电磁无损检测及应用共65页
《电磁量测量技术》课件
通过引入一个已知的修正量,抵消原有的误差分 量。
统计处理法
对大量随机误差数据进行统计处理,得到更接近 真实值的平均值。
数据处理与误差修正
数据筛选
去除异常值和离群点,确保数据质量 。
数据平滑
通过数学方法对数据进行平滑处理, 减少噪声干扰。
数据处理与误差修正
• 数据变换:将数据转换为更易于分析和处理的格 式。
02
随着科技的发展,对电磁量测量 的精度和效率要求越来越高,因 此需要不断更新和完善测量技术 。
课程目标
01
02
03
04
掌握电磁量测量的基本原理和 方法。
熟悉各种电磁量测量仪器和设 备的使用。
了解电磁量测量技术的发展趋 势和应用前景。
提高解决实际问题的能力。
02
电磁量测量的基础知识
电磁场与电磁波
电磁场
是由电荷和电流产生的场,包括电场 和磁场,二者相互依存、相互转化。
电磁波
电磁波的传播
电磁波可以在真空中传播,也可以在 介质中传播,其传播速度与介质有关 。
是电磁场的一种运动形态,以波动形 式传播,具有能量、动量和质量。
电磁量的定义与单位
电磁量
是指描述电磁场和电磁波的物理 量,如电流、电压、电阻、电容 、电感、磁通量等。
《电磁量测量技术》 PPT课件
xx年xx月xx日
• 引言 • 电磁量测量的基础知识 • 电磁量测量的常用方法 • 电磁量测量中的误差与数据处理 • 电磁量测量的应用实例 • 未来电磁量测背景
01
电磁量测量技术在现代工业、科 研和日常生活中具有广泛应用, 如电力、通信、交通、医疗等领 域。
误差的来源与分类
系统误差
电磁超声无损检测的原理及其应用
电磁超声无损检测的原理及其应用电磁超声无损检测(Electromagnetic Acoustic Testing, EMAT)是一种无需使用传统的耦合介质(如水或液体)来传输超声波的方法。
它主要利用电磁感应原理,结合材料的电磁性质,实现材料的检测。
电磁超声无损检测的原理是利用了磁控制超声波生成和接收。
当电流通过线圈时,它会产生一个交变磁场。
在存在交变磁场的情况下,如果材料是导电材料,磁场就会感应出涡流。
涡流在材料中产生耗散,从而导致材料局部温度的上升。
当涡流与材料界面处有超声波传播时,超声波会被热膨胀效应产生的热波所表面耦合,从而发生辐射声波。
这样就可以通过磁控制超声波的辐射和接收来检测材料的状态。
1.金属材料的缺陷检测:电磁超声无损检测可以用来检测金属材料中的缺陷,如裂纹、腐蚀等。
通过波束聚焦技术,可以对材料内部进行高分辨率的检测。
与传统的耦合超声检测相比,电磁超声无需使用耦合介质,能够更好地适应复杂几何形状的材料。
2.管道的检测:电磁超声无损检测可以应用于管道的检测。
在管道内表面涂覆电磁超声薄膜或埋设电磁超声传感器,可以检测出管道中的缺陷和腐蚀情况。
这对于防止管道爆裂、泄露等问题具有重要意义。
3.铁路轨道的检测:电磁超声无损检测可以用于铁路轨道的检测。
通过在轨道上安装电磁超声传感器,可以实时检测轨道的变形、裂纹等缺陷,及时进行维修和保养,确保铁路的安全运行。
4.混凝土结构的检测:电磁超声无损检测可以用于混凝土结构的健康监测。
通过在混凝土结构表面激发电磁超声波,并接收散射和透射的信号,可以检测到混凝土中的缺陷和裂纹,提前预警可能发生的结构问题。
5.材料的杂质检测:电磁超声无损检测可以用于材料中杂质的检测。
例如,在铸造过程中,若有金属杂质混入,可以使用电磁超声无损检测方法进行快速检测,以防止产品质量问题。
总的来说,电磁超声无损检测由于其无需使用耦合介质、能够适应复杂几何形状的材料等优点,被广泛应用于各个领域的材料检测中。
无损检测技术与应用最新课件
实际的机器和结构物在使用条件下的损坏情况大不
相同。所以,不能片面地相信强度试验结果,以此
来推断其损坏情况。当然,在评定有缺陷的材料的
牢固性时,应参考有关缺陷材料强度的试验研究结
果。还应吸收迄今所知的引起过损坏事故的教训。
并对下述因素进行研究来确定质量评定时所用的缺
陷评定标准。
12
缺陷的评定 ①原材料和焊缝所处的应力条件和环境条
应特别指出的是,射线检测和超声检测不能互为代替,因为两者各有侧重功能。虽 然标准中曾有过可以互为代替使用的规定。现行规定:选择超声波检测时,还可对 超声波检测部位作射线检测复验,选择射线探伤时也可进行超声波检测复验。
6
常规无损检测方法有: 超声检测 Ultrasonic Testing(缩写 UT); 射线检测 Radiographic Testing(缩写 RT); 磁粉检测 Magnetic particle Testing(缩写 MT); 渗透检验 Penetrant Testing (缩写 PT); 涡流检测Eddy current Testing(缩写 ET); 目视检测 Visual Testing (缩写 VT); 非常规无损检测技术有: 声发射 Acoustic Emission(缩写 AE); 泄漏检测 Leak Testing(缩写 LT); 衍射波时差法超声检测技术Time of Flight Diffraction (缩写
用无损检测来保证产品质量,使之在规定的使用条件下,在预期的使用寿命内,
产品的部分或整体都不会发生破损,从而防止设备和人身事故。这就是无损检测最重
要的目的之一。
2.改进制造工艺 .
无损检测不仅要把工件中的缺陷检测出来,而且应该帮助其改进制造工艺。例如,
电磁超声无损检测的原理及其应用
电磁超声无损检测的原理及其应用200字摘要:电磁超声(Electromagnetic Acoustic Transducer,以下简称EMAT)是无损检测领域出现的新技术,该技术利用电磁耦合方法激励和接受超声波。
与传统的超声检测技术相比,它具有精度高、不需要耦合剂、非接触、适于高温检测以及容易激发各种超声波形等优点。
在工业应用中,电磁超声正越来越受到人们的关注和重视。
其缺点为换能效率低,信号微弱,需要在检测中克服。
本文在相关资料的基础上,总结电磁超声无损检测的基本原理,并简单介绍该技术在工业领域的几种典型应用。
关键词:电磁超声;无损检测;工业应用1 引言无损探伤方法多种多样,常规的5种技术(超声、射线、渗透、磁粉、涡流)已经日趋成熟,在当今的工业应用中起着主导作用;另一方面,各种新技术、新方法不断涌现,例如全息、热成像、声振等。
它们以其物理性质及原理的特殊性,在一些场合发挥着重要功能,与常规方法相辅相成,电磁超声无损检测技术便是其中的一种。
2 电磁超声的原理和特点2.1超声波的工作原理超声波是频率高于20000Hz的机械波,由于超声波频率高、波长短,因此具有良好的方向性和穿透能力,且由于超声波能量大,方便检测,因此可以用来实现无损检测。
具体工过程分为以下几个过程:a.声源产生超声波,采用一定的方式使超声波进入试件;b. 超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变;c. 改变后的超声波通过检测设备被接收,并可对其进行处理和分析;d. 根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。
一般来说,为保证充分的声耦合,在检测时需要有耦合剂(机油或水等)填充检测探头和被检查表面之间的空隙。
2.2电磁超声的产生机理处于交变磁场中的金属导体,其内部将产生涡流,同时由于任何电流在磁场中收到洛伦兹力的作用,而金属介质在交变应力的作用下将产生应力波,频率在超声波范围内的应力波即为超声波。
电磁超声及其在无损检测中的应用
电磁超声及其在无损检测中的应用摘要:电磁超声(EMAT)是无损检测领域的一种新兴技术。
电磁超声测量精度高、无需接触、不需要耦合剂的特点,使其特别适合于高温和移动的无损检测。
同时电磁超声容易激发各种超声波型。
所有这些优点,越来越受到人们的关注。
关键词:电磁超声;非接触;高温检测;电磁测厚目前无损检测的重要性已经得到各行业的广泛认识,检测方法越来越多。
电磁超声无损检测技术便是其中的一种。
和传统采用压电换能器的传统超声波检查比较,由于电磁超声是在金属材料的表面激发,因此具有无需耦合剂、可非接触式、可应用于低温或高热环境、有利于自动化、易于激发各种超声检测波形等优点,并且具备传统超声波的特点,在国内外的无损检测中已经普遍的获得认可和广泛应用,发挥着越来越重要的作用。
1 电磁超声的工作原理[1]当置于工件表面的高频线圈通以高频电流时,根据电磁感应原理,高频线圈附近区域会产生一交变磁场,磁场在工件表面会感应出电流,即涡流I。
涡流在外界强磁场B作用下将产生机械力F。
工件表面质点受力产生机械振动,同时振动以波的形式传播出去,这就是电磁超声波的激发过程。
接收过程是激发过程的逆过程。
工件表面的机械振动在外界强磁场作用下,在线圈中产生感应电压,仪器通过接收处理电压的变化情况反映对工件的探测结果。
这种激发和接收的超声波的方法称为电磁超声。
图一电磁超声换能器结构2电磁超声换能器基本结构和效应电磁超声换能器主要由高频线圈、外加磁场、工件三部分组成[2],如图一所示。
(1)用于提供外加强偏置磁场的磁铁。
(2)用于激发高频磁场的金属线圈。
(3)被测金属工件。
由于EMAT检测的工件材质的差别,产生的效应也有所不同。
电磁超声包含三种效应:洛伦兹力效应、磁致伸缩力效应、磁性力效应。
在非铁磁性材料中,例如铝合金、铜材料、钕材料中,洛伦兹力为主要效应。
通电线圈在工件集肤层感应出的涡流在外界静磁场作用下产生机械力,这种力就是洛伦兹力。
基于此力激发和接收电磁超声波的现象为洛伦兹力效应。
电磁无损检测技术及应用
A (,z ) (( rr 0 [ C uu1 J 22))1 ( ((uu22 ) rruuC 11))2 Y 1 ((( u2r) urC ] 23 ))e ((uu[ u 22 zC rr4 uue 11)) eeu 22uu]22z d cc
三、常规涡流无损检测
目的1
寻求消除被测体电磁特性对传感器输出影 响的基础理论,并研究其实现方法
目的2
研究探头几何结构及其参数对传感器性能 的影响,对提高传感器性能提供指导
三、常规涡流无损检测
线圈
一级磁场
输入
二级磁场
被测体
涡流
Z ,L ,Q F (x ,,,f)
三、常规涡流无损检测
涡流等效电路
电磁无损检测及应用
周德强 联系方式:
内容
一.个人基本情况 二.电磁无损检测 三.常规涡流无损检测 四.远场涡流无损检测 五.多频涡流无损检测 六.脉冲涡流无损检测 七.漏磁无损检测
一、个人基本情况
学习经历
✓2007.4-2010.6 南京航空航天大学 测试计量技术及仪器 博士学位
✓2008.9-2009.9 受国家留学基金委资助在英国纽卡斯尔大 学
分离变量
AR(ρ)Z(z)
法
(R 1 2R 2R 1 R 1 2)(Z 1 2 zZ 2ki2)0 (2)
f ()
g(Z) 2
2 2R 2 R (221)R0
(3)
2R 2 R (21)R0 SL型本征值问题方程
三、常规涡流无损检测
t=λρ
内无 边限 界远 条边 件界
条 件
t2 (2tR 2rtu2)R t(u 2 (t2r u11))R( ur20rB)E(uS2SELru方1)程e2u2c
电磁无损检测技术在电力生产中的应用
电磁无损检测是无损检测技术的重要分支,是利用材料在电磁场作用下,呈现出的电学或磁学性能的变化,对材料及构件实施缺陷探测和性能测试的检测方法,主要包括涡流检测、磁粉检测、漏磁检测、磁记忆检测、微波检测等。
电磁无损检测具有灵敏度高、检测速度快、效率高等优点,是工业领域中对导电及铁磁材料工件实施表面检测的首选方法,在航空航天、核工业、机械、石油、电力、铁道等工业部门的质量检验及管理中发挥着重要作用。
电力是关系国计民生的产业,维护电力系统的安全稳定运行至关重要。
随着我国在电力方面的不断发展,需要应用大量无损检测技术来保证电力的安全。
该研究主要介绍涡流检测、漏磁检测和微波检测在电力生产中的一些应用。
1 涡流检测的应用涡流检测是以电磁感应为基础,通过测定被检工件内感生涡流的变化来无损地评定导电材料及其工件的某些性能,或发现其缺陷的无损检测方法,适用于材料的表面和浅表层检测。
(1)变电站GIS设备筒体焊缝的涡流检测。
GIS设备在不同电压等级变电站都有广泛应用,投入使用后,在内、外部工作环境的作用下,易在筒体焊缝和热影响区部位产生表面裂纹。
筒体一旦发生泄露,可能威胁设备和人身安全。
青海电力科学实验研究院利用涡流检测方法对GIS设备筒体焊缝的检测进行了研究[1]。
研制了直径15mm左右的正交桥式平线圈作为涡流检测探头,用电火花方法在铝合金板上加工出0.5m、1.0mm、2.0mm深的人工刻槽作为对比试块。
现场试验表明,利用研制的探头和对比试块有效检测带漆层的GIS设备筒体焊缝表面缺陷,但针对不同位置的缺陷,需要选择相对应的灵敏度。
(2)特高压输变电塔法兰的阵列涡流检测。
法兰连接是特高压输变电钢杆塔的主要连接方式之一,其自身质量和有效的检测方法是生产过程控制的关键。
国内有公司针对法兰盘颈根部位的结构特点,设计了R角柔性阵列涡流检测探头,开发了铁塔法兰盘的阵列涡流检测工艺方法,可实现法兰盘横向、纵向、斜向缺陷的全方位检测,避免了表面检测盲区,且探伤灵敏度高[2]。
电磁声无损检测技术PPT课件
Angle beam shear wave
Lamb Wave ( especially suitable for symmetric mode )
SH guided Wave
Surface Wave
第5页/共32页
Guided Wave in pipe or rods
概述——4.主要优点 可产生独特的波模式
内容提纲
1 概述 2 研究与挑战 3 理论模型与求解 4 仪器系统及传感器 5 典型工业应用与前景 6 目前开展的研究
第20页/共32页
仪器系统与传感器——1.仪器 系统
上位机控制分析软件
任意函数产生模块
多通道数据采集模块
功率放大模块
多通前置放大器
多通道自动切换模块
双工器 EMAT阵列
双工器
第21页/共32页
理论模型的完备
• 更多材料作用机理的认识 • 多场耦合模型的完整求解
工业应用与推广
• 检测标准化 • 检测的适用性设计
GB 20935.1-2007-T 金属材料电磁超声检 验方法 第1部分:电磁超声换能器指南 GBT 20935.2-2009 金属材料电磁超声检验 方法 第2部分:利用电磁超声换能器技术进 行超声检测的方法
频率(kHz)
-2 0
0.05 0.1 0.15 Time (ms)
25
20
15
10
5
0
0.2
-5 0
0.05 T
dB
Voltage (V) Voltage (V)
第23页/共32页
仪器系统与传感器——2.传感 器
SH0模态EMAT
S. H. Cho, et al., "Guided wave transduction experiment using a circular magnetostrictive patch and a figure-of-eight coil in nonferromagnetic plates," Applied Physics Letters, vol. 88, May 2006. J. S. Lee, et al., "Radiation pattern of Lamb waves generated by a circular magnetostrictive patch transducer," Applied Physics Letters, vol. 90, Jan 2007. J. S. Lee, et al., "Beam-focused shear-horizontal wave generation in a plate by a circular magnetostrictive patch transducer employing a planar solenoid array," Smart Materials & Structures, vol. 18, Jan 2009.
电磁无损检测技术的原理与应用
电磁无损检测技术的原理与应用电磁无损检测技术是一种非常重要的无损检测方法,针对各种材料和结构的缺陷进行检测和评价。
本文将介绍电磁无损检测技术的原理及其在不同领域的应用。
首先,我们先了解电磁无损检测技术的原理。
电磁无损检测利用电磁场的作用原理对材料进行检测。
当电磁场与材料相互作用时,在材料中会产生一系列的物理变化,例如电磁场的衰减、材料的磁化以及能量的传输等。
通过对这些变化的测量和分析,可以判断材料中是否存在缺陷。
电磁无损检测技术根据材料对电磁波的响应特性分为多种方法,包括涡流检测、磁粉检测、液体渗透检测以及磁化电流检测等。
涡流检测是一种基于感应原理的无损检测方法。
当交变电流通过电线圈时,会在材料中产生交变磁场。
如果材料中存在缺陷,那么磁场会发生变化,从而在电线圈中感应出交变电压。
通过测量感应电压的变化,可以判断材料中是否存在缺陷,并评估缺陷的大小和位置。
磁粉检测是一种常用的表面缺陷检测方法。
它利用磁粉在材料表面产生的磁化现象来检测缺陷。
在磁化过程中,磁粉会聚集在缺陷周围,形成可见的磁粉团,并通过增加磁场的方法使磁粉显现,从而实现对缺陷的检测和评价。
液体渗透检测是将液体渗透进入材料表面微小缺陷并通过表面张力和毛细作用使其扩展到可见部分,进而通过颜色剂显像方法找出缺陷的检测。
这种方法可以检测出微细缺陷如裂纹等。
磁化电流检测是一种通过施加外部磁场和内部磁化电流来检测材料缺陷的方法。
当施加磁场和内部磁化电流时,材料中的缺陷会导致磁场的扰动,通过测量扰动磁场的变化可以判断材料中的缺陷情况。
除了以上几种常见的电磁无损检测方法,还有许多其他方法,它们之间的原理和应用略有差异。
接下来,我们将探讨电磁无损检测技术在不同领域的应用。
首先是电力行业。
在电力行业,电磁无损检测技术可用于发电设备、变压器、电缆和输电线路的检测和评估。
通过对这些设备进行电磁无损检测,可以及早发现潜在的问题,并采取相应的维修和改进措施,保障电力系统的安全和稳定运行。
电磁波无损检测技术及应用研究
电磁波无损检测技术及应用研究第一章电磁波无损检测技术概述电磁波无损检测技术是一种新兴的物理检测技术,其核心原理是以电磁波与材料之间的交互作用为基础,通过对材料的电磁波现象进行分析,从而非破坏性地检测出材料的内部结构、缺陷等物理特征。
电磁波无损检测技术已经广泛应用于钢铁、航空、航天等行业,成为目前非破坏性测试领域中的重要技术之一。
第二章电磁波无损检测技术的原理电磁波无损检测技术主要利用电磁波在材料中传播的特性来进行检测。
电磁波是由电场和磁场相互作用形成的能量传输方式,其传播速度为光速。
在电场和磁场作用下,材料会发生各种电磁现象,而这些电磁现象又会对电磁波的传播造成一定的影响。
通过对材料内部电磁现象进行分析,可以识别出材料中的各种特征和缺陷。
第三章电磁波无损检测技术的分类根据电磁波的频率范围、检测方式以及材料类型等因素,电磁波无损检测技术可以分为多种类型,包括微波无损检测、红外无损检测、涡流无损检测、磁粉无损检测等。
不同的检测方法适用于不同材料类型和缺陷特征,需要根据实际情况选择合适的检测方案。
第四章电磁波无损检测技术的应用研究电磁波无损检测技术广泛应用于材料结构、缺陷、耐久性等方面的检测。
在航空、航天、军火、船舶、能源、医疗等行业中,电磁波无损检测技术被广泛应用于各个方面的检测任务,如对钢铁制品的质量控制、飞机、火箭、导弹、船舶结构的无损检测、电力设备的检测、医疗成像等。
第五章电磁波无损检测技术的发展趋势随着科学技术的不断进步和电子技术的快速发展,电磁波无损检测技术也在不断改进和创新。
未来,电磁波无损检测技术将不断提高技术精度和检测效率,使其更好地应用于工业生产和科学研究中。
同时,电磁波无损检测技术也将更加多样化,不断发展出新的检测方法和设备,以满足不同行业和应用领域的需求。
结论电磁波无损检测技术是一种新兴的非破坏性测试技术,其通过电磁波与材料之间的交互作用,实现了对材料内部的结构、缺陷等物理特征的检测。
电磁探测技术及其应用课件
波阻抗及均匀大地电阻率
Ex i Hy k
上式中的单位为伏特/米被安培/米除,即为欧姆,故该比 值被称为“波阻抗”。 将 k i 代入上式有: Ex e i / 4
Hy
对上式振幅平方可求得该均介质的电阻率:
1 Ex H y
2
上式表明,当平面波垂直入射均匀各向同性介质时,测量相 互正交的地表电场和磁场水平分量,可得到该介质的电阻率 值。上式构成了频率域电法的基础。
第一部分 TEM原理与应用
一 TEM简介 瞬变电磁法,简称TEM,它利用不接地 回线(磁性源)或接地导线(电性源)进行 电脉冲激发,在脉冲的间歇期间,利用线圈 或接地电极观测二次涡流场。TEM广泛应用 于金属矿勘探,煤田地质,寻找地下水,地 热及工程勘探等领域。
二
TEM基本原理
当发射回线中的稳定电流突然切断后,电磁场将以两种途径传 播到地下介质中。第一种途径是以光速C的电磁波,从空气直 接传播到地表各点,并将部分能量传入地下,在离场源足够远 的地表面上形成垂直向下传播的不均匀平面波;第二种途径是 电磁能量直接从场源所在地传播到地下。它在地中激发的涡流, 似“烟圈”那样随时间之推移逐步扩散到大地深处。 二次磁场可以通过接收回线观测;并对所观测的数据进行分析 和处理,据此解释地下矿体及相关物理参数。
3.3 野外采集仪器 TEM野外测量中用到的仪器主要有美国 的GDP-16, GDP-32,加拿大的V-6,V-8, PROTEM-67等。
四 TEM资料处理与解释
野外数据采集完成后,为了获得更详细 的信息,需要对数据进行处理与解释。它包 括以下以下方面: 4.1 瞬变电磁资料图示 4.1-1 瞬变电磁场剖面图
503 / f
(米)
电磁超声无损检测的原理及其应用
电磁超声无损检测的原理及其应用200字摘要:电磁超声(Electromagnetic Acoustic Transducer,以下简称EMAT)是无损检测领域出现的新技术,该技术利用电磁耦合方法激励和接受超声波。
与传统的超声检测技术相比,它具有精度高、不需要耦合剂、非接触、适于高温检测以及容易激发各种超声波形等优点。
在工业应用中,电磁超声正越来越受到人们的关注和重视。
其缺点为换能效率低,信号微弱,需要在检测中克服。
本文在相关资料的基础上,总结电磁超声无损检测的基本原理,并简单介绍该技术在工业领域的几种典型应用。
关键词:电磁超声;无损检测;工业应用1 引言无损探伤方法多种多样,常规的5种技术(超声、射线、渗透、磁粉、涡流)已经日趋成熟,在当今的工业应用中起着主导作用;另一方面,各种新技术、新方法不断涌现,例如全息、热成像、声振等。
它们以其物理性质及原理的特殊性,在一些场合发挥着重要功能,与常规方法相辅相成,电磁超声无损检测技术便是其中的一种。
2 电磁超声的原理和特点2.1超声波的工作原理超声波是频率高于20000Hz的机械波,由于超声波频率高、波长短,因此具有良好的方向性和穿透能力,且由于超声波能量大,方便检测,因此可以用来实现无损检测。
具体工过程分为以下几个过程:a. 声源产生超声波,采用一定的方式使超声波进入试件;b. 超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变;c. 改变后的超声波通过检测设备被接收,并可对其进行处理和分析;d. 根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。
一般来说,为保证充分的声耦合,在检测时需要有耦合剂(机油或水等)填充检测探头和被检查表面之间的空隙。
2.2电磁超声的产生机理处于交变磁场中的金属导体,其内部将产生涡流,同时由于任何电流在磁场中收到洛伦兹力的作用,而金属介质在交变应力的作用下将产生应力波,频率在超声波范围内的应力波即为超声波。
(完整版)无损检测技术及其应用
无损检测技术及其应用一、无损检测概述无损检测 NDT (Non-destructive testing),就是利用声、光、磁和电等特性,在不损害或不影响被检对象使用性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷的大小、位置、性质和数量等信息,进而判定被检对象所处技术状态(如合格与否、剩余寿命等)的所有技术手段的总称。
与破坏性检测相比,无损检测具有以下显著特点:(1) 非破坏性(2) 全面性(3) 全程性(4) 可靠性问题开展无损检测的研究与实践意义是多方面的,主要表现在以下几方面:(1) 改进生产工艺:采用无损检测方法对制造用原材料直至最终的产品进行全程检测,可以发现某些工艺环节的不足之处,为改进工艺提供指导,从而也在一定程度上保证了最终产品的质量。
(2) 提高产品质量:无损检测可对制造产品的原材料、各中间工艺环节直至最终的产成品实行全过程检测,为保证最终产品年质量奠定了基础。
(3) 降低生产成本:在产品的制造设计阶段,通过无损检测,将存有缺陷的工件及时清理出去,可免除后续无效的加工环节,减小原材料和能源的消耗节约工时,降低生产成本。
(4) 保证设备的安全运行:由于破坏性检测只能是抽样检测不可能进行100%的全面检测,所得的检测结论只反映同类被检对象的平均质量水平。
此外,无损检测技术在食品加工领域,如材料的选购、加工过程品质的变化、流通环节的质量变化等过程中,不仅起到保证食品质量与安全的监督作用,还在节约能源和原材料资源、降低生产成本、提高成品率和劳动生产率方面起到积极的促进作用。
作为一种新兴的检测技术,其具有以下特征:无需大量试剂;不需前处理工作,试样制作简单;即使检测,在线检测;不损伤样品,无污染等等。
无损检测技术在工业上有非常广泛的应用,如航空航天、核工业、武器制造、机械工业、造船、石油化工、铁道和高速火车、汽车、锅炉和压力容器、特种设备、以及海关检查等等。
“现代工业是建立在无损检测基础之上的”并非言过其实。
(完整版)各常用电磁无损检测方法原理,应用,优缺点比较
一普通涡流检测1原理涡流检测是以电磁感应为基础,通过测定被检工件内感生涡流的变化来无损地评定导电材料及其工件的某些性能,或发现其缺陷的无损检测方法。
当载有交变电流的试验线圈靠近导体试件时,由于线圈产生的交变磁场的作用感应出涡流,涡流的大小,相位及流动形式受到试件性能和有无缺陷的影响,而涡流产生的反作用又使线圈阻抗发生变化,因此,通过测定线圈阻抗的变化,就可以推断被检试件性能的变化及有无缺陷的结论。
2发展1涡流现象的发现己经有近二百年的历史。
奥斯特(Oersted、安培(Ampere ) ,法拉弟(Faraday、麦克斯韦(Maxwell)等世界著名科学家通过研究电磁作用实验,发现了电磁感应原理,建立了系统严密的电磁场理论,为涡流无损检测奠定了理论基础[l]。
1879年,体斯(Hughes)首先将涡流检测应用于实际一一判断不同的金属和合金,进行材质分选。
自1925年起,在美国有不少电磁感应和涡流检测仪获得专利权,其中,Karnz直接用涡流检测技术来测量管壁厚度;Farraw首次设计成功用于钢管探伤的涡流检测仪器。
但这些仪器都比较简单,通常采用60Hz , 110V的交流电路,使用常规仪表(如电压计、安培计、瓦特计等),所以其工作灵敏度较低、重复性较差。
二战期间,多个工业部门的快速发展促进了涡流检测仪器的进步。
涡流检测仪器的信号发生器、放大器、显示和电源装置等部件的性能得到了很大改进,问世了一大批各种形式的涡流探伤仪器和钢铁材料分选装置,较多地应用于航空及军工企业部门。
当时尚未从理论和设备研制中找到抑制干扰因素的有效方法,所以,在以后很长一段时间内涡流检测技术发展缓慢。
直到1950年以后,以德国科学家福斯特(Foster)博士为代表提出了利用阻抗分析方法来鉴别涡流检测中各种影响因素的新见解,为涡流检测机理的分析和设备的研制提供了新的理论依据,极大地推动了涡流检测技术的发展。
福斯特也因此当之无愧地被称为“现代涡流检测之父”。
发电厂电磁无损检测的应用
电磁无损检测在发电厂的应用姜茜编译摘要电磁无损检测(NDT)法是指用于像水轮机叶片、发电机转子、护环及管式热交换器等电厂关键设备检测的涡流试验法。
单频或多频涡流测试技术已及基于自动化计算机的无损检测系统相结合,成为快速提供现场数据的磁场检测器。
借助它,可作出机组是否继续运行、还是维修和/或更换部件的重要决定。
关键词发电厂涡流检测(ET) 无损检测(NDT) 检查1引言电磁无损检测(NDT)法是指涡流试验(ECT,ET),它已广泛用于诸如汽轮机和燃气轮机叶片、发电机转子、护环以及管式加热交换器等电厂关键设备的检查。
单频、倍频或多频涡流检测技术已及利用自动化计算机的无损检测系统相结合,成为快速提供现场数据的磁场检测器。
借助它,可以做出关于机组继续运行、维修或更换部件的重要决定。
由于涡流检测可以遥测,灵敏度高,速度快,所以成为目前许多应用场合的最佳无损检测方式。
涡流检测是一种用于的表面和浅表层检测的无损检测方式,可以检测裂纹、坑蚀、壁减薄、磨损等缺陷,采用涡流检测的被测材质必须是像铜、黄铜、不锈钢、铬镍铁合金及钛等导电且磁导率不变的的材料。
对于铁磁材料,可以采用诸如磁饱和或遥测磁场涡流检测等特殊技术。
涡流透入深度以及检测缺陷的灵敏度在很大程度上及用于励磁探头线圈的交流电的频率有关。
频率越高,对缺陷的灵敏度越高;频率越低,透入深度越深。
但缺陷检测的灵敏度在减弱降低。
因此检查员必须慎重选择频率,使涡流透入试件到所要求的检测深度,检测出所关心的缺陷。
对于管形件检查来说,常常选择这样一种频率,当进行同一扫描时,该频率用于内外表面上的缺陷检测。
涡流检测法优于无损检测法之处还在于速度快、试件接触压力最小、能自动检测、可以遥测,以及表面清洁工作量最小等。
同时,其灵敏度也及液体渗透法或磁粉探伤法等其它无损检测法相当,甚至优于那些方法。
涡流检测也有一些限制,举例来说,探头必须能覆盖检测面等,也就是说,小直径探头仅覆盖小面积。
电磁无损检测
电磁无损检测1、自比差动式与他比差动式线圈对不同类型缺陷的响应特征?自比差动式:采用同一检测试件的不同部分作为比较标准称为自动式。
将两个线圈差动连接,微小变化的影响便几乎被抵消掉,如果试件存在缺陷,当线圈经过缺陷时将输出相应急剧变化的信号,且第一个线圈或第二个线圈分别经过同一缺陷时所形成的涡流信号方向相反。
他比差动式:也称标准比较式。
采用两个检测线圈反向连接成为差动形式。
由于这两个线圈连接成差动形式,当被检试件不同于标准试件时,检测线圈就有信号输出,因而实现对试件检测的目的。
2、涡流对比样的通孔、平流孔、轴(周)向槽、分别对那些自然缺陷有对比性?通孔形人工缺陷能较好地代表穿透孔洞。
2)平底盲孔缺陷对于管壁的腐蚀具有较好的代表性。
3)槽形人工缺陷能更好的代表管棒材制造过程产生的折叠及使用过程中出现的开裂条状缺陷和各种机械零件使用过程产生的疲劳裂纹。
3、铁磁材料探伤前为什么进行磁饱和?如何实施退磁处理?1铁磁性金属经过加工处理后,会引起金属内部μ分布不均匀。
在涡流探伤中,金属磁导率的变化会产生噪声信号;也有一些非铁磁性不锈钢在进行强制性加工后,A组织转变为M而带有磁性,探伤时同样也会引起噪声。
磁噪声对线圈阻抗的影响远大于缺陷的影响,给缺陷的检出带来困难。
另外,铁磁性金属或非铁磁性金属带有磁性后,趋肤效应很强而投入深度很浅,铁磁性金属大而变化的μ对探伤有害无益,克服铁磁性金属μ对擦伤影响地方法是对试件进行饱和磁化。
2退磁方法:多用通有交流电的退磁线圈进行消磁。
有时,合并使用直流线圈进行退磁。
让剩磁工件通过退磁线圈,在试件逐渐远离线圈的过程中,工件上各部件都受到一个幅值逐渐减小,方向在正负之间反复变化的磁场的作用。
在这个磁场作用下,材料的磁化状态将沿着一次比一次小的磁滞回线,最后回到未磁化状态零点。
4、零件与热交换管经常出现的缺陷:腐蚀、磨损、震动、挤压、泄露。
5、涡流测厚与电磁测厚的区别?影响精度的因素。