4.1用解析法设计程序

4.1用解析法设计程序
4.1用解析法设计程序

4.1用解析法设计程序

本节课是信息技术选修模块“算法与程序设计”中的“算法与程序实现”的第一节“用解析法设计程序”。本章侧重于运用算法解决实际问题,设计合理的算法并编程实现。本节主要阐述解析法,该方法应用广泛,与数学学科的代数解析式相联系,结合教学要求和教材事例,本课从数学角度入口,引发学生思维迁移,解决实际问题

教学目标:

1、(知识、技能目标):了解解析法算法的概念和基本思路,能够用解析法分析简单问题并设计算法及编写程序求解问题,学会编写程序实现解析法。

2、(能力目标):培养学生分析、比较、迁移等能力,培养学生类比迁移思维,探索性、创造性思维。

3、(德育目标):培养学生学会合作、交流,体会其中乐趣和作用,培养学生积极主动的学习态度,勇于质疑、探索和不断创新的精神。

教学重点:

1、理解解析法的思想,能写出求解问题的解析式并用程序实现。

2、根据问题的特点,找到系统提供的资源,简化问题的求解过程。

教学难点:

学会分析问题,合理设计算法,建立求解问题的解析式。

针对本节课的重点和难点,结合构建主义中知识迁移的方法,与其他学科的已有知识进行迁移,特别是数学学科,在具体的新知识点的讲解中,进行比较教学,使学生理解的能彻底;以生活事例为问题,创设问题情境,带着问题进行学习和研究,让学生学习更具有自主性、目的性和推动力。明确解析法的定义,学会用解析法分析问题,编写程序解决问题。

教学时间:2课时

教学过程:

采用问题情景式任务驱动开展教学活动,教学活动可以以小组形式开展,教师组织学生完成实践探究任务。

一、(引入)讲述有关埃及国王邀请学者测量金字塔高度的故事,从中引出问题:如何测量不可到达底部的物体的高度。

得出结论:面对一个问题,找到一个恰当的解决方案,会使一个很难或很繁的问题变得简单。

二、用解析法求解问题的基本过程

从古埃及测量金字塔高度的问题出发导入本问题,然后导出解决的解析式。

1、测量高度问题的求解

(1)分析问题:使用三角函数知识分析问题。MN是竖直于地面的物体,其底部N不可到达。为了测量MN的高度,在地面上选取一条与MN在同一平面的水平线线段AB为基线,AB长度和仰角可以测量得到,试设计程序计算高度MN。

AB=BN-AN=MN/tanβ-MN/tanα

AB=a

所以MN=a/(1/ tanβ-1/ tanα)

(引导学生领会如何从已知条件入手,逐步求解未知量,分析问题后,思考问题)

(2)设计算法

注意:VB的正切函数的自变量单位是弧度,如果α是角度,则应该转换为弧度。

弧度=(角度*3.14159/180)

(3)编写程序

界面设计:

Private Sub Command1_Click()

a = Val(Text1.Text)

Alpha = Val(Text2.Text)

bata = Val(Text3.Text)

pi = 3.14159265

COTA = 1 / Tan(Alpha * pi / 180) ‘Alpha * pi / 180是角度转换为弧度

COTB = 1 / Tan(bata * pi / 180)

MN = a / (COTB - COTA)

Text4.Text = MN

End Sub

(4)调试程序

按照步骤来解决这个问题:分析问题-〉设计算法-〉编写程序-〉调试程序。

教师引导学生一起分析问题:我们不可能直接求出物体的高度,但我们可以利用所学的数学知识(三角函数)来完成,组织讨论,共同导出所需的解析式。

解析式导出后其它内容就比较容易解决了,组织学生分组讨论完成剩下的各个环节。

2、引导学生总结“解析法”的概念,并指导学生阅读教材98页的最后一段内容。

然后

重新展示钻石图案,让学生思考钻石图案的特点,提问学生(让学生说出钻石图案的特点),接着教师总结钻石图案的特点:

1.钻石图案是由点和线构成的

2.图形四周的点位于一个圆周上

3.点与点之间都有一条线段相连

结论:求出各点的位置,绘制各点之间的线段,就可以绘出这个图形了。(老师引导学生分析,设计算法)

(1)分析问题(2)设计算法(3)编写程序(4)调试程序

让学生进一步掌握循环结构的使用

注意:用循环结构实现解析式的计算时并非简单的完全重复,而是有些数据会在重复中改变,循环控制变量往往同时扮演这些改变的数据的角色,二者之间如何配合,则需要考试选择哪一种形式的循环结构来完全比较适合。

结论:许多的问题不是计算一个单一的解析式就可以完成任务的,还要根据问题给出的已知条件、运用归纳、演绎等逻辑方法,揭示问题各要素之间的关系,寻找表示这种关系的表达式,有时需要计算的解析式是一组而不仅仅是一条,需要使用合适的结构(许多可使用循环结构)实现算法设计算法和编制程序,求得问题的答案。

四、学生实践

问题1:电阻计算问题

问题2:小球弹跳问题

组织学生分组进行讨论,协作交流,按照基本求解步骤,完成设计程序的各个环节,最终解决问题,体验成功的乐趣。教师从旁指导,并注意帮助学生克服难点。

有限单元法基本思想,原理,数值计算过程

有限单元法学习报告 在对力学问题分析求解过程中,方法可以概括为两种方法,一种为解析法,对具体问题具体分析,通过一定的推导用具体的表达式获得解答,由于实际工程中结构物的复杂性,此方法在处理工程问题是十分困难的;另一种是数值法,有限元法是其中一种方法,其数学逻辑严谨,物理概念清晰,又采用矩阵形式表达基本公式,便于计算机编程,因此在工程问题中获得广泛的应用。 有限元法基本原理是,将复杂的连续体划分为简单的单元体;将无限自由度问题化为有限自由度问题,因为单元体个数是有限的;将偏微分方程求解问题化为有限个代数方程组的求解问题。通常以位移为基本未知量,通过虚功原理和最小势能原理来求解。 基本思想是先化整为零,即离散化整体结构,把整体结构看作是由若干个通过结点相连的单元体组成的整体;再积零为整,通过结点的平衡来建立代数方程组,最后计算出结果。我将采用最简单的三结点三角形为基本单元体,解决弹性力学中的平面问题为例,解释有限单元法的基本原理、演示数值计算过程和一般性应用结论。 一、离散化 解决平面问题时,主要单元类型包括三角形单元(三结点、六结点)和四边形单元(四结点矩形、四结点四边形、八结点四边形)等。选用不同的单元会有不同的精度,划分的单元数越多,精度越高,但计算量也会越大。因此在边界曲折,应力集中处单元的尺寸要小些,但最大与最小单元的尺寸倍数不宜过大。在集中力作用点及分布力突变的点宜选为结点,不同厚度,不同材料不能划分在同一单元中。三角形单元以内角接近60°为最好。充分利用对称性与反对称性。 二、单元分析 将一个单元上的所有未知量用结点位移表示,并将分布在单元上的外力等效到结点上。 1、位移函数选取: 根据有限元法的基本思路,将连续体离散为有限的单元集合后,此时单元体满足连续性、均匀性、各向同性、完全线弹性假设。单元与单元之间通过结点连接并传递力,位移法(应用最广)以结点位移δi=(u i v i)T为基本未知量,以离散位移场代替连续位移场。单元体内的位移变化可以用位移函数(位移模式)来表示,因为有限元分析所得结果是近似结果,为了保证计算精度和收敛性,x位移函数应尽可能反应物体中的真实位移,即满足完备性和连续性的要求:

平面三角形单元有限元程序设计

. 一、题目 如图1所示,一个厚度均匀的三角形薄板,在顶点作用沿板厚方向均匀分布的竖向载荷。已知:P=150N/m ,E=200GPa ,=0.25,t=0.1m ,忽略自重。试计算薄板的位移及应力分布。 要求: 1. 编写有限元计算机程序,计算节点位移及单元应力。(划分三角形 单元,单元数不得少于30个); 2. 采用有限元软件分析该问题(有限元软件网格与程序设计网格必 须一致),详细给出有限元软件每一步的操作过程,并将结果与程序计算结果进行对比(任选取三个点,对比位移值); 3. 提交程序编写过程的详细报告及计算机程序; 4. 所有同学参加答辩,并演示有限元计算程序。 有限元法中三节点三角形分析结构的步骤如下: 1)整理原始数据,如材料性质、荷载条件、约束条件等,离散结构并进行单元编码、结点编码、结点位移编码、选取坐标系。 2)单元分析,建立单元刚度矩阵。 3)整体分析,建立总刚矩阵。 4)建立整体结构的等效节点荷载和总荷载矩阵 5)边界条件处理。 6)解方程,求出节点位移。 7)求出各单元的单元应力。 8)计算结果整理。 一、程序设计 网格划分 如图,将薄板如图划分为6行,并建立坐标系,则

刚度矩阵的集成 建立与总刚度矩阵等维数的空矩阵,已变单元刚度矩阵的集成。 由单元分析已知节点、单元的排布规律,继而通过循环计算求得每个单元对应的节点序号。 通过循环逐个计算:(1)每个单元对应2种单元刚度矩阵中的哪一种; (2)该单元对应总刚度矩阵的那几行哪几列 (3)将该单元的单元刚度矩阵加入总刚度矩阵的对应行列 循环又分为3层循环:(1)最外层:逐行计算 (2)中间层:该行逐个计算 (3)最里层:区分为第 奇/偶 数个计算 单元刚度的集成:[ ][][][][][]' '''''215656665656266256561661e Z e e e Z e Z e e e e k k k K k k k k k k +?++=? =?==?==?=?????? 边界约束的处理:划0置1法 X Y P X Y P

用解析法设计程序

4.1用解析法设计程序 本节课是信息技术选修模块“算法与程序设计”中的“算法与程序实现”的第一节“用解析法设计程序”。本章侧重于运用算法解决实际问题,设计合理的算法并编程实现。本节主要阐述解析法,该方法应用广泛,与数学学科的代数解析式相联系,结合教学要求和教材事例,本课从数学角度入口,引发学生思维迁移,解决实际问题 教学目标: 1、(知识、技能目标):了解解析法算法的概念和基本思路,能够用解析法分析简单问题并设计算法及编写程序求解问题,学会编写程序实现解析法。 2、(能力目标):培养学生分析、比较、迁移等能力,培养学生类比迁移思维,探索性、创造性思维。 3、(德育目标):培养学生学会合作、交流,体会其中乐趣和作用,培养学生积极主动的学习态度,勇于质疑、探索和不断创新的精神。 教学重点: 1、理解解析法的思想,能写出求解问题的解析式并用程序实现。 2、根据问题的特点,找到系统提供的资源,简化问题的求解过程。 教学难点:

学会分析问题,合理设计算法,建立求解问题的解析式。 针对本节课的重点和难点,结合构建主义中知识迁移的方法,与其他学科的已有知识进行迁移,特别是数学学科,在具体的新知识点的讲解中,进行比较教学,使学生理解的能彻底;以生活事例为问题,创设问题情境,带着问题进行学习和研究,让学生学习更具有自主性、目的性和推动力。明确解析法的定义,学会用解析法分析问题,编写程序解决问题。 教学时间:2课时 教学过程: 采用问题情景式任务驱动开展教学活动,教学活动可以以小组形式开展,教师组织学生完成实践探究任务。 一、(引入)讲述有关埃及国王邀请学者测量金字塔高度的故事,从中引出问题:如何测量不可到达底部的物体的高度。 得出结论:面对一个问题,找到一个恰当的解决方案,会使一个很难或很繁的问题变得简单。 二、用解析法求解问题的基本过程 从古埃及测量金字塔高度的问题出发导入本问题,然后导出解决的解析式。 1、测量高度问题的求解

有限元分析及其应用思考题附答案2012

有限元分析及其应用-2010 思考题: 1、有限元法的基本思想是什么?有限元法的基本步骤有那些?其中“离散”的含义是什 么?是如何将无限自由度问题转化为有限自由度问题的? 答:基本思想:几何离散和分片插值。 基本步骤:结构离散、单元分析和整体分析。 离散的含义:用假想的线或面将连续物体分割成由有限个单元组成的集合,且单元之间仅在节点处连接,单元之间的作用仅由节点传递。当单元趋近无限小,节点无限多,则这种离散结构将趋近于实际的连续结构。 2、有限元法与经典的差分法、里兹法有何区别? 区别:差分法:均匀离散求解域,差分代替微分,要求规则边界,几何形状复杂精度较低; 里兹法:根据描述问题的微分方程和相应的定解构造等价的泛函表达式,求得近似解; 有限元:基于变分法,采用分片近似进而逼近总体的求解微分方程的数值计算方法。 3、一根单位长度重量为q的悬挂直杆,上端固定,下端受垂直向下的外力P,试 1)建立其受拉伸的微分方程及边界条件; 2)构造其泛函形式; 3)基于有限元基本思想和泛函求极值构造其有限元的计算格式(即最小势能原理)。4、以简单实例为对象,分别按虚功原理和变分原理导出有限元法的基本格式(单元刚度矩 阵)。 5、什么是节点力和节点载荷?两者有何区别? 答:节点力:单元与单元之间通过节点相互作用 节点载荷:作用于节点上的外载 6、单元刚度矩阵和整体刚度矩阵各有何特点?其中每个矩阵元素的物理意义是什么(按自 由度和节点解释)? 答:单元刚度矩阵:对称性、奇异性、主对角线恒为正 整体刚度矩阵:对称性、奇异性、主对角线恒为正、稀疏性、带状性。 Kij,表示j节点产生单位位移、其他节点位移为零时作用i节点的力,节点力等于节点位移与单元刚度元素乘积之和。 7、单元的形函数具有什么特点?有哪些性质? 答:形函数的特点:Ni为x,y的坐标函数,与位移函数有相同的阶次。 形函数Ni在i节点的值为1,而在其他节点上的值为0; 单元内任一点的形函数之和恒等于1; 形函数的值在0~1间变化。 8、描述弹性体的基本变量是什么?基本方程有哪些组成? 答:基本变量:外力、应力、应变、位移 基本方程:平衡方程、几何方程、物理方程、几何条件 9、何谓应力、应变、位移的概念?应力与强度是什么关系? 答:应力:lim△Q/△A=S △A→0 应变:物体形状的改变 位移:弹性体内质点位置的变化 10、问题的微分方程提法、等效积分提法和泛函变分提法之间有何关系?何谓“强形 式”?何谓“弱形式”,两者有何区别?建立弱形式的关键步骤是什么?

有限元分析理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

有限元法基本原理与应用

有限元法基本原理与应用 班级机械2081 姓名方志平 指导老师钟相强 摘要:有限元法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 关键词:有限元法;变分原理;加权余量法;函数。 Abstract:Finite element method is based on the variational principle and the weighted residual method, the basic idea is to solve the computational domain is divided into a finite number of non-overlapping units, each unit, select some appropriate function for solving the interpolation node points as , the differential variables rewritten or its derivative by the variable value of the selected node interpolation functions consisting of linear expressions, by means of variational principle or weighted residual method, the discrete differential equations to solve. Different forms of weight functions and interpolation functions, it constitutes a different finite element method. Keywords:Finite element method; variational principle; weighted residual method; function。 引言 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计

解析法

解析法 一、教学目标: 1、知识与技能 (1).理解解析法的基本概念。 (2)学会选择恰当的算法并综合应用各种学科知识解决实际问题的方法 2、过程与方法 通过实例,掌握用解析法设计程序的基本思路; 3、情感、态度与价值观 (1).通过问题和算法分析过程,促进逻辑分析能力的提高。 (2).培养根据算法写出程序代码并上机调试程序的能力。 二、教学重点与难点: 重点:理解解析法解决问题的思想; 难点:列出求解问题的解析式或方程(组); 三、教学资源: 大屏幕电子白板、多媒体课件 四、教学过程: (学生探讨并分组讨论) 【探讨问题一】:使用一根长度为L厘米的铁丝,制作一个面积为S的矩形框,请计算出满足这种条件的矩形的长和宽。 (要求:列出求解问题的方程式并编程实现。) 【提问并小结问题一的探讨】 (让学生明确建立数学模型、写出求解式的重要性) 1.分析问题:本例问题可归结为求解一元二次方程的根。设矩形宽为x,则长为L/2-x,

则列出方程:x(L/2-x)=S 即:x2-1/2*L*x+S=0 (让学生通过分组讨论探究,明确设计算法如何从已知条件入手来逐步求解问题的方法)2.设计算法: (1)输入长度L; (2)输入矩形框面积S; (3)计算D=L*L/4-4*S (4)若D>=0,则计算方程的两个根并输出,否则输出“找不到”。 (引导学生编写程序代码并上机调试,理解如何根据算法编写程序) 3.编写程序: 4.调试程序: 【探讨交流解析法概念】 (让学生阅读P98,并结合该实例总结解析法的基本概念) 解析法:综合运用数学、物理、化学等各学科的知识来分析问题,寻求各要素之间的关系,抽取出数学模型,得到解决问题的解析式,然后设计程序求解问题的方法。 【探讨问题二】:小球弹跳问题(见P99):小球从10米高处落下,每次弹起的高度是下落高度的70%。当小球弹起的高度不足原高度的千分之一时,小球很快停止跳动。计算小球在整个弹跳过程中所经历的总的路程 (要求:分组讨论,用解析法求解问题,利用已学物理、数学知识综合分析,写出解析式和算法设计步骤,并编程、上机调试程序。) 【小结问题二的探讨】:选取小组中调试出的典型程序,由该小组选一名成员讲解其设计思路、过程。达到共同提高的目的。 【学生总结反思】: 【作业:】 计算从y1年m1月d1日起,到y2年m2月d2日之间的天数。

有限元分析程序设计

结构有限元分析程序设计 绪论 §0.1 开设“有限元程序设计”课程的意义和目的 §0.2 课程特点 §0.3 课程安排 §0.4 课程要求 §0.5 基本方法复习 $0.1 意义和目的 1.有限元数值分析技术本身要求工程设计研究人员掌握 1). 有限元数值分析技术的完善标志着现代计算力学的真正成熟和实用化,已在各种 力学中得到了广泛的应用。比如:,已杨为工程结构分析中最得以收敛的技术手段,现代功用大致有: a). 现代结构论证。对结构设计从内力,位移等方面进行优劣评定,从而进 行结构优化设计。 b)可取代部份实验,局部实验+有限元分析,是现代工程设计研究方法的一大 特点。 c)结构的各种功能分析(疲劳断裂,可靠性分析等)都以有限元分析工具作为 核心的计算工具。 2). 有限元数值分析本身包括着理论+技术实现(本身功用所绝定的) 有限元数值分析本身包括着泛函理论+分片插值函数+程序设计 2. 有限元分析的技术实现(近十佘年的事)更依赖于计算机程序设计 有限元分析的技术取得的巨大的成就,从某种意义上说,得益于计算机硬件技术的发展和程序设计技术的发展,这两者的依赖性在当代表现得更加突出。(如可视化技术) 3.从学习的角度,不仅要学习理论,而且要从程序设计设计角度对这些理论的技术实现有 一个深入的了解,应当致力于掌握这些技术实现能力,从而开发它,发展它。(理论本身还有待于进一步完美相应的程序设计必须去开发) 4.程序设计不仅是实现有限元数值分析的工具和桥梁,而且在以下诸方面也有意义: 1). 精通基本概念,深化理论认识; 2). 锻炼实际工程分析,实际动手的能力; 3). 获得以后工作中必备的工具。(作业+老师给元素库) 目的:通过讲述有限元程序设计的技术与技巧,便能达到自编自读的能力。 §0.2 课程特点 总描述:理论+算法+数据结构(程序设计的意义) 理论:有限元算法,构造,步骤,解的等外性,收敛性,稳定性,误差分析 算法;指求解过程的技术方法,含两方面的含义;a. 有限元数值分析算法,b, 与数据结构有关的算法(总刚稀疏存贮,提取,节点优化编号等) 数据结构:指各向量矩阵存贮管理与实现,辅助管理结构(指针,数据记录等) 具体特点: 理论性强:能量泛函理论+有限元构造算法+数据结构构造算法 内容繁杂:理论方法+技术方法+技术技巧 技巧性强:排序,管理结构(指针生成,整型运算等)

有限单元法

有限单元法 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。 对于有限元方法,其基本思路和解题步骤可归纳为 (1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。 (2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。 (3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函数作为单元基函数。有限元方法中的基函数是在单元中选取的,由于各单元具有规则的几何形状,在选取基函数时可遵循一定的法则。 (4)单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点的参数值)的代数方程组,称为单元有限元方程。 (5)总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行累加,形成总体有限元方程。

解析法在几何中的应用 -

解析法在几何中的应用 姓名:周瑞勇 学号:201001071465 专业:物理学 指导教师:何巍巍

解析法在几何的应用 周瑞勇 大庆师范学院物理与电气信息工程学院 摘要:通过分析几何问题中的各要素之间的关系,用最简练的语言或形式化的符号来表达他们的关系,得出解决问题所需的表达式,然后设计程序求解问题的方法称为解析法。 关键词:几何问题,表达关系,表达式,求解问题 一前言 几何学的历史深远悠久,欧几里得总结前人的成果,所著的《几何原本》。一直是几何学的坚固基石,至今我国中学教学的几何课本仍未脱离他的衣钵。长期的教学实践证明,采用欧式体系学习几何是培养学生逻辑思维能力的行之有效的方法。 但是,事物都有两重性。实践同样证明,过多强调它的作为也是不适当的。初等几何的构思之难,使人们为此不知耗费了多少精力,往往为寻求一条神奇、奥秘的辅助线而冥思苦索。开辟新的途径,已是势在必行。近些年来,用解析法、向量法、复数法、三角法证明几何问题,受到越来越多的数学工作者的重视。 由于平面几何的内容,只研究直线和园的问题,所以我们完全可以用解析法来研究几何问题。解析法不仅具有几何的直观性,而且也还有证明方法的一般性。综合几何叙述较简,但构思困难,而解析法思路清晰,过程简捷,可以作为证明几何问题中一种辅助方法,两者课去唱补短,想得益彰。 二解析法概述 几何数学主要是从几何图形这个侧面去研究客观事物的,其基本元素是点,代数学则主要是从数量关系这个侧面来研究客观事物,其基本元素是数。笛卡尔综合了前人的成果,创立了坐标概念,把代数学和几何学结合起来,于是产生了以研究点的位置和一对有序实数的关系、方程和曲线以及有研究连续运动而产生

有限元编程算例(fortran)

有限元编程算例(Fortran) 本程序通过Fortran语言编写,程序在Intel Parallel Studio XE 2013 with VS2013中成功运行,程序为《计算力学》(龙述尧等编)一书中的源程序,仅作研究学习使用,省去了敲写的麻烦。 源程序为: !Page149 COMMON/X1/NJ,NE,NZ,NDD,NPJ,IND,NJ2,EO,UN,GAMA,TE,AE COMMON/X2/JM(100,3),NZC(50),CJZ(100,2),PJ(100,2),B(3,6),D(3,3),S(3,6),TKZ(200,20),EKE(6,6),P(200)

OPEN(5,FILE='DATAIN') !OPEN(6,FILE='DATAOUT',STATUS='NEW') CALL DATA IF(IND.EQ.0)GOTO 10 EO=EO/(1.0-UN*UN) UN=UN/(1.0-UN) 10 CALL TOTSTI CALL LOAD CALL SUPPOR CALL SOLVEQ CALL STRESS PAUSE !STOP END SUBROUTINE DATA COMMON/X1/NJ,NE,NZ,NDD,NPJ,IND,NJ2,EO,UN,GAMA,TE,AE COMMON/X2/JM(100,3),NZC(50),CJZ(100,2),PJ(100,2),B(3,6),D(3,3),S(3,6),TKZ(200,20),EKE(6,6),P(200) READ(5,*)NJ,NE,NZ,NDD,NPJ,IND NJ2=NJ*2 NPJ1=NPJ+1 READ(5,*)EO,UN,GAMA,TE READ(5,*)((JM(I,J),J=1,3),I=1,NE) READ(5,*)((CJZ(I,J),J = 1,2),I=1,NJ) !Page150 READ(5,*)(NZC(I),I=1,NZ) READ(5,*)((PJ(I,J),J=1,2),I=1,NPJ1) WRITE(6,10)(I,(CJZ(I,J),J=1,2),I=1,NJ) 10 FORMA T(4X,2HNO,6X,1HX,6X,1HY/(I6,2X,F7.2,F7.2)) RETURN END SUBROUTINE ELEST(MEO,IASK) COMMON/X1/NJ,NE,NZ,NDD,NPJ,IND,NJ2,EO,UN,GAMA,TE,AE COMMON/X2/JM(100,3),NZC(50),CJZ(100,2),PJ(100,2),B(3,6),D(3,3),S(3,6),TKZ(200,20),EKE(6,6),P(200)

用穷举法设计程序

《穷举法解决问题》教学设计 《用穷举法设计程序》 一、教学目标 1、知识与技能 ⑴了解穷举法的基本概念及用穷举法设计算法的基本过程。 ⑵分析建立正确的数学模型,归纳穷举法穷举技巧。 ⑶能够根据具体问题的要求,使用穷举法设计算法,编写程序求解问题。 2、过程与方法 ⑴经历用穷举法求解问题的基本过程。 ⑵能通过实际问题的分析、求解过程,尝试归纳出利用穷举法解决问题的思路和方法。 ⑶体验穷举策略在穷举法中的地位和作用,并选择适当的穷举方案解决问题。 3、情感态度与价值观 ⑴引导学生关注穷举法在社会生活中的应用,进一步提高利用信息技术解决实际问题的能力。 ⑵通过小组讨论与探究活动,提高团队合作能力,促进探究的热情。 ⑶在解决问题的过程中进一步培养和提升学生的逻辑思维能力。 二、学情分析 本节内容的教学对象是高一年级学生,他们已经具备了一定的逻辑思维、分析问题、表达思想等能力。同时,通过前几个章节的学习与实践,学生已经历了用计算机解决问题的过程与步骤,学会了对计算机程序进行调试,并掌握了顺序、循环、条件三种程序结构,为本节内容的学习提供了良好的基础。前一节的学习,学生掌握了如何用解析法设计程序,但现实生活中也有很多问题往往无法用解析法找到答案,这时就需要使用计算机来帮助我们逐个列举出可能的情况,从而引出本课内容——“穷举法”。 三、教材分析 1、教学内容: 本节内容是广东教育出版社出版的普通高中信息技术(选修1)《算法与程序设计》教材第四章第2节的教学内容,包括:穷举法的基本思路,用穷举法求解问题(第一课时),穷举法中穷举方案的选择等(第二课时)。而本节课是穷举法的第一课时(用穷举法解决问题的基本过程)。 2、重点难点分析: 教学重点: 用穷举法解题的基本思路和过程。

《有限单元法》编程作业

湖南大学 《有限单元法》编程大作业 专业:土木工程 姓名: 学号: 2013年12月

目录 程序作业题目: (3) 1、程序编制总说明 (3) 2、Matlab程序编制流程图 (3) 3、程序主要标示符及变量说明 (4) 4、理论基础和求解过程 (5) 4.1、构造插值函数 (5) 4.2位移插值函数及应变应力求解 (5) 5.程序的验证 (6) 附录:程序代码 (15)

程序作业题目: 完成一个包含以下所列部分的完整的有限元程序( Project) 须提供如下内容的文字材料(1500字以上): ①程序编制说明; ②方法的基本理论和基本公式; ③程序功能说明; ④程序所用主要标识符说明及主要流程框图; ⑤ 1~3 个考题:考题来源、输出结果、与他人成果的对比结果(误差百分比); ⑥对程序的评价和结论(包括正确性、适用范围、优缺点及其他心得等)。 须提供源程序、可执行程序和算例的电子文档或文字材料。选题可根据各自的论文选题等决定。 1、程序编制总说明 a.该程序采用平面三角形等参单元,能解决弹性力学的平面应力、平面应变问题。 b.能计算单元受集中力的作用。 c.能计算结点的位移和单元应力。 d.考题计算结果与理论计算结果比较,并给出误差分析。 e.程序采用MATLAB R2008a编制而成。 2、Matlab程序编制流程图

图1 整个程序流程图 3、程序主要标示符及变量说明 1、变量说明: Node ------- 节点定义 gElement ---- 单元定义 gMaterial --- 材料定义,包括弹性模量,泊松比和厚度 gBC1 -------- 约束条件 gNF --------- 集中力 gk------------总刚 gDelta-------结点位移 输入结构控制参数 输入其它数据 形成整体刚度阵 引入支承条件 解方程,输出位移 求应力,输出应力 形成节点荷载向量 开始 结束 1 单元面积 求弹性矩阵 单元刚度矩阵 位移-应变矩阵 6 7 8 9 10 2 3 4 5

有限元程序课程设计

重庆大学本科学生课程设计任务书 课程设计题目有限元程序设计 学院资源及环境科学学院专业工程力学年级2010级 已知参数和设计要求: 1.独立完成有限元程序设计。 2.独立选择计算算例,并能通过算例判断程序的正确性。 3.独立完成程序设计报告,报告内容包括理论公式、程序框图、程序本 体、计算算例,算例结果分析、结论等。 学生应完成的工作: 1.复习掌握有限单元法的基本原理。 2.掌握弹性力学平面问题3节点三角形单元或4节点等参单元有限元方法 的计算流程,以及单元刚度矩阵、等效节点载荷、节点应变、节点应力 和高斯积分等的计算公式。 3.用Fortran语言编写弹性力学平面问题3节点三角形单元或4节点等参 单元的有限元程序。 4.在Visual Fortran 程序集成开发环境中完成有限元程序的编辑和调试 工作。 5.利用编写的有限元程序,计算算例,分析计算结果。 6.撰写课程设计报告。 目前资料收集情况(含指定参考资料): 1.王勖成,有限单元法,北京:高等教育出版社,2002。 2.O.C. Zienkiewicz, R. L. Taylor, Finite Element Method, 5th Eition, McGraw-Hall Book Company Limited, 2000。 3.张汝清,董明,结构计算程序设计,重庆:重庆大学出版社,1988。 课程设计的工作计划: 1.第1周星期一上午:教师讲解程序设计方法,程序设计要求和任务安 排。 2.第1周星期一至星期二完成程序框图设计。 3.第1周星期三至第2周星期四完成程序设计。 4.第2周星期五完成课程设计报告。 任务下达日期 2013 年 6 月 6 日完成日期 2013 年 07 月 03 日 指导教师(签名) 学生(签名)

有限单元法原理与应用(第三版)

122123 60 组建 周年60组建 周年 主要完成人:朱伯芳 受奖单位:水电中心/结构材料所 【创新性】 全面系统地阐述了有限单元法的基本原理及其在土木、水利工程问题中的应用,包括弹性力学平面问题和空间问题、薄板、薄壳、厚板、厚壳、弹性稳定、塑性力学、大位移、断裂、动力反应、徐变、岩土力学、极限分析、混凝土和钢筋混凝土、流体力学、渗流分析、热传导、工程反分析、仿真分析、网格自动生成、误差估计及自适应技术等。本书取材实用、由浅入深、先易后难,便于自学;对于实际工程中有用的计算方法力求讲述清楚并给出具体计算公式,便于应用;对有限元法的工程应用,注意工程的物理特性,要求采用的概化假定、计算参数和计算荷载等尽量接近实际,注重计算方法精度的适应性等,并重视有限元计算结果与实际观测资料相验证。【影响力】 我国最早的有限元专著之一,为在我国推广有限元法发挥了重要作用;本书共出版三版,第一版于1976年8月,第二版于1998年10月,第三版于2009 年6月;曾作为多所高校的有限元课程教材使 用;英文版已由清华大学出版社和美国Wiley 出版社联合出版;中国科学技术信息研究所编著的《中国高被引指数分析》(2011版)中,本书列为国内水利工程领域高被引图书第2名。 有限单元法原理与应用(第三版) 著作类成果 【Innovation】 This book expounds, in an all-round and systematic manner, the basic theory of the finite element method and its application to civil engineering and hydraulic engineering , including plane and space problems of elasticity, thin plate, thin shell, thick plate, thick shell, elastic stability, plasticity, large displacement, fracture, dynamic response, creep, rock and soil mechanics, limit analysis, concrete and reinforced concrete, fluid mechanics, seepage analysis, heat conduction, back analysis in engineering, simulated analysis, automatic generation of meshes, error estimation and adaptive technique. This book is learner-friendly because it contains practical content and expounds knowledge step by step and from easy to difficult; and is also easy to use because it strives to clarify the computing methods usable in actual engineering and gives corresponding formulas. Regarding the engineering application of the finite element method, it pays attention to the physical characteristics of projects, requires adopted conceptualized assumption, calculation parameter and calculation load be close enough to reality and accuracy of calculation methods be adaptive, and stresses the verification between the calculation result of the finite element method and actual observational data. 【Influence】 Amongst the earliest finite element books in China, this book plays an important role in generalizing the finite element method in China. It has registered three editions, with the first edition published in August, 1976, the second edition in October, 1998 and the third edition in June, 2009. It served as a finite element textbook of many colleges and universities; and its English version has been published jointly by Tsinghua University Press and the U.S.-based Wiley & Sons, Inc. This book ranks second amongst the highly-cited books of hydraulic engineering in China, according to the Analysis Report of Chinese Highly Cited Paper 2011 of the Institute of Scientific and Technical Information of China (ISTIC) Main Contributor : Zhu Bofang Award-winning Unit : Research Center for Sustainable Hydropower/Department of Structures and Materials THE FINITE ELEMENT METHOD THEORY AND APPLICATIONS(EDITION III)

最新有限单元法部分课后题答案

1.1 有限单元法中“离散”的含义是什么?有限单元法是如何将具有无限自由度的连续介质问题转变成有限自由度问题的?位移有限元法的标准化程式是怎样的? (1)离散的含义即将结构离散化,即用假想的线或面将连续体分割成数目有限的单元,并在其上设定有限个节点;用这些单元组成的单元集合体代替原来的连续体,而场函数的节点值将成为问题的基本未知量。 (2)给每个单元选择合适的位移函数或称位移模式来近似地表示单元内位移分布规律,即通过插值以单元节点位移表示单元内任意点的位移。因节点位移个数是有限的,故无限自由度问题被转变成了有限自由度问题。 (3)有限元法的标准化程式:结构或区域离散,单元分析,整体分析,数值求解。 1.3 单元刚度矩阵和整体刚度矩阵各有哪些性质?各自的物理意义是什么?两者有何区别?单元刚度矩阵的性质:对称性、奇异性(单元刚度矩阵的行列式为零)。整体刚度矩阵的性质:对称性、奇异性、稀疏性。单元 Kij 物理意义 Kij 即单元节点位移向量中第 j 个自由度发生单位位移而其他位移分量为零时,在第 j 个自由度方向引起的节点力。整体刚度矩阵 K 中每一列元素的物理意义是:要迫使结构的某节点位移自由度发生单位位移,而其他节点位移都保持为零的变形状态,在所有个节点上需要施加的节点荷载。 2.2 什么叫应变能?什么叫外力势能?试叙述势能变分原理和最小势能原理,并回答下述问题:势能变分原理代表什么控制方程和边界条件?其中附加了哪些条件? (1)在外力作用下,物体内部将产生应力σ和应变ε,外力所做的功将以变形能的形式储存起来,这种能量称为应变能。 (2)外力势能就是外力功的负值。 (3)势能变分原理可叙述如下:在所有满足边界条件的协调位移中,那些满足静力平衡条件的位移使物体势能泛函取驻值,即势能的变分为零 δ∏p=δ Uε+δV=0 此即变分方程。对于线性弹性体,势能取最小值,即 δ2∏P=δ2Uε+δ2V≥0 此时的势能变分原理就是著名的最小势能原理。 势能变分原理代表平衡方程、本构方程和应力边界条件,其中附加了几何方程和位移边界条件。 2.3 什么是强形式?什么是弱形式?两者有何区别?建立弱形式的关键步骤是什么? 等效积分形式通过分部积分,称式 ∫ΩCT(v)D(u)dΩ+∫ΓET(v)F(u)dΓ 为微分方程的弱形式,相对而言,定解问题的微分方程称为强形式。 区别:弱形式得不到解析解。建立弱形式的关键步骤:对场函数要求较低阶的连续性。2.4 为了使计算结果能够收敛于精确解,位移函数需要满足哪些条件?为什么? 只要位移函数满足两个基本要求,即完备性和协调性,计算结果便收敛于精确解。 2.6 为什么采用变分法求解通常只能得到近似解?变分法的应用常遇到什么困难?Ritz 法收敛的条件是什么? (1)在 Ritz 法中,N 决定了试探函数的基本形态,待定参数使得场函数具有一定的任意性。如果真实场函数包含在试探函数之内,则变分法得到的解答是精确的;如果试探函数取自完全的函数序列,则当项数不断增加时,近似解将趋近于精确解。然而,通常情况下试探函数不会将真实场函数完全包含在内,实际计算时也不可能取无穷多项。因此,试探函数只能是真实场函数的近似。可见,变分法就是在某个假定的范围内找出最佳解答,近似性就源于此。 (2)采用变分法近似求解,要求在整个求解区域内预先给出满足边界条件的场函数。通常情况下这是不可能的,因而变分法的应用受到了限制。 (3)Ritz 法的收敛条件是要求试探函数具有完备性和连续性,也就是说,如果试探函数满足完备性和连续性的要求,当试探函数的项数趋近于无穷时,则 Ritz 法的近似解将趋近于数学微分方程的精确解。 3.1 构造单元形函数有哪些基本原则? 形函数是定义于单元内坐标的连续函数。单元位移函数通常采用多项式,其中的待定常数应该与单元节点自由度数相等。为满足完备性要求,位移函数中必须包括常函数和一次式,即完全一次多项式。多项式的选取应由低阶到高阶,尽量选择完全多项式以提高单元的精度。若由于项数限制而不能选取完全多项式时,也应使完全多项式具有坐标的对称性,并且一

相关文档
最新文档