnS型晶格存在。
2.影响离子晶体熔点、沸点下降
由于离子极化作用加强,化学键型发生变化,使离子键逐渐向极性共价键过渡。导致晶格能降低。例如:AgCl与NaCl同属于NaCl型晶体,但Ag+离子的极化力和变形性远大于Na+离子,所以,AgCl的键型为过渡型,晶格能小于NaCl的晶格能。因而AgCl的熔点(455℃)远远低于NaCl的熔点(800℃)。
3.化合物的颜色加深
影响化合物颜色的因素很多,其中离子极化作用是一个重大的影响。在化合物中,阴、阳离子相互极化的结果,使电子能级改变,致使激发态和基态间的能量差变小。所以,只要吸收可见光部分的能量即可引起激发,从而呈现颜色。极化作用愈强,激发态和基态能量差愈小,化合物的颜色就愈深。例如:
Hg2+Pb2+Bi3+Ni2+
Cl-白白白黄褐
Br-白白橙棕
I-红黄黑黑
社