运用Minitab进行过程能力(Process+Capability)_1

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

过程能力概述(Process Capability

Overview)

在过程处于统计控制状态之后,即生产比较稳定时,你很可能希望知道过程能力,也即满足规格界限和生产良品的能力。你可以将过程变差的宽度与规格界限的差距进行对比来片段过程能力。在评价其能力之前,过程应该处于控制状态,否则,你得出的过程能力的估计是不正确的。

你可以画能力条形图和能力点图来评价过程能力,这些图形可以帮助你评价数据的分布并验证过程是否受控。你还可以计算过程指数,即规范公差与自然过程变差的比值。过程指数是评价过程能力的一个简单方法。因为它们无单位,你可以用能力统计量来比较不同的过程。

一、选择能力命令(Choosing a capability command)

Minitab提供了许多不同的能力分析命令,你可以根据数据的属性及其分布来选择适当的命令。你可以为以下几个方面进行能力分析:

⏹正态或Weibull概率模型(适合于测量数据)

⏹很可能来源于具有明显组间变差的总体的正态数据

⏹二项分布或泊松概率分布模型(适合于属性数据或计数数据)

注:如果你的数据倾斜严重,你可以利用Box-Cox转换或使用Weibull 概率模型。

在进行能力分析时,选择正确的分布是必要的。例如:Minitab提供基于正态和Weibull概率模型的能力分析。使用正态概率模型的命令提供更完整的一系列的统计量,但是你的数据必须近似服从正态分布以保证统计量适合于这些数据。举例来说,Analysis (Normal) 利用正态概率模型来估计期望的PPM。这些统计量的结实依赖于两个假设:数据来自于稳定的过程,且近似服从的正态分布。类似地,Capability Analysis (Weibull) 利用Weibull 分布模型计算PPM。在两种情况下,统计的有效性依赖于假设的分布的有效性。

如果数据倾斜严重,基于正态分布的概率会提供对实际的超出规格的概率做比较差的统计。这种情况下,转化数据使其更近似于正态分布,或为数据选择不同的概率模型。在Minitab中,你可以用“Box-Cox power transformation”或Weibull 概率模型。Non-normal data对这两个模型进行了比较。

如果你怀疑过程具有较明显的组间变差,使用Capability Analysis (Between/Within)或Capability Sixpack (Between/Within)。子组内部的随机误差之上,子组数据可能还有子组之间的随机变差。对子组变差的两个来源的理解可以为过程潜在能力提供更实际的估计。Capability Analysis (Between/Within)和Capability Sixpack (Between/Within) 计算了组间和组内标准差,然后再估计长期的标准差。

Minitab还为属性数据和计数数据进行能力分析,基于二项分布和泊松概率模型。例如:产品可以根据标准判定为合格和不合格(使用Capability Analysis (Binomial)).。你还可以根据缺陷的数量进行分类(使用Capability Analysis

(Poisson)).

二、能力分析命令概况

Capability Analysis (Normal)为单个测量结果画一张能力条形图,图上包含基

于过程均值和标准差的正态曲线。这可以帮助你对正态性假设进行视觉上的评价。报告还包括一张过程能力统计量的表,包括组内和组间统计量。

Capability Analysis (Between/Within) 为单个测量结果画一张能力条形图,图上包含基于过程均值和标准差的正态曲线。这可以帮助你对正态性假设进行视觉上的评价。报告还包括一张组间/组内和长期过程能力统计量的列表。

Capability Sixpack (Normal) 同时显示以下图形,以及能力统计量的子集:- 一张Xbar (or Individuals), R or S (or Moving Range), 和run chart, 可用

来验证过程是否处于控制状态;

- 一个能力条形图和正态概率图,可以帮助验证数据是否服从正态分布;

- 一个能力图,显示过程变差与规范界限的相对性。

Capability Sixpack (Between/Within)适合于组间变差比较明显的子组数据。Capability Sixpack (Between/Within) 同时显示以下图形,以及能力统计量的子集:- 一张Individuals Chart, Moving Range Chart, and R Chart or S Chart,可用来验证过程是否处于控制状态;

- 一个能力条形图和正态概率图,可以帮助验证数据是否服从正态分布;

- 一个能力图,显示过程变差与规范界限的相对性。

Capability Sixpack (Weibull) 同时显示以下图形,以及能力统计量的子集:- 一张Individuals, R- (or Moving Range), and run chart, 可用来验证过程是否处于控制状态;

- 一个能力条形图和Weibull概率图,可以帮助验证数据是否服从Weibull 分布;

-一个能力图,显示过程变差与规范界限的相对性。

Capability Analysis (Weibull) 为单个测量结果画一张能力条形图,图上包含基于过程形状和大小的Weibull曲线。这可以帮助你对Weibull分布的假设进行直观的评价。报告还包括一张长期过程能力统计量的表。

Capability Analysis (Binomial) 适合于数据由不合格品的数量相对于抽取的全部样本数组成时。报告画了一张P图,可以帮助你验证过程是否处于控制状态,以及一张不合格品率的累积图,不合格品率的条形图,以及不合格品率图。

Capability Analysis (Poisson)适用于数据为单位缺陷数。报告画了一张U图,可以帮助你可以帮助你验证过程是否处于控制状态,还包括一张累积DPU (defects per unit)图,DPU条形图和缺陷率图。

相关文档
最新文档