整式的乘法公式
第十讲整式的乘除(乘法公式)
第十讲整式的乘除(乘法公式)一、【知识要点】1.单项式乘以单项式:;2.单项式乘以多项式:m(a+b)=;3、多项式乘以多项式:(m+n)(a+b)=;(x+a)(x+b)=;4、单项式除以单项式:;5、多项式除以单项式:(am+an)÷a=;6、平方差公式:(a+b)(a-b)=;227、完全平方公式:(a+b)=;(a-b)=;二千二百二十二8、立方和公式:(a+b)(a-ab+b)=;立方差公式:(a-b)(a+ab+b)=.二、【典型例题】1、计算:(1)(-a-b)(a-b)(2)(2x?(3)(-a-b)(4)(x?1)(x?1)(x?1)(x?1)(5)(x?2y?z)(x?2y?z)(6)(x+5)-(x-2)(x-3)2、先化简,再求值:(x+2y)(x-2y)-(2x-y)(-2x-y),其中x=8,y=-8;3.已知a-3a+1=0。
找到一个?第1页共4页二2二11)(?2x?)332411和a2?2的值;AA4。
验证:两个连续整数加上较大数之和的乘积等于较大数的平方5、已知a、b、c是△abc的三边的长,且满足a?2b?c?2b(a?c)?0,试判断此三角形的形状。
6.如图所示,三个小圆的中心位于大圆的直径上,其直径分别为a、B和C①求证:三个小圆周长的和等于大圆的周长②求:大圆面积减去三个小圆面积和的差。
三、 [巩固练习]1。
多项选择题:(1)如果一个单项式与?3ab的积为?222abc32abc,则这个单项式为()4129219a、acb、acc、acd、ac4444(2)(2x?1)(?2x?1)的计算结果为()a.-4x+1b.1-4xc.4x+1d.4x-1二(3)如果(x-2)(x+3)=x+px+q,那么p、q的值为()a、 P=5,q=6B。
P=1,q=-6C。
P=1,q=6D。
P=5,q=-6(4)在下列操作中,正确的是()a、?a?b??a?bb、??x?y??x?2xy?y二百二十二万二千二百二十二2二2C十、3.十、2.十、6d、??A.BA.BA.B222(5)若x+mx+1是完全平方式,则m=()a、±2b、2c、±4d、4第2页,共4页2(6)知道4x吗?mxy?9y是X,y的完全平方,那么M的值是()a、6b、?6c、12d?12二(7)若二项式4m+9加上一个单项式后是一含m的完全平方式,则这样的单项式的个数有()a、 4 B,3 C,2 D,1(8)为了应用平方差公式计算?a?b?c??a?b?c?,必须先适当变形,下列各变形中,正确的是()a、 c22??a?c??b???a?c??b?b、??a?b??c???a?b??c???b?c??a???b?c??a?d、?a??b?c???a??b?c ??22(9)已知(a?B)?7,(a?b)?3,那么a?B和ab的值为()a.4,1b.2,2233c。
第十讲整式的乘除(乘法公式)
第十讲 整式的乘除(乘法公式)一、【知识要点】1、 单项式乘以单项式: ;2、 单项式乘以多项式:m(a+b) = ;3、 多项式乘以多项式:(m+n)(a+b)= ;(x+a )(x+b)= ;4、 单项式除以单项式: ;5、 多项式除以单项式:(am+an) ÷a= ;6、平方差公式:(a+b)(a-b)= ;7、完全平方公式:(a+b)2= ;(a-b )2 = ;8、立方和公式:(a+b)(a 2-ab+b 2) = ;立方差公式:(a-b)(a 2+ab+b 2) = .二、【典型例题】1、计算:(1)(-a -b )(a -b ) (2)(31x 2+-)(31x 2--)(3)(-a-b )2 (4))1)(1)(1)(1(42-+++x x x x(5))2)(2(z y x z y x ++-+- (6)(x+5)2-(x -2)(x -3)2、先化简,再求值:(x +2y )(x -2y )-(2x -y )(-2x -y ),其中x =8,y =-8;3、已知a 2-3a +1=0.求aa 1+和221a a +的值;4、求证:两个连续整数的积加上其中较大的一个数的和等于较大的数的平方5、已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状。
6、如图三个小圆圆心都在大圆的直径上,它们的直径分别是a,b,c① 求证:三个小圆周长的和等于大圆的周长② 求:大圆面积减去三个小圆面积和的差。
三、【巩固练习】1、选择题:(1)如果一个单项式与3ab -的积为234a bc -,则这个单项式为( ) A 、214a c B 、14ac C 、294a c D 、94ac (2))12)(12(+-+x x 的计算结果是 ( )A.-4x 2+1B.1-4x 2C. 4x 2+1D. 4x 2-1(3)如果(x -2)(x +3) = x 2+px +q ,那么p 、q 的值为( )A .p =5,q =6B .p =1,q =-6C .p =1,q =6D .p =5,q =-6(4)下列运算中,正确的是( )A 、()222a b a b +=+B 、()2222x y x xy y --=++C 、()()2326x x x +-=-D 、()()22a b a b a b --+=- (5)若x 2+mx+1是完全平方式,则m=( ) A 、±2 B 、2 C 、±4 D 、4(6)已知2249x mxy y -+是关于,x y 的完全平方式,则m 的值为( )A 、6B 、6±C 、12D 12±(7)若二项式4m 2+9加上一个单项式后是一含m 的完全平方式,则这样的单项式的个数有( )A 、4个B 、3个C 、2个D 、1个(8)为了应用平方差公式计算()()c b a c b a -++-,必须先适当变形,下列各变形中,正确的是( )A 、()[]()[]b c a b c a +--+ B 、()[]()[]c b a c b a -++- C 、()[]()[]a c b a c b +--+ D 、()[]()[]c b a c b a -+--(9)已知7)(2=+b a ,3)(2=-b a ,则22b a +与ab 的值分别是( ) A. 4,1 B. 2,23 C.5,1 D. 10,23 (10)如图,在长为a 的正方形中挖掉一个边长为b 的小正方形(a>b )把余下的部分剪拼成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( )A .a 2-b 2=(a+b)(a-b)B .(a+b)2=a 2+2ab+b 2C .(a-b)2=a 2-2ab+b 2D .(a+2b)(a-b)=a 2+ab-2b 22、填空题:(1)若多项式m x y 12x 92+-是完全平方式,则m= . (2)若x 2+kx +25是一个完全平方式,则k = .(3)单项式36a b 与229a b c 的公因式为(4)若1,2=-=-c a b a ,则=-+--22)()2(a c c b a(5)若3,2a b ab +=-=,则22a b += ,()2a b -= (6)已知a -a 1 =3,则a 2+a 12 的值等于 (7)已知2m =x ,43m =y ,用含有字母x 的代数式表示y ,则y = ;(8)若m 2+n 2=6n -4m -13,则m 2-n 2 =_________.(9)已知0134622=+-++y x y x ,则2046)(y x +的值为 (10)己知a 2=a+1,则代数式a 5-5a+2的值为3、计算:(1)(a+b )(-b+a ) (2)(3a+2b )(3a -2b ) (3)(4m+n )2(4)(y-12)2 (5)(a -b )(a+b )(a 2+b 2) (6)(a+2b -3c )(a -2b+3c )(1)992 (2)998×1002 (3)98×102-992 (4)1198992++5、先化简,再求值: [(x -y)2+(x+y)(x -y)]÷2x,其中x=3,y=-1.56、己知a+b=1, 求证:a 3+b 3+3ab=17、观察下列算式:1×3+1=4=22 ,2×4+1=9=32 ,3×5+1=16=42 ,4×6+1=25=52 ……请将你找出的规律用公式表示出来,并加以证明。
整式的乘法与因式分解精选全文完整版
可编辑修改精选全文完整版整式的乘法与因式分解一:[整式的乘法与因式分解]初二数学知识点之整式乘除与因式分解讲解及汇总1.单项式的乘法法那么:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,那么连同它的指数作为积的一个因式.单项式与多项式的乘法法那么:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.多项式与多项式的乘法法那么:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.单项式的除法法那么:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,那么连同它的指数作为商的一个因式.多项式除以单项式的法那么:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.2、乘法公式:①平方差公式:(a+b)(a-b)=a2-b2文字语言表达:两个数的和与这两个数的差相乘,等于这两个数的平方差.②完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2文字语言表达:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.3、因式分解:因式分解的定义.把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.掌握其定义应注意以下几点:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.弄清因式分解与整式乘法的内在的关系.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.除了课堂上的学习外,数学知识点也是学生提高数学成绩的重要途径,本文为大家提供了初二数学知识点解析:二次函数的应用,希望对大家的学习有一定帮助。
2.有一个抛物线形桥拱,其最大高度为16米,跨度为40米,现在它的示意图放在平面直角坐标系中(如右图),那么此抛物线的解析式为().3.某公司的生产利润原来是a元,经过连续两年的增长到达了y万元,如果每年增长的百分数都是x,那么y与x的函数关系是()4.把一段长1.6米的铁丝围长方形ABCD,设宽为x,面积为y.那么当y最大时,x所取的值是()A.0.5B.0.4C.0.3D.0.6【考点归纳】1.二次函数的解析式:(1)一般式:();(2)顶点式:();(3)交点式:().2.顶点式的几种特殊形式.线()对称,顶点坐标为(,).⑴当a 0时,抛物线开口向(),有最()(填"高"或"低")点,当X=()时,有最()("大"或"小")值是();⑵当a 0时,抛物线开口向(),有最()(填"高"或"低")点,当X=()时,有最()("大"或"小")值是().【典型例题】一、例1橘子洲头要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端P处装上喷头,由P处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如下图).假设OP=3米,喷出的水流的最高点A距水平面的高度是4米,离柱子OP的距离为1米.(1)求这条抛物线的解析式;(2)假设不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外6.以下函数关系中,是二次函数的是( )A.在弹性限度内,弹簧的长度y与所挂物体质量x之间的关系B.当距离一定时,火车行驶的时间t与速度v之间的关系C.等边三角形的周长C与边长a之间的关系D.圆心角为120°的扇形面积S与半径R之间的关系小编为大家整理的初二数学知识点解析:二次函数的应用相关内容大家一定要牢记,以便不断提高自己的数学成绩,祝大家学习愉快!二、熟练掌握因式分解的常用方法.1、提公因式法(1)掌握提公因式法的概念;(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三局部:①系数一各项系数的最大公约数;②字母--各项含有的相同字母;③指数--相同字母的最低次数;(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底〞;②如果多项式的第一项的系数是负的,一般要提出“-〞号,使括号内的第一项的系数是正的.2、公式法运用公式法分解因式的实质是把整式中的乘法公式反过来使用;常用的公式:①平方差公式:a2-b2=(a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。
整式的运算法则
2
5
17.( x-2)( x+2)-( x+1)(x- 3)
18.( 1-3y)( 1+3y)( 1+9y2)
19.( ab+1) 2-( ab- 1) 2
四、运用乘法公式简便计算(每题 20.( 998) 2
2 分,共 4 分) 21.197× 203
五、先化简,再求值(每题 4 分,共 8 分) 22.( x+4)( x- 2)(x- 4),其中 x=- 1.
(﹣ 1)3=﹣ 1;③
﹣2
3a =
; ④ (﹣ x) 5÷(﹣ x)3=﹣ x2 中,正
确的式子有(
)
A. ①② C. ①②③
B. ②③ D. ①②③④
9.若 a=(﹣ ) ﹣2, b=(﹣ 1) ﹣1, c=(﹣ ) 0,则 a, b, c 的大小关系是(
)
A. a>b >c
B. a> c> b
2.(
)5=(8 × 8× 8× 8×·8a)·(aa·a·a)
3.如果 a≠b,且 (ap)3·bp+q=a9b5 成立,则 p=______________, q=__________________。
4.若 am 1bn 2 a2n 1b2m a3b5 ,则 m+n 的值为(
)
A. 1
B. 2
)
(1)(
)
﹣1
=﹣
3;(
2)
﹣
2
3
=﹣
8
;(
3)(﹣
﹣2
)=
;(
4)(
π﹣
3.14
)
0
=1
A. 1 个 C. 3 个
B. 2 个 D. 4 个
整式的乘法公式教案
整式的乘法公式教案一、教学目标:1. 知识与技能:(1)理解并掌握整式的乘法公式,包括平方差公式和完全平方公式;(2)能够运用整式的乘法公式进行简便计算。
2. 过程与方法:(1)通过实例演示和练习,引导学生发现整式乘法公式;(2)培养学生运用公式进行计算的能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生积极主动探究问题的习惯。
二、教学重点与难点:1. 教学重点:(1)掌握整式的乘法公式;(2)能够运用整式的乘法公式进行计算。
2. 教学难点:(1)整式乘法公式的推导过程;(2)灵活运用整式乘法公式解决实际问题。
三、教学准备:1. 教师准备:(1)教学课件或黑板;(2)练习题。
2. 学生准备:(1)预习整式乘法公式;(2)准备笔记本,记录重点知识。
四、教学过程:1. 导入:(1)复习相关知识,如整式的加减法;(2)提问:能否将整式的加减法推广到乘法?2. 知识讲解:(1)通过实例演示,引导学生发现整式乘法公式;(2)讲解平方差公式和完全平方公式的推导过程;(3)强调公式中的各项系数和指数的变化规律。
3. 练习与讲解:(1)让学生分组讨论,互相解答疑问;(2)选取典型题目进行讲解,分析解题思路;(3)引导学生运用整式乘法公式进行计算。
4. 课堂小结:(1)回顾本节课所学内容,总结整式乘法公式的特点;(2)强调学生在练习中需要注意的问题。
五、课后作业:1. 请学生完成课后练习题,巩固整式乘法公式的运用;2. 鼓励学生自主探究,发现整式乘法公式的拓展应用。
六、教学拓展:1. 平方差公式的拓展:(1)引导学生发现平方差公式的推广形式;(2)举例说明平方差公式在实际问题中的应用。
2. 完全平方公式的拓展:(1)引导学生发现完全平方公式的推广形式;(2)举例说明完全平方公式在实际问题中的应用。
七、课堂练习:1. 请学生独立完成练习题,检验对整式乘法公式的掌握程度;2. 教师选取部分学生的作业进行点评,指出优点和不足。
整式的乘法和乘法公式最新版
择 (2) 如果4x2+12xy+k是一个关于x、y的完全
B 平方式,则k=( )
(A) 3y 2 (B) 9y 2 (C) y
(D) 36y 2
如果4x2+kxy +9y2是一个关于x、y的完全平 方式,则k=(+ 12)
A (3)如果a+
1
a
=3,则a2+
1
a2
=(
)
选 (A) 7 (B) 9 (C) 10 (D) 11
=(-1)2-(2xy)2 =1-4x2y2
口答练习一
(1) (x-2y)(x+2y) =x2-4y 2
(2)
(x-1y)(2源自x-1 2y
) =x2-xy +
1 4
y2
(3)
( 3x-
1 2
y
)
(
9x2+
23xy+
1
4
y
2
) =27x3-
y1 3
8
(4) (-x-2y)(-x+2y) =x2-4y2
整式的乘复法习和乘法公
式
a a a 同底数幂的乘法
m · n = m+n
幂的乘方
a a ( m )n = mn
整 式
积的乘方
( ab )n= an b n
的 乘
单项式的乘法
4a2x5 ·(-3a3bx2)
法
=[4 ( -3)](a2a3) (x5x2)b
=-12a5bx7
a a a 同底数幂的乘法
动手做
(1) 已知x=a+2b,y=a-2b,
求:x2+xy+y 2
整式的乘除知识点整理
一、知识点归纳: (一)幂的四种运算:1、同底数幂的乘法:⑴语言叙述:同底数幂相乘,底数不变,指数相加; ⑵字母表示:a m ·a n = a m+n ;(m ,n 都是整数) ;⑶逆运用:a m+n = a m ·a n2、幂的乘方:⑴语言叙述:幂的乘方,底数不变,指数相乘; ⑵字母表示:(a m ) n = a mn ;(m ,n 都是整数); ⑶逆运用:a mn =(a m )n =(a n )m ;3、积的乘方:⑴语言叙述:积的乘方,等于每个因式乘方的积; ⑵字母表示:(ab)n = a n b n ;(n 是整数); ⑶逆运用:a n b n = (a b)n ;4、同底数幂的除法:⑴语言叙述:同底数幂相除,底数不变,指数相减;⑵字母表示:a m ÷a n = a m-n ;(a≠0,m 、n 都是整数); ⑶逆运用:a m-n = a m ÷a n .(二)整式的乘法:1、单项式乘以单项式:⑴语言叙述:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
⑵实质:分三类乘:⑴系数乘系数;⑵同底数幂相乘;⑶单独一类字母,则连同它的指数照抄; 2、单项式乘以多项式:⑴语言叙述:单项式与多项式相乘,就是根据分配律用单项式去乘多项式中的每一项,再把所得的积相加。
⑵字母表示:c)=ma +mb +mc ;(注意各项之间的符号!) 3、多项式乘以多项式:(1)语言叙述:多项式与多项式相乘,先用一个多项式的每一项去乘另一个多项式的每一项,再把所得的积相加;(2)字母表示:=mn +mb +an +ab ;(注意各项之间的符号!) 注意点:⑴在未合并同类项之前,积的项数等于两个多项式项数的积。
⑵多项式的每一项都包含它前面的符号,确定乘积中每一项的符号时应用“同号得正,异号得负”。
⑶运算结果中如果有同类项,则要 合并同类项(三)乘法公式: 1、平方差公式:(1)语言叙述:两数和与这两数差的积,等于这两个数的平方差。
整式的乘法公式
整式的乘法公式整式的乘法公式是数学中的重要概念,它可以帮助我们快速、准确地进行整式的乘法运算。
在本文中,我将详细介绍整式的乘法公式及其应用。
一、整式的乘法公式整式是由常数和变量的乘积以及它们之间的加减运算所构成的代数式。
在乘法运算中,可以利用整式的乘法公式来简化计算。
整式的乘法公式包括以下几条:1. 乘法分配律:对于任意的整式a、b和c,有如下公式:a(b+c) = ab + ac(b+c)a = ba + ca这条乘法分配律的应用非常广泛,它可以用于加法和乘法的结合。
例如,对于整式3(x+2),根据乘法分配律,我们可以得到:3(x+2) = 3x + 62. 平方差公式:对于任意的整式a和b,有如下公式:(a+b)(a-b) = a^2 - b^2这条平方差公式在整式乘法中十分常用,可以用来求平方差的计算。
例如,对于整式(x+3)(x-4),根据平方差公式,我们可以得到:(x+3)(x-4) = x^2 - 4x + 3x - 12 = x^2 - x - 123. 三角形式乘法公式:对于任意的整式a、b和c,有如下公式:(a+b)(b+c)(c+a) = (ab+bc+ca)(a+b+c) - abc这条三角形式乘法公式常用于多项式的乘法运算。
例如,对于整式(x+1)(x+2)(x+3),根据三角形式乘法公式,我们可以得到:(x+1)(x+2)(x+3) = (x^2+3x+x+2)(x+3) - (x+1)(x+2)(x+3) =(x^2+4x+2)(x+3) - (x^2+3x)(x+3) = x^3 + 6x^2 +11x + 6二、整式的乘法公式的应用整式的乘法公式在代数学中有着广泛的应用。
下面我将通过实际例子来说明整式的乘法公式的应用。
例题1:计算(2x+3)(x+1)。
根据乘法分配律,我们可以按照以下步骤进行计算:(2x+3)(x+1) = 2x(x+1) + 3(x+1) = 2x^2 + 2x + 3x + 3 = 2x^2 + 5x + 3例题2:计算(3x+2)(3x-2)。
整式的乘法(复习)——多多、乘法公式
整式的乘法(复习)——多×多 乘法公式【知识点复习】【乘法公式的使用技巧】(一)、套用:这是最初的公式运用阶段,在这个环节中,应弄清乘法公式的来龙去脉,准确地掌握其特征,为辨认和运用公式打下基础。
例1. 计算:(二)、连用:连续使用同一公式或连用两个以上公式解题。
例2. 计算:例3. 计算:(三)、逆用:学习公式不能只会正向运用,有时还需要将公式左、右两边交换位置,得出公式的逆向形式,并运用其解决问题。
(因式分解)例4. 计算:(四)、变用: 题目变形后运用公式解题。
例5. 计算:(五)、活用: 把公式本身适当变形后再用于解题。
这里以完全平方公式为例,经过变形或重新组合,可得如下几个比较有用的派生公式:()()()()()()2222221.22.23.4.a b ab a b ab a b a b a b a b +-=-+=++-=+--==++×))((n m b a 多:多(1)平方差公式:=+)-)((b a b a (2)完全平方公式:①=+2)(b a②=2)-(b a(3)“pq 型”(补充公式):=++))((q x p x【跟踪练习】 计算:(1)(-2x -y)(2x -y)(2)19982-1998·3994+199722222211111(3)(1)(1)(1)(1)(1)234910---⋅⋅⋅--(4)化简:(2+1)(22+1)(24+1)(28+1)+1.(5)计算:(2x -3y -1)(-2x -3y +5)(6)已知a +b=9,ab=14,求2a 2+2b 2【乘法公式与几何图形的面积】1、请你观察图中的图形,依据图形面积的关系,不需要添加辅助线,便可得到一个你非常熟悉的公式,这个公式是______________。
2、(1)有若干块长方形和正方形硬纸片如图1所示.用若干块这样的硬纸片拼成一个新的长方形,如图2.①用两种不同的方法,计算图2中长方形的面积;②我们知道:同一个长方形的面积是确定的数值.由此,你可以得出的一个等式为:(2)有若干块长方形和正方形硬纸片如图3所示.请你用拼图等方法推出一个完全平方公式,画出你的拼图并说明推出的过程.3、图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为:(2)观察图②,三个代数式(m+n)2,(m-n)2,mn之间的等量关系是:(3)若x+y=-6,xy=5,则x-y=(4)观察图③,你能得到怎样的代数恒等式呢?【能力提高】 1、计算;(1)、22()()33m n m n -+-- (2)、2211(3)(3)22y x x y +-(3)、2222(2)(2)x y y x ---(4)、223()32x y -- (3)、(4)(3)x x +-(4)、(23)(23)x y x y +--+(5)、2()()()2a b a b a b a b ++-+-(6)、(a+2)(a 2+4)(a 4+16)(a -2)(7)、(8)、[(x +2y )(x -2y )+4(x -y )2-6x ]6x .(9)、22222(2)(2)(2)(2)x x y x y x y x y -+-+-+(10)、222(3)4(3)(3)3(3)a a a a +-+-+- 2、化简求值:(1)先化简,再求值:2(32)(32)5(1)(21)x x x x x +-----,其中13x =-.(2)先化简,再求值:2(1)(2)x x x ++-,其中243x =.(3)已知1582=+x x ,求2)12()1(4)2)(2(++---+x x x x x 的值.3、求值:(1)已知a -b =1 ,a 2+b 2=25 ,求ab 的值; (2)已知,21=-x x 求221xx +的值; (3)已知,16)(2=+y x 4)(2=y x - ,求xy 的值; (4)如果a 2+b 2-2a +4b +5=0 ,求a 、b 的值。
整式的乘法乘法公式
先算乘方,再算乘除,最后算 加减;
运用分配律
将括号内的代数式展开,并运用 分配律进行计算;
合并同类项
将同类项进行合并,得到最简结果 。
整式乘法公式的计算技巧
熟记公式
熟练掌握整式乘法公式,如平 方差公式、完全平方公式等;
化简代数式
在计算过程中,尽量化简代数 式,减少计算量;
灵活运用运算法则
整式乘法公式是一种简化的运算方法,适用于任何两个整式 的乘法运算。
整式乘法公式的特点
1
整式乘法公式具有普遍适用性,适用于任何两 个整式的乘法运算。
2
整式乘法公式可以简化复杂的计算过程,提高 运算效率。
3
整式乘法公式有助于培养学生的数学思维能力 和符号意识。
整式乘法公式的历史与发展
01
整式乘法公式是数学运算中的基本工具,有着悠久的历史和广 泛的应用。
2023
《整式的乘法乘法公式》
contents
目录
• 整式乘法公式概述 • 整式乘法公式的形式与证明 • 整式乘法公式的计算方法与技巧 • 整式乘法公式的应用实例
01
整式乘法公式概述
整式乘法公式的定义
整式乘法公式定义:整式乘法公式是单项式与单项式相乘, 把他们的系数,相同字母的幂分别相乘,其余字母连同他的 指数不变,作为积的因式的运算。
交换律公式
$(a+b)(c+d)=(a+b)(c+d)$
整式乘法公式的证明方法
分配律公式的证明
根据乘法分配律,可以得出$(a+b)(c+d)=ac+ad+bc+bd$。
结合律公式的证明
根据乘法结合律,可以得出$(a+b)(a+b)=a^2+2ab+b^2$。
整式的乘法复习课件
典型例题解析
例题3
01
(3x 1)^2
• 分析
02
本题考查的是一元一次整式的平方运算。按照完全平方公式展
开即可。
• 解法
03
(3x - 1)^2 = 9x^2 - 6x + 1(利用完全平方公式)
03 二元一次整式乘法
二元一次整式概念
定义
含有两个未知数,且未知数的最高次 数为1的整式称为二元一次整式。
针对不同题型进行专项训练,提高解题能力
选择题和填空题
通过大量练习,提高对基础概念 和运算规则的掌握程度,培养快
速准确解题的能力。
计算题
针对不同类型的计算题,如单项 式与单项式相乘、单项式与多项 式相乘、多项式与多项式相乘等, 进行专项训练,提高运算速度和
准确性。
证明题
通过分析和证明乘法公式的过程, 培养逻辑推理能力和数学表达能
• 解法
(2x + 3)(x - 1) = 2x^2 - 2x + 3x - 3 = 2x^2 + x-3
典型例题解析
例题2
(x + 2)(x - 2)
• 分析
本题同样考查一元一次整式与多项式的乘法运算。注意到(x + 2)和 (x - 2)是平方差的形式,可以利用平方差公式进行简化。
• 解法
(x + 2)(x - 2) = x^2 - 4(利用平方差公式)
06 整式乘法复习策略与建议
系统梳理知识点,形成知识网络图
整式乘法的基本法则
回顾并掌握单项式与单项式、单项式与多项式、多项式与多项式 相乘的法则。
乘法公式
熟练掌握平方差公式和完全平方公式,理解其推导过程和应用场景。
整式的乘法和乘法公式
幂的乘方
结 积的乘方
a a ( m )n = mn ( ab )n= an b n
平方差公式 (a+b)(a-b) = a2-b2
完全平方公式 (a+b)2 = a2+2ab +b2
立方和(差)公式
(a +b)(a2+ab+b2) = a3+ b3
二次三项型乘法公式
(x+a)(x+b)= x2+(a+b)x+ab
()
(A)
(-
7 4
x2y
z
2)
(-
4 7
x
y2
)
=
x3 y 3
(B) (-2 105) ·(-103) ·(3 102) = -6 1010
(C)
(-
1 2
a2b3)3=
-
1 6
a8 b27
(D) (a3n)2·(b2)3n = (ab)6n
口答练习
(1) x3·x2= x5 (3) x ·(x2 )3= x7
(2) (a6 )2+(a4)3= 2a12
x x x (4) 2002 =
1999 3
·
(5)
(
1 7
)1997
·7
1998
=
7
(6) (-abc )2·(-ab) =-a3b3c2
(7) (+abc)2 ·(-ab) = - a3b3c2
比一比
(1) 计 算 (3x2 )3-7x3[x3-x(4x2+1)]
所以 a=1,b=1
(5)计算
选 (a-2b+3)(a+2b-3)的结果是( D)
培优专题:整式的乘法公式
整式的乘法(二)乘法公式一.公式补充。
计算:(x +1)(Λ∙2- X + 1) = __________________练习:(X -1)( A√ + X +1) = _______________(2x +3)(4X2-6X +9)= _________________2 4 2(—a -b)(-a2 + —ab + b2) =39 3 ---------------计算:4≤-13^ + 46iχi3932.2二.例:已知"+b = 3, ab = 2 9求a2 +b29 (a -b)2 , a y +b^的值。
练习:L 已知“+" = 5, ab = 6,求a2+b2, (a-b)2 , a3+b3的值。
2.己知a2+⅛2=13, ab=β9求(a+⅛2, (a-∕>)2的值。
3.已知(a¼⅛2=7, (a-2>)2=4,求d+2Λ 胡的值。
4.己知x +j = l, X2 + J2 =3 ,求X3 +j3的值。
5.已知兀_丄=3,求X4+A的值。
三、例1:B⅛lx2-6x + y2 +10J = -34,求X』的值。
练习:L +j2+4x-12j+ 40 = 0,求x + 2y 的值。
2.已^x2 +2xy + y2 -6x-6j + 9 = 0,求x + y 的值。
3∙ BftJ</2+ b2 + l=ab+a + b f求&/一物的值。
4•已知",方,c 满足/+2Z> = 7, b1 -2c =-1 , C l -6ιι =-17,求“+b + c 的值。
例2.计算:(a +1)(«2 +1)(«4 +1)(“ — 1)练习:L 计算:6×(7 + l)×(72+l)×(74+l)×(78+l) + l2.计算:(2+1) (22+1) (24+1) (28+1)平方差公式专项练习题A卷: 基础丿一、选择题L平方差公式(a+b) (a-b) =a2-b2中字母a, b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A. (a+b) (b+a) B・(―a+b) (a—b)C. (Ia+b) (b-1a) D・(a?—b) (b2+a)3 33.下列计算中,错误的有()①(3a+4) (3a—4) =9a2~4:②(2a2-b) (2a2+b) =4a2-b2:③ (3—X)(x+3) =x2-9:④ (—x+y)・(x+y) =— (x—y) (x+y) =—x2-y2.A・1个B. 2个C・3个D・4个4.若X2—y2=3O,且x-y=-5,贝∣] x+y 的值是()A・5 B・6 C・—6 D・—5二、填空题5・(―2x+y) ( —2x—y) = ______ ・6.( — 3x2+2y2) ( _____ ) =9x4-4y4・7.(a+b-l) (a-b+l) = ( __________ ) 2- ( ______ ) 2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的而积减去较小的正方形的而积,差是_____ .三、计算题2 19.利用平方差公式计算:20-×21丄.3 310.计算:(a+2) (a2+4) (a4+16) (a-2).B卷:一、七彩题1.(多题一思路题)汁算:(1)(2+1) (22+l) (24+l ) ... (22n+l) +1 (n 是正整数);^4()16(2)(3+1) (32+l) (34+l) ... (32008+l) 一一・22.(一题多变题)利用平方差公式计算:2009×2007-20082.二、知识交叉题3・(科内交叉题)解方程:X (x+2) + (2x+l) (2χ-l) =5 (x2+3).三、实际应用题4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四.经典中考题5.(2007,泰安,3分)下列运算正确的是()A. a3+a3=3a6B. (—a) 3∙ (—a) 5=-a8C. ( — 2Qb) ・4a=—24a6t√ D・(一4b) ( — a—4b) =16b2- — a23 3 96 (2008,海南,3 分)计算:(a+l) (a-l) = ____________ ・文档从网络中收集,已重新整理排版.word版本可编借•欢迎下载支持.C卷:课标新型题1.(规律探究题)己知x≠l,计算(l+x) (1—X)=l-χ2, (1 —X)(l+x+x2) =1—X3,(1 —X)(∙ l+x+x2+x3) =I-X4・(1)观察以上各式并猜想:(I-X) (l+x+x2+...+x n) = _________ . (n为正整数)(2)根据你的猜想汁算:①(1-2) (l+2+22+23+24÷25) = ________ ・②2+22+23+...+2n= ____ (n 为正整数).③(X-I) (x w+x98+x97+...+x2+x+l) = __________ ・(3)通过以上规律请你进行下而的探索:①(a—b) (a+b) = ________ ・②(a—b) (a2+ab+b2) = ______ ・③(a—b) (a3+a2b+ab2+b3) = _______ ・2.(结论开放题)请写出一个平方差公式,使其中含有字母m, n和数字4.4、已知πΓ+rf-6m+10n+34=0,求m+n 的值文档从网络中收集,已重新整理排版.word 版本可编辑•欢迎下载支持.整式的乘法.平方差公式.完全平方公式.整式的除法(B 卷)综合运用题姓名:一、请准确填空1. 若 /+/-2M2H2二0,则『“+产5二 ________ ・2. 一个长方形的长为(2a+3b),宽为(2a-36),则长方形的面积为 ____________ •3. 5— (a —6):的最大值是 ________ ,当5— (a —6):取最大值时,a 与b 的关系是 _____4. 要使式子0・36√+i 長成为一个完全平方式,贝IJ 应加上 ______ ・45. (4a“ —6孑)j r2a *- ________ ・6. 29×31×(30s +D= ________ ・7. 己知 Y-5Λ÷1=0,则 f+A= _________ ・Jr8. 已知(2005 — Q (2003—a)=1000,请你猜想(2005 — a)'+(2003 — a)土 _____ ・二、相信你的选择9. 若 Y --Y-Zrf=(X —in) C 计 1)且-v≠0,则加等于A. — 1B. 0C. 1D. 210. (Mg)与(AH-I)的积不含X 的一次项,猜测g 间是5A. 5B. £C. — ξD. —511. 下列四个算式:①4f∕m 丄羽Qw;(D162九m8∕42a 话C ;③9<y÷3f 尸3玄兀4④ (12zπ+8∕zf -4zσ) ÷ (―2zσ)=-6/+4硏2,其中一正确的有 A.0个 B.1个 C.2个 D.3个 12. 设(√ I y rt ) ∙ (X a y S )-Xy t 则z/的值为A. 1B. -1C. 3D. -3 13•计算[&一刃(才+刃]:等于A. a ~2^b ,^b'B. a°+2aWFC. a ~2aD. a —2a 6,+∆w14. 已知(a÷∆)2=ll, aZ>=2,则(a~b)z 的值是 A. 11 B. 315. 若是一个完全平方式,那么"是A 7 SD 49 2A. — yB. —「2" 216•若為y 互为不等于0的相反数,力为正整数,你认为正确的是c. √∖芦一泄是互为相反数D ..Y 2Λ-∖ -Z-I -定相等・1・文档来源为:从网络收集整理.word 版本可编辑.C. 5D. 19D. 49/A. ΛΛ b —定是互为相反数B. (i)∖ (丄尸一定是互为相反数X y文档从网络中收集,已重新整理排版.word版本可编辑•欢迎下载支持.三S考査你的基本功17.计算(1) (a—2M∙3c)~-(a+2Z>—3c)(2)「ab(3 — b) —2a(b —丄Zf)] (―3a£);2(3)-2loo×0. 5ιcc× (-l)sooδ÷ (-1)(4)[ (∆÷2y) (-γ-2y)+4(A r—y)2—6.γ] ÷6x18.(6分)解方程*(9*一5) 一(3-Y-I) (3对1)二5・四.生活中的数学19.(6分)如果运载人造星球的火箭的速度超过11. 2 kπ√s(俗称第二宇宙速度),则人造星球将会挣脱地球的朿缚,成为绕太阳运行的恒星.一架喷气式飞机的速度为1.8×IO6m∕h,请你推算一下第二宇宙速度是飞机速度的多少倍?文档从网络中收集,已重新整理排版.word版本可编辑.欢迎下载支持.五、探究拓展与应用20.计算.(2+1) (2*1) (2s+l)= (2-1) (2+1) (2:+1) (2,+l) = (23-l) (25+l) (2*+l)= (2i-l) (2,+1) = (28-1).根据上式的计算方法,请计算(3+1) (33+l) (3t+l)…(352+l) 一—的值•2文档从网络中收集,已重新整理排版word 版本可编辑•欢迎下载支持.完全平方公式习题精选・.选择题1・下列各式中,能够成立的等式是()・ Z 9 s2 yl 2 ω ,2 (-Λ -⅛)2 = -a 2 +ab +hAe (2「刃 =4x -2D+y B. 24C. (X÷7)2=^2÷/D .(Nf)2=0p)22. 下列式了•:①(3"1)(3L 1) = (N-1)2 ②(X -37)2 =X 2-3^÷9j;2 ③A.①B.①②C.①②③D.④ 3.()A X 2÷2ZJ ; + /B -√-2zj;-/ c.兀2_2芋 + 丿2 D x 2 + 2z ιy-/ 4. 若("刃2 一M=(LyF ,则M 为().A. 2&B. ± 2卩C. 4& d . ±5. •个正方形的边长为αcm ,若边长增加6cm ,则新正方形的面积人增加了().A. 36cm 2 B- 12<scm 2 c . G&+ 12N )Cnl? D 以上都不对 6. 如果X+αx + l 是-个完全平方公式,那么a 的值是(). A ・ 2 B ・-2 C ・ ± 2 D. ±17. 若•个多项式的平方的结果为4/+12αB+滋2 ,则酬I=()A . 9沪 B. 3⅛2 C. -9戸 D. 3⅛&下列多项式不是完全平方式的是().1 2一十购十购π ααA. /—4兀一4 B e 4c. 2 +6ab +⅛2 D e 4/2 +12/+9X + — = 29.已知 X ,则下列等式成立的是(〉(i-2^)2=ι-4Xy ④ STf 十2十土中正确的是()文档从网络中收集,已重新整理排版.word版本可编辑•欢迎下载支持.Λ2÷4-=2^4÷Λ = 2护+4 = 2 "丄=C)①X ②X ③X④ 兀A.①B.①②C.①②③D.①Φ③④二、填空题1.(*b)2=_3.(2X-1)2+(2X +1)2= _____ 5. @ +疔-0-b)2 = ___________(4戲+ ”2 = [6型2 十 ________三、解答题1.运用完全平方公式计算:2. (3S)2=—4.(沪疔+S 7)2= _6.(-3X +47)2=()2 =aλ+⅛2 = {a+Λ)2 + ________(1) (卩爭(2)(-4X-I i y)2.运用乘法公式计算:(I) SZ ・P)?;⑵(x÷ l)2(x-l)2 Z ⑶◎*!) 文档从网络中收集,已重新整理排版.word 版本可编辑•欢迎下载支持.("刃2("刃:⑷(2"%+C)(C-2α + %)3. 计算:⑵(x+4)(x-4)-(x-4)2(l2m -3⅝)2(2Λ>2 + 3«)2(J)(3α -b+c)(3α ÷⅛ -C)参考答案:∙. 1・D 2・D 3・A 4・C 5・C 6. C 7・D 8・A 9・D•IΛ2÷4Λ⅛+4Λ29 9a2 - 6ab +⅛23 8^2 ÷ 2 42Λ2+2⅛25澎1. 3x-4ιy,9x2-24Λ^+16√: I朋十彳:8- -2ab .6-m1 - + -n216x2 + 4∑y -I- —ιy2三、1.⑴ 4 3 9 ;(2)4丿:■—十3&B _9护_ 2 (3) 4 :⑷ 39204 (提示:低一(2°°■ 2)).、、、.I} Am十?2 + P + Amn-AmP - 2wp2.3-√+Λ⅛-73J⑷ /一4护+12血一9护・(S) X3. ⑴Λ4-2CJ⅛2+δ4 : (2)8x-32.(3)16朋4 -72眈?泌十81刃4(4)9/- 炭 + 必匕 - / ;(5)⅛2-⅛2 -β⅛-9.(6)4诂-定+2碑-才(7) ' ■ 2今-2xz + / + 2yz +∑2(S) 400(3)-K 计算下列各式:(1) (x + 2Xx-2) (2) (l + 3dXl-3α) (3) (χ + 5yXx -5y)2^ 猜一猜:(α + bXα-Z?) = _____ - ____二、巩固练习:1、下列各式中哪些可以运用平方差公式计算 ________________ (1) (G + Z?Xd-C) (2) (X + yX-y + x) (3) (CIb -3x)(-3x-ab) (4) (-∕π-/7X777 +/?) (5) (2a+b)(2b-cι)(6) (-2χ-y)(-2x+y)2、判断:(3x- y ∖-3x+ y) = 9x 2 - y 2 ()4) (- 2x - yX~ 2x + y) = 4x 2 - y 2 ()5)(U + 2∖a -3)=Cr -6 () 6) (X + 3∖y -3)= Xy t -9 () 3、计算下列各式:(1) (4a-7b ∖4a + 7b)(2) (一 Im- n X2〃? 一 ")1 \ rι 1 、—a + —b 一 G ——b2丿 13 2丿平方差公式11) (2a + b ∖2J}-a) = 4a 2 ^b 2)3)4.填空:(1)(2x + 3y)(2x-3y)= ______________(2)(46/-1)( )=166∕2-1 (3) --- "心卜存讥9(4) (2x+ * -3y)= 4X2-9y2三、提髙练习:1、U + >'X-r-yXx2 + y2)2、X4-(2X2+1)(2X2-1)2、若疋一/=12 ,x+y = 6,求X, y的值。
整式的乘除—乘法公式
整式的乘除—乘法公式【复习】(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2(a+b)(a 2-ab+b 2)=a 3+b 3 (a-b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m )=x 2y 2-(z 2+zm +zm +m 2)=x 2y 2-z 2-2zm -m 2⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2=(x -y )(x -y )-z 2=x 2-xy -xy +y 2-z 2=x 2-2xy +y 2-z 2⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )]=2x (-2y +2z )=-4xy +4xz【典例分析】例1.已知2=+b a ,1=ab ,求22b a +的值。
例2.已知8=+b a ,2=ab ,求2)(b a -的值。
例3:计算19992-2000×1998例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。
例5:已知x-y=2,y-z=2,x+z=14。
求x 2-z 2的值。
整式的乘法
整式的乘法包括(单项式)与(单项式)相乘;(单项式)与(多项式)相乘;(多项式)与(多项式)相乘单项式与单项式相乘的运算法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
整式乘法法则:1、同底数的幂相乘:法则:同底数的幂相乘,底数不变,指数相加。
数学符号表示:a m.a n=a m+n(其中m、n为正整数)2、幂的乘方:法则:幂的乘方,底数不变,指数相乘。
数学符号表示:(a m)n=a mn(其中m、n为正整数)3、积的乘方:法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。
(即等于积中各因式乘方的积。
)数学符号表示:(ab)n=a n b n(其中n为正整数)4、单项式与单项式相乘:把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
5、单项式与多项式相乘:就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
6、多项式与多项式相乘:先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
7、乘法公式:平方差公式:(a+b)·(a-b)=a2-b2,完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2。
整式乘法运算:单项式乘以单项式法则:单项式与单项式相乘,利用乘法交换律和结合律,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,一起作为积的因式.注:单项式乘以单项式,实际上是运用了乘法结合律和同底数的幂的运算法则完成的。
①.积的系数等于各因式系数的积,先确定符号,再计算绝对值.这时容易出现的错误是,将系数相乘与指数相加混淆,如2a3·3a2=6a5,而不要认为是6a6或5a5.②.相同字母的幂相乘,运用同底数幂的乘法运算性质.③.只在一个单项式里含有的字母,要连同它的指数作为积的一个因式.④.单项式乘法法则对于三个以上的单项式相乘同样适用.⑤.单项式乘以单项式,结果仍是一个单项式.单项式乘以多项式的运算法则:单项式与多项式相乘,就是根据乘法分配律用单项式去乘多项式的每一项,转化为单项式与单项式的乘法,然后再把所得的积相加.法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.方法总结:在探究多项式乘以多项式时,是把某一个多项式看成一个整体,利用分配律进行计算,这里再一次说明了整体性思想在数学中的应用。
《整式的乘法》课件
同类项相加
如果两个整式含有同类项,则将它们 的同类项的字母和字母的指数分别相 加,例如:$x^2y cdot xy^2 = x^{2+1}y^{1+2} = x^3y^3$。
整式乘法的应用
01
02
03
解决实际问题
整式乘法在实际问题中有 着广泛的应用,例如计算 面积、体积、路程等。
代数运算
整式乘法是代数运算中的 基本运算之一,它可以用 于解决代数方程、不等式 等问题。
掌握好单项式乘多项式和多项式乘多 项式的计算方法,是学好整式乘法的 基础。
合并同类项时,要注意不要遗漏任何 一项,特别是系数和字母因式部分。
多项式乘多项式的实例解析
例如
$(x+1)(x^2+2x+3)$,先分别用$(x+1)$去乘$(x^2+2x+3)$的每一项,得到 $x^3+2x^2+3x$,$x^2+2x+3$,再将同类项合并,得到 $x^3+3x^2+5x+3$。
整式乘法的符号表示
用“·”表示整式相乘,例如:$a^2 cdot b^3 = a^{2+3} cdot b^{3+1} = a^5 cdot b^4$。
整式乘法的规则
系数相乘
合并同类项
整式相乘时,首先将它们的系数相乘 ,例如:$2x cdot 3y = 6xy$。
在整式乘法中,如果两个整式含有相 同的字母和字母的指数,则可以将它 们合并为一个项,例如:$2x^2y + 3x^2y = 5x^2y$。
再如
$(-2x+3y)(-2x-3y)$,利用平方差公式得到$4x^2-9y^2$。
整式乘法公式
整式乘法公式
整式乘法公式是指将一个整式乘以另一个整式,并得出最终结果的一种公式。
整式乘法公式可以用来解决各种数学问题,例如求解多项式的乘积、积分运算等。
整式乘法公式的基本结构是:(a+b)(c+d)=ac+ad+bc+bd,其中a,b,c,d分别是整式中的四个单项,ac表示a乘以c的积,ad表示a 乘以d的积,bc表示b乘以c的积,bd表示b乘以d的积,最后结果是ac+ad+bc+bd。
整式乘法公式可以用来解决多项式的乘积问题。
首先,需要将多项式分解成单项,并用整式乘法公式进行运算。
例如,求解(x-2)(x+3) 的积,首先将其分解为(x-2)(x) + (x-2)(3),然后根据整式乘法公式,最终结果为x^2-2x+3x-6,即 x^2+x-6。
另外,整式乘法公式也可以用来解决积分运算问题。
积分运算是求解一个函数在一定区间上的积分,例如求解 f(x) = x^2+3x+2 在区间[0,1] 上的积分。
首先,将函数f(x) 进行分解,即f(x) = (x+2)(x+1),然后根据整式乘法公式,最终结果为x^2+3x+2,即积分的结果为x^3/3+3x^2/2+2x。
总之,整式乘法公式是一种非常有用的公式,它可以用来解决多项式的乘积以及积分运算等多项数学问题。
在解决这些数学问题时,
要特别注意把握整式乘法公式,才能得到正确的答案。