八年级数学下册因式分解.公式法课件北师大版

合集下载

北师大版八年级数学下册第四章 因式分解1 因式分解

北师大版八年级数学下册第四章 因式分解1 因式分解
求 mn 的值. 解:∵ x4 + mx3 + nx - 16 的最高次数是 4, ∴可设 x4 + mx3 + nx -16 = (x - 1)(x - 2)(x2 + ax + b), 则 x4+mx3+nx-16 = x4 +(a-3)x3+(b-3a+2)x2+(2a-3b)x+2b 比较系数得 2b= -16,b- 3a+2 = 0,a - 3=m,2a-3b=n,
其分解结果为 x2 + ax + b = (x + 2)(x + 4) = x2 + 6x + 8, ∴ a = 6. 同理,乙看错了 a,但 b 是正确的, 分解结果为 x2 + ax + b = (x + 1)(x + 9) = x2 + 10x + 9, ∴b = 9. ∴a + b = 15.
(4)(y-3)2 = y2-_6_y_+_9_
(4) y2-6y+9 = ( y-3 )( y-3 )
或 (y-3)2
2 因式分解与整式乘法的关系
想一想:由 a(a + 1)(a - 1) 得到 a3 - a 的变形是什么运算? 由 a3 - a 得到 a(a + 1)(a - 1) 的变形与它有什么不同?
项式化成了几个整式的积,他们的运算是相反的. 问题2:右边一栏表示的正是多项式的“因式分解”, 你能根据我们的分析说出什么是因式分解吗?
归纳总结 把一个多项式化成几个整式的积的形式,这种
变形叫做因式分解,也可称为分解因式.
其中,每个整式都叫做这个多项式的因式.

北师大版八年级下册数学《运用公式法》分解因式说课教学课件复习提高

北师大版八年级下册数学《运用公式法》分解因式说课教学课件复习提高

④64x2y2 = (__8_x_y_)2

1 4
b2

(___12_b_)2
口算
1)(x 5)(x 5) _x_2___2_5_ 2)(3x y)(3x y) _9_x_2__y_2
3) (1 3a)(1 3a) 1_-__9_a_2
(a b)(a b) a2 b2 (整式乘法)
快 乘胜追击 乐

真我风采

快乐合作
1、分解因式:
a2(x y) b2( y x)
解:原式 a2(x y) b2(x y) =(x y)(a2 b2) =(x y)(a b)(a b)
返回
2、分解因式:
(x 2)2 16(x 1)2 解:原式 16(x 1)2 (x 2)2
(3)a b2 6a b 9
分解因式:
(1)3am2 3an2 6amn
2 a 2 4b2 4ab
探索交流
下列分解因式是否正确?为什么?如果不正确,请给 出正确的结果.
x4 16 y4 (x2 )2 (4 y2 )2 (x2 4 y2 )(x2 4 y2 )
分解到不能再分解为止. 你能彻底分解下面的因式吗?
分解因式 x2-16 m2-2mn+n2 2x2-4x+2
请将这三个多项式分解因式, 并说明各自运用了什么方法
例5 把下列各式分解因式
⑴ x(x+6)+9
⑵ y(y+4)- 4(y+1)
= x2+6x+9
= y2+4y-4y-4
=(x+3)2
= y2-4 =(y+2)(y-2)
思考1 这个多项式是不是最简多项式。如果不是,该如何

八年级数学北师大版初二下册--第四单元 4.3《公式法--第三课时:分组分解法及分解因式的方法》课件

八年级数学北师大版初二下册--第四单元 4.3《公式法--第三课时:分组分解法及分解因式的方法》课件
解:(1)原式=a(a-b)+c(a-b)=(a-b)(a+c). (2)原式=(x3-x)+(6x2-6)=x(x2-1)+6(x2-1) =(x2-1)(x+6)=(x+1)(x-1)(x+6).
知1-讲
例2 分解因式:-x2-2xy+1-y2.
导引:按分组分解法,第一、二、四项提出负号后符 合完全平方式,再与“1”又组成平方差公式.
ìïïíïïî
4x-4 y=96, x2-y2=960,
但直接解方程组很烦琐,可利用平方差公式分解
因式:x2-y2=(x+y)(x-y),再利用整体思想求
出x+y的值,从而转化为二元一次方程组求解.
知2-讲
解:设大正方形的边长为x cm,小正方形的边长为y cm,
由题意得
ìïïíïïî
4x-4 y=96,① x 2-y2=960,②
知1-练
3 将多项式a2-9b2+2a-6b分解因式为( D ) A.(a+2)(3b+2)(a-3b) B.(a-9b)(a+9b) C.(a-9b)(a+9b+2) D.(a-3b)(a+3b+2)
知1-练
4 分解因式x2-2xy+y2+x-y的结果是( A ) A.(x-y)(x-y+1) B.(x-y)(x-y-1) C.(x+y)(x-y+1) D.(x+y)(x-y-1)
知1-练
5 分解因式: (1) ac+ad+bc+bd=__(_a_+__b_)_(c_+__d_)__; (2) x2-xy+xz-yz=___(_x_-__y_)(_x_+__z_)_.
6 分解因式: a2-4ab+4b2-1=_(_a_-__2_b_+__1_)_(a_-__2_b_-___1_) .
2.分解技巧:分组分解是因式分解的一种复杂的方法, 让我们来须有预见性. 能预见到下一步能继续分解. 而“预见”源于细致的“观察”,分析多项式的特 点,恰当的分组是分组分解法的关键 .

北师版八年级数学下册教学课件(BS) 第四章 因式分解 第1课时 平方差公式

北师版八年级数学下册教学课件(BS) 第四章 因式分解 第1课时 平方差公式

,
y
3. 2
方法总结:在与x2-y2,x±y有关的求代数式或未知数的值的问 题中,通常需先因式分解,然后整体代入或联立方程组求值.
例4 计算下列各题: (1)1012-992; (2)53.52×4-46.52×4.
解:(1)原式=(101+99)(101-99)=400; (2)原式=4(53.52-46.52) =4(53.5+46.5)(53.5-46.5) =4×100×7=2800.
(2)原式=(a2-4b2)-(a+2b) =(a+2b)(a-2b)-(a+2b) =(a+2b)(a-2b-1).
例3 已知x2-y2=-2,x+y=1,求x-y,x,y的值.
解:∵x2-y2=(x+y)(x-y)=-2,
x+y=1①, ∴x-y=-2②.
联立①②组成二元一次方程组,
解得
x
1 2
(x a p)2 (x b q)2
(x p) (x q) (x p) (x q)
(2x p q)( p q).
方法总结:公式中的a、b无论表示数、单项式、还是多项式,只
要被分解的多项式能转化成平方差的形式,就能用平方差公式因 式分解.
针对训练 分解因式:
(1)(a+b)2-4a2; (2)9(m+n)2-(m-n)2.
8. (1)992-1能否被100整除吗?
(2)n为整数,(2n+1)2-25能否被4整除? 解:(1)∵ 992-1=(99+1)(99-1)=100×98,
∴992-1能否被100整除. (2)原式=(2n+1+5)(2n+1-5)
=(2n+6)(2n-4) =2(n+3) ×2(n-2)=4(n+3)(n-2). ∵n为整数 ∴(2n+1)2-25能被4整除.

北师大版八年级数学下册《公式法(第1课时)》精品课件

北师大版八年级数学下册《公式法(第1课时)》精品课件
把乘法公式反过来用,可以把符 合公式特点的多项式因式分解, 这种方法叫公式法。
新知讲解 平方差公式的特点: a2−b2= (a+b)(a−b) ①左边 两个数的平方差;只有两项
②右边 两数的和与差相积 思考:什么形式的多项式可以用平方差公式分解因式? (1)两项 (2)平方 (3)异号
新知讲解
你对平方差公式认识有多深?
新知讲解
1:选择题
1)下列各式能用平方差公式分解因式的是( D )
A. 4m²+n² B. 4m- (-n)² C. -4 m²-n³ D. - m²+ n²
2) -4a² +1分解因式的结果应是 ( D )
A. -(4a+1)(4a-1)
B. -( 2a –1)(2a –1)
C. -(2a +1)(2a+1)
D. -(2a+1) (2a-1)
新知讲解
2:把多项式9(a+b)2-4(a-b)2因式分解. 解:9(a+b)2-4(a-b)2
=[3(a+b)]2-[2(a-b)]2
=[3(a+b)+2(a-b)] [3(a+b)-2(a-b)] =(3a+3b+2a-2b) (3a+3b-2a+2b) =(5a+b)(a+5b)
公式法(一)
北师大版八年级下册
新知导入
问题1:你能叙述多项式因式分解的定义吗?
把一个多项式化成几个整式的乘积的形式,这样 式子的变形,叫做因式分解(或分解因式)。 问题2:我们已学过哪一种分解因式的方法?
提公因式法 问题3:把下列各式因式分解 (1)am-an (2)7x3-21x2 (3)a(x-y)+b(x-y)

【专题课件】北师大版八年级下册第四章《因式分解》4.3 公式法:完全平方公式

【专题课件】北师大版八年级下册第四章《因式分解》4.3  公式法:完全平方公式

解: (1)16x2+ 24x +9 = (4x)2 + 2·4x·3 + (3)2 = (4x + 3)2;
(2)-x2+ 4xy-4y2 =-(x2-4xy+4y2) =-(x-2y)2.
例3 把下列各式分解因式: (1)3ax2+6axy+3ay2 ;(2)(a+b)2-12(a+b)+36.
分析:(1)中有公因式3a,应先提出公因式,再进 一步分解因式; (2)中将a+b看成一个整体,设a+b=m,则原式化为 m2-12m+36.
解: (1)原式=3a(x2+2xy+y2)
=3a(x+y)2; (2)原式=(a+b)2-2·(a+b) ·6+62
=(a+b-6)2.
概念学习
利用公式把某些具有特殊形式(如平方差式, 完全平方式等)的多项式分解因式,这种分解因式 的方法叫做公式法.
A . 11
B. 9 C. -11 D. -9
解析:根据完全平方式的特征,中间项-6x=2x×(-3), 故可知N=(-3)2=9.
变式训练 如果x2-mx+16是一个完全平方式,那么m的值 为___±__8___.
解析:∵16=(±4)2,故-m=2×(±4),m=±8.
方法总结:本题要熟练掌握完全平方公式的结构特 征, 根据参数所在位置,结合公式,找出参数与已 知项之间的数量关系,从而求出参数的值.计算过程 中,要注意积的2倍的符号,避免漏解.
a2+2ab+b2
a2-2ab+b2
(1)每个多项式有几项? 三项 (2)每个多项式的第一项和第三项有什么特征? 这两项都是数或式的平方,并且符号相同 (3)中间项和第一项,第三项有什么关系? 是第一项和第三项底数的积的±2倍

4-3 公式法课件2022-2023学年北师大版数学八年级下册

4-3 公式法课件2022-2023学年北师大版数学八年级下册
4
2
2
2
2
跟踪练习1
把下列各式因式分解.
1 2 2 − 2
解: 原式 =(ab)2-m2
=(ab+m)(ab-m)
(2)-16x2+81y2
原式 =81y2-16x2
=(9y)2-(4x)2
=(9y+4x)(9y-4x)
例题讲解
例2.把下列各式因式分解.
1 9 m n m n
2.会用平方差公式进行因式分解
3.使学生了解提公因式法是分解因式首先考虑的方法,再
考虑用平方差公式分解
教学重难点
1.重点:会用平方差公式进行因式分解
2.难点:发展学生的逆向思维,渗透数学的
“互逆”、换元整体的思想
学习目标
1.经历通过整式乘法公式的逆向变形得出公式
法因式分解的过程,发展逆向思维和推理能力.
2.会用平方差公式进行因式分解.
平方差公式
公式法
完全平方公式
问题引入
模块一
1.计算下列各式
观察这些式子,等式两边
分别有什么共同特征?
9x 2 y 2
9m2 4n2
2
2
a

b
a

b
=
a

b

两数或式的和与差的乘积
结果都是二项式,其中每一项都
是某数或式的平方,且两项符号
相反(一正一负)
模块二
例题讲解
例1.把下列各式因式分解.
1 2
2 9a b
4
1 25 16x
2
解:1 25 16x =52 - (4x)2 =(5 + 4x) (5 - 4x)

北师大版八年级数学下册第四章因式分解章末复习课件(共42张)

北师大版八年级数学下册第四章因式分解章末复习课件(共42张)
答案 C
章末复习
母题2 (教材P104复习题第1题) 把下列各式因式分解: (1)7x2-63; (2)a3-a; (3)3a2-3b2; (4)y2-9(x+y)2; (5)a(x-y)-b(y-x)+c(x-y); (6)x(m+n)-y(n+m)+(m+n); (7)(x+y)2-16(x-y)2; (8)a2(a-b)2-b2(a-b)2; (9)(x+y+z)2-(x-y-z)2; (10)(x+y)2-14(x+y)+49.
章末复习
相关题1 把下列各式分解因式: (1)5x2-15xy+10xy2; (2)a(x-2)+(2-x)2; (3)2x2y-8xy+8y; (4)(m2+n2)2-4m2n2.
章末复习
解:(1)原式=5x(x-3y+2y2). (2)原式=(x-2)(a+x-2). (3)原式=2y(x2-4x+4)=2y(x-2)2. (4)原式=(m2+n2+2mn)(m2+n2-2mn)=(m+n)2·(m-n)2.
相关题3 求证:不论x取何实数, 多项式-2x4-12x3-18x2的值都不会是 正数.
证明:原式=-2x2(x2+6x+9)=-2x2(x+3)2. ∵-2x2≤0,(x+3)2≥0, ∴-2x2(x+3)2≤0, ∴不论 x 取何实数,原式的值都不会是正数.
章末复习
专题四 因式分解的应用
【要点指点】 因式分解不仅在数值计算、代数式的化简求值等方 面有广泛的应用, 在解决实际问题时也同样重要.通过学习和应用 因式分解, 能使我们的视察能力、运算能力、逻辑思维能力、探究 能力得到提高.

北师大版八年级数学下册第四章4.3公式法(1)课件

北师大版八年级数学下册第四章4.3公式法(1)课件
=(3a+3b+2a-2b) (3a+3b-2a+2b)
=(5a+b)(a+5b)
把多项式x4-16因式分解.
解:x4-16 =(x2)2-42 =(x2+4)(x2-4) =(x2+4)(x+2)(x-2)
把下列各式因式分解:
(1) a4–b4=(a2)2-(b2)2= (a2+b2)(a2-b2)
(5) a2-4;
(6) a2+32.
因式分解: 9x2-4y2
解:9x2-4y2 =(3x)2-(2y)2 =(3x+2y) (3x- 2y)
a2 b2 (a b)(a b)
先确定a和b
例1 把下列各式因式分解:
(1)25-16x2 (2) 9a2 1 b2
4
解:(1)25-16x2 =52-(4x)2
补充练习
1、设n为整数,你能说明(2n+1)2-25一定 能被4整除吗?
3、已知3a+b=10000,3a-b=0.0001, 求 b2-9a2 的值.
小结
从今天的课程中,你学到了哪些知识? 掌握了哪些方法?
(1)有公因式(包括负号)则先提取公因式; (2)整式乘法的平方差公式与因式分解的平方 差公式是互逆关系;
x2-25=x2-52=(x+5)(x-5); 9x2-y2 =(3x)2-y2=(3x+y)(3x-y).
事实上,把乘法公式(a+b)(a-b)=a2-b2反过来,就 得到
a2-b2=(a+b)(a-b)
你对平方差公式认识有多深?
a2-b2=(a+b)(a-b)
△2- 2=(△+ )(△- )

北师大版初中八年级下册数学课件 《公式法》因式分解PPT(第1课时)

北师大版初中八年级下册数学课件 《公式法》因式分解PPT(第1课时)

强化训练
2. 证明:任意两奇数的平方差能被8整除. 证明:设任何奇数为2m+1,2n+1(m,n是整数) 则(2m+1) ²-(2n+1) ² =(2m+1+2n+1)(2m-2n) =4(m-n)(m+n+1) 可见只要证明(m-n)(m+n-1)是偶数即可, 若m,n都是奇数或偶数,则m-n为偶数, 4(m-n)(m+n+1)能被8整除, 若m,n都为一奇一偶,则m+n+1为偶数, 4(m-n)(m+n+1)也能被8整除, 所以,任意的两个奇数的平方差能被8整除.
解:∵b²+2ab=c²+2ac, ∴b²-c²+2ab-2ac=0, ∴(b+c)(b-c)+2a(b-c)=0, (b-c)(b+c+2a)=0. ∵a,b,c为三角形三边,所以b+c+2a>0, ∴b-c=0,即b=c.所以△ABC为等腰三角形.
课堂小结
1.平方差公式运用的条件: (1)二项式 (2)两项的符号相反 (3)每项都能化成平方的形式 2.公式中的a和b可以是单项式,也可以是多项式 3.各项都有公因式,一般先提公因式,再进一步分解,直至不能再分解为止.
强化训练
1.已知a、b、c是∆ABC的三边,且满足a²c²-b²c²=a4-b4,是判断∆ABC的形状. 解:a²c²-b²c²=a4-b4, a²c²-b²c²-a4+b4=0, c²(a²-b²)-(a²+b²)(a²-b²)=0 (a²-b²)(c²-a²-b²)=0 (a+b) (a-b)(c²-a²-b²)=0 其中a+b≠0, ∴a-b=0或c²-a²-b²=0 ∴a²+b²=c²或a=b. ∆ABC是直角三角形,或∆ABC是等腰直角三角形.

_4-3公式法 课件2022-2023学年北师大版数学八年级下册

_4-3公式法 课件2022-2023学年北师大版数学八年级下册
数 学 八年级(下) 北师大版第4章 因式分解
第四章 因式分解
4.3公式法
教材分析
学生在学习了用平方差公式进行 因式分解的基础上,本节课又安排 了用完全平方公式进行因式分解, 旨在让学生能熟练地应对各种形式 的多项式的因式分解,为下一章分 式的运算以及今后的方程、函数等 知识的学习奠定一个良好的基础
二、探究新知
完全平方式的特点:
a2 2ab b2; a2 2ab b2
首2 2 首 尾 尾2
三、巩固练习
模块三
1.判别下列各式是不是完全平方式.
(1) x2 y2;不是
(2) x2 2xy y2; 是
(3) x2 2xy y2; 是
(4) x2 2xy y2; 不是
(3)(m n)2 6(m n) 9 完全平方式中的“头”
(m n) 32
和“尾”,可以是数 字、字母,也可以是
(m n 3)2
单项式或多项式。
(4)(m 2n)2 2(2n m)(m n) (m n)2 (m 2n)2 2(m 2n)(m n) (m n)2
(m 2n) (m n)2
(2m n)2
例2.把下列各式分解因式:
(1)3ax2 6axy 3ay2
3a(x2 2xy y2 ) 1.若多项式中有公因式,
应先提取公因式,然后
3a(x y)2
再进一步分解因式。
(2) x2 4 y2 4xy (x2 4 y2 4xy)
1. 多项式
是否是完 a、b各表示 表示(a+b)2
全平方式
什么
或(a-b)2
x2 x 1 4

a表示x, b表示1/2
(x 1)2 2
9a2b2 3ab 1 否

北师大版 八年级下册 《公式法》 -平方差公式 因式分解 公开课课件

北师大版 八年级下册  《公式法》 -平方差公式 因式分解 公开课课件

回顾 & 小结 ☞
你有什么收获
①运用a2−b2= (a+b)(a−b)分解因式
首先提取公因式
②分解因式顺序 然后考虑用公式
最终必是连乘式
再攀高峰
如图,在边长为6.8cm 正方形钢板上,挖去4个边 长为1.6cm的小正方形,求 剩余部分的面积。
思维拓展
化简下列代数式 ① x5 - x3 ② x6 - 4x4 ③ (x - 1) +b2 (1 -x)
狙击手 谈谈收获
编程员 0.25p²-169q²
大队长 (m-a)²-(n+b)²
炊事员 99.5²-0.5²
议一议 下列分解因式是否正确?为什么?如 果不正确,请给出正确的结果.
x4 16 y4 (x2 )2 (4 y2 )2
(x2 4 y2 )(x2 4 y2 )
分解到不能再分解为止
解:原式=[3(m+n)]2-(m-n)2 =[3(m+n)+(m-n)][3(m+n)-(m-n)] =(3m+3n+m-n) (3m+3n-m+n)
=(4m+2n) (2m+4n) =4 (2m+n) (m+2n)
菜鸟 a²b²-m²
特种兵 x³- x
队长 81(a+b)²-4(a-b)²
班长 x4-81
学以致用
例1、把下列各式分解因式: (1) 25 - 16x2
(2)9a2 1 b 4
先化为 □2-△2
(3) - 16x2 +81y2
解(1)原式= 52-(4x)2 =(5+4x)(5-4x)
(2)原式
(3a)2

1 2

北师大版八年级数学下册第四章4.和4.因式分解公式法课件

北师大版八年级数学下册第四章4.和4.因式分解公式法课件

练习:课本100页,知识技能1
例2
把下列各式因式分解:
总结
1.分解因式的步骤:
(1)9(m+ n)2-(m-n)2
(2)2x3-8x
(1)提;(2)套
2.整体思想
解:(1)原式=[3(m+n)]2-(m-n)2 (2)原式=2x(x2-4)
=[3(m+n)+(m-n)][3(m+n)-(m-n)] =2x(x2-22)
(2)原式=-( − + ) =-(a-2b)2 1.提 2.套
(3)原式=y(y2-4y+4)
= y(y-2)2.
(4)原式= (y2 + x2 )2 -()
=(y2 + x2 +2xy)(y2 + x2 -2xy) = + 2 ( − )2
先破后立
练习:名校课堂67页-68页
=( 2 +4 2 )(x+2y)(x-2y)
=(x+3)(x-3)
先破后立:
若一个多项式没有公因式,也不能直接运用公式时,
要把多项式化简,然后再考虑用适当的方法分解
练习:课本100页知识技能2(1)(3)(5)
想一想:以前学过两个乘法公式
a b
2
a b
2
a 2ab b
y)]
=(6x+6y+7x-7y)(6x+6y-7x+7y)
=(13x-y)(13y-x);
(2) -16
(3) ( − ) +2(x-5)
解(2)原式= ( 2 )2 −( )
(3)原式= -2x+1+2x-10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档