三极管、基本放大电路

合集下载

基本放大电路的概念及工作原理

基本放大电路的概念及工作原理

基本放大电路的概念及工作原理共射放大电路是最常见的基本放大电路之一,它是由三极管组成的电路。

其工作原理是:输入信号作用在基极上时,三极管基极-发射极间的电压发生变化,导致三极管管子的电流发生相应的变化,进而控制输出电流和电压的变化。

在共射放大电路中,输入信号与输出信号的相位差为180度,即反向,所以它是一个反相放大电路。

共基放大电路是另一种常见的基本放大电路,同样是由三极管组成。

共基放大电路的工作原理是:输入信号作用在输入电极上时,三极管的发射极共用负载电阻,通过调节输入信号和输出信号的电阻关系来放大信号。

在共基放大电路中,输入信号与输出信号的相位差为0度,即同相,所以它是一个同相放大电路。

共集放大电路,也称为共漏放大电路,是由三极管组成。

共集放大电路的工作原理是:输入信号作用在输入电极上时,通过控制输入电阻和输出电阻的关系来放大输入信号。

在共集放大电路中,输入信号与输出信号的相位差为0度,即同相,所以它是一个同相放大电路。

在基本放大电路中,放大器的增益是一个重要的指标。

增益是指输出信号与输入信号的比值,通常用电压增益或电流增益来表示。

增益值越大,说明放大器的放大效果越好。

基本放大电路在实际应用中非常广泛,例如在音频放大器、通信设备和电子仪器中都能看到它们的身影。

通过合理设计基本放大电路,可以实现对输入信号的精确放大,保证信号的传递质量,并且适应不同信号源的特点。

同时,基本放大电路的工作原理也为更复杂的放大电路提供了基础,包括差分放大电路、功率放大电路等。

总之,基本放大电路是通过控制输入信号和输出信号之间的电流或电压关系来放大信号的电路。

通过不同的组合方式,可以实现不同放大效果和放大器的特性。

深入理解基本放大电路的工作原理,对于电子电路的设计和应用具有重要的意义。

三极管的三种基本放大电路-3极管放大电路

三极管的三种基本放大电路-3极管放大电路

电路组成
01
共基放大电路主要由三极管、电阻、电容等元件组 输出端,射极 作为公共端。
03
电阻用于控制三极管内部电流的大小,电容用于隔 离直流信号和交流信号。
特点
电压放大倍数高
由于共基放大电路的电压放大 倍数主要取决于三极管的β值,
因此其电压放大倍数较高。
输入阻抗低
02
CATALOGUE
共基放大电路
工作原理
共基放大电路是以三极管的一个极为公共端, 其余两个极作为输入和输出端,通过基极输入 信号,集电极输出放大的信号。
输入信号通过三极管的基极和射极之间的电压 差作用,使电流在三极管内部流动,从而控制 集电极电流的放大,实现信号的放大。
输出信号通过集电极和射极之间的电压差作用 ,从集电极输出放大的信号。
特点
电压增益高
由于采用正反馈电路,共集放大电路的电压增益 较高。
输入阻抗高
由于输入电阻较大,共集放大电路的输入阻抗较 高,对信号源影响较小。
输出阻抗低
由于输出电阻较小,共集放大电路的输出阻抗较 低,负载能力较强。
04
CATALOGUE
三种基本放大电路的比较
工作原理比较
01
共射放大电路
输入信号由基极和发射极之间输入,输出信号从集电极和发射极之间输
共集放大电路
具有电流放大能力,适用于功率放大。
THANKS
感谢观看
三极管的三种基本 放大电路
目录
• 共射放大电路 • 共基放大电路 • 共集放大电路 • 三种基本放大电路的比较
01
CATALOGUE
共射放大电路
工作原理
输入信号加在三极管的基极和发射极 之间,控制集电极电流的变化,并通 过集电极电阻将电流变化转换为电压 变化,从而实现对信号的放大。

三极管基本放大电路

三极管基本放大电路

7、如图所示的单管放大电路中,设晶体管的β=40, (1)估算放大电路的静态工作点IBQ、ICQ 、VCEQ (2)估算放大器电压放大倍数、输入电阻和输出电阻。
6、放大器的交流参数有哪些?
7、如何估算基本放大电路的静态工作点?
8、如何估算基本放大电路的交流参数?
◇ 要点点拔
一、三极管基本放大电路
三极管V:核心元件,放大电流。
电源VCC:保障三极管处于放大状态。 RB:基极偏置电阻,提供适当的 基极电流,以使电路获得合 适的静态工作点。 RC:将集电极电流的变化转化成 集射之间的电压变化。 共发射极放大电路
2、交流参数的估算: 依据:交流通路
三极管输 r ≈300+(1+β) be 入电阻rbe :
ri=Rb//rbe ≈rbe
三极管输 出电阻: rce
ro=Rc//rce≈Rc
Av = vo/ vi= -β (RC// RL)/ rbe
举例分析:
用估算法分析下图的静态工作点,已知β=37.5。
Hale Waihona Puke U CC U BE IB RB
说明:1、从波形图上能看出,该电路对输入信号进行了放大。
2、输出信号与输入信号相位相反,这种共发射极放大电路又称反相放大器。
六、直流通路与交流通路
1、直流通路的画法: 将电容视为开路,其他不变。
将电容和电源视为短路,其他不变。 2、交流通路的画法:
用来分析放大电 路中的静态工作点
用来分析放大电 路中的交流参数
5、在共射极放大电路中,偏置电阻Rb增大,三极管
的(
A、VCE减小
)。
B、IC减小 C、IC增大 D、IB增大
6、在如图所示的放大电路中,三极管的电流放大 系数β=60,VBEQ=0.7V,试求:

三极管及基本放大电路教案

三极管及基本放大电路教案

三极管及基本放大电路教案课程名称:三极管及基本放大电路课程时长:2小时课程对象:高中物理学生教学目标:1.了解三极管的基本结构和工作原理。

2.理解三极管的放大特性和应用。

3.掌握基本放大电路的设计和计算方法。

教学准备:1.三极管和相关电路的实物模型。

2. PowerPoint演示文稿。

3.实验器材和电路板。

教学过程:Step 1: 引入(10分钟)a.向学生解释现在我们要学习的内容:三极管及其在基本放大电路中的应用。

b.显示三极管的实物模型,并解释它的基本结构。

c.引导学生思考:三极管是如何工作的?我们为什么要学习它?Step 2: 三极管的工作原理(20分钟)a. 使用PowerPoint演示文稿,详细解释三极管的工作原理,包括发射极、基极和集电极之间的关系。

b.引导学生观察示意图,并帮助学生理解电流流动的过程。

c.通过演示实物模型,展示三极管的工作原理。

Step 3: 三极管的放大特性(20分钟)a.解释三极管的放大特性,包括电压放大系数、电流放大系数和功率放大系数。

b.使用示意图和示波器显示放大效果,帮助学生更好地理解放大特性。

Step 4: 三极管基本放大电路设计(30分钟)a.介绍基本放大电路的种类,如共射放大电路、共基放大电路和共集放大电路。

b. 使用PowerPoint演示文稿和实物模型,逐步讲解这些电路的特点和设计方法。

c.通过示波器演示放大效果,让学生亲自动手设计和制作一个基本放大电路。

Step 5: 实验演示(20分钟)a.分发实验器材和电路板,组织学生进行实验演示。

b.引导学生观察实验现象,记录数据,并帮助学生分析实验结果。

Step 6: 总结与提问(10分钟)a.对本节课的内容进行总结,并再次强调三极管的重要性和应用。

b.提问学生关于三极管和基本放大电路的问题,并进行讨论。

课后作业:1.复习本节课内容,整理笔记。

2.阅读相关教科书内容,进一步理解三极管的工作原理和应用。

3.设计一个简单的基本放大电路,并计算电流和电压放大系数。

三极管基本放大电路的设计

三极管基本放大电路的设计

设计一个三极管基本放大电路,特别是共发射极放大电路,通常涉及以下步骤:1. 分析设计要求:- 确定所需的电压增益(Av)或电流增益(hfe)。

- 根据应用需求确定最大输出电压和输出功率,这有助于选择合适的电源电压和三极管类型。

- 考虑频率响应范围,确保所选三极管能满足特定频段的放大需求。

2. 选择三极管:- 根据所需电流、电压及功率参数,选择具有足够放大能力和适当频率特性的三极管,例如NPN或PNP 型硅或锗材料器件。

3. 确定电源电压:- 设计电源电压应大于最大输出电压,并且考虑到三极管的静态工作点(Q点),Vcc通常会设定为使得Vce(集电极-发射极电压)约为电源电压的1/2至2/3之间,以确保有足够的动态范围。

4. 设置静态工作点(Q点):- 确定发射极电流(Ie),它应当足够大以提供适当的线性工作区域,但又不能太大以免导致功耗过高或饱和失真。

- 根据Ie计算或选择合适的发射极电阻Re,同时也要计算基极偏置电阻Rb和Rb串联分压电阻R2(如果采用固定偏置方式)。

5. 计算偏置电阻:- 根据所需的基极电流Ib(通常是Ie的一定比例),通过Ib和电源电压计算基极偏置电阻R1和R2的值。

- 确保三极管处于放大区,即Ib、Ic满足Ib = (β+1) Ic / β的关系,其中β是三极管的直流电流放大系数。

6. 设计耦合电容:- 确定输入耦合电容C1和输出耦合电容C2的值,它们用来隔直通交,允许交流信号通过而不影响直流偏置条件。

7. 调试和优化:- 完成电路搭建后,需实际测量并调整偏置点,确保电路工作在预期状态,无饱和或截止现象。

- 测试频率响应、增益、输出波形以及稳定性,如有必要,进一步调整元件参数以改善性能。

以上是一般的步骤概述,在实际设计过程中,可能还需要结合三极管的特性曲线、温度稳定性和噪声等因素综合考虑。

设计时通常还会利用模拟电路设计软件进行仿真验证,以提高设计效率和准确性。

三极管及基本放大电路教案

三极管及基本放大电路教案

交流性能指标计算与评估
电压放大倍数
衡量放大电路对输入信号的放大 能力,计算公式为Av=Vo/Vi。
输入、输出电阻
反映放大电路对前、后级电路的影 响,输入电阻越大,从前级电路索 取的信号越小;输出电阻越小,带 负载能力越强。
通频带
放大电路能够正常工作的频率范围 ,受三极管结电容、电路分布电容 等因素的影响。
2023-2026
ONE
KEEP VIEW
三极管及基本放大电 路教案
REPORTING
CATALOGUE
目 录
• 课程介绍与目标 • 三极管基础知识 • 基本放大电路原理及分析 • 放大电路静态工作点与偏置电路 • 放大电路动态性能分析 • 频率响应与多级放大电路 • 功率放大电路简介 • 课程总结与拓展延伸
设置静态工作点的
意义
确保放大电路在输入信号作用下 能正常工作,避免信号失真和电 路损坏。
设置方法
通过调整偏置电阻或电源电压来 改变静态工作点,同时需考虑温 度对静态工作点的影响。
固定偏置电路原理及分析
固定偏置电路构成
01
由基极偏置电阻和发射极电阻构成,为三极管提供合适的基极
电流。
工作原理
02
通过基极偏置电阻提供稳定的基极电流,使三极管工作在放大
数字化与智能化技术在放大电路中的应用
探讨了数字化与智能化技术在放大电路设计、分析、测试等方面的应用,如数字模拟混 合信号处理技术、自适应控制技术等。
2023-2026
END
THANKS
感谢观看
KEEP VIEW
REPORTING
由三极管、输入电阻、输出电阻、电 源等元件组成。
共射极放大电路的电压放大倍数等于 集电极电阻与发射极电阻的比值。

三极管基本放大电路ppt课件

三极管基本放大电路ppt课件

(a)原理电路
(b)实物图
精品课件
发射极单管放大电路各组成元件的作用
精品课件
电路中各电流、电压的符号规定
电路中既包含输入信号所产生的交流量,又包含直流电源所产生 的直流量。为了区分不同分量,通常做了以下规定
精品课件
放大电路原理图的画法
1.直流通路和交流通路 【直流通路】指静态时放大电路直流电流通过的路径。 画直流通路原则 :将电容视为开路。
确定出静态工作点Q。
以单管共射放大电路为例,其直流通路如右下图所示。设电路参数VCC、 Rb、RC和三极管放大倍数β已知,忽略三极管的UBEQ(硅管UBEQ≈0.7V,锗 管UBEQ≈0.3V),可以推导得:
IBQVCC UBEQ VCC
Rb
Rb
ICQ=βIBQ
UCEQ = VCC-ICQ RC
由上述公式求得的IB、 IC和UCE值即是静态工作点Q。
Ro=Ron
精品课件
多级放大电路的耦合方式
多级放大电路中每个单管放大电路称为“级”,级与级之间的连接 方式叫耦合。下表为三种常用耦合方式的比较。
精品课件
本章小结
1.三极管由两个PN结构成,按结构分为NPN和PNP两类。三极管的集电极 电流受基极电流的控制,所以三极管是一种电流控制器件。在满足发 射结正偏、集电结反偏的条件下,具有电流放大的作用。三极管的输 出特性曲线可分成截止区、饱和区、放大区。
所以,分压式偏置放大电路具有自动调整功能,当ICQ要增加时,电路 不让其增加;当ICQ要减小时,电路不让其减小;从而迫使ICQ稳定。所以 该电路具有稳定静态工作点的作用。B>>UBEQ
精品课件
C C V Q Q C E I I T V ec RR QEB Q B U I 2 1 b b R R Q B U 21 II

电子技术课件第二章三极管及基本放大电路

电子技术课件第二章三极管及基本放大电路
10
2.三极管的主要参数
(1)直流参数 反映三极管在直流状态下的特性。
直流电流放大系数hFE 用于表征管子IC与IB的分配比例。
漏电电流。ICBO大的三极管工作的稳定性较差。
集—基反向饱和电流ICBO 它是指三极管发射极开路时,流过集电结的反向
ICBO测量电路
ICEO测量电路
加上一定电压时的集电极电流。ICEO是ICBO的(1+β)倍,所以它受温度影响不可忽视。
性。 A——PNP锗材料,B——NPN锗材料, C——PNP硅材料,D——NPN硅材料。
三极管型号的读识 3 A G 54 A
规格号
第三部分是用拼音字母表示管子的类型。
X——低频小功率管,G ——高频小功率管, D——低频大功率管,A ——高频大功率管。
三极管 NP锗材料 高频小功率 序号
第四部分用数字表示器件的序号。 第五部分用拼音字母表示规格号。
饱和区 当VCE小于VBE时,三极管的发
四、三极管器件手册的使用
三极管的类型非常多,从晶体管手册可以查找到三极管的型号,主要用途、主 要参数和器件外形等,这些技术资料是正确使用三极管的依据。
1.三极管型号
国产三极管的型号由五部分组成。
第一部分是数字“3”,表示三极管。 第二部分是用拼音字母表示管子的材料和极
一、放大电路静态工作点不稳定的原因
(1)温度影响 (2)电源电压波动 (3)元件参数改变
二、分压式偏置放大电路 1.电路组成
Rb1是上偏置电阻,Rb2是下偏置电阻。电源电压经Rb1、Rb2串联分压后为三极 管提供基极电压VBQ。Re起到稳定静态电流的作用,Ce是Re的交流信号旁路电容。
分压式偏置放大电路
放大电路的电压和电流波形

三极管的三种基本放大电路

三极管的三种基本放大电路

二、性能指标分析
IBQ = (VCC – UBEQ) / [RB + (1 + β ) RE] ICQ = β I BQ UCEQ = VCC – ICQRE



rbe β ib RB + RE RL uo

R'L = RE // RL
第3章 放大电路基础
一、电路组成与静态工作点
IBQ C1 + RB +VCC C2 RL
Ri
R’i
例3.2.1 β =100, RS= 1kΩ, RB1= 62kΩ, RB2= 20kΩ, RC= 3kΩ Ω Ω Ω Ω RE = 1.5kΩ, RL= 5.6kΩ, VCC = 15V。求:“Q ”, Au, Ri, Ro Ω Ω 。 [解] 1)求“Q” 解 ) +VCC 20 × 15 RB1 RC C2 U BQ = ≈ 3.7 ( V ) C1 + 20 + 62 + + RL 3 .7 − 0 .7 uo I RS = 2 (mA ) + CQ = I EQ = + RB2 RE us 1 .5 CE − − I BQ ≈ 2 / 100 = 0.02 (mA) = 20 µA U = 15 − 2( 3 + 1.5) = 6 ( V ) 2)求 Au、Ri、Ro 、 Aus CEQ )

RE = RL = Rs = 1 kΩ, VCC = 12V。求:“Q ”、Au、Ri、 Ω 。 、 Ro [解] 1)求“Q” +VCC 解 ) IBQ RB C1 IBQ = (VCC – UBE) / [RB + (1+ β ) RE]
β =120, RB = 300 kΩ, r’bb= 200 Ω, UBEQ = 0.7V Ω

三极管基本放大电路

三极管基本放大电路

三极管基本放大电路
三极管是一种非常常见的电子元件,它是用来放大电信号的。


极管基本放大电路是一种基础电路,广泛应用于各种电子设备中。

三极管基本放大电路的原理是利用三极管的非线性特性,将输入
电信号经过放大后输出到负载上。

三极管基本放大电路由三部分组成,分别是输入电路、放大电路和输出电路。

输入电路主要是为了将外部电信号引入三极管,使其与放大电路
相结合。

通常输入电路由电容和电阻组成,电容用来隔离直流信号,
电阻用来限制输入电流。

放大电路是三极管基本放大电路的核心部分,它的作用是将输入
电信号放大。

放大电路由三极管的基极、发射极和集电极组成。

其中
基极作为控制极,接收输入电信号;发射极作为输入极,输入电信号
通过基极运动,使电流增强;集电极作为输出极,输出放大后的信号。

放大电路的放大倍数可以通过改变电路中电阻和电容的数值来改变。

最后是输出电路,它的作用是将经过放大的电信号输出到负载上。

输出电路通常由电容和电阻构成。

电容用来将直流分离出来,电阻用
来限流和负载电阻匹配。

三极管基本放大电路有很多种形式,如共基极放大电路、共发射
极放大电路、共集电极放大电路等。

每种放大电路都有其优点和缺点,可以根据不同的应用场合选择合适的放大电路。

总之,三极管基本放大电路是电子工程中不可或缺的基础电路。

了解其原理和常见形式,对于电子爱好者和从事电子工作的人来说,都有着重要的指导和应用意义。

三极管的三种放大电路

三极管的三种放大电路

三极管的三种放大电路三极管是一种常用的电子元件,广泛应用于各种电路中。

它具有放大电压和电流的功能,因此被广泛应用于放大电路中。

本文将介绍三极管的三种常见放大电路:共射、共集和共基电路。

一、共射放大电路共射放大电路是最常见的三极管放大电路之一。

它的特点是输入信号与输出信号均通过三极管的集电极。

其工作原理是:当输入信号施加在基极上时,三极管的基极电流发生变化,进而控制集电极电流的变化。

这种变化通过负载电阻产生的电压变化,即为输出信号。

共射放大电路具有电压增益大、输入电阻高、输出电阻低等特点。

因此,它常被用于需要电压放大的场合,如音频放大器等。

二、共集放大电路共集放大电路是另一种常见的三极管放大电路。

它的特点是输入信号与输出信号均通过三极管的发射极。

其工作原理是:当输入信号施加在基极上时,三极管的基极电流发生变化,进而控制发射极电流的变化。

输出信号即为负载电阻处的电压变化。

共集放大电路具有电流放大特性,且输入输出之间具有相位相反的特点,因此常被用于需要电流放大的场合,如电压稳压器等。

三、共基放大电路共基放大电路是三极管放大电路中最不常见的一种。

它的特点是输入信号通过三极管的发射极,输出信号通过三极管的集电极。

其工作原理是:当输入信号施加在基极上时,三极管的基极电流发生变化,进而控制发射极电流的变化。

输出信号即为负载电阻处的电压变化。

共基放大电路具有电压放大特性,且输入输出之间具有相位相同的特点,因此常被用于需要频率放大的场合,如射频放大器等。

三极管的三种放大电路分别为共射、共集和共基电路。

它们分别具有不同的特点和应用场合。

共射放大电路适用于需要电压放大的场合,共集放大电路适用于需要电流放大的场合,共基放大电路适用于需要频率放大的场合。

了解和掌握这些放大电路的特点和工作原理,对于电子工程师和电子爱好者来说是非常重要的。

希望本文能够对读者有所启发和帮助。

三极管的三种基本放大电路

三极管的三种基本放大电路

基极放大电‎路共基极的放‎大电路,如图1所示‎,图1 共基极放大‎电路主要应用在‎高频放大或‎振荡电路,其低输入阻‎抗及高输出‎阻抗的特性‎也可作阻抗‎匹配用。

电路特性归‎纳如下:输入端(EB之间)为正向偏压‎,因此输入阻‎抗低(约20~200 )输出端(CB之间)为反向偏压‎,因此输出阻‎抗高(约100k‎~1M )。

电流增益:虽然AI小‎于1,但是RL / Ri很大,因此电压增‎益相当高。

功率增益:由于AI小‎于1,所以功率增‎益不大。

共发射极放‎大电路共发射极的‎放大电路,如图2所示‎。

图2 共发射极放‎大电路因具有电流‎与电压放大‎增益,所以广泛应‎用在放大器‎电路。

其电路特性‎归纳如下:输入与输出‎阻抗中等(Ri约1k‎~5k ;RO约50‎k)。

电流增益:电压增益:负号表示输‎出信号与输‎入信号反相‎(相位差18‎0°)。

功率增益:功率增益在‎三种接法中‎最大。

共集电极放‎大电路共集电极放‎大电路,如图3所示‎,图3 共集电极放‎大电路高输入阻抗‎及低输出阻‎抗的特性可‎作阻抗匹配‎用,以改善电压‎信号的负载‎效应。

其电路特性‎归纳如下:输入阻抗高‎(Ri约20‎k );输出阻抗低‎(RO约20‎)。

电流增益:电压增益:电压增益等‎于1,表示射极的‎输出信号追‎随着基极的‎输入信号,所以共集极‎放大器又称‎为射极随耦‎器(emitt‎e r follo‎w er)。

功率增益A‎p= AI × Av≈β,功率增益低‎。

三极管三种放大电‎路特性比较‎。

三极管及基本放大电路 PPT

三极管及基本放大电路 PPT
三极管的共发射极输出特性曲线是指iB一定时,输出 电流iC和输出电压uCE的关系曲线,其函数表示式为
iC=f(uCE)iB=常数
图7-6
NPN三极管共发射极输出特性曲线
任务7.1
半导体三极管
7.1.3 分析三极管的伏安特性
7.1.3.3 半导体三极管的主要参数
IC IB
I C I B
项目7
三极管及基本放大电路
项目7
三极管及基本放大电路
任务目标
1.掌握三极管的特性。 2.了解放大电路的基本知识。 3.能够完成放大电路的静态分析和动态分析。 4.能够分析各种功率放大电路。
任务7.1
半导体三极管
7.1.1 认识三极管的基本结构和分类
7.1.1.1 三极管的结构
图7-1
几种三极管的外形
7.2.2.1 共发射极基本放大电路的组成
1 2 3 4 晶体管VT 集电极电源VCC 集电极电阻RC 基极电源VBB
任务7.2
共发射极基本放大电路
7.2.2 认知共发射极基本放大电路的组成
7.2.2.1 共发射极基本放大电路的组成
5 6 7 基极电阻RB(基极偏置电阻) 耦合电容C1和C2 负载电阻RL
任务7.2
共发射极基本放大电路
7.2.2 认知共发射极基本放大电路的组成
7.2.2.2 放大电路的习惯画法
图7-8 单电源共发射极放大电路
任务7.2
共发射极基本放大电路
7.2.2 认知共发射极基本放大电路的组成
7.2.2.2 放大电路的习惯画法
图7-9
习惯画法
任务7.2
共发射极基本放大电路
7.2.2 认知共发射极基本放大电路的组成

三极管的三种放大电路

三极管的三种放大电路

三极管的三种放大电路三极管是一种常用的电子元件,它具有放大信号的特性,因此被广泛应用于各种放大电路中。

三极管的三种放大电路分别是共射放大电路、共基放大电路和共集放大电路。

1. 共射放大电路共射放大电路是最常见的三极管放大电路之一,它的特点是输入信号与输出信号都是相对于电源地的。

在共射放大电路中,三极管的发射极作为输入端,集电极作为输出端,基极则起到控制信号的作用。

共射放大电路的工作原理是:当输入信号加在基极上时,三极管的发射极电流会发生相应的变化,进而改变集电极电流,实现对输入信号的放大。

由于共射放大电路具有较大的电压增益和较小的输入阻抗,因此常用于需要较大信号放大的场合,如音频放大电路。

2. 共基放大电路共基放大电路是另一种常见的三极管放大电路,它的特点是输入信号与输出信号都是相对于基极的。

在共基放大电路中,三极管的基极作为输入端,发射极作为输出端,集电极则起到控制信号的作用。

共基放大电路的工作原理是:当输入信号加在基极上时,三极管的发射极电流会发生相应的变化,进而改变集电极电流,实现对输入信号的放大。

由于共基放大电路具有较大的电流增益和较小的输出阻抗,因此常用于需要较大电流放大的场合,如射频放大电路。

3. 共集放大电路共集放大电路是三极管放大电路中的第三种形式,它的特点是输入信号与输出信号都是相对于集电极的。

在共集放大电路中,三极管的集电极作为输入端,发射极作为输出端,基极则起到控制信号的作用。

共集放大电路的工作原理是:当输入信号加在集电极上时,三极管的发射极电流会发生相应的变化,进而改变集电极电流,实现对输入信号的放大。

由于共集放大电路具有较小的电压增益和较大的输入阻抗,因此常用于需要较小信号放大的场合,如电压跟随器。

三极管的三种放大电路各有其特点和应用场合,合理选择和设计放大电路对于实现信号的有效放大至关重要。

在实际应用中,需要根据具体的要求和条件来选择合适的放大电路,并进行相应的电路设计和优化。

三极管放大电路-PPT..

三极管放大电路-PPT..

多级放 大器常 用的耦 合方式
1.阻容耦合
阻容耦合就是利用电容作为耦合和隔直流元件。
阻容耦合方式
• 阻容耦合的
• 优点是:
• 前后级直流通路彼此隔开,每一级的静态工作点 都相互独立。便于分析、设计和应用。
• 缺点是:
• 信号在通过耦合电容加到下一级时会大幅度衰减 。在集成电路里制造大电容很困难,所以阻容耦 合只适用于分立元件电路。
2.3.2 用微变等效电路法分析放大电路
• 1画出放大电路的交流通路
用微变等 效电路法 分析放大 电路的步

• 2用相应的等效电路代替三极管
• 3计算性能指标
小知识 输入电阻是从输入端看放 大电路的等效电阻,输出电阻是 从输出端看放大电路的等效电阻 。因此,输入电阻要包括RB ,而 输出电路就不能把负载电阻算进 去。
本章导读
第2章 基本放大电路
本章重点学习基本放大电路的工作原理和 放大电路的基本分析方法。同时介绍放大电路的 性能指标,并介绍多级放大电路及应用。
本章以共射极的基本放大电路为基础,分析 放大电路的原理和实质,讲述了电压偏置电路的 意义。通过图解法和微变等效电路两种方法,讨 论如何设置工作点,计算输入电阻、输出电阻和 电压放大倍数,了解多级放大电路的级间耦合方 式及场效应管放大电路。
2.3 微变等效电路
• 2.3.1 放大电路的微变等效电路 • 1.晶体管的微变等效电路 • 放大电路的微变等效电路,其核心是晶体管的
微变等效电路。
晶体管的微变等效电路
• 2.共射极放大电路的微变等效电路
• 小知识
• 交流通路上电压、电流都是交变量,既可 用交流量表示,也可以用相量表示,上图 箭标表示它们的参考方向。

晶体三极管及基本放大电路

晶体三极管及基本放大电路
晶体三极管及基本 放大电路
目录
• 晶体三极管简介 • 基本放大电路 • 晶体三极管在基本放大电路中的应用 • 晶体三极管放大电路的性能指标 • 晶体三极管放大电路的应用 • 晶体三极管放大电路的设计与制作
01
CATALOGUE
晶体三极管简介
晶体三极管的基本结构
01
02
03
三个电极
集电极、基极和发射极, 是晶体三极管的主要组成 部分。
THANKS
感谢观看
总结词
通频带和最高频率响应是衡量放大电路 对不同频率信号的放大能力的参数。
VS
详细描述
通频带表示放大电路能够正常工作的频率 范围,其宽度由晶体三极管的截止频率和 放大倍数决定。最高频率响应表示放大电 路能够处理的最高频率信号,其大小由晶 体三极管的截止频率决定。通频带和最高 频率响应是晶体三极管放大电路的重要性 能指标,决定了电路的应用范围和性能表 现。
05
CATALOGUE
晶体三极管放大电路的应用
在音频信号处理中的应用
音频信号放大
晶体三极管放大电路可以用于放 大音频信号,如麦克风、扬声器 等设备中的信号放大。
音频效果处理
在音频信号处理中,晶体三极管 放大电路可以用于实现各种音效 效果,如失真、压缩、均衡等。
音频功率放大
在音响系统中,晶体三极管放大 电路可以作为功率放大器使用, 将音频信号放大到足够的功率以 驱动扬声器发声。
共发射极放大电路
总结词
共发射极放大电路是晶体三极管最常用的放大电路,具有电压和电流放大作用。
详细描述
共发射极放大电路由晶体三极管、输入信号源、输出负载和偏置电路组成。输入信号加在 基极和发射极之间,通过晶体三极管的放大作用,将信号电压或电流放大后,从集电极和 发射极之间输出。

三极管的基本放大电路分析()

三极管的基本放大电路分析()

U CC , 在纵轴上得N点(0, RC )
连接M N 即直流负载线
(2) 求静态工作点
直流负载线与iB=IB对应的那条输出特性曲线的交 点Q, 即为静态工作点, 如图7.3(b)所示
(a)
(b)
图7.3 静态工作点的图解
[例7.1] 试用估算法和图解法求图7.4 (a) 所示放 大电路的静态工作点, 已知该电路中的三极管β=37.5, 直流通路如图7.4(b)所示, 输出特性曲线如图7. 4 (c) 所 示。
IE
300 (1 37.5) 26mV 1.5mA
= 967Ω
Au
RL/ rbe
37.5 (4 // 4) 0.967
78
Ri = RB // rbe=300 // 0.967≈0.964kΩ
Ro=RC=4kΩ
20 断开RL后
A u
RC rbe
37.5 4 0.967
156
② 发射极电阻RE:引入直流负反馈稳定静态工 作点。一般阻值为几千欧。
③ 发射极旁路电容CE:对交流而言,CE短接 RE ,确保放大电路动态性能不受影响。一般CE 也选择 电解电容,容量为几十微法。
(2) 稳定工作点原理 ① 利用RB1和RB2的分压作用固定基极UB。 ② 利用发射极电阻RE产生反映Ic变化的UE,再 引回到输入回路去控制UBE,实现IC基本不变。
Ro/
U I
RC
图 7. 18 不接CE时求输出电阻的等效电路
将有关数据分别代入上式得 A/u = - 0.36 R /i =103.25 kΩ R /o =3 kΩ
1.射极偏置电路
(a)电路图
(b)微变等效电路
图 7.15 射极偏置电路

三极管放大的基本电路

三极管放大的基本电路

三极管放大的基本电路
三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射
极E。

分成NPN和PNP两种。

我们仅以NPN三极管的共发射极放大电路为
例来说明一下三极管放大电路的基本原理。

 下面的分析仅对于NPN型硅三极管。

如上图所示,我们把从基极B流至
发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集
电极电流Ic。

这两个电流的方向都是流出发射极的,所以发射极E上就用了
一个箭头来表示电流的方向。

三极管的放大作用就是:集电极电流受基极电
流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很
小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集
电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。

如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基
极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。

如果集电极
电流Ic是流过一个电阻R的,那幺根据电压计算公式U=R*I可以算得,这
电阻上电压就会发生很大的变化。

我们将这个电阻上的电压取出来,就得到
了放大后的电压信号了。

 三极管在实际的放大电路中使用时,还需要加合适的偏置电路。

这有几个
原因。

首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。

当基极与发射。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3、工作原理 (1) ui直接加在三极管V的基极和发射极之间,引起基极电流 iB作相应的变化 。 (2) 通过V的电流放大作用,V的集电极电流iC也将变化 。 (3) iC的变化引起V的集电极和发射极之间的电压uCE变化。 (4) uCE中的交流分量uce经过C2畅通地传送给负载RL,成为 输出交流电压uo,,实现了电压放大作用。
基本放大电路
• 放大电路就是把微弱的电信号转变为较 强的电信号的电子电路。
基本放大电路图
• 各元件作用 • 三极管V:实现电流放大 • 集电极直流电源UCC:确保三 极管工作在放大状态。 • 集电极负载电阻RC:将三极管 集电极电流的变化转变为电压 变化,以实现电压放大。 • 基极偏置电阻RB:为放大电路 提供静态工作点。 • 耦合电容C1和C2:隔直流,通 交流。

NPN型

PNP型
• 如何判断是PNP型,还是NPN型? • 看图标的箭头,箭头是P指向N。
三极管的结构、型号
1、结构组成:由两个PN结、3个杂质半导体区域和 三个电极组成,杂质半导体有P、N两种。 2、三个区:
基区——很薄。一般仅有1微米至几十微米厚。
发射区——发射区浓度很高。 集电区——集电结截面积大于发射结截面积。
三极管的特性曲线
1、输入特性曲线是指当输出电压为某一常数时,三极管基 极电流与基极发射极电压之间的关系。 2、输出特性曲线是指当基极电流为某一常数时,三极管集 电极电流与集电极发射极电压之间的关系。
ቤተ መጻሕፍቲ ባይዱ
3、输出特性三个区域: 截止区 饱和区 放大区
• 本次课程结束,谢谢!
三极管的分类:
1、按材料分:硅管(多用于NPN管)、锗管 (多用于PNP管); 2、按结构分:NPN型、PNP型; 3、按使用频率分:低频管、高频管; 4、按功率分:小功率,中功率,大功率。
三极管的含义
半导体三极管(简称三极管)又称晶体管, 三极管是最重要的一种半导体。
三极管的结构和符号如下图所示。
3、两个PN结:
发射结——为发射区与基区之间的PN结。 集电结——为集电区与基区之间的PN结。 4、三个电极:发射极E、基极B和集电极C。 5、三个区组成形式:有NPN型和PNP型两种。
三极管放大的条件:
三极管事项放大作用的外部条件是发射结正向偏置,集电 结反向偏置。(a)为NPN管的偏置电路。 (b)为PNP偏置电路
相关文档
最新文档